当前位置: 仪器信息网 > 行业主题 > >

标准光源箱

仪器信息网标准光源箱专题为您提供2024年最新标准光源箱价格报价、厂家品牌的相关信息, 包括标准光源箱参数、型号等,不管是国产,还是进口品牌的标准光源箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标准光源箱相关的耗材配件、试剂标物,还有标准光源箱相关的最新资讯、资料,以及标准光源箱相关的解决方案。

标准光源箱相关的资讯

  • LED 照明与爱色丽光源评估工具—标准光源箱解决方案
    随着全球对可持续发展和环境保护意识的不断增强,绿色照明技术正逐步成为现代社会关注的焦点。LED(发光二极管)照明技术凭借其出色的节能表现和环保特性,正在引领照明行业的绿色工业。LED灯具不仅能显著降低能耗,还能减少有害物质的排放,是实现低碳经济的理想选择。随着技术的不断创新,LED照明正在被广泛应用于家庭、商业和公共场所,为我们的生活带来更加绿色和可持续的未来。荧光灯因其类似日光的光源特性,被广泛应用于家庭、商场和办公室等场所。然而,它们的使用寿命有限,且在灯管破裂时会释放汞元素,对环境和人体健康造成危害。为了应对这些问题,国际社会达成了《关于汞的水俣公约》,旨在控制和减少汞的排放和使用,推动全球向更环保的照明技术过渡。这一公约反映了全球对环境保护的日益重视。在全球对可持续发展和环保日益关注的大背景下,LED 照明技术凭借自身众多的优势,成为了照明领域的焦点。LED 灯因其高效节能、长寿命、发光效率高以及设计灵活性强等特点而备受青睐。和传统的白炽灯与荧光灯相比,LED 灯的能耗大幅降低,仅仅是白炽灯的十分之一,是节能灯的四分之一,其使用寿命能够达到 3 万至 8 万小时,是其他灯具的好几倍。另外,LED 灯具不含有汞等有害物质,可以提供定向光源,能够减少光污染,对环境更加友好。其小巧紧凑的设计以及多样化的应用场景,让 LED 灯在住宅、商业及公共领域的应用越来越广泛。随着技术不断进步以及成本逐渐下降,LED 照明会在全球范围内持续引领行业创新,助力实现更绿色、更可持续的未来。爱色丽公司,作为颜色视觉评估领域的先锋,凭借其在色彩管理技术方面的深厚专业积累,为全球客户提供了稳定而高品质的辨色光源。其产品Judge QC 标准光源箱和SpectraLight QC 标准光源箱,以其卓越的光源稳定性和色彩准确性,已经成为印刷、纺织、涂料等多个行业内公认的光源评估工具。Judge QC 标准光源箱Judge QC标准光源箱是爱色丽公司推出的一款专业级光源评估工具,专为满足印刷、包装、纺织和涂料行业的高标准颜色评估需求而设计。这款光源箱采用了先进的LED技术,确保了光源的稳定性和色彩的准确性,为用户提供了一个可靠的颜色评估环境。特点:多种光源选项:提供包括D65、D50、U30、Horizon等在内的多种国际标准光源,以适应不同的颜色评估需求。LED技术:采用LED光源,具有更长的使用寿命和更低的能耗,同时保证了光源的一致性。色彩准确性:光源箱设计确保了色彩的准确性和一致性,减少了颜色评估过程中的误差。灵活性和便携性:设计紧凑,便于携带和移动,适合在不同环境中使用。SpectraLight QC 标准光源箱SpectraLight QC标准光源箱是爱色丽公司的另一款高端光源评估工具,它提供了更为广泛的光源选项和先进的技术,以满足更为复杂的颜色评估任务。特点:广泛的光源选择:除了提供国际标准的光源外,还支持用户自定义光源,以适应特殊颜色评估需求。高级LED技术:采用最新的LED技术,提供更均匀、更稳定的光源,确保了在各种条件下的颜色准确性。多角度观察:设计允许用户从不同角度观察样品,以评估颜色在不同光照条件下的表现。智能控制:配备智能控制系统,用户可以轻松切换光源和调节亮度,提高工作效率。Judge QC和SpectraLight QC标准光源箱是爱色丽公司在颜色视觉评估领域的创新成果,它们代表了行业内光源箱技术的前沿。这两款产品不仅提高了颜色评估的准确性和效率,而且通过采用LED技术,也体现了爱色丽对环保和可持续发展的承诺。关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 科学目视色彩评估的方法与标准光源箱的应用
    色彩作为视觉艺术和工业设计中的重要元素,其准确评估对于保证产品质量和美观性至关重要。科学的目视色彩评估方法能够帮助设计师和制造商准确判断色彩,确保色彩的一致性和可重复性。本文将介绍几种常用的科学目视色彩评估方法,并以SpectraLight QC标准光源箱为例,探讨它们在实际应用中的作用。在色彩评估过程中,使用标准光源是至关重要的。标准光源箱提供7种光源,包括模拟日光(D50或D65)、冷白荧光灯(CWF)、白炽灯(A)、水平日光(Horizon)、UVA和两种可选荧光灯(U30、U35或TL84),以及2个可选的LED光源(L940或L950)。这些多样化的光源选项确保了在不同照明条件下都能进行准确的色彩评估。为了确保色彩评估的一致性,需要在标准的观察条件下进行。这包括设定特定的观察角度(如45°/0°或0°/45°)、观察距离和背景色。这些条件的标准化有助于减少由于观察条件不同而引起的色彩感知差异。色样对比是一种直观的色彩评估方法,即将待评估的色样与标准色样或参考色样进行直接比较,以此来判断色差。此外,色彩匹配技术也广泛应用于色彩评估中,通过调整色样的三原色成分,使其在视觉上与标准色样或参考色样匹配,从而评估色彩的准确性。虽然目视评估依赖于人的视觉感知,但色度计和分光光度计等仪器可以提供客观的色彩数据,辅助判断色差的大小或色彩的具体参数。这些仪器的使用可以增强目视评估的准确性和可靠性。SpectraLight QC标准光源箱是一款专为满足严格视觉评估需求而设计的设备,它提供了7种光源选项,包括可调节的模拟日光(通过加滤光片的卤素灯实现)和可选的LED灯,以适应不同的评估场景。该设备旨在确保整个供应链中的视觉评估始终保持一致,同时提供出色的报告功能和可追溯性,以便于监控和管理色彩质量。SpectraLight QC标准光源箱为整体视觉色彩评估提供了一套完善的解决方案,有助于在整个供应链中建立标准化的操作程序。对于品牌商和规格指定方,这个系统不仅确保了操作的一致性,还提供了出色的报告功能和可追溯性,从而增强了管理效率和质量控制。对于供应商而言,SPLQC标准光源箱能够在供应链的各个环节设置审批检查点,从而确保产品从设计到质量控制的每个阶段都符合标准。作为一个整体解决方案,SPLQC标准光源箱不仅减少了人为错误,还通过标准化视觉评估条件,节省了时间和成本,提高了整个供应链的效率和可靠性。科学的目视色彩评估方法对于确保产品色彩的一致性和准确性至关重要。通过使用标准光源、建立标准观察条件、进行色样对比和色彩匹配,以及控制环境因素和训练有素的观察者,可以有效提高色彩评估的科学性和准确性。SpectraLight QC标准光源箱作为一个整体解决方案,在设计、制造和质量控制等领域都有着广泛的应用,对于提升产品的美观性和市场竞争力具有重要意义。“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 聚焦!超高能伽马光源的测定新标准
    在国家重点研发计划“大科学装置前沿研究”重点专项的支持下,中国科学院高能物理研究所牵头的LHAASO国际合作团队利用“高海拔宇宙线观测站(LHAASO)”精确测量了高能天文学标准烛光的亮度,为超高能伽马光源的测定提供了新标准。   该团队精确测量了蟹状星云辐射的最高能量端能谱,覆盖了从0.0005到1.1拍电子伏宽广的范围,不但确认了此范围内其他实验几十年的观测结果,还实现了前所未有的超高能区(0.3-1.1拍电子伏)的精确测量,为该能区标准烛光设定了亮度标准。这次观测还记录到能量达1.1拍电子伏(拍=千万亿)的伽马光子,由此确定在大约仅为太阳系1/10大小的(约5000倍日地距离)星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束能量(欧洲核子研究中心大型正负电子对撞机LEP)的两万倍左右,接近经典电动力学和理想磁流体力学理论所允许的加速极限。相关研究成果于近日发表在《科学》(Science)上。
  • 我国科学家为超高能伽马光源的测定提供了新标准
    在国家重点研发计划“大科学装置前沿研究”重点专项的支持下,中国科学院高能物理研究所牵头的LHAASO国际合作团队利用“高海拔宇宙线观测站(LHAASO)”精确测量了高能天文学标准烛光的亮度,为超高能伽马光源的测定提供了新标准。该团队精确测量了蟹状星云辐射的最高能量端能谱,覆盖了从0.0005到1.1拍电子伏宽广的范围,不但确认了此范围内其他实验几十年的观测结果,还实现了前所未有的超高能区(0.3-1.1拍电子伏)的精确测量,为该能区标准烛光设定了亮度标准。这次观测还记录到能量达1.1拍电子伏(拍=千万亿)的伽马光子,由此确定在大约仅为太阳系1/10大小的(约5000倍日地距离)星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束能量(欧洲核子研究中心大型正负电子对撞机LEP)的两万倍左右,接近经典电动力学和理想磁流体力学理论所允许的加速极限。相关研究成果于近日发表在《科学》(Science)上。
  • 美国照明产品标准(UL1993)更新主要针对LED光源
    2012年12月4日,UL1993更新为第4版。本次更新主要针对LED灯泡和灯管,将原Subject 1598C 附录SA的内容增加到UL1993附录中,并有部分其它要求变更。所以根据新版的标准,LED灯管可以只按UL1993标准进行评估,不需要再进行Subject 1598C评估。   第4版UL1993关键更新如下:   • 低压LED灯泡(如MR11、M16等)纳入标准范围   • 允许产品外壳使用玻璃,但要求其强度需能通过跌落测试   • 低压灯泡的base如果为标准型,必须是UL1598中要求的用于低压灯的base   • 未修改电路而直接替换荧光灯管的LED灯管在加拿大禁止使用   • 外置式电源的LED灯泡或灯管产品,要求其与驱动连接的电线至少达到300V, 90℃   • 新增用于和卤素光源互换的LED灯泡(如MR11、MR16等)的要求   • 更新LED灯管误用测试方法,测试适用于所有取代荧光灯的LED灯管。   送样测试要求: 产品 服务项目 周期 样品 LED灯泡/灯管 UL1993(4th ed., rev. Dec. 4, 2012)安全要求 3-4周 6件/型号
  • 如何校准照度计?选对校准光源是关键
    图1 用于光密箱内照度计校准光源照度计在使用前必须进行校准,以确保它们给出正确的结果。然而,在许多测试中,存在背景光。任何数量的背景光都可以到达传感器并影响校准数据。因此,客户要求 Labsphere (蓝菲光学)提供一个均匀校准光源,以防止背景辐射影响到校准。解决方案图2 Labsphere(蓝菲光学)用于光密箱内照度计校准光源标准的 Labsphere(蓝菲光学) HELIOS® V系列系统虽具有单个光源但动态范围出色,且可以满足了客户的光谱要求。将 Labsphere(蓝菲光学)积分球和框架朝下旋转到一个定制的密封暗箱中,在那里测试客户的照度计。带 90° 旋转镜的外置卤素灯用于微调灯泡亮度的手动衰减器校准硅探测器,可准确测量亮度带有快门滑块、针孔滑块和人眼滤光片的滤光片选择器 定制的不透光黑匣子外壳照度计安装平台高度可调密封的磁性检修门拉丝索环馈通,允许照度计的电缆在没有杂散光进入的情况下退出暗箱HELIOSense 软件用于控制和监控系统门打开,露出一个带有插槽平台和锁定夹,用于固定客户的照度计。两个小 L 型手柄可以转动来解锁平台,然后平台轻松向上滑动到测试位置。L 形手柄锁定平台到位,门关闭后,可以开始测试了。产品特点图3 可见波段光谱辐亮度图4 系统均匀性99.3%暗箱可防止任何背景辐射在测试过程中到达传感器,最大限度地提高校准的准确性具有 99.3% 的面均匀性和 99.3% 的角度均匀性,确保每次测试都能获得准确的结果Labsphere 与客户密切沟通,使客户能够收到与其内部组件相匹配的系统使用 Labsphere 的 HELIOSense 软件可以轻松实现组件控制以及实时数据收集和可视化提供完整的校准报告,包括光谱辐射、亮度、均匀性和色温
  • 条纹相机校准用-黑体校准积分球光源
