当前位置: 仪器信息网 > 行业主题 > >

蛋白质定量

仪器信息网蛋白质定量专题为您提供2024年最新蛋白质定量价格报价、厂家品牌的相关信息, 包括蛋白质定量参数、型号等,不管是国产,还是进口品牌的蛋白质定量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质定量相关的耗材配件、试剂标物,还有蛋白质定量相关的最新资讯、资料,以及蛋白质定量相关的解决方案。

蛋白质定量相关的资讯

  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 我国开发定量蛋白质组学数据解析软件
    中科院计算所究团队与董梦秋实验室合作,成功开发了定量蛋白质组学数据解析软件,用计算方法排除干扰信号的影响、提高肽段和蛋白质的定量准确度并对每个定量值进行准确性评价。   基于质谱的定量蛋白质组学是现代生物学技术的生长点之一,用于测量复杂生物体系中蛋白质及其翻译后修饰在不同条件下的丰度变化,是研究蛋白质功 能和药物作用机制的重要工具。已有的定量软件往往不能有效排除干扰信号,定量值的计算方法有待完善,而且缺乏准确性评价,致使输出结果&ldquo 鱼龙混杂&rdquo ,引起 的假阳和假阴两方面的困扰都比较严重。  为了更好地解决问题,开发者研究了几百个可疑定量值的原始质谱图和色谱图数据,找原因、攒经验,充分挖掘肽段的质谱、色谱信号特点以及从肽段定量到蛋白 质定量的方法,灵活应用各种组合和统计算法,建立了一整套非常细致的数据分析流程。为了验证软件的性能,董梦秋实验室的同学通过轻重SILAC或 14N/15N标记哺乳动物细胞或细菌,从10:1到1:10按不同比例混合得到14套标准样品,产生了14套测试数据集。 测试结果表明,定量结果的准确性明显超过定量蛋白质组学领域的两个主流软件Census和MaxQuant,主要表现在输出的非数比值数目(即 不能定量的部分)占总比值数目的0.01&ndash 0.5%,远低于Census的MaxQuant的对应比例2.5&ndash 10.7%和 1.8&ndash 2.7%;Census和MaxQuant输出了许多不准确结果,其定量值的标准差是软件的1.3&ndash 2倍;给出了肽段和蛋白质定量比值的置信区 间,而Census和MaxQuant没有准确性评价。目前,该研究工作得到了科技部、基金委、中科院和北京市政府的资助。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 大化所高通量多重蛋白质组定量分析方法研究获进展
    近日,中科院大连化学物理研究所王方军博士、邹汉法研究员等人在高通量多重蛋白质组定量分析方法研究方面取得新进展,发展了一级质谱(MS1)谱图中六种不同蛋白质样品同时规模化定量分析的同位素标记方法,并将该方法应用于细胞蛋白质合成-降解周转更新分析,分析通量是常规同位素标记方法的三倍,研究成果发表在自然出版社新创立的综合性刊物《科学报告》(Scientific Reports, 2013, 3, 1827. doi: 10.1038/srep01827)上。   基于一级质谱(MS1)的蛋白质组学定量分析由于定量精度高,是现今蛋白质组学定量分析中应用最为广泛的分析技术。由于同位素标记的限制,现有的方法最多可以在一次液相色谱-质谱联用分析中定量三种不同的蛋白质样品,极大限制了蛋白质组学定量分析的通量。王方军博士、邹汉法研究员等人将体内氨基酸同位素标记方法与体外二甲基化同位素标记方法进行有机组合,实现了六种不同蛋白质样品的差异标记并在单次实验中实现了相对定量分析。该六重同位素标记策略还可以应用于细胞中蛋白质的合成及降解速率的高通量分析,成功测定了HeLa细胞中1365个蛋白质的合成-降解周转更新时间。此外,该工作中使用的基于MS1六重蛋白质组学定量及蛋白质周转分析软件系统也由我所自主开发,是国际上首个可以同时定量六个不同蛋白质样品的软件系统。 Quant-ArMone 六重蛋白质组学定量及蛋白质周转分析软件示意图 HeLa细胞内蛋白质降解动态拟合曲线示例
  • 重磅!史上首次定量检测完整的人类蛋白质组
    重磅!史上首次定量检测完整的人类蛋白质组在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • “鸟枪法(shotgun)”定量蛋白质组学技术介绍
    p   简介: /p p   1999年,Yates研究组提出“鸟枪法”(shotgun),其基本技术路线是针对液体或SDS-PAGE条带的复杂混合物用酶(Trypsin)酶解成肽段混合物,然后对肽混合物进行多维毛细管液相色谱分离和串联质谱分析以及数据库检索,从而确定蛋白质的种类,可同时鉴定成百上千种蛋白质。他们把这种思路称为多维蛋白质鉴定技术,即Mud PIT(multidi-mensional protein identification technology)。与传统的双向电泳技术相比具有灵敏度更高,动态检测范围更广等特点。 /p p   鸟枪法(shotgun)可以分析全细胞裂解样品和组织抽提物,也可以分析亚细胞分级组分、分离的细胞器等其他亚蛋白质组。如果样品已经过稳定同位素标记。根据不同标记的信号强度比例就可以精确确定化学上具有均一性的蛋白在不同样品中的相对丰度,这种多重分析可以利用在谱图上产生前后次序的质量标记得以完成。质谱分析以前在样品中加入同位素标记的某种质量校准肽,通过对此肽的相对定量就可以获得绝对定量的信息。实现目的肽段的绝对定量,而这一性质可以被充分应用以提供临床诊断的标准值或阈值。 /p p   差异蛋白质的定量研究是基于肽段水平而非完整的蛋白质,成为该技术最大的技术特色,该技术实现了样品分离与鉴定直接联合,完全自动化操作,可以用于各种蛋白质混合物的蛋白质组学分析,如血清、组织、各种体液以及尿液等。 /p p   技术路线: /p p   鸟枪法为基因组测序,是先将基因组打断,分段测序, 然后利用计算机重组在一起。从而确定一段的基因序列。 /p p   鸟枪法在蛋白质组研究中的应用方式与此相类似,首先将蛋白质混合物酶解成肽段的混合物, 利用质谱进行分析确定该肽段的氨基酸序列,然后计算机根据设定好的运算法则根据肽段的信息在理论蛋白质数据库中检索出这些蛋白质,从而确定该混合物中的蛋白质成分。 /p p style=" text-align: center " img title=" 1.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/130ae366-baaa-4006-9cf4-2c70b8441925.jpg" / /p p style=" text-align: center " img title=" 2.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/fe437d70-d969-4f29-a6c9-4e8e1d3e7b65.jpg" / /p p   分析目标: /p p   寻找差异表达蛋白,并分析蛋白功能。 /p p   Gene ontology分析 /p p   GO数据库包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。 /p p   对于每一种表达趋势的基因,选择性的进gene ontology功能分析。对差异表达的所有基因向gene ontology数据库的各节点映射。计算每个节点的基因数目,并结合整个数据库的基因作为背景分部,对于每个节点,得到一个2x2的表格,使用超几何分布检验基因在每个GO节点的富集或贫乏程度。 /p p   Pathway enrichment分析 /p p   找出差异表达基因在生物学通路中的位置,以阐明其生物学功能以及不同基因之间的相互作用。 /p p   1)把差异表达基因定位在生物学通路(Pathway)上。 /p p   2)统计分析,确定差异基因可否可以代表某些生物学通路 /p p   优点:信息量大,样本量低,检测低丰度蛋白更多,相对定量 /p p   应用领域: /p p   1)差异蛋白组分析(疾病早期诊断、疗效监测) /p p   2)细胞差异性分析(如正义转染vs空载、目标基因RNAi vs空载) /p p   3)疾病标志检测(肿瘤标志物,如无血清培养后的分泌蛋白质组) /p p   4)治疗检测(术前vs术后) /p p   5)药物开发(给药vs对照) /p p   6)癌症研究(原位肿瘤细胞系vs转移) /p p   Shotgun法可以检测动态范围10000:1内的低丰度肽段,是目前蛋白质组学研究最主要的技术路线。 现已成功应用于中大规模蛋白质的分离鉴定,不再依赖于双向凝胶电泳。 /p p   因大部分蛋白质在酶解后总有部分肽段是可用质谱鉴定的,因此,多维蛋白质鉴定技术弥补了碱性、疏水蛋白质、相对分子量极大和极小蛋白质在分离和鉴定方法上的不足。 /p p   该方法可达到对低丰度蛋白、极端等电点、分子量、完整膜蛋白具有与其他蛋白有相同的灵敏度。 如鸟枪法可鉴定出10个跨膜域以上的膜蛋白,而2DE仅能检测出2~4个跨膜域的。 /p p   Shotgun法可实现自动化、快速、高通量的蛋白组学分析。 /p p   但Shotgun法数据冗余复杂,需要专业人员进行分析。 /p p   在医学领域,Shotgun技术可用于以下方面: /p p   除血清血浆外,还可用于研究体液及组织的蛋白组 /p p   分泌蛋白组 /p p   大脑皮层神经元细胞蛋白组 /p p   新生物标记物的发现 /p p   疫苗研究,分析感染源的表面蛋白质,从而发现潜在的抗原。如,在分析人类疟疾致病源plasmodium falciparum时,发现了大量潜在的抗原, 目前这些抗原的特性巳经被评估出来。 /p p   发现新的药靶。如,研究发现甲硫氨酸氨基肤酶是肿瘤生长抑制因子bengmide的分子作用靶点。 /p p   部分参考文献: /p p   1)A proteomics approach to discovering natural products and their biosynthetic pathways, Stefanie B Bumpus, Bradley S Evans, Paul M Thomas, Ioanna Ntai1, Neil L Kelleher, Nature Biotechnology,27,951-956,2009 /p p   2)High-throughput generation of selected reaction-monitoring assays for proteins and proteomes, Paola Picotti, Oliver Rinner, Robert Stallmach, Franziska Dautel, Terry Farrah, Bruno Domon, Holger Wenschuh, Ruedi Aebersold, Nature Methods 7, 43-46 (6 December 2009) /p p   3)Large-scale analysis of the yeast proteome by means of multidimensional protein identification technology, M.P. Washburn, D. Wolters and J. R. YatesNature Biotechnology, 19, 242-247, 2001 /p p   4)Comparison of alternativeanalyticaltechniques for the characterisationof thehuman serumproteomein HUPO Plasma ProteomeProject, XiaohaiLi, Xiaohong Qian etc. Proteomics, 5, 3423–3441,2005 /p p   5)An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics, Dirk A. Wolters, Michael P. Washburn, and John R. Yates, Anal. Chem., 73 (23), 5683-5690, 2001 /p p & nbsp /p
