当前位置: 仪器信息网 > 行业主题 > >

掺杂激光器

仪器信息网掺杂激光器专题为您提供2024年最新掺杂激光器价格报价、厂家品牌的相关信息, 包括掺杂激光器参数、型号等,不管是国产,还是进口品牌的掺杂激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合掺杂激光器相关的耗材配件、试剂标物,还有掺杂激光器相关的最新资讯、资料,以及掺杂激光器相关的解决方案。

掺杂激光器相关的资讯

  • 发扬奋斗精神,建造光纤激光器最强“心脏”
    光纤激光器被称为第三代激光器,其中“高性能稀土掺杂石英光纤”作为光纤激光器的“心脏”被列入国家战略性先进电子材料。其制备技术和产品长期被国外垄断,成为制约中国高功率光纤激光器发展的“卡脖子”元件。   从本世纪初,为解决我国高功率光纤激光器的稀土掺杂激光光纤“卡脖子”难题,为追赶我国在稀土掺杂激光光纤方面与国际先进水平差距,单元技术实验室胡丽丽研究员组织研究团队开展光纤研制工作和平台建设,创建了溶胶凝胶结合高温烧结制备稀土掺杂石英玻璃的新方法,阐明了稀土离子掺杂石英玻璃的发光、光学性能与局域结构的关联,并建立了相互作用的结构模型。提出了MCVD结合纳米溶胶液浸泡制备高掺杂离子分散性光纤预制棒的新思路,全面攻克了万瓦级光纤高效、高稳定性及高可靠性的技术难题,批量研制的光纤在GF和工业领域实现近万台套的规模应用。2011年以来胡丽丽研究员带领激光光纤研究团队持续开展稀土掺杂石英玻璃结构与性能的基础研究、大模场掺镱光子晶体光纤、大模场高功率包层结构稀土掺杂石英光纤、耐辐照稀土掺杂石英光纤等的研制,打破了国外对我国高功率激光光纤的垄断,解决了我国高功率光纤激光器关键元件国产化“卡脖子”问题。满足了高功率光纤激光器对核心元件的重大需求,为我国实现高功率光纤激光器最强“心脏”自主可控做出了重要贡献。   近十年来,胡丽丽研究员带领团队不断探索和总结,撰写了《稀土掺杂石英光纤及应用》著作,由上海科学技术出版社出版,并面向国内外发行。该著作获2022年度国家科学技术学术著作出版基金资助出版,获评2023年2月榜“世纪好书”。   作为第一完成人和突出贡献者,胡丽丽研究员获2016年上海市技术发明奖特等奖一项、2017年国家技术发明奖二等奖一项、2022年中国科学院杰出科技成就奖一项,获“全国三八红旗手”“上海市第十六届十大科技精英”等荣誉称号。
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。   径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。   该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。   此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。   近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。   该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。   该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。    千瓦级掺镱-拉曼集成的光纤放大器结构示意图    输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 中科院长春光机所有机激光器研究获进展
    p   近日,中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室有机激光课题组的电泵浦有机激光器的研究成果,以Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping为题,发表在Science Bulletin上。光学和光电子方面的权威媒体Laser Focus World, Photonics Media和美国科学促进会EurekAlert! Scince News报道了该项研究工作。 /p p   有机半导体激光器由于其材料丰富、低成本、柔性、可溶液加工等优点,是有机光电子领域的核心器件,在柔性可穿戴设备、智能互连、生物医疗等领域具有广阔的应用前景,并引起国内外科学家及产业界的极大关注。然而,绝大多数有机半导体激光器只能在光泵浦下工作,如何实现电泵浦有机半导体激光器成为有机光电领域的重大挑战。其关键难点在于复杂的激发态过程和不合理的器件结构会引起巨大的光学损耗,而有机半导体薄膜的载流子迁移率偏低,因此普遍认为要实现激射(净增益)往往需要极大的阈值电流密度(KA cm-2量级)。 /p p   针对上述难题,长春光机所有机激光团队根据腔量子电动力学原理、设计研制了高品质的平面光学微腔,有效调控有机半导体材料的自发发射和受激发射特性,成功克服了器件光学损耗大的难题,从而在低阈值电流密度下实现了电泵浦有机半导体激光器。