    在开发用于测量光源色温 (CCT) 的相机系统时,对其进行正确的校准以提供准确的读数是非常重要的。通常使用已知温度的标准黑体光源来完成校准。 一家研究机构需要一个可以模拟 5000K 和 2856K 曲线的黑体光源来校准他们正在开发的条纹相机。 客户要求该系统尺寸足够小,可通过 340 mm的开口孔安装到用于其测试配置的腔室中。 图1 条纹相机(源于网络图片)Labsphere(蓝菲光学)为客户提供了一个准确、安全、易于使用且可以轻松集成到他们的测试环境中的黑体光源。系统中的 8 英寸的积分球有一个 2 英寸的开口,并配备了几个高级组件,使其能够满足客户的规格要求:图2 Labsphere(蓝菲光学)提供的黑体校准积分球光源图3 标准化测量辐亮度和5015K黑体曲线两个卤素灯,可在开口处提供高达 40,000 cd/m2 的光通量;开口端的色彩平衡 Omega 滤光片可调整 CCT 并将光谱输出完美匹配黑体曲线;硅探测器组件:用于测量可见光光谱通量的;以及光谱仪:用于测量两次测试之间的波长分布;-两个探测器的滤光片组件,包括一个快门滑片、附加色彩平衡 Omega 滤光片和一个用于第三个滤光片的滑片特定应用的安装底板,设计用于安装在腔室中,以及 3米长的电缆,使电源机架和计算机能放在外面使用;制冷风扇,以防止意外灼伤和设备损坏。特点图4 面均匀性-97.5%具有 97.5% 的面均匀性,每次测试都能保证准确的结果;设计灵活,客户可使用一个系统在多种温度下校准相机;光谱输出与客户要求的黑体曲线完美匹配,提供与标准黑体光源相同的精度;使用 Labsphere (蓝菲光学)的 HELIOSense 软件可以轻松对每个组件进行微调控制以及实时数据收集和可视化;Labsphere(蓝菲光学) 保持与客户密切沟通,使客户能够获得专为他们的测试环境设计和构建的系统;提供的探测器可确保灯准确校准,并且提供可靠地测试数据。
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect® ,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 产线用传感器校准-LED积分球光源
    01用途蓝菲光学(Labsphere)是图像传感器校准光源中公认的领导者。此款设备具备了照度连续可调、高低色温连续可调的功能,高均匀性避免了定位带来的误差。主要应用于各类光学光学传感器研究、开发和生产测试和校准。02一体式设备节省空间本产品是专门为光学传感器校准而推出的定制产线LED类型均匀光源。一体式设备,内置Labsphere专门设计用均匀光源系列积分球。本款产品经过优化设计,内置积分球配置高低色温LED, 开口2inch。开口处均匀光源的均匀性可以达到98%以上。这款产品内置多通道直流电源用于LED直流供电,内置多通道监控,可以实时监控开口处照度。每颗LED都在做过老化和校准,并且可通过软件精密控制LED电流大小,获得几乎连续可调的色温和照度。软件接口和二次开发模块,便于客户后期系统集成。03优化设计积分球出光处配置高透过率中性匀化片,防止灰尘进入积分球带来的污染。积分球采用高性能LED, LED配置了风冷式散热,保证长期重复性和复现性。04组成光源主机、多通道电源、积分球均匀光源、带滤光片的探测器、电流表、软件、防灰滤光片、高低色温LED模组、软件、校准。05特点方形外观、一体式设计出口照度均匀性 99%开口:45mm色温:高低色温连续可调照度:高低输出连续可调照度色温设置mS级别调整和迅速切换可实时监控照度和LED衰减情况高重复性可加选件监控光谱变化和色温变化06测量应用照度/亮度校准色温校准光谱校准动态范围平场响应线性度量子效率饱和曝光度灵敏度空间和角不均匀度07行业应用环境光传感器校准CMOS图像传感器测试手机相机校准光电二极管响应测试RGB传感器测试 小型摄像头08软件LED进行老化,以及通过内部自带的散热装置,保证系统输出良好的稳定性。此外,通过自带高精度的亮度/照度监控器,可以实时观测亮度输出情况。亮度/照度稳定性(10分钟)均匀性:内置优化结构和尺寸设计的积分球,以及高漫反射率的涂料,提升了光源的反射次数从而提升均匀性达到99%以上。均匀性:内置优化结构和尺寸设计的积分球,以及高漫反射率的涂料,提升了光源的反射次数从而提升均匀性达到99%以上。
  • 最新发布9项国家生态环境标准:水质的气相分子吸收光谱法测定标准3项
    为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮、总氮和硫化物的测定方法,制定《水质 氨氮的测定 气相分子吸收光谱法》、《水质 总氮的测定 气相分子吸收光谱法》和《水质 硫化物的测定 气相分子吸收光谱法》共3项标准。三项标准由生态环境部生态环境监测司、法规与标准司组织制订,自 2024 年6月1日起实施,规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的气相分子吸收光谱法。《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195—2023代替HJ/T 195—2005)《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T195—2005)首次发布于2005 年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了氨氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中活饮用水、气液分离装置的描述、无氨水的制备等内容;③修改了试剂的配制、样品的采集和保存、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。《水质 总氮的测定 气相分子吸收光谱法》(HJ 199—2023代替HJ/T 199—2005)《水质 总氮的测定 气相分子吸收光谱法》(HJ/T199—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站。本次为第一次修订,主要修订内容如下: ①增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容; ②删除了气液分离装置的描述、无氨水的制备等内容;③修改了方法适用范围、规范性引用文件、方法原理、试剂的配制、样品的采集和保存、校准曲线的类型和建立、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、试样的制备;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200—2023代替HJ/T 200—2005)《水质 硫化物的测定 气相分子吸收光谱法》(HJ/T200—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了硫化物的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中生活饮用水、气液分离装置的描述、碱性除氧去离子水等内容;③修改了试剂的配制、絮凝沉淀分离法、样品的采集与保存以及结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境 监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。附件:水质 氨氮的测定 气相分子吸收光谱法(HJ 195-2023代替HJT195-2005).pdf水质 总氮的测定 气相分子吸收光谱法(HJ 199-2023代替HJT199-2005).pdf水质 硫化物的测定 气相分子吸收光谱法(HJ 200-2023代替HJT200-2005).pdf
  • SPECTRA-PT 功率可调校准光源
    SPECTRA-PT 功率可调校准光源简单均匀的亮度和辐射度光源,用于成像和非成像设备的测试和校准测试类型亮度响应度图象校准和校正均匀度平场校正校准对象CCD 和CMOS相机小型遥感设备电子成像设备医疗内窥镜环境光传感器安防摄像头产品简介设计简洁的Spectra-PT 功率可调校准光源可以快速而准确的对相机和传感器进行平场校正并且可实现从极低到极高等级光度和辐射度响应校准。 Spectra-PT 功率可调校准光源在提供高可靠性的测量的同时拥有良好的用户体验,高动态范围。是高性价比的“交钥匙”级解决方案。一个强大而全面均匀光源系统,用于简单的相机和传感器测试。Spectralon® 是积分球体内的高漫反射材料,可在系统的整个使用寿命内提供稳定的反射率和可重复性。 积分球和控制电子设备被封装在一个外壳中,便于移动,可自动化控制便于集成到产线等环境,易于使用的软件界面允许用户定义和选择光输出等级。13.5cm的积分球,5cm的出口,精密自动可变光阑,内置光电探测器,可连续调节,高动态范围,亮度可达50000 cd/m2自动VA允许用户快速准确地调节到预设或选定的亮度值。对于广角FOV相机,Spectra-PT 功率可调校准光源提供了WAF(广角视场)版本。每套系统都配有均匀性和可溯源至 NIST的光谱辐亮度和亮度校准。规格参数
  • 用于大视场(FOV)相机的 LED HalfMoon® 半积分球光源校准系统
    某客户正在开发具有超焦距镜头和 130° 视场 (FOV) 的相机,因此需要一个均匀光源用于平场校正。 平场校正相机的光源要求具有非常高的均匀性,大视场相机要求发光亮度均匀性区域需要比标准相机大。Labsphere解决方案Labsphere (蓝菲光学)的 HalfMoon 半积分球系统比较适合其应用,但针对客户产品要求,需要对该系统特定于应用程序进行修改。精心设计系统满足广角上的高度均匀性。开口尺寸均匀性4英寸98.6%3英寸99.2%1英寸99.8%由四个径向对称 LED光源以 100 - 11,400fL 的亮度范围照射待测设备 (DUT)用于精确系统校准和亮度监控的人眼视觉硅探测器和 SC-6000 光度计可通过 MATLAB 编程的恒流电源在每个 LED 上平均分配功率用于测试多种不同尺寸相机的亮度开口缩孔器开口盖可保护积分球内部免受灰尘或碎屑的影响亮度开口端和缩孔器的设计可以使客户轻松地将相机安装到框架上并开始测试。 半球的几何形状使相机能够拍摄完整、均匀地Spectralon 内衬,同时使用镜子在内部创建虚拟积分球。光谱辐亮度曲线(最大亮度达39,000 cd/m2)从而使整个大视场(FOV)的均匀性非常高。产品特点特定于应用的开口适配器,使用户可以灵活地使用一个系统测试多台摄像机HalfMoon 光源可达到很宽的亮度范围,允许用户测试在系统上的动态范围的特定水平设置根据客户的要求,电源易于编程,并可通过 MATLAB 控制,允许客户自定义和自动化测试过程Labsphere 的 SC-6000 辐射计可实现准确的光谱监测和反馈控制由于具有极高的均匀度值,用户可以获得准确广角视场摄机可靠的平场数据。
  • 新品分享|紫外辐射照度仪—快速测量多种光源下的紫外线辐照度
    优云谱新推出的紫外辐射照度仪,能够在各种光源强度下实现快速、准确的紫外线辐照度测量。这款设备广泛适用于光固化、光刻、光照治疗、杀菌消毒、理疗荧光分析、植物栽培、水处理、气象和农业生产等多个行业,为各类紫外线光源的检测提供了强有力的支持。了解更多紫外辐射照度仪产品详情→https://www.instrument.com.cn/netshow/C581072.htm外辐射照度仪采用高清全触摸屏设计,使操作更为简便,信息呈现更加直观。得益于其高精度的受光器,设备在弱光条件下仍能快速读取数据,测量精度显著提升。智能量程切换功能可自动识别并调整量程,实现从弱光到强光的一机式全程测试,进一步简化了操作流程。紫外辐射照度仪由主机与探头组成,主机可根据不同需求搭配多款探头,即插即用,满足多种应用场景。该仪器不仅适用于实验室和工厂,也适合各种现场操作,几乎涵盖了所有应用领域中的质量控制,确保了紫外线光强和能量测试的准确性。功能特点:高清触摸屏:4.3寸高清电容屏设计,操作简便,显示直观。高精度测量:采用高精度受光器,支持从弱光到强光的一机测试。超大量程:量程变化范围高达10亿,适应广泛的测量需求。智能量程切换:仪器可根据光源强弱自动调整量程。多功能使用:主机可搭配不同受光器,实现多种光源下的测试。实时温度监测:内置高精度温度传感器,可实时监测测试环境温度。符合国家标准:符合《JJG879-2015紫外辐射照度计》检定规程和《GBT34048-2017紫外辐射表》国家标准。精准计时:内置计时器,精确记录每次测量时间。数据存储与导出:可保存30组测试数据,并通过PC软件读取与生成报告。这款紫外辐射照度仪以其强大的功能和高精度的测量能力,成为您在多种行业中进行紫外线检测的理想选择。
  • 蓝菲光学发布大视场积分球校准光源Spectra-FT蓝菲光学新品