  • 复旦大学杨芃原团队建立糖蛋白质/糖链质谱定量新方法
    糖是组成生命体的四大类重要分子之一,糖蛋白质是由糖链与肽链中的特定氨基酸残基以糖苷键共价连接而成的蛋白质。糖蛋白质普遍存在于生物体内,在很多生命过程中起着重要作用,如蛋白质的折叠、细胞之间的相互识别、炎症反应等。同时,糖基化修饰在疾病中,特别是肿瘤的发生、发展和转移过程中也起到重要作用,许多疾病诊断标志物及治疗的靶标都是糖蛋白质。糖蛋白质组学和糖组学的研究具有重要的科学意义。以基质辅助激光解吸电离质谱(MALDI-MS)和电喷雾质谱(ESI-MS)为代表的生物质谱技术,因具有快速、灵敏、可提供结构信息等优点,已成为糖蛋白质组和糖组分析的重要工具。  由复旦大学杨芃原教授团队撰写的综述文章“质谱技术在糖蛋白质组学与糖组学方面的研究进展”发表于2016年第3期的《国家科学评论》。这篇综述论文系统介绍了近年来以质谱为核心的糖蛋白质组和糖组的研究策略和方法,以及该领域重要的生物和临床发现。重点讨论了国内糖蛋白质组学和糖组学研究团队在糖蛋白质和糖链的分离富集、糖链的衍生,糖链和糖蛋白质的质谱碎裂技术,糖链及糖蛋白质序列组成分析的软件技术等方面的进展,并分析了基于质谱技术的糖蛋白质组和糖组研究的关键问题,展望了该领域未来的发展趋势。  杨芃原教授团队在基于质谱的糖蛋白质组学和糖组学方面展开了系统的研究。他们发展了一系列糖蛋白质/糖链富集和质谱定性的新方法,建立了基于复合纳米材料的富集新方法,基于新的共价反应的富集新策略,以及基于协同富集思路的富集新流程 建立了一系列糖蛋白质/糖链的质谱定量新方法,提出了酶促去糖链过程中的标记定量新方法和糖蛋白质组在蛋白质水平、糖基化程度水平及糖链水平的同时定量新方法等 开发了高通量糖蛋白质质谱检索的新算法等。这些工作提升了中国糖蛋白质组学和糖组学的研究水平,为糖蛋白质组学和糖组学研究提供了新的研究方法。
  • 科研人员利用质谱等技术发布首个水稻全景定量蛋白质组图谱
    记者30日从中国农业科学院获悉,该院生物技术研究所联合国内多家单位共同绘制了水稻全景定量蛋白质组图谱。相关研究成果日前发表在国际期刊《自然植物》上。中国农业科学院 图一直以来,受限于蛋白质组技术的覆盖度和精度,人们对作物定量蛋白质组以及蛋白质表达的调控机制理解还不够深入。蛋白质是作物实现各种生物学功能的主要执行者,构建全景定量蛋白质图谱在阐释植物生长发育、逆境响应及代谢调控等方面具有重要意义。论文通讯作者、中国农业科学院生物技术研究所研究员梁哲告诉记者,科研人员利用质谱等技术,量化了水稻主要组织中超过15000个基因的蛋白质水平,鉴定了8964个蛋白质,并为另外7077个蛋白编码基因提供了蛋白质水平证据,从而绘制出水稻全景定量蛋白质组图谱。“本研究成功绘制了迄今为止首个作物全景定量蛋白质组图谱。此前的植物基因表达调控研究主要聚焦在基因组至转录组层面,建立了中心法则(生物体内遗传信息的流动方向)中转录本(RNA)到蛋白质这一关键环节的多组学研究策略。此次研究发现,蛋白质的表达量不仅受到转录过程的影响,还受到转录后修饰的调控。这一研究为水稻的基因功能研究提供了重要的蛋白表达量资源,为基于多组学数据的作物智能设计育种提供了新思路。另外,研究运用的定量蛋白质组的方法也给其他作物蛋白质组的深入研究提供了借鉴。”梁哲说。
  • 安捷伦与ISB合作开发人类蛋白质定量分析方法
    2009年11月30日,北京——系统生物学研究所(ISB)和安捷伦科技公司(NYSE: A)今天宣布,合作开发人类多反应监测(MRM)Atlas,一种让科学家对所有人类蛋白质进行定量分析的综合方法。该项目将有望使生物标志物的发现与验证,以及基于蛋白水平的诊断检验、个性化医疗、人类健康监测等工作获得重要进展。   该项目获得“美国复兴与再投资法案——投资机会”项下国立卫生研究院国家人类基因组研究所提供的460万美元资助,由ISB的Robert Moritz 和 Leroy Hood开发“全人类多肽和MRM Atlas ”。苏黎世联邦理工学院的Ruedi Aebersold 也将携欧洲科研理事会提供的经费加入该项合作研究。   该研究将历时2年,分别在西雅图的ISB和苏黎世ETH进行,将使用安捷伦三重串联四极杆和四极杆飞行时间液相色谱/质谱(LC/MS)系统和纳流液相色谱-芯片/质谱系统。   “我们相信这将是蛋白质分析领域一个革命性的进展,”ISB成员兼蛋白质组学负责人Rob Moritz说,“这将促进蛋白质定量的常规应用,在人类疾病的机理研究、早期诊断和监测中发挥重要作用。”   “安捷伦很高兴共同担纲开发人类MRM Atlas,并且基于MRM方法,支持蛋白定量研究,”安捷伦LC/MS营销负责人Ken Miller说,“我们的三重串联四极杆质谱系统、蛋白质分析专用软件工具、以及独特的液相色谱-芯片/质谱技术,构成了分析这些大量样品稳定而灵敏的平台。”   MRM Atlas旨在让科学家们能够对人类组织、细胞系和血浆中大约20,000种蛋白质进行定量处理,从而对关乎人类健康的众多领域产生影响。该计划对每个人类蛋白编码基因,可生成多达四种多肽的数据库,经过快速精确的质谱MRM方法分析验证,实现对人类蛋白质组中几乎所有蛋白的明确鉴定与定量,从而将对普通生物学研究和大规模蛋白质组研究产生积极推动作用。
  • 重大突破:史上首次定量检测完整的人类蛋白质组
    在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。  SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。  能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。  尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。  个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 初代timsTOF Pro单个细胞蛋白质定量突破3000大关
    近期,浙江大学化学系方群教授团队在国际权威期刊《Nature Communications》上发表了题为“Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell”的研究成果,创新性地提出了PiSPA(Pick-up Single-cell Proteomic Analysis)技术用于单细胞蛋白组分析。该工作流程利用纳升级微流控液滴操控机器人,可以实现单细胞精准捕获、样本前处理以及自动进样,利用布鲁克tims TOF Pro质谱仪在单个哺乳动物细胞内实现了超过3000种蛋白的定量深度。作者通过此项技术对三种不同的哺乳动物细胞(HeLa、A549和U2OS细胞)进行单细胞蛋白质组学研究,以及研究了HeLa细胞在迁移过程中的细胞异质性,均展现了超高的定量分析深度。PiSPA平台的单细胞捕获过程是基于SODA(Sequential Operation Droplet Array)技术开发的微流控液体处理系统,可在“点取式”操作模式下实现自动化纳升级单细胞分选,并且能够基于细胞的明场形态特征或是标记的荧光信号灵活地选择单细胞,具有很高的捕获成功率和指向性。此外,研究人员将商品化的锥形底部内插管改造成阵列化的纳升级微反应器,兼容后续的液相色谱自动进样,可大大提高整个工作流程的可操作性、可靠性和成功率。PiSPA平台可自动完成单细胞捕获、样品前处理、色谱分离、质谱检测等一系列操作,最大程度降低样品的损失。研究人员利用PiSPA工作流程,对多种哺乳动物单细胞实现了深度覆盖的定量分析。采用优化的胰蛋白酶/蛋白比例和色谱梯度,分别通过DDA和DIA扫描模式对A549、HeLa和U2OS三种细胞进行单细胞蛋白组分析,所有质谱数据均使用布鲁克4D蛋白质组学平台——timsTOF Pro进行采集。布鲁克独特的捕集离子淌度技术(TIMS)带了额外一维离子淌度信息,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性,最新一代平行累积连续碎裂技术(PASEF® )可以实现极高的二级扫描速度和灵敏度,只需要很少量样本就可以达到组学鉴定新深度。在本研究中,timsTOF Pro更是展示了探索单细胞蛋白质组学的能力,在DIA扫描模式下,利用DIA-NN(MBR算法)进行library-free数据检索,可在A549、HeLa和U2OS三种细胞的单细胞样本中,分别平均定量到3008、2926和2259种蛋白质,展现了PiSPA平台在单细胞蛋白组定量分析中的覆盖深度;此外,有2869、2772和1889种蛋白质在至少80%的A549、HeLa和U2OS单细胞样本中被重复定量到,说明了PiSPA平台有很高的重复性和可靠性。为了证明PiSPA平台的实际应用价值,研究人员分析了迁移过程中HeLa单细胞的蛋白质组表达情况。通过细胞划痕实验,选取有明显迁移(n=46)和未发生迁移(n=43)的HeLa单细胞进行定量分析。采用DIA扫描模式,分别平均鉴定到了2544和2893种蛋白质,后续生物信息学分析发现Cdc42、Rac1和RhoA等蛋白在发生迁移的HeLa细胞中发生显著上调,揭示了迁移过程中的焦点粘附和肌动蛋白骨架调节通路发生激活,说明了PiSPA可以作为细胞迁移研究和抗癌药物靶点研究的有效工具。PiSPA工作流程包含了高精度的液体操控、单细胞的精确前处理,结合布鲁克先进的液相色谱-捕集离子淌度谱-四极杆飞行时间质谱仪(LC-TIMS-QTOF MS)进行蛋白质组分析,突破了传统质谱分析在单细胞蛋白组研究领域的技术瓶颈,实现在单个哺乳动物细胞中定量超过3000种蛋白,重新定义了单细胞蛋白质组学分析。这项成果也再次向我们证明了单细胞蛋白质组学在疾病诊断和预防、药物开发、癌症基因组学等精准医学研究中的应用潜力。参考文献:1. Wang Y, Guan ZY, Shi SW, et al. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammaliancell. Nat Commun. 2024 15(1):1279.2. Meier F, Brunner AD, Koch S, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018 17(12):2534-2545.3. Meier F, Brunner AD, Frank M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020 17(12):1229-1236.