该器件以经典有机小分子掺杂体系(Alq:DCJTI)为增益介质,激光峰位于621.7nm,随着电流的增加激光峰位保持不变,表明该器件具有优异的稳定性。该激光器的阈值电流密度约为1.8mA/cm2,最小线宽约为0.835nm 在电流密度为16mA/cm2时的光增益达到最大,达到5.25dB。 /p p   Laser Focus World的高级主编John Wallace评价该工作,“该低阈值激光器的实现意味着室温、连续激射的可行性,是有机半导体激光器获得实际应用的重要一步。”此外,该激光器极低阈值电流密度颠覆了人们对有机半导体激光的认识,表明高品质因子微腔中的有机Frankel激子的激发态性质以及相关的受激发射过程发生很大变化。开展上述物理过程的基础研究将使人们对有机半导体材料的激发态过程有更深入的理解和认识,有助于推动有机半导体的发展,催促全新型有机光电子器件的产生和广泛应用。 /p p   研究工作得到中科院知识创新工程项目、国家自然科学基金、发光学及应用国家重点实验室的支持。 /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201802/noimg/b010f5ab-c140-4f73-982f-1035b85305f0.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图1.研究结果被Laser Focus World报道 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " img title=" 002.png" src=" http://img1.17img.cn/17img/images/201802/noimg/090d988e-9977-444a-845e-f8f2009c3eb3.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图2.电泵浦有机激光器件的阈值及光放大特性 /strong /span /p
  • 突破!睿创团队中红外带间级联激光器研究取得重要进展
    近日,睿创研究院及睿创光子团队在中红外带间级联激光器(Interband cascade laser,ICL)的研究取得重要进展,相关团队实现了高性能、室温连续工作、多个激射波长的带间级联激光器系列,结合分子束外延技术,在InAs衬底上生长带间级联激光器材料,制备的窄脊器件室温激射波长接近4.6μm和5.2μm。目前大部分带间级联激光器生长在GaSb衬底上,而睿创团队报道的带间级联激光器生长在InAs衬底上,波导包层由InAs/AlSb超晶格和高掺杂的InAs层构成。相比于常见的GaSb基带间级联激光器,InAs基带间激光器在较长波长处(例如长于4.5μm)具有更低的阈值电流密度。(a)4.6μm波长、2mm腔长、10μm脊宽的器件在20℃-64℃之间连续激射光谱;(b)同一器件在20℃-64℃之间的连续电流-电压-功率曲线对于4.6μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为292A/cm²;2mm腔长和10μm脊宽的窄脊器件的连续工作温度可达64℃,室温输出功率为20mW;在相近波长处为目前报道的最高连续工作温度。对于5.2μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为306A/cm²;2mm腔长和10μm脊宽的窄脊器件最高连续工作温度为41℃,室温输出功率为10mW;其中阈值电流密度在类似波长为报道的最低水平。相关论文“High-temperature continuous-wave operation of InAs-based interband cascade laser”和“InAs-based interband cascade laser operating at 5.17 μm in continuous wave above room temperature”分别发表于Applied Physics Letters 和IEEE Photonics Technology Letters。(a)5.2μm波长、2mm腔长、10μm脊宽的器件在15℃-41℃之间连续激射光谱;(b)同一器件在15℃-41℃之间的连续电流-电压-功率曲线带间级联激光器是基于能带工程和量子力学产生激射,技术含量很高并且研制难点众多,是国家纳米和量子器件核心技术的重要体现,目前和量子级联激光器(Quantum cascade laser,QCL)并列为重要的中红外激光光源,在环境监测、工业控制、医疗诊断和自由空间通信等领域具有重要的应用价值和科学意义。