    Spectra-FT 精细可调VIS-NIR光谱校准光源--大视场范围内高均匀光源直径7.5厘米开口,保证在360°x 200°的视野范围内高度均匀光源输出条件下进行测试和校准。鱼眼镜头成像系统理想平场校准光源。可信的测试数据Labsphere是图像传感器校准光源中公认的领导者。我们的Spectra-FT精细可调VIS-NIR光谱校准光源是为满足图像传感器生产测试和校准的高性能要求而设计的。节省金钱,节省空间一台设备可以产生多种光谱。紧凑而坚固的设备中,输出大面积均匀的亮度场。光源系统可以方便地安装在生产测试机台上。可重复性、复现性测试结果基于Labsphere的漫反射材料,Spectralon® 和温控LED模块,确保了长期的重复性和复现性。特点采用32通道LED,可以精确模拟从可见到近红外任何光谱,且输出亮度最高能达到25000cd/m2。通过内置的光谱仪对系统输出进行监控和反馈,能够确保每个通道光谱输出准确。该系统具有大面积(75mm)的均匀辐射开口,能够在亮度和辐照度之间输出进行切换。该系统具有从窄视野到180°大视野的高均匀性输出。测量应用 通道串扰 色平衡 畸变 动态范围平场响应ISO感光度线性度像素缺陷像素阴影PRNU量子效率饱和曝光度灵敏度信噪比空间和角不均匀度光晕校正白平衡,白噪声AA - 01577 - 001 FT-2300-W可调LED大视场光源,带光谱仪包含可见-近红外,–亮度高达50,000 cd/m2。AA - 01577 - 000 FT-2200-W可调LED大视场光源,带光谱仪包含可见-近红外,–亮度高达20,000 cd/m2。AA - 01367 - 300 FT-1100-W可调LED大视场光源,带光谱仪包含可见光,850nm LED和标准灯。 产品规格创新点: Spectra-FT 精细可调VIS-NIR光谱校准光源 采用32通道LED,可以精确模拟从可见到近红外任何光谱,且输出亮度最高能达到25000cd/m2。 通过内置的光谱仪对系统输出进行监控和反馈,能够确保每个通道光谱输出准确。 该系统具有大面积(75mm)的均匀辐射开口,能够在亮度和辐照度之间输出进行切换。 该系统具有从窄视野到180° 大视野的高均匀性输出 大视场积分球校准光源Spectra-FT蓝菲光学
  • 蓝菲光学发布超光谱校准光源-Spectra-UT 蓝菲光学新品
    Spectra-UT 超光谱校准光源基于我们在固态可调光源方面的经验,Spectra-UT超光谱校准光源使用连续谱光源和多色仪技术,可对生成的光谱波形提供精确的控制。Spectra-UT超光谱校准光源可以精确地再现复杂的光谱特征,从而实现对标准光源以及自然或合成光源和发射源的高分辨率光谱模拟。Spectra-UT 超光谱校准光源是一种适用于平场校正的均匀光源,并可以兼容光导管和准直器输出,用于样品的特殊光谱照明。Spectra-UT能够通过一种复杂的光谱匹配算法,在可见光区域产生近乎完美的任意目标光谱波形。它可以模拟约10 nm半高全宽度的光谱,宽谱可见光光谱和复杂的光谱形状。优势• 出色的可编程高分辨率光谱输出• 在可见光范围内无限的光谱复现• 精确模拟OLED、MicroLED和LED显示屏光谱• 模拟RGB和宽谱背光光谱• 再现室内照明条件• 光谱纯正,避免在多色成像中出现通道串扰• 通过集成QTH校准灯和光谱仪实现可溯源校准应用:• 色度计和分光光度计校准• 校正三刺激值色匹配误差• 比较和区分仪器性能• 测试滤光和未滤光的光学传感器响应• 优化显示色彩还原性主要规格参数 可见光范围最大输出亮度:1000 cd/m2 亮度调节范围:25 cd/m2 - 1000 cd/m2 亮度均匀性:99%光谱范围:390 nm – 780 nmFWHM:12 nm ± 2 nm峰值波长间距:0.4 nm光谱精度: 0.5 nm最快光谱扫描率: 1.0 光谱/秒创新点:Spectra-UT能够通过一种复杂的光谱匹配算法,在可见光区域产生近乎完美的任意目标光谱波形。它可以模拟约10 nm半高全宽度的光谱,宽谱可见光光谱和复杂的光谱形状。 优势 • 出色的可编程高分辨率光谱输出 • 在可见光范围内无限的光谱复现 • 精确模拟OLED、MicroLED和LED显示屏光谱 • 模拟RGB和宽谱背光光谱 • 再现室内照明条件 • 光谱纯正,避免在多色成像中出现通道串扰 • 通过集成QTH校准灯和光谱仪实现可溯源校准 超光谱校准光源-Spectra-UT 蓝菲光学
  • 11月份有199项标准将实施
    11月份有199项标准将实施我们通过国家标准信息平台查询到,在2022年11月份将有199项与仪器及检测行业的国家标准、行业标准和地方标准将实施。(图1:11月份各行业领域新实施标准占比)11月份新实施的标准中,各领域分布的都比较均衡。其中化工类的占17%,其次是轻工纺织占11%,其他领域都在10%以内。新实施的标准中,分析仪器 检测类标准较少。具体11月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(18个)GB/Z 41476.4-2022 无损检测仪器 1MV以下X射线设备的辐射防护规则 第4部分:控制区域的计算 GB/Z 41476.3-2022 无损检测仪器 1MV以下X射线设备的辐射防护规则 第3部分:450kV以下X射线设备辐射防护的计算公式和图表 GB/Z 41476.2-2022 无损检测仪器 1MV以下X射线设备的辐射防护规则 第2部分:防护技术要求 GB/Z 41476.1-2022 无损检测仪器 1MV以下X射线设备的辐射防护规则 第1部分:通用安全技术要求 GB/Z 41399-2022 无损检测仪器 工业X射线数字成像系统 GB/Z 41390-2022 工业自动化仪表用电源电压 GB/T 41398-2022 显微镜 双目镜筒最低要求 GB/T 22055-2022 显微镜 成像部件的连接尺寸 GB/T 1927.14-2022 无疵小试样木材物理力学性质试验方法 第14部分:顺纹抗拉强度测定 GB/T 12452-2022 水平衡测试通则 GB/T 11828.2-2022 水位测量仪器 第2部分:压力式水位计 DB44/T 2389-2022 计量检测数据与结果数字化处理系统技术要求 DB14/T 2499—2022 检验检测机构化学检测用标准物质管理及应用指南 DB14/T 2498—2022 检验检测机构人员技术档案管理指南 DB14/T 2497—2022 检验检测机构仪器设备档案管理指南 GB/Z 27021.11-2022 合格评定 管理体系审核认证机构要求 第11部分:设施管理管理体系审核及认证能力要求 GB/T 27029-2022 合格评定 审定与核查机构通用原则和要求 GB/T 27021.8-2022 合格评定 管理体系审核认证机构要求 第8部分:城市和社区可持续发展管理体系审核与认证能力要求 农林牧渔食品标准(17个)GB/T 41811-2022 魔芋凝胶食品质量通则GB/T 41552-2022 三七林下生态种植技术规程 GB/T 41551-2022 片猪肉激光灼刻标识码、印应用规范 GB/T 41550-2022 畜禽屠宰用脱毛剂使用规范 GB/T 41549-2022 油茶皂素质量要求GB/T 41548-2022 畜禽屠宰加工设备 畜禽肉分割线 GB/T 41547-2022 地采暖用木质地板 GB/T 41441.2-2022 规模化畜禽场良好生产环境 第2部分:畜禽舍技术要求 GB/T 41441.1-2022 规模化畜禽场良好生产环境 第1部分:场地要求 GB/T 41438-2022 牛肉追溯技术规程 GB/T 41406-2022 袋装方便面全自动包装生产线 通用技术要求 GB/T 41405.1-2022 果酒质量要求 第1部分:枸杞酒 GB/T 19676-2022 畜禽肉质量分级 鸡肉 GB/T 17239-2022 鲜、冻兔肉及副产品 GB/T 17238-2022 鲜、冻分割牛肉 GB 7300.501-2021 饲料添加剂 第5部分:微生物 酿酒酵母 DB11/T 1188-2022 农业标准化基地等级划分与评定规范 环境环保标准(11个)GB/T 41475-2022 1:25 000~1:500 000土壤养分图用色与图例规范 GB/T 24789-2022 用水单位水计量器具配备和管理通则 GB/T 18916.9-2022 取水定额 第9部分:谷氨酸钠(味精) GB/T 18916.4-2022 取水定额 第4部分:纺织染整产品 GB/T 18916.2-2022 取水定额 第2部分:钢铁联合企业 NB/T 10937-2022 锅炉水(介)质处理检验导则NB/T 10941-2022 小型锅炉和常压热水锅炉技术条件NB/T 10939-2022 锅炉用材料入厂验收规则HJ 1243-2022 土壤和沉积物 20种多溴联苯的测定 气相色谱-高分辨质谱法 HJ 1242-2022 水质 6种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法 DB35/T 2067-2022 锅炉用固体废弃物燃料性能评价规则 医药卫生标准(3个)GB/T 41482-2022 毫米波全息成像人体安全检查设备 GB/T 41426-2022 牙科学 一体式手柄牙线 GB 27951-2021 皮肤消毒剂通用要求 化工橡胶塑料标准(33个)GB/Z41259-2022 自动电位滴定仪测定防腐木材和木材防腐剂中季铵盐的方法 GB/T 7717.1-2022 工业用丙烯腈 第1部分:规格 GB/T 6702-2022 萘酸洗比色试验方法 GB/T 41666.3-2022 地下无压排水管网非开挖修复用塑料管道系统 第 3 部分:紧密贴合内衬法 GB/T 41501-2022 纤维增强塑料复合材料 双梁法测定层间剪切强度和模量GB/T 41499-2022 废弃催化剂 分类 GB/T 41498-2022 纤维增强塑料复合材料 用剪切框测定面内剪切应力/剪切应变响应和剪切模量的试验方法 GB/T 41493.1-2022 阴极保护用混合金属氧化物阳极的加速寿命试验方法 第1部分:应用于混凝土中 GB/T 41491-2022 配网用复合材料杆塔 GB/T 41489-2022 塑料 聚酰胺 气相色谱法测定ε-己内酰胺和ω-十二内酰胺 GB/T 41488-2022 塑料 预浸料 术语定义和命名符号 GB/T 41483-2022 基于介电常数技术的液态危险化学品安全检查仪通用技术要求 GB/T 41456-2022 纳米技术 生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法 GB/T 41422-2022 压力输水用取向硬聚氯乙烯(PVC-O)管材和连接件 GB/T 41394-2022 爆炸危险化学品储罐防溢系统功能安全要求 GB/T 38725.1-2022 可盘绕式增强塑料管 第1部分:总则 GB/T 26525-2022 精制氯化钴 GB/T 26523-2022 精制硫酸钴 GB/T 26255-2022 燃气用聚乙烯(PE)管道系统的钢塑转换管件 GB/T 25254-2022 工业用聚四亚甲基醚二醇(PTMEG) GB/T 210-2022 工业碳酸钠 GB/T 18998.5-2022 工业用氯化聚氯乙烯(PVC-C)管道系统 第5部分:系统适用性 GB/T 18998.3-2022 工业用氯化聚氯乙烯(PVC-C)管道系统 第3部分:管件 GB/T 18998.2-2022 工业用氯化聚氯乙烯(PVC-C)管道系统 第2部分:管材 GB/T 18998.1-2022 工业用氯化聚氯乙烯(PVC-C)管道系统 第1部分:总则 GB/T 18743.2-2022 热塑性塑料管材 简支梁冲击强度的测定 第2部分:不同材料管材的试验条件 GB/T 18743.1-2022 热塑性塑料管材 简支梁冲击强度的测定 第1部分:通用试验方法 GB/T 16422.4-2022 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.3-2022 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.2-2022 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 14571.4-2022 工业用乙二醇试验方法 第4部分:紫外透光率的测定 紫外分光光度法 GB/T 1453-2022 夹层结构或芯子平压性能试验方法 GB/T 13217.3-2022 油墨细度检验方法 冶金地质矿产标准(12个)GB/T 6730.60-2022 铁矿石 镍含量的测定 火焰原子吸收光谱法 GB/T 6730.5-2022 铁矿石 全铁含量的测定 三氯化钛还原后滴定法 GB/T 41520-2022 主动源海底地震仪调查技术规范 GB/T 41497-2022 钒铁 