  • “深度覆盖的蛋白质组精准鉴定与定量新技术”项目正式启动
    p   10月27至28日,由中国科学院大连化学物理研究所作为主持单位承担的国家重点研发计划“深度覆盖的蛋白质组精准鉴定与定量新技术”项目启动会在生物楼学术报告厅举行。项目负责人张丽华研究员,项目组专家大化所张玉奎院士、中科院高能物理所柴之芳院士,复旦大学杨芃原教授,北京大学刘虎威教授,国家纳米科学中心赵宇亮研究员,国家蛋白质科学中心秦钧研究员,项目指导专家中科院武汉数学物理研究所刘买利研究员,中国人民解放军军事医学科学院甄蓓研究员,科技部高技术研究发展中心主管聂启昌,中科院前沿科学与教育局生命科学处主管路浩,我所职能部门相关人员以及各子课题承担单位的专家和代表70余人参加了会议。 /p p   项目启动会由张玉奎主持,大化所科技处副处长张宇首先代表所里致辞。随后,张玉奎为专家颁发聘书,聂启昌介绍了项目管理规定。张丽华向项目专家组汇报了项目的整体情况,各课题负责人分别汇报了各课题的任务目标、研究内容、实施方案以及研究计划等情况。专家组对本项目实施方案进行了审议讨论,对本项目给予了充分的肯定,同时对项目实施提出了合理中肯的建议,对本项目今后的开展具有积极的推动作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/ecfb9c48-126a-4791-a0e4-7e9de81626a1.jpg" title=" W020171030526310365904_副本.jpg" / /p p   国家重点研发计划“深度覆盖的蛋白质组精准鉴定与定量新技术究”项目设置四个课题。课题一、可变剪切和新生肽链组的高灵敏鉴定技术 课题二、基于高效标记和特征肽段的蛋白质组精准定量技术 课题三、基于高效分离的蛋白质组深度覆盖定量技术 课题四、纯化蛋白质的全序列高准确测定技术。通过本项目的实施,将在蛋白质组精准鉴定与定量领域取得一批具有自主知识产权的突破性和创新性研究成果。为推动我国蛋白质科学跨越式发展,并达到国际领先水平提供重要技术支撑。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/8f950f66-961a-4770-914d-bd2ebf603e80.jpg" title=" W020171030526310378848_副本.jpg" / /p
  • 赛默飞:蛋白质组学研究追求定量准确、深度分析及高通量
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) " 蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) " 蛋白质组学研究需用到二维电泳和质谱技术等多种关键技术,此外,随着蛋白质组学研究的发展,高通量和高精度的蛋白质相互作用检测、蛋白质芯片的发展等更多新技术也逐步发展起来。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(31, 73, 125) " 为帮助从事相关研究的用户梳理蛋白质组学研究技术及方法,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/dbzxyj" target=" _blank" span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 18px " “蛋白质组学新技术、新方法” /span /strong /span /a 专题,并邀请赛默飞技术专家唐家澍分享了他的观点。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 蛋白组学体现出三大应用倾向& nbsp /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 蛋白质组学的研究对象非常广泛,从细胞系到模式动物乃至人群样品,都是典型的蛋白质组学研究对象。蛋白质组学可以为生物学和医学研究提供表达差异的变化,信号级联的传递以及蛋白质相互作用的时序以及空间调控等种种信息。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 近些年,蛋白质组学体现了几个重要的应用倾向, strong 一是作为常规手段越来越多的运用到生物学功能研究中,二是针对人群队列样本的多组学整合研究从而在大数据的指导下由相关性推导出新的诊断或是治疗靶点, 三是更加精细化的着眼于单细胞的研究,从而在肿瘤异质性以及抗体筛选等前沿领域发挥作用。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(0, 112, 192) " strong 蛋白质和核酸以及小分子的最大不同在于以下几点:& nbsp /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (1)蛋白质含量动态范围大,且蛋白质不能像DNA一样进行扩增 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (2)蛋白质存在广泛的翻译后修饰和选择性剪切; /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (3)蛋白质之间存在非常复杂的相互作用网络来执行生理功能。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(0, 112, 192) " strong 因此可见目前蛋白质组学面临的主要挑战在于:& nbsp /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (1)足够的分析速度以应对越来越大规模的队列研究 & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (2)足够的分析深度以实现对全蛋白质组乃至修饰组的更深度覆盖 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " (3)定量分析的质量以提供更加准确的表达差异的信息。& nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 所以, strong 当定量准确、深度分析和更高通量得以同时实现,那么无疑就是占领了蛋白质组学研究的制高点。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(192, 0, 0) " strong 从质谱采集到数据分析& nbsp 赛默飞方案覆盖蛋白质组学分析全流程 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " ThermoFisher作为蛋白质组学的研究的领先企业,可为蛋白质组学研究提供丰富的解决方案。在定量蛋白质组学领域,ThermoFisher提供了丰富的工作模式,包括基于体外化学标记的TMT技术,用于大队列研究的DIA模式以及兼具灵敏度和高通量的SureQuant靶向定量流程以应对不同的应用场景。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 在更新兴的结构生物学领域,ThermoFisher提供了更为丰富的武器,例如化学交联质谱技术用于研究蛋白质相互作用和为蛋白质结构解析提供辅证,氢氘交换质谱用于研究蛋白质二维构象,非变性质谱用于研究蛋白质及复合物的高维结构,更有UHMR质谱使得直接分析MDa级分子量的完整病毒颗粒成为可能。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/SH100244/C242497.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 332px height: 340px " src=" https://img1.17img.cn/17img/images/202004/uepic/52b82a64-fb40-43f2-89b4-ebcd2fa541d7.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 332" height=" 340" / /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/SH100244/C242497.htm" target=" _blank" 赛默飞EASY-nLC 1200纳升级UHPLC /a /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 为了使客户能够更加系统和深入的理解复杂的蛋白质组学,ThermoFisher也提供了业内最为专业和全面的培训服务体系。从样品前处理,质谱采集,数据分析到生物信息学和实验室质控流程建立,ThermoFisher一直致力于帮助客户顺利的克服研究过程所遇到的技术问题。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " Orbitrap质谱+TMT技术& nbsp 实现深度和高通量研究 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " ThermoFisher的Oribitrap系列质谱一直是蛋白质组学研究的金标准。其具有的高分辨,高灵敏度和高可靠性使得绝大多数发表于CNS等顶刊的蛋白质组学研究工作都不约而同的选择该系列仪器。Orbitrap系列质谱仪将蛋白质的定性和定量实现了完美的统一。2019年ASMS上发布的全新平台的Orbitrap Exploris 480更是将仪器的性能推向了一个全新的高度。 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/sh100244/C333158.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 316px height: 316px " src=" https://img1.17img.cn/17img/images/202004/uepic/cd501f99-31ee-43df-8c20-d4cfae91ec73.jpg" title=" 图片2.png" alt=" 图片2.png" width=" 316" height=" 316" border=" 0" vspace=" 0" / /a /p p style=" margin: 10px 0px padding: 0px text-align: center background: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em " a href=" https://www.instrument.com.cn/netshow/sh100244/C333158.htm" target=" _blank" 赛默飞Orbitrap Exploris 480 高分辨质谱仪 /a /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 回到我们上面所提到的定量准确,分析深度和通量的问题上,Orbitrap质谱结合多标TMT技术一直被广泛应用于定量蛋白质组学研究中。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " TMT标记试剂采用了巧妙的化学结构使得其可以在一针采集中同时分析多达11个样本。而TMT技术带来的不仅仅是分析通量的提高,将11个样本标记后同时分析实际上是提供了一个封闭的定量环境,以完全消除在前处理过程和质谱分析时可能产生的定量误差。传统基于非标记定量的策略则在定量准确性方面存在先天的劣势。除此之外,在TMT标记实验中为了得到更深的蛋白质组覆盖以及对修饰组的研究,研究者们通常还可以结合肽段分级或是修饰肽段富集等策略,以满足丰富多样的研究需求。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 在2020年ThermoFisher发布了TMTpro 16通道标记技术, 将TMT标记技术推向了新的高度,该技术已于今年3月份在Nature methods上发表。该技术刚发布便在实际的科研工作中体现了无与伦比的价值。中国西湖大学的科学家利用Orbitrap结合TMT标记技术,并结合代谢组学的数据,发现了COVID-19的病人血清中的潜在靶点,有望为预测轻症患者向重症发展提供导向。相信在往后的科研工作,尤其是基于大队列的精准医学研究中,Orbitrap结合TMTpro标记技术将会极大程度的助力广大科研人员取得更多等显著的成果。 /p
  • 定量蛋白质组学方法应用于病毒结构、功能及感染机制研究