带间级联激光器的原始概念由美国俄克拉荷马大学的杨瑞青教授(Rui Q. Yang)于1994年首次提出,目前基本上都采用近晶格匹配的InAs/GaSb/AlSb三五族材料体系来构造,有源区大多为InAs/GaInSb二类量子阱,其能力可覆盖从中红外到远红外的波长范围。带间级联激光器结合了传统半导体二级管激光器和量子级联激光器的优势,与同样能覆盖中红外波段的量子级联激光器相比,具有更低的阈值功耗密度和阈值电流密度,这种极低功耗的优势在一些需要便携和电池供电设备的应用中显得非常重要。目前全球带间级联激光器市场仍由国外企业占据主导地位,国内仍处于产业发展的初始阶段。本文报道的这两项工作标志着睿创光子在带间级联激光器的外延设计和器件制备等多个方面同时达到了较高的技术水平,成为掌握高性能带间级联激光器技术的企业。该工作也为后续单模可调谐的DFB带间级联激光器的研发和量产打下了坚实的基础。睿创光子(无锡)技术有限公司是烟台睿创微纳技术股份有限公司的控股子公司,聚焦III-V族光电子器件、硅基光电子器件等光子芯片技术研发与产业化。
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p   由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。 /p p   高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。 /p p   该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。 /p
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 欧盟拟制造史上最强激光器
    据英国《新科学家》杂志4月25日报道,欧盟通过了一项研究计划——极光基础设施(ELI),支持科学家建造三台可合起来使用的激光器,其中每台激光器都会让现有激光器相形见绌。这三台激光器有望于2015年问世,该计划的成功将会为建造更强的激光器(其能将“虚拟”粒子从时空空白处中拉出)奠定基础。   这三台新激光器将于2015年分别建在捷克、匈牙利和罗马尼亚。每台激光器将发出强度高达10拍瓦(petawatt,1拍瓦=1015瓦)的脉冲,其强度是现有激光脉冲的几百倍。   这种激光脉冲的持续时长仅为1.5×10-14秒,比光通过发丝直径的长度距离所需时间的十分之一还少。因为这种脉冲如此短暂,它们所包含的能量少于美国国家点火装置(NIF)的激光脉冲(其持续时长为2.0×10-8)所拥有的能量。但在这稍纵即逝的瞬间,ELI脉冲产生的能量却是NIF的20倍。   《激光世界》杂志报道称,每台激光器的造价约为4亿美元,由于设计细节各有不同,因而可用于进行不同的高能物理实验,包括使用激光脉冲给粒子加速、研究原子核以及产生更短暂的脉冲来研究原子内部极快事件的动力学原理等。   如果一切进展顺利,第四台激光器将“应运而生”。该项目协调人、法国超快光学研究所所长杰拉德莫瑞希望,第四台激光系统最终能达到的强度能使“虚拟”粒子出现在现实中。
  • 美造出最小和最高效的无阈值激光器
    美国加州大学圣地亚哥分校的研究人员制造出迄今最小的室温纳米激光器以及一台效率很高的无阈值激光器,能让所有光子都以激光形式进行发射,不浪费任何光子。   所有激光器都需要源于外部特定数量的抽运功率来发射相干光束或激光。产生激光还必须满足阈值条件,也就是相干输出要大于产生的自发辐射。然而,激光器越小,达到发射激光的阈值所需的抽运功率越大。为了解决这一问题,科学家们为新激光器设计了一种新方法,使用共轴纳米腔内的量子电动力效应来减轻阈值限制。该激光腔包含有一个被一圈金属镀层所包裹的金属棒,通过修改该激光腔的几何形状,科学家们制造出了这种无阈值激光器。   新设计也使他们制造出了迄今最小的室温激光器。新的室温纳米尺度的共轴激光器比两年前《自然—光子学》杂志介绍的最小激光器小一个数量级,整个设备的直径仅为半微米。   这两台激光器需要的操作功率都非常低,这是一个重要的突破,这些小尺寸且超低功率的纳米激光器可成为未来微型计算机芯片上的光学电路的重要元件。这些高效的激光器可被用于增强未来光子通讯使用的计算芯片的能力,光子通讯领域需要使用激光器在芯片上遥远的点之间建立通讯链接。这种激光器需要的抽运功率更少,也意味着传送信息需要的光子数量也更少。   参与该研究的雅可布工程学院的Mercedeh Khajavikhan认为,这种无阈值激光器还能被缩小,这使其能从更小的纳米设备捕获激光,因此能被用于制造和分析比目前激光器发出的光波波长更小的超材料。超材料的应用范围从能看见单个病毒或DNA分子的超级镜头到能让物体周围的光弯曲使它“隐身”的隐形设备。(黄健)
  • 澳开发出能量更强单原子激光器