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 GB/T 41496-2022 铁合金 交货批水分的测定 重量法 GB/T 41493.2-2022 阴极保护用混合金属氧化物阳极的加速寿命试验方法 第2部分:应用于土壤和自然水环境中 GB/T 41446-2022 基础地理信息本体范例数据规范GB/T 3087-2022 低中压锅炉用无缝钢管 GB/T 24174-2022 钢 烘烤硬化值(BH)的测定方法 GB/T 20565-2022 铁矿石和直接还原铁 术语 GB/T 10322.6-2022 高炉炉料用铁矿石 热裂指数的测定 GB/T 10123-2022 金属和合金的腐蚀 术语 石油天然气标准(15个)GB/T 41614-2022 页岩气可采储量评估方法 GB/T 41613-2022 页岩气开发评价资料录取技术要求 GB/T 41612-2022 页岩气井产量预测技术规范 GB/T 41611-2022 页岩气术语和定义 GB/T 41519-2022 页岩气开发过程水资源保护要求 GB/T 41518-2022 页岩气勘探开发油基岩屑处理方法及控制指标 GB/T 3715-2022 煤质及煤分析有关术语 GB/T 3555-2022 石油产品赛波特颜色的测定 赛波特比色计法 GB/T 24138-2022 石油树脂 GB/T 2282-2022 焦化轻油类产品馏程的测定方法 GB/T 21391-2022 用气体涡轮流量计测量天然气流量 GB/T 18255-2022 焦化粘油类产品馏程的测定方法 GB/T 15224.3-2022 煤炭质量分级 第3部分:发热量 DB37/T 4549—2022 石油库碳排放核算和碳中和核定技术规范 DB37/T 4548—2022 二氧化碳驱油封存项目碳减排量核算技术规范 电子电器标准(16个)GB/T 41427-2022 家用电器质量安全 生产过程状态监测与评价指南 GB/T 41423-2022 LED封装 长期光通量和辐射通量维持率的推算 GB/T 41400-2022 信息安全技术 工业控制系统信息安全防护能力成熟度模型 GB/T 24114.1-2022 机械电气设备 缝制机械数字控制系统 第1部分:通用技术条件 GB/T 22264.1-2022 安装式数字显示电测量仪表 第1部分:定义和通用要求 GB/T 21098-2022 灯头、灯座及检验其安全性和互换性的量规 第4部分:导则及一般信息 GB/T 18380.34-2022 电缆和光缆在火焰条件下的燃烧试验 第34部分:垂直安装的成束电线电缆火焰垂直蔓延试验 B类 GB/T 18380.33-2022 电缆和光缆在火焰条件下的燃烧试验 第33部分:垂直安装的成束电线电缆火焰垂直蔓延试验 A类 GB/T 18380.32-2022 电缆和光缆在火焰条件下的燃烧试验 第32部分:垂直安装的成束电线电缆火焰垂直蔓延试验 A F/R类 GB/T 17466.23-2022 家用和类似用途固定式电气装置的电器附件安装盒和外壳 第23部分:地面安装盒和外壳的特殊要求 GB/T 17466.22-2022 家用和类似用途固定式电气装置的电器附件安装盒和外壳 第22部分:连接盒与外壳的特殊要求 GB/T 17466.21-2022 家用和类似用途固定式电气装置的电器附件安装盒和外壳 第21部分:用于悬吊装置的安装盒和外壳的特殊要求 GB/T 17215.303-2022 交流电测量设备 特殊要求 第3部分:数字化电能表 GB/T 15284-2022 多费率电能表 特殊要求 GB/T 12350-2022 小功率电动机的安全要求 GB/T 1002-2021 家用和类似用途单相插头插座 型式、基本参数和尺寸 轻工纺织标准(21个)GB/T 41553-2022 竹纤维 GB/T 41442-2022 山羊绒净绒率试验方法 近红外光谱法 GB/T 41439-2022 纸、纸板和纸浆 盐水提取物pH的测定 GB/T 41434-2022 纸、纸板和纸浆 光学性能基本术语 GB/T 41429-2022 消费品安全大数据系统结构规范 GB/T 41425-2022 婴幼儿学步带整体承载冲击性能试验方法 GB/T 41424.1-2022 皮革 沾污性能的测定 第1部分:翻滚法 GB/T 41420-2022 纺织品 形状记忆性能检测和评价 GB/T 41418-2022 纺织品 定量化学分析 间位芳香族聚酰胺纤维与对位芳香族聚酰胺纤维的混合物(氯化锂/N,N-二甲基乙酰胺法) GB/T 41417-2022 纺织品 定量化学分析 聚芳噁二唑纤维与某些其他纤维的混合物 GB/T 41416-2022 纺织品 α-溴代肉桂醛和1,3-丙烷磺酸内酯的测定 GB/T 41415-2022 纺织品 干湿热条件下尺寸变化率的测定 GB/T 41244-2022 可冲散水刺非织造材料及制品 GB/T 26380-2022 纺织品 丝绸术语 GB/T 22848-2022 针织成品布 GB/T 22793-2022 儿童高椅安全性能试验方法 GB/T 14463-2022 粘胶短纤维 GB/T 14344-2022 化学纤维 长丝拉伸性能试验方法 GB/T 14338-2022 化学纤维 短纤维卷曲性能试验方法 GB/T 14337-2022 化学纤维 短纤维拉伸性能试验方法 GB/T 13761.1-2022 土工合成材料 规定压力下厚度的测定 第1部分:单层产品 能源标准(14个)核电厂周围环境空气中全氚分析操作规程 机械标准(13个)GB/T 4357-2022 冷拉碳素弹簧钢丝 GB/T 4162-2022 锻轧钢棒超声检测方法 GB/T 41494-2022 铝合金衬塑复合管材与管件
  • 香烟市场乱象 金索坤翘首以盼相关标准出台
    几乎所有人都知道吸烟有害健康,但具体有哪些危害就不是每个人都可以阐述清楚地的了。实际上,香烟中的有毒物质除了人们熟知的尼古丁、焦油之外,还可能含有重金属。在一篇发表在美国健康政策杂志的《烟草控制》报告中指出中国13个品牌的香烟中重金属含量是加拿大香烟的2~3倍。据此,很多媒体称之为“中国香烟重金属门”事件,并将之称之为烟草界的“三聚氰胺事件”。据了解,我国香烟中主要的重金属毒物主要有镍、镉、铬等。按照GB 2762-2012 所要求的限定量,镍小于1.0mg/kg;镉小于0.1mg/kg;铬小于1.0mg/kg。对于镍、镉、铬元素的检测通常会使用石墨炉原子吸收光谱法,从2017年2月之后,对于镍、镉、铬等重金属元素的检测又有了一种新的选择—火焰原子荧光光谱法。就在2017年2月,金索坤公司研发生产的SK-880火焰原子荧光光谱仪通过了北京理化分析测试中心的实地检测,鉴定组专家一致认为:该产品达到了国内领先水平,国内未见技术特征相同的国内公开文献报道,具有首创性。SK-880 火焰原子荧光光谱仪的原理与氢化法原子荧光光谱仪有所区别,它是液态样品经高效雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧产生的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空芯阴极灯激发至高能级,处于高能级的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。原子荧光的强度与被测元素在样品中的含量成正比,从而得到被测元素的浓度。由于是专用光源只能发射出特定波长的光辐射,且在接收装置前加入被测元素特定波长的滤光装置,所以火焰原子荧光对其他元素的检测几乎不存在干扰。SK-880火焰原子荧光光谱仪的技术参数测试元素Au AgCuCd ZnMn检出限(DL)ng/mL测试元素InNiCrCo Fe Hg Pb检出限(DL)μg/mL线性范围大于三个数量级首先和大家分享的一个应用SK-880火焰原子荧光光谱仪检测镉的推荐分析条件:标准储备液的配制:称取1.0000g高纯Cd,加入20mL1:1HNO3,低温加热溶解,冷却后移入1000mL容量瓶中,用蒸馏水稀释至刻度,摇匀,此溶液Cd浓度为1000μg/mL。标准系列配制:吸取1.00mL浓度为1000μg/mL的标准储备液的移入1000mL容量瓶中,用1% HNO3 (v/v)稀释至1000mL,摇匀,此溶液Cd浓度为1.00μg/mL。用此溶液配制下表的标准系列:标准号加入1.0μg/mL标准体积(mL)加入HNO3体积 (mL)最终体积 (mL)标准浓度μg/mL10.001.001000.0021.001.001000.0132.001.001000.0245.000.951000.05510.000.901000.10测定条件:光源:空芯阴极灯,灯电流60~80mA负高压:-260~-300V主气流量:为定值,一般在1600mL/min左右辅气流量:800~1000mL/min燃气流量:60~100 mL/min检出限(参考值):0.05ng/mL从SK-880的技术参数可以看出,SK-880完全可以完成对于香烟中镍、镉、铬的检测。而且和石墨炉原子吸收光谱仪相比,SK-880灵敏度高,线性范围宽,干扰元素少。在通过使用成本对比表可以看出,在相同情况下,使用SK-880火焰原子荧光光谱仪检测镍、镉、铬等重金属元素更具有优势。使用成本对比测试方法耗材耗材单价(元)单个耗材可测样品个数(个)平均每个样品所需价格(元)每个样品总成本(元)石墨炉原子吸收法石墨管进口45010000.45进口0.59元素灯进口3500700000.05氩气18020000.09火焰-原子荧光法喷雾器650200000.03250.0805元素灯800200000.045液化石油气150500000.003 从事香烟对人体危害研究的李强认为“香烟是世界上唯一一种合法贩售,并且主要功效就是杀死一半消费者的商品。”业内人士表示目前并没有香烟中重金属含量的标准。所以,健全香烟中重金属含量的标准势在必行,作为原子荧光技术的发源地以及原子荧光行业的领跑者,北京金索坤技术开发有限公司将会一如既往地为原子荧光技术的发展探索乾坤,为助力香烟行业的检测而努力。 金索坤SK-880 火焰原子荧光光谱仪
  • 蓝菲光学发布光度和辐射度校准光源 SPARC新品
    光度和辐射度校准光源 SPARC 设计简洁的SPARC系列均匀光源系统可以快速而准确的对相机和传感器进行平场校正并且可实现从极低到极高等级光度和辐射度响应校准。 SPARC在提供高可靠性的测量的同时拥有良好的用户体验,高动态范围。是高性价比的“交钥匙”级解决方案。一个强大而全面均匀光源系统,用于简单的相机和传感器测试。测试类型 亮度响应 图像验证和校正 均匀度 平场校正 可变CCT校准对象 CCD和CMOS相机 小型遥感设备 电子成像设备 医疗内窥镜 环境光传感器 安防摄像头创新点:一个强大而全面均匀光源系统,用于简单的相机和传感器测试。 高动态范围 高度均匀光源 设计简单易用 性价比高 光度和辐射度校准光源 SPARC
  • 环境部首发三项环境监测标准