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 病毒是一种特殊的生命形式,与人类的疾病和健康都密切相关。在一些情况下,某些病毒会侵染人体,导致一系列的疾病,甚至危及生命。对病毒的防控,我们可以通过了解病毒的特点与传播规律,阻止病毒传播;也可以通过研发相应的疫苗来提前预防病毒的感染,而这些工作都需要对病毒有深入的认识和了解。SCIEX面向全球提供不同类型的高端质谱平台和多组学研究方案,能够在基础研究、临床诊疗和药物研发的领域助力对于病毒相关的研究与防控。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 基于iTRAQ试剂的定量蛋白质组学揭示相似病毒的结构和功能差异 /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/dec9490a-bd41-4d1e-9bd3-67dc8f2d04d3.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: justify text-indent: 2em " 图1:iTRAQ试剂结合定量蛋白质组学能够揭示病毒不同状态下的蛋白丰度差异(来源Zhihong Hu,JVI, 2012) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " EV71(肠道病毒71型)是导致幼儿手足口病的主要病原体之一,其表达两种EV71病毒,包涵体衍生型病毒(occlusion-derived virus,ODV)和出芽型病毒(budded virus,BV)。ODV主要侵染肠,而BV则有可能侵染其他易感组织。如果能够对这两种病毒蛋白层面的差异进行分析,那么就能够掌握病毒颗粒侵染偏向的线索。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于iTRAQ试剂的定量蛋白质组学能够很好的完成相似样品在蛋白层面的差异比较。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本研究中,研究人员使用不同的iTRAQ试剂(116和117)来标记不同两种不同的肽段样品,等量混合后,使用SCIEX高分辨质谱仪进行数据采集。数据分析软件通过采集到的二级谱图,不仅可以进行肽段序列的鉴定,还能够通过报告离子116和117的相对强度来对该肽段在两个样品中的相对丰度进行定量。通过SCIEX 高分辨质谱系统对EV71两种不同状态下的病毒颗粒中的51个蛋白质进行定量蛋白质组学分析,揭示了EV71在不同状态下高表达的蛋白质,其中有12个BV特异表达的蛋白,有21个ODV特异表达的蛋白,这其中的差异很有可能就是病毒颗粒侵染偏向的原因,这为我们后续的研究提供了重要的线索。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 基于SWATH采集技术的定量蛋白质组学绘制全面的病毒蛋白表达及功能谱图 /span /strong /p p style=" text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/d6902936-0d92-4585-aa4e-308c18e939cc.jpg" title=" 2222.jpg" alt=" 2222.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: justify text-indent: 2em " 图2:使用SWATH采集技术结合定量蛋白质组学方法来得到病毒不同蛋白在侵染过程中不同时间点的表达情况(来源:MCP, Anthony,2015) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为了预防和控制急性病毒感染在全球流行,对病毒的基础研究是战略性的。病毒的基础研究中,病毒蛋白的功能,及其在宿主细胞中的动力学是重要的环节,能够让我们更加透彻的了解病毒。SWATH(sequential windowed acquisition of all theoretical fragment ions)采集技术结合定量蛋白质组学策略作为一种数据非依赖采集策略,基于超快速扫描的高分辨质谱TripleTOF系统,能够全面的采集到样品中所有肽段的信息,为我们完整的展现病毒所有蛋白的变化水平。在这个研究中,科研人员使用牛痘病毒为模式病毒,基于TripleTOF系统的SWATH采集模式,为我们展示了病毒蛋白在体内动力学变化的研究流程。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究者将不同侵染阶段的样品分别进行蛋白提取及酶解,无需额外的同位素标记及其他后续工作,直接使用SCIEX特有的SWATH采集模式对不同的样品进行采集。之后借助数据分析软件,导入数据库后,就可以直接得到病毒各种蛋白在不同侵染阶段的表达曲线。基于这些信息,我们能够很清楚的了解病毒的不同蛋白各自在何时被表达及执行功能,能够帮助我们绘制出病毒不同蛋白的表达及功能谱图,是病毒基础研究重要的一环。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 基于差异比较蛋白质组学进行SARS冠状病毒炎症机制研究 /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8fe2a6d0-6c5e-40b7-87b2-4a5543e1715e.jpg" title=" 3333.jpg" alt=" 3333.jpg" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong /strong /span br/ /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图3:定量蛋白质组学策略揭示SARS病毒的PLpro蛋白对宿主细胞免疫相关信号通路的影响(来源:Proteomcis,Cheng-Wen Lin,2012) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " SARS(重症急性呼吸综合征)冠状病毒的PLpro蛋白具有去泛素化酶活性,能够让干扰素调节因子3(Interferon regulatory Factor 3)和NF-kB失活,抑制I型干扰素信号通路,从而降低干扰素(IFN)的表达。在这个研究中,作者使用SCIEX高分辨质谱系统对PLpro过表达的人源幼单核细胞系的蛋白质组学和细胞因子水平进行了分析。发现PLpro过表达后,细胞内炎症因子TGF-b1相关的蛋白呈现显著的上调趋势,与此相关的信号通路为p38 MAPK及 ERK1/2信号通路。这份研究能够为我们在临床抑制SARS冠状病毒介导的炎症提供机制依据。 /p p br/ /p
  • 安捷伦与AFG合作开发蛋白质定量分析方法
    6月25日,安捷伦科技公司和Anderson Forschung Group LLC (AFG)表示,将合作开发多肽定量分析方法,旨在加快蛋白质生物标志物的开发和验证速度。   在合作中,AFG将利用其稳定同位素标准和用抗肽抗体提取(SISCAPA)技术,与安捷伦的1200系列HPLC-芯片和6400系列三重串联四极杆质谱仪(MS)相结合。用这种组合开发测定复杂样品(如,血浆)酶解产物中多种多肽含量的方法。其成果将使双方受益,财务细节尚未披露。AFG首席执行官Leigh Anderson表示:候选生物标志物的SISCAPA分析可以大大受益于安捷伦平台的重现性和灵敏度,我们期待着对这一组合进行优化。   据了解,Agilent 1200系列HPLC-Chip/MS系统是一个在聚合物芯片上集成了液相色谱柱、连接毛细管和纳流喷雾喷射器的微流控平台,即使样品载入量很小,也可以提供无与伦比的色谱性能。信用卡大小的装置插入安捷伦的HPLC-Chip Cube中,与质谱连接。芯片载入、溶剂和样品输送、液流的高压切换,以及在质谱离子源中芯片的定位,全部实现了自动化。 Agilent 6400系列三重串联四极杆LC/MS系统可以在宽质量范围提供飞克级灵敏度。该仪器以其对复杂基质中痕量有机化合物的可靠定量而享有盛誉,包括,测定药物代谢物、食品中农药残留和地下水中的污染物等。SISCAPA方法是利用抗体包被的磁珠和一个旋转的磁珠捕集装置,捕获目标多肽,然后用纳流LC-MS/MS系统进行测定。目的是对样品酶解液中极少量多肽的量进行测定,创建一种对高级诊断有潜在用途的研究工具。   安捷伦科技有限公司是分析仪器系统的领导供应商,其产品正在化学、环保、食品、医药和生命科学领域中广泛使用。安捷伦具有世界最先进的化学分析仪器,丰富的法规适应性和专业技术经验,以及优良的支持服务系统,这些都能够帮助您的实验室超前应对分析的挑战。
  • 定量蛋白质组学探索新型冠状病毒新疗法
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近期,来自法兰克福大学医学病毒学研究所和歌德大学医学院团队利用一种新颖的蛋白质组学方法对新冠病毒进行研究,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标,提出新冠治疗新疗法。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 治疗选择· 细胞层面理解 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从2019年底由SARS-CoV-2(2型严重急性呼吸综合征冠状病毒)引起的新型冠状病毒疾病(COVID-19)具有高传染性,该病已发展至全球大流行。全球迫切需要开发抑制病毒感染或复制的疗法。SARS-CoV-2与其他冠状病毒有相似之处,所以目前主要通过对已用于其他适应症的药物库进行高通量筛选,鉴定出许多临床上认可的药物,但却缺乏对SARS-CoV-2感染的治疗选择和细胞层面理解。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 法兰克福大学医学病毒学研究所的Jindrich Cinatl教授和歌德大学医学院的Christian Mü nch教授团队发表最新研究中,建立感染SARS-CoV-2的Caco-212细胞模型,运用一种新颖的多重增强蛋白质动力学(multiplexed enhanced protein dynamicsme, mePROD)方法进行蛋白质组学分析,能够在高时间分辨率下确定转录组和蛋白质组的变化,加速确证病毒致病性相关的生物途径以及寻找潜在的药物靶标。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 一、构建细胞感染模型 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 想要开展该研究的重点取决于两点: span style=" text-indent: 2em " 1.是否有合适的允许病毒感染的细胞培养模型; /span span style=" text-indent: 2em " 2.对蛋白质进行时间感染特征分析的敏感蛋白质组学方法。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 该研究建立针对SARS-CoV-2高度兼容的细胞模型,在病毒感染24小时后就能迅速见到细胞致病作用 (图1A)。在病毒感染细胞后的2h、6h、10h和24h,分别用定量PCR技术测量上清液中的病毒RNA拷贝数,发现感染后SARS-CoV-2 RNA数量不断增加(图1B)。这表明模型可以用于研究细胞中SARS-CoV-2。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/00b7210b-e85a-4327-aa02-dc0af774d72a.jpg" title=" theromo.jpg" alt=" theromo.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1. & nbsp SARS-CoV-2 在细胞内快速复制模型。A, 病毒感染24小时后的细胞形态变化 & nbsp B, 细胞上清液中病毒RNA拷贝数的增加 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 二、翻译抑制剂防止SARS-CoV-2病毒复制 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 建立好模型,研究人员需要利用一种高效的方法确定SARS-CoV-2感染的时间分布,这时候mePROD蛋白质组学方法应运而生,即基于Orbitrap高分辨质谱仪联用新蛋白代谢标记(SILAC)和串联质量标签(TMT)两种标记方法,进行蛋白差异分析。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/1f28c8de-733d-43ac-8f8a-d1f2138c637a.jpg" title=" e.jpg" alt=" e.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2. mePROD蛋白质组学实验流程 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 抑制宿主翻译先前已被用作治疗MERS-CoV等多种冠状病毒感染性疾病。