    据美国《每日科学》网站3月31日报道,澳大利亚因斯布鲁克大学研究小组最新实现的更高能量单原子激光,不但具有传统激光器的属性,还展示了单个原子相互作用的量子力学性质。   在传统型激光器中,光学性质活跃的物质被放置在两面镜子之间的一个空腔内,然后用电流或另一束激光将其激发。光学性质活跃的物质所发射出的光子被反射再次穿过物质,会激发更多光子的发射,最终产生激光。系统中单个电子或光子的量子涨落对整个激光器几乎没有影响。   单个原子激光器,其激光出自于单个原子。首先对于激光系统性能而言,其工作阈值条件具有非常重要的意义。因斯布鲁克大学的科学家瑞纳布拉特与皮特施密特领导的研究小组,展示了激光阈值高度完美化的最小可能:单个原子可在光学腔中单模交互。被“囚禁”在离子阱中的单一钙离子,因接受外部激光刺激而活跃,释放出一个光子。由两面镜子组成的高精度光学腔,能捕捉并聚集该光子,离子循环的每个周期都有一个光子被添加到腔洞系统中,使光线得以增强。   单原子激光器可促进人们了解单个原子与单个光子之间的相互作用,由单原子激光器产生的非经典光将实现对光子流量的精细控制,在光子信息工程中具有很大的应用前景。自1958年研制成功以来,激光就被冠以“最快的刀、最准的尺”之名。但现今的这项技术正在将此概念延伸到一个全新的领域。   该项成果发表于最新一期《自然物理学》杂志上.
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。   该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。   此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。   为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。   科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 首个气流调谐液滴激光器出现
    荷叶沾水珠而不湿,日本科学家借助这一“荷叶效应”,利用简单的方法,制造出了一种新型离子液滴,这种微滴可用作灵活、持久而可调谐的激光器。与现有不能在大气中工作的“液滴激光器”不同,最新进展有望使激光器在日常环境中使用,从而催生出更便宜的光纤通信设备。相关研究刊发于最近的《激光与光子学评论》杂志。荷叶具有显著的自洁特性,在荷叶表面,水滴不会变平,而是会形成近乎完美的球体并滚落,带走灰尘。这种“荷叶效应”由叶片内的微小突起造成。在最新研究中,筑波大学科学家利用人工“荷叶效应”,创造出了可以像激光一样工作的液滴,而且,这种液滴激光器可在长达一个月的时间里保持稳定,而目前的“液滴激光器”不能在开放环境条件下使用,只能将其封闭在容器内,否则它们会蒸发。在新研究中,科学家将名为“1-乙基-3-甲基咪唑四氟硼酸盐”(EMIBF4)的离子液体与一种染料混合,使其成为激光介质。之所以选择这种液体,是因为它蒸发得非常缓慢,并且具有相对较大的表面张力。然后研究团队在石英衬底上涂上微小的氟化二氧化硅纳米颗粒,使其表面排斥液体。当EMIBF4沉积其上时,液滴几乎能完美地保持球形,持续时间长达30天。研究人员表示,数学计算显示,即使暴露在气流中,这种新液滴的理想形态和光学性质也会保持不变。据目前所知,这是第一个可通过气流调谐的液体激光振荡器。此外,研究人员利用3D打印方法,打印出了这种液滴激光器,且打印出来的液滴阵列无需进一步处理即可工作。研究团队指出,这种产品具有高度的可扩展性和易用性,很容易用于制造廉价的传感器或光通信设备,有望催生更灵敏的气流探测器或更便宜的光纤通信设备。
  • 《自然》:世界最小纳米激光器在美问世
    研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美国诺福克大学材料研究中心物理学教授米哈伊尔诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。 诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。 spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。 此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。 常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。 美国乔治亚州大学物理学教授马克斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。 诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到。
  • “Cleanlaze激光器在拉曼光谱分析中的应用”获美国专利
    近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话021-64515208。我们将竭诚为您服务!