    为支撑相关水污染物排放标准和土壤污染风险管控标准实施,近日,生态环境部发布《水质 色度的测定 稀释倍数法》(HJ 1182-2021)、《水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》(HJ 1183-2021)、《土壤和沉积物 6种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法》(HJ 1184-2021)等3项国家生态环境标准。《水质 色度的测定 稀释倍数法》(HJ 1182-2021)《水质 色度的测定 稀释倍数法》(HJ 1182-2021)为首次发布,修订了《水质 色度的测定》(GB 11903-89)中稀释倍数法部分,适用于生活污水和工业废水色度的监测,支撑《污水综合排放标准》(GB 8978-96)等22个水污染物排放标准实施。与原方法相比,该标准由原来的2倍稀释方法,改为自然倍数稀释方法;对测定条件,光线、光源、环境、人员提出了具体的要求;增加了样品保存条件和保存时间的要求;修改了样品颜色的描述;增加了结果表示与计算、精密度、质量保证和质量控制等相关内容。标准自2021年9月15日起实施。《水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》(HJ1183-2021)《水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》(HJ 1183-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷等4种有机磷农药的测定。氧化乐果、乙酰甲胺磷、辛硫磷是有机磷农药生产行业的特征污染物控制指标,乙酰甲胺磷在自然条件下易降解为甲胺磷,这4种有机磷农药均具有较强的生物毒性,对生态环境与人体健康的潜在危害大。目前,农药生产企业执行的《污水综合排放标准》(GB 8978-96)中以有机磷农药(以磷计)作为控制项目,其分析方法的适用范围为甲基对硫磷等6种有机磷农药,未包括氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷。本标准采用液相色谱-三重四极杆质谱仪对4种有机磷农药进行分析,方法检出限低、灵敏度高,是对有机磷农药分析方法标准的有效补充。标准自 2021 年 12 月 15 日起实施。《土壤和沉积物 6种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法》(HJ 1184-2021)《土壤和沉积物 6种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法》(HJ 1184-2021)为首次发布,适用于土壤和沉积物中6种邻苯二甲酸酯类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等实施。随着工业生产发展和塑料制品广泛使用,邻苯二甲酸酯类化合物普遍存在于土壤、底泥、生物等环境介质中,并通过饮水、进食、皮肤接触和呼吸等途径进入生物体。邻苯二甲酸酯类化合物在人体和动物体内具有类似雌性激素的作用,可影响生物体的内分泌,具有致畸、致癌和致突变效应。土壤和沉积物基质复杂,其中邻苯二甲酸酯类化合物的浓度范围差异较大,监测技术难点较多,样品前处理环节易发生交叉污染。本标准优化了样品的制备过程与质量控制措施,减少了实验干扰,降低了6种邻苯二甲酸酯类化合物的检出限。标准自2021年9月15日起实施。上述三项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法具有重要意义,将为深入打好污染防治攻坚战,促进生态环境保护和保障人体健康提供重要支撑。
  • 安杰科技牵头起草的5项水利标准获准于9月1日正式实施
    据“中国水利学会标准发布公告 2017年第1号(总第1号):中国水利学会关于批准发布《气动盾型闸门系统制造安装及验收规范》等6项团体标准的公告》”文件精神,安杰科技作为主要起草单位的《水质 氨氮的测定 气相分子吸收光谱法》等5项标准将于2017年9月1日起实施。  2016年中国水利学会组织标准化专家委员会相关专家对安杰科技申报的中国水利学会标准项目进行了立项论证。经论证,《水质 氨氮的测定 气相分子吸收光谱法》等5项标准同意立项。同年12月开始向社会征求对《水质 氨氮的测定 气相分子吸收光谱法》等5项标准的意见。  经过多轮专家意见反馈讨论和严格的标准审定流程,2017年6月29日,中国水利学会在北京组织召开理事长专题办公会,对《水质 氨氮的测定 气相分子吸收光谱法》等5项团体标准进行审议。经表决,一致同意5项团体标准发布,自2017年9月1日起实施。  气相分子吸收光谱法具有抗干扰性强的特点,其将水中的待测物质通过化学反应转化为气相进行检测,不受水样的颜色、沉淀、浑浊等影响。气相分子吸收光谱仪使用图形化软件进行操作,其光源配置、试剂配制、反应控制、超标样品稀释等环节均实现了完全自动化,进一步降低了人工操作可能引入的误差。  上海安杰环保科技股份有限公司是气相分子吸收光谱法和气相分子吸收光谱仪的首创企业,公司生产的AJ系列气相分子吸收光谱仪产品覆盖了从样品前处理到完全自动化检测的全部流程,可快速、高精度的检测氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮、硫化物等项目。
  • 市场监管总局(国家标准委)发布两项汽车行业强制性国家标准
    近日,国家市场监督管理总局(国家标准化管理委员会)批准发布《机动车玻璃安全技术规范》等16项强制性国家标准,其中包含两项汽车行业强制性国家标准,均由TC114(全国汽车标准化技术委员会)归口上报,339(工业和信息化部)执行,主管部门为工业和信息化部。序号标准编号标准名称代替标准号实施日期1GB 9656-2021机动车玻璃安全技术规范GB 9656-20032023-01-012GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2022-01-01一、《机动车玻璃安全技术规范》国家标准《机动车玻璃安全技术规范》起草单位为中国建材检验认证集团股份有限公司、中国汽车技术研究中心有限公司等。修订后的标准技术内容参考UN R43。无相关产品标准类的ISO标准可采用。部分项目的检验方法修改采用相关ISO标准。修订后标准与GB 9656-2003的变化对比见表1。表1 GB 9656-2021修订版与2003版对比No.项目2003版修订版水平分析1前言/强制条款部分条款强制全文强制——2范围只适用于汽车明确了适用的车的类别。根据实际应用对适用范围的车辆定义更清晰、准确。优于2003版3术语无增加18个术语使标准结构合理、使用方便。优于2003版4分类包括分类及应用部位说明删除应用部位说明,符合GB1.1要求。优于2003版5技术要求及试验方法总则对原片提出要求,将要求分为主要技术要求及一般技术要求删除原片要求及主要技术要求和一般技术要求的分类;将各种安全玻璃材料在不同应用部位需满足的要求以表格形式列出;提出钢化玻璃应用限制条件;增加了贴膜玻璃的要求。便于对各种安全玻璃材料的总体要求有全面的了解,使标准更便于。优于2003版6厚度对夹层玻璃、钢化玻璃、区域钢化玻璃及塑玻复合材料及中空安全玻璃的单片厚度偏差提出了要求。技术要求:1.根据最新浮法玻璃标准,修订单片玻璃的厚度偏差;2.增加刚性塑料;3.对中空玻璃总厚度提出偏差要求;4.修改了对夹层玻璃及塑玻复合材料厚度偏差的描述。5.删除了区域钢化的内容试验方法:增加HUD玻璃的内容针对所有安全玻璃材料分别提出了具体的要求,考虑了最新产品的需求,采用了最新原材料标准。优于2003版 7技术要求及试验方法可见光透射比按车型、视区规定了最低可见光透射比值技术要求:1. 增加对后风窗的要求;2. 修改视区;试验方法:对试验设备“接受器及配套指示仪器的线性”略有修改,删除“或在读数量程的±10%之内,选择小值”。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法规定更科学。优于2003版8副像偏离按车型、视区规定了最高副像偏离值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:1. 对于靶式光源仪,增加了单环靶的结果表达;2.对于准直望远镜,调整了装置图中样品方向;将“可先用靶式光源仪以简单快速的扫描方法检查安全玻璃”列为可选择的过程;将结果表达中设计试验程序的表述移到试验过程。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法表述符合GB1.1的要求。优于2003版9光畸变按车型、视区规定了最高光畸变值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:对光源进行了修订,改为:150W石英卤素灯(如果不使用滤光片)或250W石英卤素灯(使用绿色滤光片)。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法更具有可操作性。优于2003版10颜色识别对视区带色风窗提出的要求删除此项透射比不低于70%的视区带色前风窗玻璃不影响对交通信号颜色的识别。优于2003版11技术要求及试验方法抗磨性针对风窗及侧窗用夹层玻璃及塑玻复合材料技术要求:1.增加刚性塑料要求;2.增加该项目的适用部位试验方法:增加了对塑料材料的试验方法。使该要求更具合理性。优于2003版12人头模型冲击用于风窗及风窗以外部位的各种材料,钢化玻璃除外技术要求:1.删除前风窗以外夹层玻璃、塑玻复合材料的人头模型冲击要求;2.增加刚性塑料要求。3.对夹层玻璃冲击后状态要求表述更准确4.删除了区域钢化内容试验方法:增加了对刚性塑料的试验方法,包括对带减速装置人头模型冲击试验设备的校准方法。符合GTR6的要求,要求更明确。优于2003版13抗穿透性针对风窗用夹层玻璃及塑玻复合材料同2003版无变化14抗冲击性针对夹层玻璃、塑玻复合材料及钢化玻璃在高、低及常温下的冲击状态技术要求:1. 对夹层玻璃的称重要求进行修改;2.增加刚性塑料、HUD玻璃的要求;3.修改了前风窗以外夹层玻璃冲击后碎片剥落要求。试验方法:1.增加了对刚性塑料进行试验的内容;2.对冲击高度进行修改;3.增加了高、低温冲击试验的试验时机要求。要求更明确,试验方法更具可操作性。优于2003版 15碎片状态针对区域钢化及钢化玻璃技术要求:1. 对长条碎片的要求修订描述;2. 删除钢化玻璃的补做内容。3.删除了区域钢化内容试验方法:按曲率半径200mm对钢化玻璃的冲击点进行了修订。对长条碎片的要求更精准,对钢化玻璃的要求予以了加严。优于2003版 16技术要求及试验方法柔性无此项针对刚性塑料,新增项目。引入新材料。优于2003版17耐高温性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了对超温控制的要求。检验操作控制更严格。优于2003版 18耐辐照性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了辐照强度的要求。检验操作控制更严格。优于2003版 19耐湿性针对夹层玻璃、塑玻复合材料技术要求:1.原要求不变;2.增加了对刚性塑料的要求。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.修改了试验后样品状态评价时机的要求;4.增加刚性塑料内容。检验操作控制更严格,引入新材料。优于2003版 20耐温度变化性针对塑玻复合材料 技术要求:无变化。试验方法:增加样品放置要求。检验操作控制更严格。优于2003版 21技术要求及试验方法耐燃烧性针对塑玻复合材料技术要求:1.增加刚性塑料的要求;2.降低燃烧速度试验方法:无变化。加严要求,引入新材料。优于2003版 22耐化学侵蚀性针对塑玻复合材料技术要求:增加刚性塑料的要求。试验方法:根据刚性塑料增加负重法试验方法引入新材料。优于2003版 23耐模拟气候性无针对刚性塑料,新增项目。引入新材料。优于2003版 24挥发性有机物无针对贴膜玻璃,新增项目关注贴膜玻璃环保性能,优于2003版25检验规则对型式检验及认证检验的抽样规则进行了规定删除根据全文强制要求,删除此部分内容26判定规则写入试验方法条款以规范性附录的形式对每一项技术的判定进行了规定有利于标准整体框架的协调,简单扼要,便于使用,优于2003版27实施日期无根据强标使用特点,规定出过渡期使标准更具实施性28边缘应力有删除该项在2003版中针对钢化玻璃,为一般性技术要求,非强制项目29表面应力有删除该项在2003版中针对弯型夹层玻璃及塑玻复合材料,为一般性技术要求,非强制项目30耐模拟气候性有删除该项在2003版中该项目针对塑玻复合材料,为一般性技术要求,非强制项目31露点有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目32加速耐久性能有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目33太阳能特性该两项原计划在9656修订时应加入,针对目前汽车玻璃节能特性,是两个非常有现实意义的项目,也是申请9656修订目的之一,属于非强制性项目。但由于此次标准项目更改为安全技术规范,这两个项目也不能写入。34可见光反射比二、《汽车和挂车 制动器用零部件技术要求及试验方法》国家标准《汽车和挂车 制动器用零部件技术要求及试验方法》主要起草单位:中国第一汽车股份有限公司技术中心 、泛亚汽车技术中心有限公司 、浙江亚太机电股份有限公司 、浙江万安科技股份有限公司 、上海汽车制动系统有限公司 、烟台孚瑞克森汽车制动部件有限公司 、河北星月制动元件有限公司 、重庆红宇摩擦制品有限公司 、中国重型汽车集团有限公司 、长春一汽富晟特比克制动有限公司 。本标准主要包含术语和定义、试验相关要求、技术要求和试验方法、包装和标志、产品一致性等。本标准与UN R90的主要结构变化对比见表2。表2 本标准与UN R90主要技术要素对比本标准UN R90章节编号章节标题章节编号章节标题1范围1范围2规范性引用文件——3术语和定义2定义——3认证申请——4认证4试验相关要求——5技术要求5技术要求及试验6包装和标志6包装和标志——7换装零件的变更和扩展7产品一致性8产品一致性——9产品不一致性的惩罚——10产品完全停产——11有权进行认证试验的技术服务部门和型式认证权威机构的名称和地址——12过渡期规定根据我国标准化相关文件规定,本标准除采用我国对应的规范性引用文件替代UN R90的规范性引用文件外,还增加了5项规范性引用标准,本标准涉及的规范性引用标准与6GB 5763 汽车用制动器衬片--7GB/T 7216-2009 灰铸铁金相检验(ISO 945-1:2008,MOD)