与其他病毒抑制宿主蛋白的合成从而增加病毒蛋白的合成不同,该方法挖掘数据表明SARS-CoV–2仅引起宿主翻译能力的微小变化,作者推测SARS-CoV-2复制可能对翻译抑制更为敏感。通过测试了两种翻译抑制剂,即环己酰亚胺(cycloheximide, 翻译延伸抑制剂)和曲美汀(emetine, 抑制40S核糖体蛋白S14)。在无毒浓度下,两个化合物均对SARS-CoV-2复制产生了显着抑制作用从而发现翻译抑制剂是细胞中SARS-CoV-2复制的有效抑制剂。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/f6db163f-b3fd-4747-bd76-a206ba4a658d.jpg" title=" 他.jpg" alt=" 他.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图3. 环己酰亚胺和曲美汀对病毒复制的抑制作用 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 三、发现潜在的抗病毒靶标 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 重点来了,通过前期蛋白质组学大数据挖掘,目前一张蓝图已展现在眼前,下一步的重中之重就是探究与病毒蛋白共同增加的宿主蛋白,从而寻求潜在的SARS-CoV-2复制抑制剂。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 作者分析了与病毒蛋白变化趋势相似的蛋白,在数据中富集的代谢途径主要由不同的核酸代谢子途径组成。基于此,研究者测试核苷酸合成抑制剂对细胞中SARS-CoV-2复制的影响,高达10 µ M的布雷奎纳(brequinar,抑制双氢乳清酸脱氢酶并不具有抗病毒的作用。相比之下,低浓度下的利巴韦林(ribavirine,抑制肌苷一磷酸脱氢酶)即可抑制SARS-CoV-2复制(图4C),这表明利巴韦林是可以进行进一步检测的候选药物。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,与蛋白质折叠相关的蛋白变化与病毒蛋白质较为一致,p97是AAA家族的六聚体ATPase酶,也是真核生物最丰富的蛋白之一,通过调节蛋白的稳定性来执行一系列生物学功能,参与膜融合、蛋白降解等过程。测试p97的小分子抑制剂NMS–873对SARS-CoV-2复制的影响。研究表明,NMS–873在低纳摩尔浓度下即可完全抑制SARS-CoV–2(图4D)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7559257b-c48c-4e0d-97e1-dbe56f69f256.jpg" title=" t4.jpg" alt=" t4.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图4. 核酸代谢相关的蛋白水平与病毒基因表达相关。A, 病毒蛋白随感染时间的变化;B, 宿主蛋白与病毒蛋白关联的GO分析;C, D, Ribavirin和NMS–873的抗病毒实验 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 结论 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 全球对于病毒高效治疗方案的需求非常紧迫,深入了解病毒机理及致病性相关的生物途径变得非常关键。 span style=" text-indent: 2em " 定量蛋白质组学是病毒机理研究的主要手段之一,能够提供超高分辨率和灵敏度,可为病毒蛋白质组学研究者所面临的挑战“样本基质复杂、蛋白质鉴定数量不足、假阴性/假阳性结果”提供强大的技术保障。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参考文献: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " SARS-CoV-2 infected host cell proteomics reveal potential therapy targets, DOI:10.21203/rs.3.rs-17218/v1 /p p br/ /p
  • 安捷伦科技与MRM Proteomics就深入推进定量蛋白质组学解决方案签署合作
    安捷伦科技公司与 MRM Proteomics 就深入推进定量蛋白质组学解决方案签署合作营销协议 2012 年 9 月 13 日,加利福尼亚州圣克拉拉市和英属哥伦比亚温哥华 &mdash 安捷伦科技公司(纽约证交所:A)今日宣布与 MRM Proteomics 公司达成合作营销协议。MRM Proteomics 公司是面向制药、生物技术和诊断行业提供先进的蛋白质定量分析、生物标记物和蛋白质组学服务的领先供应商。该项协议将使得双方能够为蛋白质组学领域提供更加完善的解决方案,包括试剂盒、硬件和软件。 蛋白质组学的任务是研究蛋白质的结构和功能,以及它们在复杂的生物系统中如何相互作用。安捷伦的整合蛋白质组学工作流程提供最高的分析性能和前所未有的&ldquo 即插即用&rdquo 灵活性。可切换式工作流程能简化设置,让研究人员在不同的方法之间快速切换。Agilent 6490 三重四极杆 MS/MS 系统拥有业界最高的灵敏度和最高通量的定量分析性能,可使目标 MRM 多肽的定量分析达到阿摩尔(attomole,10-18 mol)的检测水平。 &ldquo MRM Proteomics 在开发以质谱为基础的、采用多反应监测模式的蛋白质定量方法领域是公认的先驱和领导者,&rdquo 安捷伦代谢组学和蛋白组学部门市场经理 Steve Fischer 说道,&ldquo 该协议进一步反映了安捷伦在定量蛋白质组学领域的持续布局和投资。&rdquo MRM Proteomics 专业从事于利用同位素标记的内标通过 MRM-MS对复杂生物样品(如血液、脑脊液和尿液)中的蛋白质进行高度并行的绝对定量分析。MRM Proteomics 的工作流程仅使用极少的样品量(20 &mu l)便可实现无与伦比的特异性和灵敏度,并且无需去除样品中的高丰度蛋白质。 &ldquo MRM Proteomics 非常高兴与安捷伦科技公司达成这项合作营销协议;在靶向定量蛋白质组学领域,我们两家公司所提供的技术具有非常好的互补性,&rdquo MRM Proteomics 首席执行官 Andrew Munk 说道,&ldquo 质谱是一个推动基础蛋白质组学研究、生物标记物发现和药物开发的快速增长的平台。安捷伦以其质谱领域创新者的地位,以及广泛的全球网络,成为了 MRM Proteomics 的理想合作伙伴。&rdquo 关于 MRM Proteomics MRM Proteomics 是面向制药、生物技术和诊断行业在生物标记物发现/验证、临床研究、诊断和毒理学等关键领域提供先进的蛋白质定量分析和蛋白质组学服务的行业领导者。有关 MRM Proteomics 的详细信息,请访问 www.mrmproteomics.com。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司的 20,000 名员工为 100 多个国家/地区的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com。
  • 赛默飞世尔科技的视频文章展示蛋白质定量的创新方法 —NanoDrop 2000c
    WILMINGTON, Del. (2010年5月4日) &mdash 全球科学服务领域的领导者赛默飞世尔科技今天宣布,NanoDrop 2000c UV-Vis分光光度计显著改进了蛋白质定量分析过程。蛋白质定量是任何实验室工作流程中不可或缺的一部分,该流程还包括了蛋白质的提取、纯化、标记和分析。 NanoDrop&trade 被确认为《蛋白质科学研究方法》(John Wiley & Sons)中微量蛋白质定量方法的一部分。《蛋白质科学研究方法》是蛋白质研究者公认的优秀参考资料。基于这些方法所创建的全新视频文章证实了如何利用Thermo Scientific NanoDrop 2000c在5秒内准确测量2µ L蛋白质样品。若要观看此视频文章,请访问www.jove.com/index/Details.stp?ID=1610 科学家们往往选择分光光度计作为测量蛋白质浓度的方法。有多种方法可以用于确定蛋白质浓度,包括A280吸光度读数和BCA比色测定(BCA蛋白定量试剂盒)。方法的选择取决于所需准确度和蛋白质样品量与纯度。 传统分光光度计要求将样品放入比色皿,由此带来额外的稀释步骤,也可能引入潜在的误差。NanoDrop 2000c分光光度计利用创新样品保持系统,可将微量蛋白质样品保持在两个测量表面之间,无需稀释即可定量分析2µ L蛋白质样品。比色皿的淘汰允许光程的实时变化,可减少测量时间并增加可测蛋白质浓度的动态范围。 赛默飞世尔的全新视频文章介绍了一种可替代传统蛋白质定量方法(A280吸光度读数和BCA比色测定)的创新方法。该视频详细描述了每个方法的详细步骤,并展示了如何利用NanoDrop 2000c快速而轻松的进行蛋白质定量分析。 关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)。
  • 安捷伦科技公司就促进定量蛋白质组学解决方案与 MRM Proteomics 签订共同营销协议
    安捷伦科技公司就促进定量蛋白质组学解决方案与 MRM Proteomics 签订共同营销协议 2014 年 7 月 24 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布延长与 MRM Proteomics Inc. 的共同营销协议。MRM Proteomics Inc. 是先进的蛋白质定量分析、生物标记物和蛋白质组学服务的领先供应商。这一协议将扩展双方于 2012 年建立的合作,并将支持双方共同开发的蛋白质组学解决方案,包括试剂盒、硬件和软件。 “MRM Proteomics 是开发基于质谱的蛋白质定量分析方法的先驱,同时也是制药和生物技术行业的领先技术供应商”,安捷伦生命科学研究团队营销总监 Steve Fischer说。“这一合作进一步印证了我们为新兴产业创建完整定量蛋白质组学解决方案的承诺。” 蛋白质组学的任务是研究蛋白质的结构和功能,以及它们在复杂的生物系统中如何发生相互作用。安捷伦的完整蛋白质组学工作流程采用了业界前所未有的“即插即用”式灵活设计,可提供业界最好的分析性能。可切换式工作流程能简化设置,让研究人员在不同的技术之间快速切换。Agilent 6495 三重四极杆 MS/MS 拥有业界最高的灵敏度和最高通量的定量分析性能,可使目标 MRM 多肽的定量分析达到埃摩尔的检测水平。 质谱领域正在不断扩展,满足基础蛋白质组学研究、生物标记物发现/验证及药物开发不断增长的需求。MRM Proteomics 专业从事于提供分析服务与试剂盒,利用同位素标记的内标通过 MRM-MS 系统进行复杂生物样品(如血液、脑脊髓液和尿液)中的蛋白质高度多重绝对定量分析。 “MRM Proteomics 非常高兴能扩展与安捷伦的互补合作伙伴关系,”MRM Proteomics 的首席科学官 Christoph Borchers 说。“安捷伦拥有高灵敏度的尖端质谱技术,是非常理想的合作伙伴。他们将和我们共同努力为靶向定量蛋白质组学提供完整的一站式解决方案。” 关于 MRM Proteomics MRM Proteomics 是面向制药、生物技术和诊断行业提供先进的蛋白质定量分析和蛋白质组学服务及试剂盒耗材的领导者。该公司通过 MRM-MS 进行靶向定量蛋白质组学分析的关键技术非常适合用于生物标记物发现/验证、临床研究、诊断和毒理学研究。要了解 MRM Proteomics 的信息,请访问 www.mrmproteomics.com。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 威斯康星大学李灵军自然通讯最新成果:胰腺蛋白质组的质谱定量分析揭示癌症相关特征