  • 新型超小激光器只有一个病毒大小
    据物理学家组织网11月6日(北京时间)报道,美国西北大学的一个研究小组开发出一种只有一个病毒大小的超小型激光器。这种激光器具有体积小、室温下即可工作的特点,能够很容易地集成到硅基光子器件、全光电路和纳米生物传感器上,具有极为广阔的应用前景。相关论文发表在近日出版的《纳米快报》杂志上。   光子和电子元件的尺寸对超快数据处理和超高密度信息存储至关重要,因此,小型化是此类设备未来发展所必须攻克的一个难关。负责这项研究的纳米技术专家,西北大学温伯格学院艺术与科学学院以及麦考密克工程和应用科学学院材料学教授泰瑞奥多姆说,纳米尺度上的相干光源不仅能够用来对小尺度的物理化学现象进行探索和分析,同时也能够帮助科学家打破光的衍射极限。   奥多姆称,能够制造出这种纳米激光器,都要归功于一种3D蝴蝶结式的纳米金属空腔结构。这种激光腔的几何结构能够产生表面等离子激元,这是一种在金属介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。当产生表面等离子激元后,由于金属表面电子的集体震荡,因而能够最大限度的突破阈值限制,让所有光子都以激光形式进行发射,不浪费任何光子。这种蝴蝶结状结构的使用与先前类似的设备相比有两个明显的好处:第一,由于其电磁特性和纳米尺寸的体积,这种结构清晰可辨认。第二,由于其离散结构,损失可以减到最少。   此外,研究人员还发现,当这些结构排列成为一个阵列时,3D蝴蝶结谐振器能够根据晶格的参数发射出带有特定角度的光。
  • 日本开发波长为0.15纳米的原子级激光器
    据《日刊工业新闻》报道,日本电气通信大学、理化学研究所、东京大学等多个大学和研究机构组成的研究团队,最近成功开发波长为0.15纳米的原子级激光器。据称,该激光器的波长是目前世界最短,比现有最短波长激光器的波长小一个数量级。该研究成果已发表在英国《自然》杂志电子版。  研究团队在20微米厚的铜箔上照射X射线,使其产生X射线激光,从而通过微小材料制成高效X射线激光器。据报道,该X射线激光器的研制成功,首次在硬X射线区实现了利用原子能级差的原子级激光器。该激光器在可视光至近红外光谱有广泛应用,但较难使用于包括X射线在内的短波长领域。  研究团队利用X线自由电子激光设备(SACLA:SPring-8 Angstrom Compact Free Electron Laser )去除围绕原子核旋转的电子中最靠近原子核的一个电子,通过几乎同时射入的弱X射线,成功激发了被称为傅立叶极限的理想激光。  报道称,该研究成果的意义还在于,利用作为导线的铜箔可实现理想的X射线激光器,预示了将来使用电路板铜线实现X射线激光器的可能性。
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in asemiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 科学家利用玻璃造出飞秒激光器
    科学家在玻璃基板上制造了千兆飞秒激光器。图片来源:瑞士洛桑联邦理工学院商业飞秒激光器是通过将光学元件及其安装座放置在基板上制造的,这需要对光学器件进行严格对准。那么,是否有可能完全用玻璃制造飞秒激光器?据最新一期《光学》杂志报道,瑞士洛桑联邦理工学院的科学家成功做到了这一点,其激光器大小不超过信用卡,且更容易对准。研究人员表示,由于玻璃的热膨胀比传统基板低,是一种稳定的材料,因此他们选择了玻璃作为衬底,并使用商用飞秒激光器在玻璃上蚀刻出特殊的凹槽,以便精确放置激光器的基本组件。即使在微米级的精密制造中,凹槽和部件本身也不够精确,无法达到激光质量的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。于是,研究人员进一步设计蚀刻,使一个镜子位于一个带有微机械弯曲的凹槽中,凹槽在飞秒激光照射时局部可扭动镜子。通过这种方式对准镜子后,他们最终创造出稳定的、小规模的飞秒激光器。尽管尺寸很小,但该激光器的峰值功率约为1千瓦,发射脉冲的时间不到200飞秒,这个时间短到光都无法穿过人类的头发。这种通过激光与物质相互作用来永久对准自由空间光学元件的方法可扩展到各种光学电路,具有低至亚纳米级的极端对准分辨率。
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 探秘世界最强X射线激光器:比地球光源亮10亿倍
