当前位置: 仪器信息网 > 行业主题 > >

纤维吸附剂

仪器信息网纤维吸附剂专题为您提供2024年最新纤维吸附剂价格报价、厂家品牌的相关信息, 包括纤维吸附剂参数、型号等,不管是国产,还是进口品牌的纤维吸附剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维吸附剂相关的耗材配件、试剂标物,还有纤维吸附剂相关的最新资讯、资料,以及纤维吸附剂相关的解决方案。

纤维吸附剂相关的论坛

  • 吸附剂与洗脱剂

    根据待分离组分的结构和性质选择合适的吸附剂和洗脱剂是分离成败的关键。1.吸附剂的要求①对样品组分和洗脱剂都不会发生任何化学反应,在洗脱剂中也不会溶解。②对待分离组分能够进行可逆的吸附,同时具有足够的吸附力,使组分在固定相与流动相之间能最快地达到平衡。③颗粒形状均匀,大小适当,以保证洗脱剂能够以一定的流速(一般为1.5mL·min-1)通过色谱柱。④材料易得,价格便宜而且是无色的,以便于观察。2、常用吸附剂的种类:氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。3、几种常见吸附剂的特性(1)氧化铝:市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目。碱性氧化铝(pH9—10):适用于碱性物质(如胺、生物碱)和对酸敏感的样品(如缩醛、糖苷等),也适用于烃类、甾体化合物等中性物质的分离。但这种吸附剂能引起被吸附的醛、酮的缩合。酯和内酯的水解、醇羟基的脱水、乙酰糖的去乙酰化、维生素A和K等的破坏等不良副反应。所以,这些化合物不宜用碱性氧化铝分离。酸性氧化铝(pH3.5—4.5):适用于酸性物质如有机酸、氨基酸等以及色素和醛类化合物的分离。中性氧化铝(pH7—7.5):适用于醛、酮、醌、苷和硝基化合物以及在碱性介质中不稳定的物质如酯、内酯等的分离,也可以用来分离弱的有机酸和碱等。(2)硅胶:硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。柱色谱用硅胶一般不含粘合剂。适用范围:非极性和极性化合物,适用于芳香油、萜类、甾体、生物碱、强心甙、蒽醌类、酸性、酚性化合物、磷脂类、脂肪酸、氨基酸,以及一系列合成产品如有机金属化合物等。(3)聚酰胺:色谱用聚酰胺主要又锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺)两种,分子量一般在16000~[font='Tah

  • 常用吸附剂的作用

    常用吸附剂:1、硅胶。是常用的极性吸附剂,净化极性较高的农药,经常用其脱活形式。硅胶表面弱酸性,不适用于分享强碱性物质、在酸性条件下易分解的物质。2、氧化铝。是常用的吸附剂之一,是一种典型的路易斯酸,能吸附脂肪、蜡质。3、弗罗里硅土(硅酸镁)。弗罗里硅土是农药残留量分析净化中最常用的吸附剂。弗罗里硅土要经过650度温度下加热1-3h活化处理,才能提高对杂质的吸附能力,而不影响农药的淋洗率。4、活性炭。对色素吸附力强,但对脂肪和蜡质吸附力差,常与中性氧化铝、弗罗里硅土或硅藻土混合装柱,可吸附色素、脂肪和蜡质。5、石墨化炭黑。与活性炭类似,但基本可直接使用,无需特定处理,对六氯苯等平面结构农药分子吸附较强。