    仪器信息网讯 胰腺是人体最重要的器官之一。它产生胰岛素来调节血糖和帮助消化食物。如果胰腺失控,糖尿病、癌症或其他疾病就会威胁生命。然而,关于胰腺如何使人们保持健康以及器官如何衰竭,还有很多未知之处。数以万计的蛋白质控制着胰腺的工作方式:它如何生长和发育,如何产生消化酶以及如何分泌胰岛素。因此,科学家需要进一步了解蛋白质结构如何随时间变化,以帮助开发针对糖尿病或癌症的治疗方法。  基于此,威斯康星大学麦迪逊分校药学院与化学系的李灵军课题组与医学和公共卫生移植外科医生Jon S Odorico合作开展了追踪从出生前到成年后期胰腺蛋白质组(整套蛋白质)变化的相关研究。研究团队还开展了细胞外基质(extracellular matrix,ECM)的研究和分析,该物质能够指导细胞分化、迁移、形态和功能,对于在实验室细胞培养和器官移植过程中生长和支持胰腺细胞至关重要。但在人类胰腺研究中,目前尚未系统研究过不同发育阶段的ECM蛋白质组。该研究中,科学家们应用了基于质谱的定量蛋白质组学策略,并描述了四个年龄组的全蛋白质组和ECM特异性变化:胎儿(妊娠18-20周),青少年(5- 16岁),青年(21-29岁)和老年(50-61岁)。研究团队鉴定了3523种蛋白质,其中包括185种ECM蛋白质,并对其中的117种进行了定量。课题组检测了胰腺发育和成熟过程中以前位置的蛋白质组和基质组的特征。他们还使用免疫荧光染色观察特异性CEM蛋白质,并研究CEM在胰岛和腺泡间的定位变化。该研究全面的蛋白质组学分析有助于深入了解CEM在人类胰腺发育和成熟过程中所起的关键作用。  成果表明,胰腺在人类整个童年时期都会显著重塑其蛋白质,最终在成年阶段稳定。值得一提的是,与癌症相关的蛋白质之间存在明显的年龄特异性变化,这一发现有助于研究人员加深对胰腺癌的了解。  该成果于2月15日发表在《自然通讯》杂志上,论文题目为“Proteome-wide and matrisome-specific alterations during human pancreas development and maturation”。论文链接:https://www.nature.com/articles/s41467-021-21261-w关于研究团队:威斯康星大学麦迪逊分校 李灵军教授    李灵军教授在神经肽和功能性肽组学研究领域取得了开拓性的成果。她所带领的课题组针对神经生物学中的关键性课题,开发了一系列的基于质谱和微分离技术的研究平台,对由分子、细胞水平认识神经肽的功能以及神经退行性疾病生物标志物的发现作出了突出的贡献。据仪器信息网跟踪报道,李灵军教授曾荣获美国质谱学会颁发的Biemann奖章,是世界质谱领域的最高荣誉之一,授予那些长期在质谱学研究领域做出突出贡献的学者。此外,2016年英国分析科学家网站公布了全球50位最具影响力女性分析科学家名单,李灵军教授也荣誉获选。  在以往的采访中,李教授也曾表示:”我最热衷于开发新型分析工具和策略来解决具有挑战性的生物问题。我们很高兴开发一套用于发现神经肽功能的多功能质谱工具,并使用这些技术来提高我们对大脑工作原理的理解。最近,我们正致力于开发用于定量MS分析和系统生物学中高通量测量的新型化学标签。我也热爱培训和指导研究生和博士后,并帮助他们过渡到成功的职业生涯的这个过程。”课题组官网: https://www.lilabs.org/  团队合照
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。   考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:   Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。   今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。   我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。   蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。 姓 名 工作单位 主要贡献 Richard D. Smith 美国太平洋西北国家实验室 1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白 John Yates III 美国Scripps研究所 SEQUEST MS/MS数据库搜索程序 Joshua Coon 美国威斯康星大学麦迪逊分校 发明了电子转移解离技术(ETD) Neil Kelleher 美国西北大学 Top-down蛋白质组学 Kathryn Lilley 英国剑桥大学 蛋白质组学定量技术 Pierre Thibault 加拿大蒙特利尔大学 应用生物质谱和蛋白质组学到细胞生物学 Michael MacCoss 美国华盛顿大学(西雅图) 稳定同位素标记技术 Albert Heck 荷兰Utrecht大学 基于质谱的结构生物学 Catherine Costello 美国波士顿大学 HUPO前任主席,质谱技术发展及应用 Alexander Makarov 德国Thermo Fisher Scientific 生物质谱全球研发总监 领导研发Orbitrap质谱仪 Donald Hunt 美国弗吉尼亚大学 FT-MS and ETD   简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 单细胞蛋白质分析技术Milo追踪定量不同iPSC-CM分化亚型
    iPSC简介2006年Takahashi和Yamanaka突破性发现使终末分化、谱系受限的成体细胞:如皮肤活检来源的成纤维细胞、外周血来源的T淋巴细胞、毛囊细胞等,通过转录因子OCT4、SOX2、KLF、c-MYC、NANOG和LIN28的强制异位表达直接将其重编程为多能状态的细胞,这些细胞被称为诱导多能干细胞(induced pluripotent stem cells, iPSC)。iPSC与胚胎干细胞(Embryonic Stem Cells, ESC)有相似的基因表达、表观遗传谱和分化潜能,可产生任何类型的体细胞。并且避免了ESC基于使用胚胎来源细胞和可能导致异常发育的体外受精胚胎的伦理问题,因此iPSC在医疗领域里具有更好的应用和产业化发展前景。iPSC应用和挑战描述任何人类疾病和药物发现的病因学和病理生理学的主要关键组成部分是需要一个生理相关的疾病实验模型,无论是体外还是体内或两者,需要忠实地概括各自的病理生理学和临床表现。因此基于人类iPSC的疾病模型可以无限供应临床相关的表型细胞、以及它们具有的衍生潜力,可以加速阐明生物医学研究中疾病的病因机制,应用于新药发现、药物效价测试、预测药物安全性药理学/毒理学研究,以及基于iPSC的再生细胞疗法,有望治疗心脏病、帕金森、视网膜和角膜疾病、肝脏衰竭、糖尿病、脊髓损伤等疾病。然而将iPSC治疗方法真正有效转化为临床环境,保证患者安全,还需解决:临床级iPSC的衍生和通用细胞系的生物库建立;需要定义iPSC及其差异化治疗细胞产品可接受质量属性;致瘤性问题;免疫排斥反应;选择同种异体或自体 iPSC 以获得更有效的细胞治疗的难题;iPSC 谱系表型细胞和细胞系变异的异质性;基于iPSC的多基因、散发性和迟发性疾病的患病模型的挑战;需要大量的患者iPSC以实现更有效的病因学和临床转化;iPSC衍生的表型细胞缺乏成熟度;遗传的不稳定性等挑战。iPSC-CM研究和面临的问题心血管疾病(cardiovascular disease,CVD)作为全球主要的死因之一,每年会导致约1790万人死亡,所以迫切需要可以延缓疾病进展并且可以改善心脏功能和预防衰竭的治疗方法。而目前的药物、介入或手术方法可能会改善临床结果,但由于无法促进心脏组织修复和再生,因此使这种治疗方法的成功率得不到提升。人类诱导多能干细胞(hiPSC)技术的出现以及随后在培养物中分化和建立心肌细胞(cardiomyocytes,CMs)的能力,为实现人类心脏再生疗法创造了可能性。作为分化CMs的连续和生物学相关来源,hiPSC-CM是心血管研究界的宝贵工具,不仅可用于治疗CVD,还可用于模拟人类心脏发育和疾病、研究潜在机制以及筛选具有疗效和心脏毒性的新药。由于hiPSC-CM由不同的细胞亚群组成,这些细胞亚群是异质的、未成熟的、表达胎儿基因表达谱,并且与成人心肌细胞相比收缩力减少,因此hiPSC-CM疾病模型的准确性和实用性仍然有限。此外,随着hiPSC-CMs的成熟和蛋白质表达动态的波动,大量样品分析的分辨率变得不足。由于其异质性导致心室样、心房样和节点样亚群,需要严格表征hiPSC-CM,并应对其成熟度、身份和功能进行筛选。为此,需要进行单细胞分析模式以了解这种异质性。细胞异质性研究方法虽然单细胞测序技术在分析单细胞转录组学和基因组信息的通量和规模方面取得了进步,但由于任何一个细胞中存在的蛋白质含量非常低,因此难以满足对定量、单细胞蛋白质组学技术的需求。此外,蛋白质组的复杂性和广泛的浓度范围(fM到高nM)带来了额外的挑战。为了在单细胞水平上进行生化蛋白质表征分析,高灵敏度工具是必不可少的。来自ProteinSimple的单细胞蛋白质分子技术:Milo是一种基于微流体的芯片电泳技术。可以克服单细胞蛋白质组学方法面临的障碍。Milo操作流程将细胞悬浮液加载到Milo芯片上,这样单个细胞就可以安放在芯片上的各个微孔中。然后Milo裂解细胞,产生单细胞裂解物,通过分子量电泳分离每个单细胞裂解物中的蛋白质,然后使用紫外线在Milo芯片中捕获蛋白质。然后,对目标蛋白进行一级抗体和荧光二级抗体进行免疫荧光捕获。通过使用开放格式的微阵列扫描仪对芯片进行成像,并使用Scout™ 软件对图像进行分析,以进行定量的自动数据分析。Milo追踪定量不同iPSC-CM亚型与免疫荧光和流式细胞术等其他单细胞分析系统不同,单细胞Western Blot技术Milo可以提供分子量大小信息,以及在单细胞水平测量蛋白质表达时的免疫结合信息,赋予额外的特异性。这种分子量分级步骤可以分辨不同物种的不同蛋白质亚型或区分脱靶抗体结合。为了表征CMs亚型标志物,通过Milo检测了肌球蛋白调节轻链2心房亚型(MLC2A或MYL7)及其心室亚型(MLC2V或MYL2)的蛋白质表达。可以观察到Milo鉴定了三个亚群,这些亚群由MLC2A或MLC2V的单一表达或共表达组成。Milo检测到hiPSC-CM亚型特异性心室和心房标记物MLC2V和MLC2A,在45秒的电泳运行时间内,迁移到总泳道长度的60%(图A)。使用Milo-Scout™ 软件通过找到典型峰形与源自原始荧光图像的一维强度图的卷积的局部最大值来识别峰中心。检测到的MLC2A、MLC2V和GAPDH峰的峰中心位置也由泳道指数显示(图B),显示出单个Milo芯片上所有孔的峰迁移的均匀性。为了评估芯片位置(图C)是否影响峰面积量化,比较了空间不同块之间计算的峰面积方差:每个块区域之间的差异小于2.5%(图D)。应用优化的Milo的检测方法研究hiPSC-CM随时间的异质性,观察整个分化时间线中蛋白质表达的变化。在第17、23和30天从培养物中提取hiPSC-CM细胞,检测MLC2A和MLC2V蛋白质表达。结果显示,共表达MLC2A和MLC2V阳性细胞的比例在整个分化过程中增加,而仅表达MLC2A(MYL7+)的细胞比例随时间减少。且三个亚群中每个亚群中的细胞百分比在所有芯片中一致重现。为了了解在整个分化过程中每个标记物的表达水平在hiPSC-CM亚群中的变化,在hiPSC-CM分化的第17、23和30天对MLC2V和MLC2A的表达进行了量化。随着分化的进行,MLC2A的总水平略有增加。然而,MLC2V表达在第23天和第30天之间增加了近三倍(图C)。为了了解驱动MLC2V表达增加的细胞亚群,三个亚群(MLC2A+、MLC2V+和共表达MLC2A+和MLC2V+)被进一步分层(图D)。MLC2V的水平在共表达MLC2A+和MLC2V+亚群中显着增加,以及在单独的MLC2V+亚群中增加。为了进一步了解导致hiPSC-CM分化过程中MLC2V表达显着增加的机制,对先前从三个iPSC系产生的hiPSC-CM进行了Milo分析,其中转录因子NR2F2 (NR2F2GE)、TBX5 (TBX5GE) 的外显子)和HEY2 (HEY2GE) 被CRISPR/Cas9编辑删除。利用这些品系来验证NR2F2、HEY2或TBX5缺陷在单细胞蛋白质水平上对MLC2V表达的影响。结果显示,TBX5GE和HEY2GE hiPSC-CM中MLC2V的单细胞表达显着降低(图E)。此外,MLC2V表达的显着下降归因于共表达MLC2A和MLC2V亚群(图F)。鉴于共表达MLC2A和MLC2V的亚群增加了MLC2V的表达,推测单独表达MLC2A的未成熟hiPSC-CM会随着时间的推移共同表达MLC2V,从而变得更像心室。同时使用预测调节MLC2V(HEY2或TBX5)的转录因子缺陷的两种细胞系时,我们仅观察到MLC2V在共表达MLC2A和MLC2V亚群中表达降低。这可能表明单独表达的MLC2V群体代表了一个独特的细胞亚群,并且该亚群中MLC2V的表达受替代转录因子的调节。结论:随着在基础和转化心脏研究中的应用,hiPSC-CM正被用于心血管疾病和心脏发育研究。然而,由于hiPSC-CM由不同的细胞亚群组成,并且hiPSC-CM蛋白表达动力学随着成熟而波动,一些蛋白分析方法可能因为分辨率不足而无法检测单细胞蛋白异质性,因此hiPSC-CM的单细胞蛋白质组学可能受到依赖抗体结合检测而无法评估脱靶结合技术的限制。单细胞蛋白质分析技术Milo,通过靶点分子量差异和抗体识别特异性蛋白标记物,避免了抗体脱靶结合的现象,同时能够跟踪单细胞亚群蛋白表达随时间的变化,从而能够识别并量化hiPSC-CM中不同的异质性亚群,应用于疾病建模和再生医学治疗研究。参考文献:1 Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications.2 Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes.3 Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns.