    在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。   北京时间1月30日消息,据国外媒体报道,美国国家加速器实验室近日利用世界上最强大的X射线激光器--直线加速器相干光源激光器再现恒星内部强大的压力与高温情形。这种激光器的激光能量迸发可超过一个小国家全年的发电总量。   在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。金属在如此短的时间内被熔化,其所产生的极度高温和高压状态,通常只有在恒星内部才会出现。   英国牛津大学物理系科学家萨姆-文科博士等人参与了直线加速器相干光源激光器实验。文科博士表示,“如果我们要想了解现存恒星内部的情形以及我们太阳系内外巨型行星中心的情形,那么制造高温、高密度的物质非常重要。直线加速器相干光源激光器是一台神奇的机器,我们已经在多个科学领域取得了重大发现,如材料科学、生物学等。”   直线加速器相干光源激光器的实验成果近日发表于《自然》杂志之上。直线加速器相干光源长约2公里,可以产生密集的X射线爆发,亮度超过地球上任何光源10亿倍。在高峰时,光脉冲的能量甚至比一些小国家一年的发电总量都要多。
  • 光纤激光器技术市场份额2013有望增长到30%。
    过去的10年,大功率光纤激光器技术快速从实验室向商业化转移。同传统的二氧化碳激光器技术相比较,光纤激光器技术可以提供高质量、更完美和远距离的激光束,额外的优势还包括高效低能耗、低运营成本、工业化维修和便于生产工艺的自动化。在快速增长的世界激光技术应用市场中,光纤激光技术的市场份额已从2006年的占8%增长到2008年的占10%,2013年有望增长到中30%。   先进的光纤激光器技术,以毫微微秒(Fentosecond,10-15秒)量级产生激光脉冲,自诞生之日起就以复杂、昂贵和不稳定的特点而闻名。欧盟第七研发柜架计划(FP7)资助1000万欧元,总研发投入1600万欧元,由德国科技人员进行总协调,欧盟7个成员国及联系国德国、瑞士、英国、法国、芬兰、丹麦和瑞典21家机构科技人员参与的欧洲LIFT研发团队,成功地研制出新型的、稳定的和价格合理的大功率毫微微秒光纤激光源,为光纤激光技术的推广应用奠定了基础。研发团队能在相对较短的时间内开发出基于光纤的短脉冲激光发生器和被称作“冷处理”的超短脉冲激光发生器,完全得益于研发团队科技人员的构成及相互协调配合。研发团队的科技人员来自广泛的学科领域,覆盖激光技术科研机构、激光源供应商和光学仪器组件生产企业的科研、实验和工程研究人员及工程师。   研发团队在开发光纤激光器技术上的成功,将继续保证欧盟在激光技术及激光制造业的世界领先水平和竞争力。目前,研发团队的主要目标已转向光纤激光技术的商业化应用,包括:利用新一代光纤激光技术的运程切割与焊接工艺的开发 应用于医学的痤疮及粉刺技术已申请发明专利 应用于部分癌症治疗技术的开发 应用于太阳能电池组件制造技术的开发等。
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。   新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。   这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。   太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。   研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。   另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。   研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 科研人员研发用于量子技术的金刚石激光器
    根据俄罗斯国家科学院西伯利亚分院网站报道,西伯利亚分院大电流电子研究所科研人员与托木斯克国立大学合作,研发出一种基于NV中心和光泵浦的金刚石激光器。相关研究结果发表在《Nature Communications》杂志上。制造该设备需要一种人造金刚石,经过辐射热处理,在其晶体结构中形成许多抗激光辐射的色心。对于量子技术来说,最重要的是NV中心(金刚石的色心之一)。NV色心是金刚石的结构缺陷,包括一个氮原子(N)和一个相邻的空位,晶格位置未被碳原子(V)占据。多年来,科研人员从金刚石色心获得激光辐射均未成功。此次,科研人员在含有多达10个NV中心和每百万碳原子多达300个氮原子的合成金刚石样品中,实现了非热发光的增强和激光辐射的产生。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 细胞激光器标记人体所有细胞