  • LED光源的显色性及评价方法
    1、显色指数CRI若把CRI应用于RGB组合型LED,可能引起误导,因RGB组合型LED缺少大量黄色光谱,它对黄色的显色性很差。RGB组合型光谱的波峰狭窄且波峰之间的间隔较大,光谱分布对波峰外饱和色的显色性很差。CRI计算采用的标准色样板为非饱和色,对于衡量连续且频带较宽的光源的显色性比较好;对于LED 等饱和色光源,显色性评价准确性会有一定的误差。如图2,选取12块标准色卡与标准光源对比,受试LED光源A(Ra =80)对右边四块饱和色的表现不如受试LED光源B(Ra =67)。2、色质指数CQS基于CRI在评估LED光源时,存在色空间不均匀、标准色样少、饱和度过低等问题。美国国家标准与技术研究所给出一种新方法——色质指数(Color Quality Scale ,简称CQS),来评价 LED 等新型白光光源的颜色品质。与CRI类似,CQS也采用验色法。通过被测光源与参考光源,照射同标准色样,计算出它们之间的色差。区别于CRI的非饱和色,CQS选取15种饱和色,它们平均分布于整个可见光谱中。如图3,色质指数CQS测试色板的颜色由红到紫构成近乎连续变化的偏饱和颜色。计算CQS值所需的数据都可以从光源的光谱和色样的颜色属性中推导出来,对15块色样的颜色位移量的初始计算与对CRI色样的计算相似,但是CQS值是取15个数据的均方根值,即:式中:Qa——Qi的15个数据的均方根值;Qi ——被测光源与参考光源照射同一套标准色样的色差,i取1~15。相比于CRI(Ra)的计算,CQS(Qa)的计算方法在色差的权重上得到了增强,这样即使在色样间有一些色差,也不会对最终结果产生重大影响。CQS兼顾了LED白光等饱和色和样板色的完整性,但在准确评价颜色的保真度、偏好度不同种族人群方面,需要进一步进行视觉实验和完善。3、电视光源一致性指数TLCI欧洲广播联盟(European BroadcastingUnion,简称 EBU)在2011年11月发布了另外一种针对演播室灯光的测试标准——电视光源一致性指数(Television Lighting ConsistencyIndex,缩写为TLCI),它充分考虑了电视摄像机对照明环境的要求。TLCI是用光谱辐射计对一个光源发出的光谱能量分布进行测量和计算的。TLCI标准的测试与CRI有些类似,是由一张色彩对比图标显示比对结果确定的。其测试色块有24块,如图5,左侧测试色块显示了由标准摄影机所还原并在标准显示屏上显示的参考光源和被测光源,右边的表格提供了12个色彩区块调整亮度、色度和色调所需的指示。右下的图示则画出了被测光源(深黑色曲线)和参考光源(浅色曲线)的光谱强度分布对比图。
  • 上海光源线站工程光源性能拓展通过工艺测试
    2022年8月12日,国家重大科技基础设施——上海光源线站工程的光源性能拓展部分顺利通过了中国科学院条财局组织的工艺测试。 工艺测试专家组由中国科学院近代物理研究所、中国科学院高能物理研究所、中国科学技术大学、上海交通大学等单位的7位专家组成,夏佳文院士任测试组长,徐刚研究员任测试组副组长。此外,线站工程工艺测试组总组长胡天斗研究员参加了测试,中科院条财局重大设施处樊潇潇视频参加了工艺测试会议。专家组听取了工程加速器分总体负责人姜伯承研究员汇报的光源性能拓展部分建设情况及自测报告,讨论确定了工艺测试内容和测试大纲,进行了现场实测。经现场测试和对以往测试的确认,结果表明光源性能拓展后的储存环加速器总体性能参数,以及超高磁场弯铁及长直线节双腰磁聚焦系统、低温系统、束流测量系统、束流控制系统、插入件系统、轨道快反馈系统、SLEGS光源系统的技术性能参数值均达到或优于设计指标。 上海光源二期线站工程根据光束线站的建设需求对储存环加速器进行了升级改造,即光源性能拓展: 将储存环的第3和第13单元改造成带2.29T超高磁场弯铁的DBA磁聚焦结构单元,增加2段1.89m直线节用以引出更多束线(图1),提高弯铁辐射光子特征能量至18.7keV以满足用户的需求(图2);将第11和16单元的超长直线节改造成双腰低βy直线节(图3),以满足安装两条高性能束线的要求;将第12单元的标准直线节进行局部消色散光学改造,以满足安装超导扭摆器的需要;以上改造均对局部光学函数进行了匹配(图4),以使全环的光学函数得到优化。储存环聚焦结构改造于2019年完成,随后投入日常运行,改造完成后的上海光源在第三代同步辐射光源中继续处于先进水平(表1)。图1. 超高磁场弯铁的DBA磁聚焦结构单元布局图及实景照片图2. 超高磁场弯铁照片以及常规和超高磁场弯铁的辐射功率谱比较图图3. 长直线节双腰布局图及实景照片图4. 改造前后的储存环光学函数(局部)对比图表1. 上海光源储存环主要参数改造前后的对比研制了13台插入件(表2、图5),包括6台真空内波荡器(IVU)、3台低温永磁波荡器(CPMU)、1台椭圆极化波荡器(EPU)和1组双椭圆极化波荡器(DEPU)、1台多磁极永磁扭摆器(MPW)和1台超导扭摆器(SCW),并陆续安装到储存环上;在此基础上,新建了基于康普顿散射的激光和电子束伽玛源(图6),伽玛能量范围0.4~20 MeV,满足了新光束线站建设的要求。 表2. 上海光源线站工程插入件参数图5. 各种类型插入件图6. SLEGS光源系统 新建了束团纯化系统和纯度监测系统,获得10-5量级的高纯净度的高流强单束团束流(图7)来满足时间分辨实验的需求。 图7. 束团纯化系统照片和效果图 新建了被动式超导三次谐波腔系统及配套的650W/4.5K液氦低温系统(图8、图9)并已完成调试,实现了24.5mA高流强单束团和200mA束团串混合填充模式的稳定运行,满足了快速成像线站的技术要求。图8. 超导三次谐波腔和束团纯化测量装置测得单束团流强图9. 低温系统(液氮/氦气储罐、4.5K和2K冷箱) 此外,还增加了轨道快反馈系统矫正铁数量,提高轨道快反馈系统的抑制带宽和抑制效果(图10);升级改造了横向束流反馈系统,实现了混合填充模式逐束团反馈,增加了系统动态范围到31db。图10. 轨道快反馈系统(左图参与快轨道反馈系统的轨道稳定性(快轨道反馈系统8小时工作);右图束流轨道噪音积分谱(FOFB打开/关闭)) 上海光源线站工程于2016年11月动工建设,在工程经理部的组织下,光源性能拓展部分按进度计划节点推进。2017年7月完成长直线节双腰改造,2018年7月完成第一台插入件(IVU)上线安装,2019年1月低温系统完成全部设备安装,2019年9月完成3和13单元超高磁场二极铁改造,2020年9月完成SLEGS光源系统相互作用腔上线安装,2021年3月完成超导扭摆器(SCW)上线安装,2021年9月完成三次谐波腔上线安装,并在2021年12月调试达到束线要求,实现了24mA单束团+200mA束团串填充模式,支撑快速成像线站完成了工艺测试(新闻链接:上海光源线站工程建设取得新进展)。截止目前,上海光源线站工程已完成了用户支撑实验系统、实验辅助系统、光源性能拓展和11条光束线站(20个实验站)的工艺测试,新建光束线站试运行已支撑用户取得了一批高水平研究成果。 通过加速器性能拓展工程的实施,拓展了光源光子能谱范围,增加了插入件直线节占比,即增加了可建束线的数量,实现了快速成像要求的高流强单束团和束团串的混合填充模式,同时,保持了加速器主要性能参数的先进性,提高了光源运行稳定性。
  • 国标委发布89项分析测试方法国家标准
    国家质量监督检验检疫总局、国家标准化管理委员会批准《工业硝酸 浓硝酸》等179项国家标准,其中相关分析方法标准89项。 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 2383-2014 粉状染料 筛分细度的测定 GB/T 2383-2003 2014-12-01 GB/T 2386-2014 染料及染料中间体 水分的测定 GB/T 2386-2006 2014-12-01 GB/T 2391-2014 反应染料 固色率的测定 GB/T 2391-2006 2014-12-01 GB/T 2392-2014 染料 热稳定性的测定 GB/T 2392-2006 2014-12-01 GB/T 2399-2014 阳离子染料 染色色光和强度的测定 GB/T 2399-2003 2014-12-01 GB/T 2403-2014 阳离子染料 染腈纶时染浴pH适应范围的测定 GB/T 2403-2006 2014-12-01GB/T 2792-2014 胶粘带剥离强度的试验方法 GB/T 2792-1998 2014-12-01 GB/T 3517-2014 天然生胶 塑性保持率(PRI)的测定 GB/T 3517-2002 2014-12-01 GB/T 4851-2014 胶粘带持粘性的试验方法 GB/T 4851-1998 2014-12-01 GB/T 5211.15-2014 颜料和体质颜料通用试验方法 第15部分:吸油量的测定 GB/T 5211.15-1988 2014-12-01 GB/T 5275.1-2014 气体分析 动态体积法制备校准用混合气体 第1部分:校准方法 2014-12-01 GB/T 5275.2-2014 气体分析 动态体积法制备校准用混合气体 第2部分:容积泵 2014-12-01 GB/T 5275.4-2014 气体分析 动态体积法制备校准用混合气体 第4部分:连续注射法 2014-12-01 GB/T 5275.5-2014 气体分析 动态体积法制备校准用混合气体 第5部分:毛细管校准器 2014-12-01 GB/T 5275.6-2014 气体分析 动态体积法制备校准用混合气体 第6部分:临界锐孔 2014-12-01 GB/T 5275.7-2014 气体分析 动态体积法制备校准用混合气体 第7部分:热式质量流量控制器 2014-12-01 GB/T 5275.8-2014 气体分析 动态体积法制备校准用混合气体 第8部分:扩散法 2014-12-01 GB/T 5275.9-2014 气体分析 动态体积法制备校准用混合气体 第9部分:饱和法 2014-12-01 GB/T 5275.11-2014 气体分析 动态体积法制备校准用混合气体 第11部分:电化学发生法 2014-12-01 GB/T 6435-2014 饲料中水分的测定 GB/T 6435-2006 2015-01-09 GB/T 7125-2014 胶粘带厚度的试验方法 GB/T 7125-1999 2014-12-01 GB/T 7791-2014 防污漆降阻性能试验方法 GB/T 7791-1987 2014-12-01 GB/T 8657-2014 苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定 GB/T 8657-2000 2014-12-01 GB/T 9339-2014 反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定 GB/T 9339-2006 2014-12-01 GB/T 10663-2014 分散染料 移染性的测定 高温染色法 GB/T 10663-2003 2014-12-01 GB/T 11141-2014 工业用轻质烯烃中微量硫的测定 GB/T 11141-1989 2014-12-01 GB/T 12701-2014 工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法 GB/T 12701-1990 2014-12-01 GB/T 13289-2014 工业用乙烯液态和气态采样法 GB/T 13289-1991 2014-12-01 GB/T 13290-2014 工业用丙烯和丁二烯液态采样法 GB/T 13290-1991 2014-12-01 GB/T 14420-2014 锅炉用水和冷却水分析方法 化学耗氧量的测定 重铬酸钾快速法 GB/T 14420-1993 2014-12-01 GB/T 15893.1-2014 工业循环冷却水中浊度的测定 散射光法 GB/T 15893.1-1995 2014-12-01 GB/T 16422.2-2014 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 16422.2-1999 2014-12-01 GB/T 16422.3-2014 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.3-1997 