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • 安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会
    安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议 2011年5月6-9日,亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议在世博之城上海隆重召开。本届会议由&ldquo 亚太地区蛋白质科学联合会(Asia Pacific Protein Association, APPA)和国际蛋白质学会(The Protein Society)主办、中国生化学会蛋白质专业委员会(The Chinese Protein Society)承办。本次会议以&ldquo Proteins and Beyond&rdquo 为主题,诚邀国内外蛋白质组学领域众多顶尖专家学者,围绕业内热点问题成功举行了一次高端学术盛宴,会议议题主要围绕蛋白合成/质控、蛋白翻译后修饰、蛋白相互作用、蛋白工程、蛋白定量、疾病蛋白质组学与药物发现、生物制药等热门领域。 安捷伦公司作为会议的主赞助商以及蛋白质组学领域的重要方案供应商,在本届会议上再次为广大用户呈现其蛋白质组学全面、完备、专业的解决方案。针对蛋白定量这一行业热点课题,安捷伦公司凭借其最新超高灵敏度6490三重四极杆质谱技术、灵活强大的软件功能以及高通量全自动样品前处理技术在这一应用上具有突出及独特的优势。 在5月8日下午的大会学术报告专场,来自安捷伦公司的蛋白质组学应用工程师陶定银博士为在场听众进行了题为《安捷伦6490三重串联四级杆质谱仪在超痕量蛋白定量分析中的应用》的精彩报告:全新一代安捷伦6490三重串联四级杆质谱仪集多种高精技术于一体,与不同流速范围的液相色谱仪&ldquo 无缝&rdquo 匹配,在纳流、微流及常规流速范围内均可提供高灵敏、高重现的超痕量蛋白定量分析结果。配合安捷伦的全自动样品前处理机器人,使用户彻底摆脱繁冗的手工处理,获得重现性优异的分析结果。 Agilent 6490创新型串联质谱简介 1.概况 2010年5月24日 安捷伦科技公司在美国犹他州盐湖城举行的第58届美国质谱年会上推出了基于iFunnel技术的6490三重四极杆液质联用系统。 iFunnel是一种革命性的大气压离子进样技术,可以在大多数应用上极大提高灵敏度。与旧型号相比,6490系统减少了25%的占地面积,但灵敏度却提高了10倍以上。革新产品6490展示了其尖端应用能力,即检测灵敏度可达到10-21mol(Zeptomol)及ppq级别,这种水平的灵敏度过去只能在昂贵的加速器质谱系统上实现。 2.应用价值与意义 6490的尖端性能为富于高灵敏度挑战的分析工作带来的新的成功可能。比如环境领域通常要求灵敏度在ppt级别;制药/生物医药等领域,有时需要做到微小剂量、吸入药物检测和干血斑点分析等等。常规分析中这种高灵敏度也为临床、食品安全和蛋白质/肽定量分析带来了新机遇,而且全面提高了耐受性和样品制备效率。 有关安捷伦6490三重四极杆质谱更多信息,请参考: http://www.chem.agilent.com/en-US/Products/Instruments/ms/Pages/6490.aspx 有关安捷伦蛋白质组学方案更多信息,请参考: http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 北京蛋白质组研究中心第二期蛋白质组信息学培训班(第一轮通知)
    时间:2014年5月20-23日   地点:北京蛋白质组研究中心(北京市昌平区科学园路33号,中关村生命科学园内)   主办单位:   北京蛋白质组研究中心(BPRC)   蛋白质组学国家重点实验室(SKLP)   中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   北京蛋白质组研究中心是蛋白质组学国家重点实验室,国际联合研究中心,国际人类肝脏蛋白质组计划(HLPP)执行总部。建立了世界上最大的人类蛋白质组数据库及数据管理平台,和国际领先的蛋白质相互作用网络构建和分析平台。对人类肝脏蛋白质组进行了系统的生物信息研究,包括蛋白质鉴定、修饰、定位、相互作用网络、代谢通路及肿瘤标志物发现等研究。讲师团队长期致力于蛋白质组数据分析及相关知识发现,为国际人类肝脏蛋白质组计划提供了全方位的生物信息支持。2012年,集体获中国电子学会电子信息科学技术奖一等奖:蛋白质组学计算方法的研究及其支撑平台的构建和应用 2007年,集体获北京市科学技术一等奖:蛋白质组支撑技术及其在人类重要疾病与生理过程研究中的应用。   前言   本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。   培训对象   从事生命科学、农学、医学等领域科研工作者和高校教师及研究生   迫切希望提升生物信息分析能力的学者   培训内容   质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。   课程安排 时间 培训内容 2014年5月20日 9:00-10:00 蛋白质组信息学概论 10:00-12:00 质谱数据处理-搜库与质控 13:00-15:00 蛋白质组定量分析(以无标定量为主) 15:00-16:00 蛋白质翻译后修饰分析 16:00-17:00 蛋白质鉴定上机实习 2014年5月21日 9:00-11:00 质谱数据深度挖掘 11:00-12:00 蛋白质定量上机实习 13:00-15:00 蛋白质组数据分析/生物标志物发现 15:00-17:00 蛋白质组数据分析上机实习 2014年5月22日 9:00-10:30 蛋白质组数据库/数据提交 10:30-12:00 数据库及数据提交实习 13:00-15:00 蛋白质组软件包的使用(TPP等) 15:00-17:00 TPP安装及使用实习 2014年5月23日 9: 00-10:30 蛋白质相互作用网络和蛋白质组学知识挖掘的基础知识 10:30-12:00 蛋白质相互作用的生物信息学资源介绍 13:00-14:00 Cytoscape软件使用介绍 14:00-17:00 蛋白质相互作用数据分析上机   培训费   4月18日前注册:每人4200元,学生3900元。   4月19日至5月20日之间注册:每人4500元,学生4200元。   其他优惠:同一单位2人以上参加,每人优惠200元。   提前注册截止日期:2014年4月18日,以银行汇款凭证为准。   网上注册地址: http://61.50.138.116/training/cn/   培训费用包含:培训资料、培训期间的午、晚餐。   可协助安排住宿,住宿费用自理。需住宿的学员请在网上注册时填写住宿信息。   报到时间和地点   报到:5月19日全天,北京扬子江药业海诺康会馆(北京市昌平区生命园路16号,中关村生命科学园内) 20日8:30-10:00,北京蛋白质组研究中心。   住宿:北京扬子江药业海诺康会馆,标准间298元/天(含早餐)。   学生报到时须持学生证。   学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。   注意事项   培训结束后颁发北京蛋白质组研究中心和蛋白质组学国家重点实验室培训证书,需要中国生物化学与分子生物学会继续教育证书的学员报到时需要另交1张2寸免冠照片及20元工本费。   中心通过了ISO/IEC 17025实验室认可,为社会各界提供科研技术服务。参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站: http://www.bprc.ac.cn/guidance/list.php?catid=27   汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明&ldquo 信息学培训班&rdquo 和学员姓名。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。   如需发票请注明发票抬头,培训结束后统一开具发票(培训费、注册费、会议费、技术服务费等),有其他特殊要求请声明。   联系方式   联系电话: 注册:周建平(010)80705277   咨询:史冬梅(010)80705888   传 真:(010)80705155   电子邮件:bprctrain@163.com   通信地址:北京市昌平区科学园路33号(102206)
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:   报告题目: 蛋白质组数据分析软件pFind系统新进展   报告人:中国科学院计算技术研究所贺思敏研究员 贺思敏研究员   pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。   贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。   报告题目:构建心血管蛋白质组生物医学数据库及分析平台   报告人:浙江大学生物医学工程与仪器科学学院段会龙教授 段会龙教授   心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。   该课题组目前已完成了如下工作:   (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。   (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。   (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。   报告题目:大规模蛋白质组研究中的质谱数据定量分析方法   报告人:国防科技大学机电工程与自动化学院谢红卫教授 谢红卫教授   谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:   (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。   (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。   (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。   (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。   (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。   (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。   (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。   报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究   报告人:中国科学院大连化学物理研究所叶明亮研究员 叶明亮研究员   叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。   在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。   在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。   在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 蛋白质浓度测定常用的三种方法