    激光拥有许多普通光不同的特征,使激光在许多领域被作为工具使用。但一般激光都需要复杂的技术和设备制造,让细胞发射出激光的想法似乎比较疯狂。科学家有时候看起来就是这么疯狂,最近有科学家真的制造出能发射激光的活细胞。这一新技术成为《自然》网站的最近头条新闻。科学家将含有荧光染料的油滴注射到单细胞内,用短脉冲光线激发细胞内染料产生激光。  这一新技术发表在7月27日《自然光子》杂志上,该技术不仅能开发为医学诊断的方法,也具有形成治疗疾病新技术的可能。  这一技术的设计者是Seok Hyun Yun和Matja? Humar,哈佛大学医学院的这两位光物理学家,利用油滴反射和放大光线使单细胞产生激光。Yun在2011年曾经报道过一种能产生激光的细胞,先利用基因工程技术让细胞表达荧光蛋白,然后将表达荧光蛋白的细胞放置于一对镜子中间,或者是细胞借助镜子的反射制造激光。最新这一技术更进一步,是让细胞自己独立产生激光。  在未来,这种“生物激光器”将能被进一步开发,植入活的动物体内,这能将大大提高显微镜扫描的精确度。将这种激光细胞植入身体内,可以制造出体内激光光源,帮助科学家观察组织结构和诊断疾病。  生物技术常用的荧光探针包括荧光染料和荧光蛋白,这些荧光的特点是发射比较宽的波长。这一特点导致荧光探针无法同时使用许多类型。例如我们可以选择绿色、红色和蓝色的荧光,其实同样是红色,其波长有非常多的类型。因为每个探针都是多种波长组成的混合光线,因此我们只能选择很少几类荧光作为工具。例如我们比较常用的荧光免疫组织化学,你一次用三种颜色标记三种不同蛋白就非常不错了。  激光能解决这个尴尬的问题,因为激光的特点就是非常窄的波长,这样理论上,我们可以同时追踪非常大量不同的目标分子。而且也能大大提高检测的灵敏度。波士顿布里格姆妇女医院生物工程学家Jeffrey Karp对该技术大加赞赏,认为是解决了用一种技术同时示踪数千种目标分子的伟大发明。  最新报道的这一技术核心是将含有荧光的聚苯乙烯滴注射到细胞内,可通过改变聚苯乙烯滴直径获得不同发射波长的激光。理论上组合不同的聚苯乙烯滴和不同波长的染料,能用不同波长光线标记人体所有的细胞。
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 新型半导体激光器成功解决激光成像“光斑”问题
    美国耶鲁大学的科学家开发出一种新的半导体激光器,成功解决了长期困扰激光成像技术的&ldquo 光斑&rdquo 问题,有望显著提高下一代显微镜、激光投影仪、光刻录、全息摄影以及生物医学成像设备的成像质量。相关论文发表在1月19日出版的美国《国家科学院学报》上。   物理学家组织网1月20日报道称,全视场成像应用近几年来已经成为众多研究所关注的焦点,但光源问题却一直未能得到解决。这项由耶鲁大学多个实验室合作完成的项目成功破解了这一难题,为激光成像技术大范围的应用铺平了道路。   耶鲁大学物理学教授道格拉斯· 斯通说,这种混沌腔激光器是基础研究最终解决实际应用问题的一个典型范例。所有的基础性工作,都是由一个问题驱使的&mdash &mdash 如何让激光成像技术更好地在现实中获得应用。最终,在来自应用物理、电子学、生物医学工程以及放射诊断等多个学科的科学家努力下,这一问题得到了解决。   此前,科学家们发现激光在成像领域极具潜力。但&ldquo 光斑&rdquo 问题却一直困扰着人们:当传统激光器被用于成像时,由于高空间相干性,会产生大量随机的斑点或颗粒状的图案,严重影响成像效果。一种能够避免这种失真的方法是使用LED光源。但问题是,对高速成像而言,LED光源的亮度并不够。新开发出的电泵浦半导体激光器提供了一种不同的解决方案。它能发出十分强烈的光,但空间相干性却非常低。   论文作者、耶鲁大学应用物理学教授曹辉(音译)说,对于全视场成像,散斑对比度只有低于4%时才能达到可视要求。通过实验他们发现,普通激光器的散斑对比度高达50%,而新型激光器则只有3%。所以,新技术完全解决了全视场成像所面临的障碍。   论文合著者、放射诊断和生物医学助理教授迈克尔· 乔马说:&ldquo 激光斑点是目前将激光技术用于临床诊断最主要的障碍。开发这种无斑点激光器是一项极其有意义的工作,借助这一技术,未来我们将能开发出多种新的影像诊断方法。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制