2014-12-01 GB/T 16422.4-2014 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.4-1996 2014-12-01 GB/T 18175-2014 水处理剂缓蚀性能的测定 旋转挂片法 GB/T 18175-2000 2014-12-01 GB/T 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 GB/T 18397-2001 2015-01-10 GB/T 19281-2014 碳酸钙分析方法 GB/T 19281-2003 2014-12-01 GB/T 24148.7-2014 塑料不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 2014-12-01 GB/T 24148.8-2014 塑料 不饱和聚酯树脂(UP-R)第8部分:铂-钴比色法测定颜色 GB/T 7193.7-1992 2014-12-01 GB/T 24148.9-2014 塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 2014-12-01 GB/T 29493.9-2014 纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 2014-12-01 GB/T 30773-2014 气相色谱法测定 酚醛树脂中游离苯酚含量 2014-12-01 GB/T 30774-2014 密封胶粘连性的测定 2014-12-01 GB/T 30776-2014 胶粘带拉伸强度与断裂伸长率的试验方法 2014-12-01 GB/T 30787-2014 数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 2014-12-01 GB/T 30790.6-2014 色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 2014-12-01 GB/T 30791-2014 色漆和清漆 T弯试验 2014-12-01 GB/T 30792-2014 罐内水性涂料抗微生物侵染的试验方法 2014-12-01 GB/T 30793-2014 X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 2014-12-01 GB/T 30794-2014 热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 2014-12-01 GB/T 30795-2014 食品用洗涤剂试验方法 甲醇的测定 2014-10-10 GB/T 30796-2014 食品用洗涤剂试验方法 甲醛的测定 2014-11-01 GB/T 30797-2014 食品用洗涤剂试验方法 总砷的测定 2014-11-01 GB/T 30798-2014 食品用洗涤剂试验方法 荧光增白剂的测定 2014-11-01 GB/T 30799-2014 食品用洗涤剂试验方法 重金属的测定 2014-11-01 GB/T 30902-2014 无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) 2014-12-01 GB/T 30903-2014 无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) 2014-12-01 GB/T 30904-2014 无机化工产品 晶型结构分析 X射线衍射法 2014-12-01 GB/T 30905-2014 无机化工产品 元素含量的测定 X射线荧光光谱法 2014-12-01 GB/T 30906-2014 三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 2014-12-01 GB/T 30907-2014 胶鞋 运动鞋减震性能试验方法 2014-12-01 GB/T 30908-2014 摄影 加工废液 硼的测定 2014-12-01 GB/T 30909-2014 胶鞋 丙烯腈迁移量的测定 2014-12-01 GB/T 30910-2014 胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 2014-12-01 GB/T 30911-2014 汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 2014-12-01 GB/T 30913-2014 工业射线胶片系统分类标准试验方法 2014-12-01 GB/T 30914-2014 苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 2014-12-01 GB/T 30917-2014 天然胶乳橡胶避孕套中可迁移亚硝胺的测定 2014-12-01 GB/T 30919-2014 苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 2014-12-01 GB/T 30925-2014 塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 2014-12-01 GB/T 30926-2014 化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30927-2014 化妆品中罗丹明B等4种禁用着色剂的测定 高效液相色谱法 2014-11-01 GB/T 30929-2014 化妆品中禁用物质2,4,6-三氯苯酚、五氯苯酚和硫氯酚的测定 高效液相色谱法 2014-11-01 GB/T 30930-2014 化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30931-2014 化妆品中苯扎氯铵含量的测定 高效液相色谱法 2014-11-01 GB/T 30932-2014 化妆品中禁用物质二噁烷残留量的测定 顶空气相色谱-质谱法 2014-11-01 GB/T 30933-2014 化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定 高效液相色谱法 2014-11-01 GB/T 30934-2014 化妆品中脱氢醋酸及其盐类的测定 高效液相色谱法 2014-11-01 GB/T 30935-2014 化妆品中8-甲氧基补骨脂素等8种禁用呋喃香豆素的测定 高效液相色谱法 2014-11-01 GB/T 30936-2014 化妆品中氯磺丙脲、甲苯磺丁脲和氨磺丁脲3种禁用磺脲类物质的测定方法 2014-11-01 GB/T 30937-2014 化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30938-2014 化妆品中食品橙8号的测定 高效液相色谱法 2014-11-01 GB/T 30939-2014 化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30940-2014 化妆品中禁用物质维甲酸、异维甲酸的测定 高效液相色谱法 2014-11-01 GB/T 30942-2014 化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定 气相色谱法 2014-11-01 GB/T 30945-2014 饲料中泰乐菌素的测定 高效液相色谱法 2015-01-08 GB/T 30955-2014 饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30956-2014 饲料中脱氧雪腐镰刀菌烯醇的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30957-2014 饲料中赭曲霉毒素A的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10
  • 如何选择正确的商用照明—CWF和TL84光源的区别
    颜色的产生依赖于光源、物体和观察者三者的交互作用。光源通常发出400纳米至700纳米波段的光,这覆盖了人眼可见的光谱范围,包括红、橙、黄、绿、青、蓝、紫等颜色。当这些光照射到物体上时,物体中的颜料或其他物质会选择性地吸收和反射不同波长的光。物体反射的光的波长组合决定了其颜色。因此,光源的性质对我们所看到的颜色有重要影响。例如,CWF和TL84两种荧光光源,尽管都属于荧光光源,但它们的光谱组成和发光特性的差异会影响在这些光源下观察到的颜色表现。这两者之间有什么区别呢?一、CWF光源和TL84光源是什么?CWF(白荧光)光源是一种标准型荧光光源,通常用于美国的商场和办公机构。它的色温为4150K,符合CIE(国际照明委员会)标准照明体F2。CWF光源的显色指数(CRI)大约为62,其特点是发射大量的绿色光和较少的红色光,因此在进行对色时常被许多美国品牌商所选用。而TL84光源是一种窄带型荧光光源,属于三基色荧光灯。这种光源广泛应用于欧洲和环太平洋地区的商店和办公环境。它的色温大约为4000K,符合CIE标准照明体F11。TL84光源的显色指数约为85,其显著特点是释放出大量的绿色光。欧洲和日本的客户通常会指定使用TL84光源来进行对色工作,因其较高的显色指数可提供更好的颜色还原度。二、CWF光和TL84光源的区别1、色温CWF(冷白荧光)光源和TL84光源在色温方面存在细微的差异。根据SpectralLight Qc光源箱中的光源要求,CWF光源的色温标准为4150±200K,而TL84光源的色温标准为4000±200K。尽管这两种光源的色温相近,但它们仍然展现出略有不同的光色特性。色温是指光源发出的光色与理想黑体在相同温度下发出的光色相匹配时的温度,通常以开尔文(K)为单位。色温的微小差异可能导致光色的轻微变化,但这种差异通常对于人眼辨识来说并不明显,特别是当色温差异较小时。2、显色指数CRI显色指数(CRI)是衡量光源再现物体颜色的能力的量化指标。CWF(冷白荧光)光源的显色指数大约为62,这表示它在颜色再现方面的性能是中等的,可能不会准确地再现所有颜色。相比之下,TL84光源的显色指数约为85,表明它具有更好的颜色再现能力,能更准确地呈现颜色。从附件中的光谱功率分布图可以看出,CWF光源与TL84光源在光谱的分布上存在显著差异。例如,CWF光源在绿色光区域有一个较高的峰值,而在红色区域的发光强度较低。与此相对,TL84光源在绿色区域也显示出较高的峰值,但在红色区域的发光强度显著高于CWF光源。这些差异在光谱分布上造成了两种光源在颜色再现上的不同表现,这可能影响我们对物体颜色的感知和判断。因此,当选择光源进行颜色匹配和评估时,考虑光源的显色指数和光谱功率分布是非常重要的。3、适用范围CWF(Cool White Fluorescent)光源被广泛应用于美国的商业环境,因此美国客户可能会特别指定使用CWF光源来评估颜色。例如,知名的零售和品牌企业如苹果(Apple)、PVH、Ann Taylor、Home Depot、Sears和沃尔玛等,均可能采用此类光源来确保其产品颜色的一致性(虽然沃尔玛已经开始向LED照明转型)。在欧洲,TL84光源作为商业荧光灯的标准选择,被广泛指定用于颜色评估。欧洲客户如玛莎百货(Marks & Spencer)、迪卡侬(Decathlon)、Zara、阿迪达斯(Adidas)等品牌在色彩管理流程中通常会选择TL84光源。这反映了各地区在光源选择上的标准和偏好差异,对于全球业务运营的品牌来说,了解这些差异是至关重要的。爱色丽SPLQC光源箱提供多种光源选择,包括CWF和TL84在内的七种不同光源,以及可选的LED光源。这种多功能性使其成为一个有用的工具,可在设计、定标、预生产、生产以及质量保证和出货质检的多个阶段支持色彩评估。通过使用该光源箱,可以帮助识别和校正颜色问题,从而减少由色彩误差引起的浪费和返工,这可能有助于缩短产品的市场推出时间,并有望提高产品的整体质量。三、年终优惠活动年终特惠,机不可失!爱色丽限时折扣,适用于多款精选产品。更有“以旧换新”优惠活动,帮助您节约采购成本,同类别其他品牌型号亦可参与。了解详情或参与活动,详情咨询爱色丽官方。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 武钢氧气公司三项气体国家标准样品填补国内技术空白