    测定蛋白质浓度的方法有很多,科研工作者广泛使用的方法比如紫外吸收法,双缩脲法,BCA方法,Lowry法,考马斯亮蓝法,凯氏定氮法等等 ,今天小编以UV法,BCA法,考马斯亮蓝法,其中的三种方法的测定蛋白质浓度的原理、优缺点、操作以及注意事项做详细介绍。UV法这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白 质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受 到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。(1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor(2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果:蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D,其中d为测定OD值比色杯的厚度,D为溶液的稀释倍数BCA法原理:BCA(bicinchonininc acid)与二价铜离子的硫酸铜等其他试剂组成的试剂混合一起即成为苹果绿,即 BCA 工作试剂。在碱性条件下,BCA 与蛋白质结合时,蛋白质将 Cu2+ 还原为 Cu+,工作试剂由原来的苹果绿色变为紫色复合物。562 nm 下其光吸收强度与蛋白质浓度成正比。BCA 蛋白浓度测定试剂盒,Abbkine的蛋白质定量试剂盒(BCA法)提供一个简单,快捷,兼容去污剂的方法,准确定量总蛋白。成分试剂 A100 mL试剂 B2 mL标准蛋白(BSA)1 mL×2,1 mg/mL保存条件 运输温度:室温(标准蛋白 4~8 ℃ 运输)保存温度:室温(标准蛋白 -20 ℃ 保存)有效日期:12 个月使用方法方法一:96 孔板1. 配制 BCA 工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液。充分混匀。2. 将蛋白标准品按 0 μL,1 μL,2 μL,4 μL,6 μL,8 μL,10 μL 加入 96 孔板的蛋白标准品孔中。加灭菌双蒸水补足到 10 μL。取 10 μL 待测样品加入 96 孔板的待测样品孔中。每个测定要做 2~3 个平行。3. 向待测样品孔和蛋白标准品孔中各加入 200 μL BCA 工作液(即样品与工作液的体积比为 1:20),混匀。4. 37 ℃ 温浴 30 min。冷却至室温。5. 酶标仪 562 nm 波长下测定吸光度。6. 制作标准曲线。从标准曲线中求出样品浓度。方法二:试管法1. 配制工作液:根据标准品和样品数量,按 50 体积试剂 A,1 体积试剂 B 配制适量 BCA 工作液,充分混匀。工作液配制的量要与测定所用的比色杯对应。每个测定要做 2~3 个平行。本处列举的比色体系所用的是 0.5 mL 的比色杯。如比色杯规格不同,体系需要放大到实验将采用的比色杯准确读数所需要的体积。2. BSA 标准品和样品的准备:样品用水或其它不干扰显色反应的缓冲液配制,使待测定的浓度位于标准曲线的线性部分。每个反应准备 3 个平行测定。标准曲线一般 5~6 个点即可。根据样品的估测浓度确定各点的具体浓度。稀释 BSA 时可以用水或与样品一致的溶液。如待测样品的浓度约为 200 μg/mL,可按下表的次序加入 BSA 标准品、样品及 BCA 工作液。3. 取适量体积的标准蛋白,以蛋白液:工作液=1:20 的比例混匀。37 ℃ 温浴 30 min。冷却至室温。4. 将样品与标准品在 562 nm波长下测定吸光度。考马斯亮蓝法实验原理:考马斯亮蓝 (Coomassie Brilliant Blue) 法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量测定微量蛋白浓度快速、灵敏的方法。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。目前,这一方法是也灵敏度最高的蛋白质测定法之一。考马斯亮蓝 G-250 染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰 (lmax) 的位置,由 465 nm 变为 595 nm,溶液的颜色也由棕黑色变为蓝色。通过测定 595 nm 处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸 (特别是精氨酸) 和芳香族氨基酸残基相结合。突出优点(1)灵敏度高,据估计比 Lowry 法约高四倍,其最di蛋白质检测量可达 1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比 Lowry 法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要 5 分钟左右。由于染料与蛋白质结合的过程,大约只要 2 分钟即可完成,其颜色可以在 1 小时内保持稳定,且在 5 分钟至 20 分钟之间,颜色的稳定性最好。因而完全不用像 Lowry 法那样费时和需要严格地控制时间。(3)干扰物质少。如干扰 Lowry 法的 K+、Na+、Mg2+ 离子、Tris 缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA 等均不干扰此测定法。缺点(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g-球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 Triton X-100、十二烷基硫酸钠 (SDS) 等。试剂与器材1、试剂 考马斯亮蓝试剂:考马斯亮蓝 G-250 100 mg 溶于 50 mL 95% 乙醇中,加入 100 mL 85% 磷酸,用蒸馏水稀释至 1000 mL。2、标准和待测蛋白质溶液(1)标准蛋白质溶液结晶牛血清蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度用 0.15 mol/L NaCl 配制成 1 mg/mL 蛋白溶液。(2)待测蛋白质溶液。 人血清,使用前用 0.15 mol/L NaCl 稀释 200 倍。3、器材 试管 1.5×15 cm(×6),试管架,移液管管 0.5 mL(×2) 1 mL(×2) 5 mL(×1);恒温水浴;分光光度计。操作方法 一、制作标准曲线 取 7 支试管,按下表平行操作。摇匀,1 h 内以 0 号管为空白对照,在 595 nm 处比色。绘制标准曲线:以 A595 nm 为纵坐标,标准蛋白含量为横坐标,在坐标纸上绘制标准曲线。二、未知样品蛋白质浓度测定 测定方法同上,取合适的未知样品体积,使其测定值在标准曲线的直线范围内。根据所测定的 A595 nm 值,在标准曲线上查出其相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。注意事项(1)在试剂加入后的 5-20 min 内测定光吸收,因为在这段时间内颜色是最we定的。(2)测定中,蛋白-染料复合物会有少部分吸附于比色杯壁上,测定完后可用乙醇将蓝色的比色杯洗干净。(3)利用考马斯亮蓝法分析蛋白必须要掌握好分光光度计的正确使用,重复测定吸光度时,比色杯一定要冲洗干净,制作蛋白标准曲线的时候,蛋白标准品最好是从低浓度到高浓度测定,防止误差。
  • 赛默飞在美开设高级蛋白质组学研究中心
    为了促进利用先进的质谱技术进行标志物蛋白质组学研究,赛默飞世尔科技、格莱斯顿研究所、加州大学和QB3(美国定量生物科学研究所)联合在美国三藩市的格莱斯顿研究所开设了赛默飞世尔科技疾病标志物发现蛋白质组学中心。   此研究中心负责人是格莱斯顿研究所高级研究员、加州大学分子与分子药理学教授和加州大学生命科学研究所主任Nevan J. Krogan 博士。Nevan J. Krogan 说,这里的科研人员来自格莱斯顿研究所、加州大学和QB3 ,在这里的工作会使他们掌握解决复杂生物系统中蛋白质动力学的先进质谱技术。这些技术将使研究者获得前所未有的基因与其产生的蛋白质之间的互动知识,也将帮助解决之前无法解释的生物医学问题。   研究中心进行的研究活动包括高分辨率蛋白质-蛋白质相互作用导图的创建、高级蛋白质表征、基因组定向蛋白质组筛选、大量蛋白质或翻译后修饰蛋白的超高灵敏度定量分析等。   此中心也会展示用于精细生物学发现和定量的最新质谱,包括新的Orbitrap Fusion和TSQ Quantiva三重四极杆LC/MS 系统。除了进行研究之外,赛默飞研究中心将作为促进生物学质谱应用的据点,举办一系列特邀报告会、讨论会、研习班和培训。 编译:郭浩楠
  • 大会报告:蛋白质组学技术的最新研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   近年来蛋白质组学发展迅速,其相应的方法学研究也取得了巨大的进步,一系列新技术融入了的蛋白质组学技术当中,极大的促进了这门学科的发展。在本届大会上,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、中国科学院大连化学物理研究所张丽华研究员等专家的报告介绍了许多应用到蛋白质组学之中的新技术、新方法,本文作简要概述:   报告题目:基于质谱的线粒体GST蛋白质组定性和定量分析   报告人:中国科学院北京基因组研究所的刘斯奇研究员 刘斯奇研究员   刘斯奇研究员在报告中首次提出了“线粒体GSTs蛋白质组”的概念,系统地研究了属肝线粒体中的GSTs。可采用亲和色谱法及SDS-PAGE富集GST蛋白,使用MALDI Tof/Tof MS 和LC tandem MS/MS鉴别蛋白。研究结果表明,属肝线粒体中存在5种GSTs,分别为GSTA3, GSTM1, GSTP1, GSTK1 以及GSTZ1。   为了对线粒体GSTs的相对丰度进行定量分析,其采用了质谱结合免疫印迹的综合分析方法:利用质谱对GSTs进行定性分析时,根据质谱谱图的多反应监测(MRM)推断GSTs结构 使用重组的GST蛋白作为标准物,建立了蛋白浓缩物的线性回归方程和胰蛋白酶GST多肽的MS/MS强度,同时,通过校准估算出了鼠肝线粒体中的GSTs含量。通过对特定GSTs抗体的强度识别,使用免疫印迹对GSTs进行了定量分析 获得了GST重组蛋白的5种单克隆抗体,将其用于GST浓度校准和免疫印迹强度分析 通过免疫印迹分析获得的定性分析结果基本与MRM数据获得的结果一致。   报告题目:蛋白质水平的色谱分离与生物质谱鉴定新方法研究   报告人:复旦大学张祥民教授 张祥民教授   张祥民教授在报告中表示,蛋白质的分离鉴定有更多困难。一方面,蛋白质分子量大,结构与构型上的变化导致分离效率下降,对色谱填料的孔径、分布与非特异性吸附等因素有更高要求 另一方面,蛋白质鉴定需要先进行酶解以得到质谱鉴定信息。   在报告中,他给出了较好的解决方法,通过对液相色谱分离系统的优化,在实际蛋白质样品考察优化了系统的分离性能,构建了液相色谱分离蛋白质鉴定方法与平台。研制了蛋白水平富集预柱,并将其应用于蛋白质捕集。在离子交换色谱柱和反向色谱优化选择上,实现了蛋白质分析所需的高分辨分离。色谱分离组分点样至靶板上,利用发展的快速酶解技术完成蛋白质酶解,再通过MALDI-TOFTOFMS或LC-LTQMS进行蛋白质鉴定。该方法使得蛋白质的理论分离能力达到5000个以上,蛋白质组分能够得到浓度信息,质谱鉴定可以同时利用肽指纹图谱PMFs信息和串级序列信息,使得蛋白质鉴定的可靠性大为提高。   报告题目:基于离子液体的新型膜蛋白质组预处理及分离鉴定技术   报告人:中国科学院大连化学物理研究所张丽华研究员 张丽华研究员   膜蛋白质存在于细胞内环境、细胞与细胞外环境的界面,对执行细胞内外物质交换、信息转换、细胞识别、代谢调节、免疫应答等功能起着重要作用。深入开展膜蛋白质组学研究对于揭示细胞功能、寻找药物靶点以及研制癌症治疗药物等具有重要意义。然而,由于膜蛋白质具有疏水性强、溶解性差、易沉淀、难酶解、含量低等特点,因此在采用通常用于可溶性蛋白质组分离鉴定的方法对膜蛋白质组进行研究时遇到了很大的挑战。   张丽华研究员在报告中指出,要提高膜蛋白质组的分析能力,必须发展可显著改善膜蛋白质组溶解性,又不影响后续分离鉴定的新方法。她在近期研究工作中,采用离子液体作为膜蛋白质组的增溶剂,并结合纳升二维液相色谱-质谱联用系统,对鼠脑和人肝内质网提取的膜蛋白质进行了分析。结果表明,离子液体不仅可以提高膜蛋白的溶解性,而且不用影响后续酶解过程中酶的活性。此外,在样品进入质谱鉴定前,易于在除盐步骤去除,不会影响质谱鉴定。与其他膜蛋白质组研究中常用的增溶剂相比,离子液体在膜蛋白质组样品预处理中表现出明显的优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制