    元月5日,从武钢氧气公司生产技术部获悉,该公司研制的三项氪、氙气体标准样品通过了全国标准样品技术委员会现场评审,标志着此项技术填补了国内氪、氙气体分析国家标样的空白。   氪、氙气体广泛应用于电光源、半导体、激光技术、低温超导以及核工业等领域,被誉为“黄金气体”。2007年2月1日,经国家标准化管理委员会批准,由武钢氧气公司负责编写的《氪气》、《氙气》国家标准正式生效。为配合该国家标准的贯彻实施,全国气体标准委员会和全国标准样品技术委员会还专门授权武钢氧气公司对《氪气》、《氙气》标准配套国家标准样品进行研制,以便在全国推广和应用。   为尽快研制出氪、氙气体国家标准样品,武钢氧气公司建立了氪、氙气体国家标准样品研发实验室,自主研制出一套方便实用的配气架,并引进高性能的涡轮分子泵、精密天平等配气设置和FID气相色谱分析仪器,使氪、氙气体标准样品的检测精度达百万分之一。该公司采用了一种独特的配制方法,通过精确计算、测量和配制,能够将百分含量的原料气准确稀释成了百万分含量的标准气,以满足对氪、氙气体中多元杂质的比对分析。经过长达一年多时间的精心研制,该公司成功地解决了测量误差、程序错误等技术难题,先后配制出54瓶标准样品气,经与国外同类物质进行比对分析,检测结果全部合格。   此次评审期间,全国标样评审组专家详细了解了武钢氧气公司的配制装备、配制方法、质量保证体系等情况,并对其中一项标准样品气配制程序进行全过程监督。经过两天的现场评审,评审组专家认为该公司研制的三项氪、氙气体标准样品符合国家标准样品要求。经查新检索,目前国外尚未查到相关的样品,国内也未有相关的记载和报道,该三项氪、氙气体标准样品及配制技术均系国内首创。
  • 162项推荐性国家标准公开征求意见 涉及多种仪器检测
    近日,《纺织品 抗病毒活性的测定》、《数字航空摄影测量 控制测量规范》、《用气体超声流量计测量天然气流量》、《照明光源颜色的测量方法》、《分布式光纤应变测试系统参数测试方法》等162项推荐性国家标准征求意见。其中,多项与仪器分析检测方法相关,如电感耦合等离子体原子发射光谱法、气相色谱法、拉曼成像法、电感耦合等离子体原子发射光谱法、原子荧光光谱法和固体进样直接法等。162项推荐性国家标准(征求意见稿)序号计划号项目名称制修订截止日期120141600-T-519航空用钛合金100°沉头大底脚螺纹抽芯铆钉制订2022/8/21220141601-T-519航空用钛合金凸头大底脚螺纹抽芯铆钉制订2022/8/21320210877-T-469表面化学分析 词汇 第一部分:通用术语及谱学术语修订2022/8/21420204869-T-469食品容器用镀锡或镀铬薄钢板全开式易开盖质量通则修订2022/8/21520213006-T-604超硬磨料制品 精密刀具数控磨削用砂轮制订2022/8/21620204865-T-469柑橘罐头质量通则修订2022/8/21720204866-T-469桃罐头质量通则修订2022/8/21820204867-T-469金枪鱼罐头质量通则修订2022/8/21920211843-T-605金属和合金的腐蚀 金属和合金在表层海水中暴露和评定的导则修订2022/8/211020204868-T-469爪式旋开盖质量通则修订2022/8/211120203779-T-605铁矿石 化学分析用有证标准样品的制备和定值制订2022/8/211220211774-T-604磨具回转强度试验方法修订2022/8/211320214693-T-469航空航天 可热处理强化不锈钢零件表面清理制订2022/8/211420214880-T-604超硬磨料制品 半导体芯片精密划切用砂轮制订2022/8/211520202686-T-605炭素材料洛氏硬度测定方法制订2022/8/201620204779-T-605石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法制订2022/8/201720210914-T-469焦化甲苯 烃类杂质含量的测定 气相色谱法修订2022/8/201820202649-T-608纺织品 含相变材料的纺织品蓄热和放热性能的测定制订2022/8/201920213005-T-604人造金刚石磁化率测定方法制订2022/8/202020213007-T-604超硬磨料制品 安全要求制订2022/8/202120202900-T-605炭素材料表面粗糙度试验方法制订2022/8/202220213375-T-469合格评定 管理体系审核认证机构要求 第12部分:合作商业关系管理体系审核与认证能力要求制订2022/8/202320211723-T-604普通磨料 球磨韧性测定方法修订2022/8/202420214878-T-604涂附磨具 通用安全要求制订2022/8/202520214838-T-604固结磨具 形状类型、标记和标志修订2022/8/202620193071-T-604质子交换膜燃料电池 电池堆通用技术条件修订2022/8/192720210897-T-469钢质管道带压封堵技术规范修订2022/8/192820214278-T-469智慧城市 公共卫生事件应急管理平台通用要求制订2022/8/192920204791-T-608纺织品 抗病毒活性的测定制订2022/8/193020210898-T-469钢质管道内检测技术规范修订2022/8/193120213620-T-416激光雷达测风数据可靠性评价技术规范制订2022/8/193220210685-T-604机器人 服务机器人性能规范及其试验方法 第2部分:导航金属旋压成形性能与试验方法 第1部分:成形性能、成形指标及通用试验规程制订2022/8/16343520211994-T-469照明光源颜色的测量方法修订
  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 广东新光源产业“孵化器”将在罗村形成
    广东新光源产业“孵化器”不久将在罗村形成。25日,占地1500亩、投资3亿元的广东省新光源产业化基地核心园区一期项目在罗村街道正式奠基,并率先启动4栋科技楼建设,预计明年3月完工。   按照规划,广东省新光源产业化基地计划投资3亿元,集研发、孵化、示范、认证、检测、生产及LED产业联盟核心生产地带为一体。其中,核心园区分为综合示范、总部经济、科技研发、专业生产和生活配套五大功能区。整体布局以科技研发中心和总部综合景观为中心,同时在园区兴建灯泡形状的人工湖,暂名为灯湖。   率先建设的4栋科技楼建筑面积约2万平方米,位于新光源核心园区标志性景观——灯湖的北面区域。内部将设置行业技术创新中心、中小企业孵化加速器、产业公共服务平台,预计明年3月可以建成使用。   科技楼建成后,将通过引进美国、香港等国内外知名科研机构进驻,开展新兴半导体照明灯等新光源产品的研究开发,探索LED芯片、LED生产机械等新项目,延伸新光源产业链。届时,核心园区将打造成全省新光源产业科研的“孵化器”。罗村办事处副主任刘宗阳说,核心园区将发挥示范效应作用,引领传统照明产业转型提升,最终形成“罗村光电”区域品牌。   南海区区长区邦敏说,核心园区的启动建设,将大大加快南海新光源产业发展,推动南海产业向都市型产业转型。   佛山市委常委、副市长叶明权说,希望南海藉着核心园区的启动建设,在新光源行业发挥好引领作用。   据了解,罗村将致力完善新光源的产业链,力争到2012年实现核心园区的聚集升级,产值达5亿元 到2015年产值超10亿元,成为华南地区的生产、封装及研发基地,最终形成“罗村光电”区域品牌。   广东省新光源产业化基地核心园区“磁场效应”凸现,园区高起点、高标准的发展规划,吸引了一批知名院校、科研机构纷纷落户。本台记者谢伟、通讯员杨东媚报道   在核心园区动工仪式上,南海区与中山大学签署共建国家级半导体照明工程中心,罗村街道分别与国家电器产品安全质量监督中心、广东轻工职业技术学院签署共建国家级半导体照明检测中心合作备忘录和半导体照明产业技术人才培养合作项目协议等,携手推动广东省新光源产业化基地发展。   据介绍,国家级半导体照明检测中心建成之后,将直接为珠三角LED企业提供强大的照明技术检测服务,并成为国内照明检测能力最齐全的检测中心。同时,中心还将开展与国外的权威机构合作与互认,为国内的产品出口扫除壁垒。   中山大学佛山研究院院长王钢说,目前,国际国内正积极开展半导体照明相关标准化的制定。随着核心园区建成,一些科研、检测机构的陆续进驻,到那时,南海就可以参与半导体照明标准的制定。   尽管罗村照明行业起步较早,已聚集了一批照明行业的人才,但随着传统照明行业向新光源方向转型的趋势,企业也急缺科技型和技术型的人才。初步估计,今后5年,罗村将需要引入1万名新光源产业的中高端人才。   针对将来基地企业技术人短缺的实际,广东轻工职业技术学院副院长林润惠表示,将有针对性地输送和培训人才,为基地企业提供人才支撑。   据了解,罗村今年将加快引进科研、鉴定、检测等公共性服务平台机构,将核心园区打造成全省新光源产业科研的‘孵化器’。   为推动广东省新光源产业化基地核心园区的建设,各级政府先后出台了相关政策,大力扶持以半导体照明为代表的绿色照明产业的发展。继续是本台记者谢伟、通讯员杨东媚的报道:   为加快以半导体照明为代表的绿色照明产业的发展,广东省、佛山市及南海区均将绿色照明列为未来信息产业发展的重点,并写入相关产业规划。佛山市和南海区都将位于罗村街道的广东省新光源产业化基地作为实现城市转型与产业转型,加快现代制造业发展的重要载体和平台。   市、区针对基地出台的产业扶持政策包括:安排10~20亿元作为绿色照明产业发展专项扶持资金 未来5年,绿色照明产业创造的地方财政收入全部用于支持基地绿色照明产业的发展,并给予厂房、用地等租金补贴 对半导体外延、芯片等重大投资项目重点扶持 通过专项财政资金,培育10家左右以LED为代表的绿色照明龙头企业 扶持20家左右封装、灯具一体化的LED集成制造企业 引导扶持50家左右的传统灯饰灯具企业转型升级 鼓励自主创新,加强产学研合作,建立公共技术创新服务平台和产品检测认证机构 建设半导体照明示范工程,完善产业链,推动产业集聚。   南海区区长区邦敏说,政府今后将继续出台相关扶持政策,扶持以半导体照明为代表的绿色照明产业的发展。   广东省科技厅副巡视员廖兆龙说,从产业规模来看,广东省绿色照明产业已达130多亿,企业已有2000多家,从业人员130多万。为此,省政府也正在研究相关政策,大力扶持、推动绿色照明产业的发展。
  • 尼康TS100荧光光源
    尼康TS100是一款人机学设计且使用简单的倒置显微镜,尼康倒置显微镜TS100可搭载落射荧光系统,TS100可以搭载落射荧光附件,满足各种应用的不同需求。且所有的尼康标准滤光块都可以用于其落射荧光附件中,同时最多包含两个滤光块。尼康TS100荧光光源明慧TS100倒置显微镜荧光光源荧光效果接近原厂模块。参考原厂设计,按显微镜实测开模,匹配度高,荧光效果接近原厂模块,成本更低,物超所值。标配紫外、蓝色、绿色等激发光组,通过旋转滑块选择合适的激发光组,进行荧光观察或切换明场观察,广泛应用于组织培养、斑块测量、血分类计数。与明慧公司的显微操作系统结合使用,可用于实现广泛用于细胞工程、发育和基因工程、电生理、药理学和神经化学领域的显微操作技术。通用型荧光模块,无需改变显微镜原有的光学系统,灵活匹配。双色荧光及多色荧光等多种配置方案可选,支持特殊波段需求定制,满足大部分的荧光科研实验需求,给普通的显微镜“一键”升级荧光。明慧TS100倒置显微镜荧光光源明慧TS100倒置显微镜荧光光源技术参数:名称规格光源可调节LED使用寿命>30000h光线调节范围0-100%线性调节观察方式明场/荧光荧光通道数1/4荧光通道(B/G/U单、双、三色可选)UV紫外激发组DAPI:360nm/50nm 400nm 410nmLPB蓝色激发组FITC:475/35nm 500nm 530/50nmG绿色激发组TRITC:530/40nm 560nm 575nmLP切换方式旋转注:激发滤光片可以根据客户的要求改变,详情请咨询。尼康TS100荧光光源优势:荧光模块搭配尼康TS100倒置显微镜生物学和医学的许多领域 细胞遗传学中的染色体分析神经组织中的组织化学以及蛋白质和核酸的定位组织和细胞中的一定的物质进行定位和定量 可以测定细胞中蛋白质、DNA, RNA等一些组分的含量倒置荧光模块(三色)BGU-LED-IMH倒置荧光模块(双色)BG-LED-IMH广州明慧致力于光学显微镜集研发、生产、销售于一体,凭借公司技术人员对光学系统的专业知识,为客户提供专业的显微镜解决方案,提供高质量、高性价比的光学显微镜、光学成像和光学实验设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制