  • 常用吸附剂的种类与性质

    吸附剂的种类与性质常用的吸附剂有硅胶、氧化铝、活性炭、聚酰胺、硅藻土等。 (1) 硅胶:是一种酸性吸附剂,适用于中性或酸性成分的柱色谱。同时硅胶又是一种弱酸性阳离子交换剂,其表面上的硅醇基能释放弱酸性的氢离子,当遇到较强的碱性化合物,则可因离子交换反应而吸附碱性化合物。 硅胶作为吸附剂有较大的吸附容量,分离范围广,能用于极性和非极性化合物的分离,如有机酸、挥发油、蒽醌、黄酮、氨基酸、皂苷等,但不宜分离碱性物质。天然物中存在的各类成分大都用硅胶进行分离。(2) 氧化铝:氧化铝是一种强极性吸附剂,与硅胶类似,在高pH值条件下,氧化铝比未键合官能团的硅胶更稳定。更细的颗粒能确保好的萃取效率。 有碱性氧化铝、中性氧化铝和酸性氧化铝。①碱性氧化铝,因其中混有碳酸钠等成分而带有碱性,对于分离一些碱性成分,如生物碱类的分离颇为理想,但是碱性氧化铝不宜用于醛、酮、酯、内酯等类型的化合物分离,因为有时碱性氧化铝可与上述成分发生次级反应,如异构化、氧化、消除反应等。②中性氧化铝是由碱性氧化铝除去氧化铝中碱性杂质再用水冲洗至中性得到的产物。中性氧化铝仍属于碱性吸附剂的范畴,不适用于酸性成分的分离。③酸性氧化铝是氧化铝用稀硝酸或稀盐酸处理得到的产物,不仅中和了氧化铝中含有的碱性杂质,并使氧化铝颗粒表面带有 NO3- 或 Cl- 的阴离子,从而具有离子交换剂的性质,酸性氧化铝适合于酸性成分的柱色谱。 氧化铝是一种典型的路易斯酸。 酸性氧化铝的路易斯酸特性被增强,对富电子化合物具有更好的保留性,更易保留中性或带负电荷物质(如电中性酸或酸性阴离子),不能很好保留带正电荷的物质。 中性氧化铝具有电中性表面,偏向于保留芳香族和脂肪胺类等富电子化合物,对电负性基团(如含氧、磷、硫等原子的官能团)的化合物有一定保留能力。 碱性氧化铝的表面偏向于保留带正电荷或含氢键类物质。具有阴离子特性,并有阳离子交换功能。能保留给电子体样品(如中性胺类化合物),碱性氧化铝有强氢键作用,对极性阳离子样品作用十分明显。 保留机理:路易斯酸/碱、极性作用、离子交换(3) 活性炭:是使用较多的一种非极性吸附剂。一般需要先用稀盐酸洗涤,其次用乙醇洗,再用水洗净,于 80℃ 干燥后即可供柱色谱用。柱色谱用的活性炭,最好选用颗粒活性炭,若为活性炭细粉,则需加入适量硅藻土作为助滤剂一并装柱,以免流速太慢。 活性炭是非极性吸附剂,其吸附作用与硅胶和氧化铝相反,对非极性物质具有较强的亲和能力,在水溶液中吸附力最强,在有机溶剂中较弱,因此水的洗脱能力最弱而有机溶剂较强。从活性炭上洗脱被吸附物质时,溶剂的极性减小,活性炭对溶质的吸附能力也随之减小,洗脱剂的洗脱能力增强。主要分离水溶性成分,如氨基酸、糖、苷等。(4) 聚酰胺: 商品聚酰胺 (polyamice) 均为高分子聚合物质,不溶于水、甲醇、乙醇、乙醚、氯仿及丙酮等常用有机溶剂,对碱较稳定,对酸尤其是无机酸稳定性较差,可溶于浓盐酸、冰醋酸及甲酸。 聚酰胺对有机物质的吸附属于氢键吸附,一般认为,通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离氨基与醌类、脂肪羧酸上的羰基形成氢键缔合而产生吸附。吸附的强弱则取决与各种化合物与之形成氢键缔合的能力。主要用于分离黄酮类、蒽醌类、酚类、有机酸类、鞣质类等成分。(5)硅藻土:化学名:硅酸镁 物化特性:表面积300m2/g;pH=8.5;粒状。 硅藻土(Florisil)是一种高选择性的吸附剂。这种吸附剂主要有三种成分组成,二氧化硅(84%),氧化镁(15.5)和硫酸钠(0.5%)。是一种效果良好,成本经济的常用固相萃取填料。 氟罗里硅土柱是硅胶键合氧化镁的吸附剂,与硅胶相似,是强极性吸附剂,可以从非极性溶液中萃取极性化合物。当样品粘度较大时,可以代替硅胶柱。 Florisil吸附剂常用于前期色谱分析、薄层色谱分析、残余农药分析(PR)、标准样品定级等。 应用范围: 极性化合物的吸附萃取,如乙醇、醛、胺、药物、染料、除草剂、农药、PCBs、含氮化合物、有机酸、苯酚、类固醇

  • 【资料】脱硫用煤基吸附剂的试验研究

    摘要 进行了以煤为原料制备脱硫用吸附剂的实验研究.其中应用炭化与活化的方法,以对SO2吸附能力为衡量标准,系统地考察了样品在制备过程中不同温度、不同温升速率及时间对SO2吸附分离能力的影响,力求找出相应的最佳处理过程,并对机理进行探讨.实验表明以对SO2吸附能力为标准所得的结果同其它方法相比,除炭化过程中部分结论外,总体相似.即炭化温度在400—600℃之间,炭化时间为2.8h左右,温升速率较低的条件下无氧炭化后所得的样品,再经过870℃环境下在CO2中活化3.0h,可得内孔发达、对SO2吸附能力很强的吸附剂.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103013]脱硫用煤基吸附剂的试验研究[/url]

  • Bond Elut SPE柱的吸附剂容量和洗脱特性

    Varian 提供各种规格的Bond Elut SPE柱,吸附剂的质量从50mg至100g不等。小柱床的吸附剂通常用于样品体积有限,或者需要特别小的洗脱体积去洗脱目标分析物,以达到最大的分析物浓度。非极性吸附剂和极性吸附剂 吸附剂的容量定义为:给定质量的吸附剂,在最佳条件下可以保留分析物的总质量。不同的键合硅胶吸附剂,其保留容量也有很大不同。对于极性和非极性硅胶基质的吸附剂而言,其保留容量常常小于吸附剂质量的1% (尽管有时也会超过5%),例如500mg C18吸附剂至多可以保留25mg目标分析物和干扰物质。在某一个处理过程中,对给定吸附剂需要选择所需用量时,不但要考虑对目标分析物的保留容量,还要考虑样品中可能会发生共保留的样品干扰组分。很明显,在决定所需要吸附剂的容量时,这些干扰组分与目标分析物相比,影响因素更大。因此建议:在不同应用中分别测试一下柱容量。 一般较大的吸附剂质量,保留容量也会很大,但是所需要的洗脱溶剂量也会加大,与小柱床体积吸附剂的SPE柱相比,最终洗脱液中的分析物浓度也会偏低。 最小洗脱体积定义为2个柱床体积的洗脱溶剂量。一般典型的柱床体积为120μl/100mg吸附剂。有些情况下,所用洗脱体积会小于2个柱床体积。但是此种萃取过程,一般受流速和其它因素的影响较大,很难得到重复性较好的萃取结果,因此一般不建议采用小体积洗脱萃取方法。

  • 吸附剂选择

    吸附C2-C3的短链有机化合物用哪种吸附剂的效果好一些?

  • 吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较

    转载声明:本论文版权归原作者所有,转载仅作为学术交流使用,如有侵权可删除本转载,但不承担其他责任吸附剂Tenax-TA和活性炭对空气中苯的吸附性能比较朱小红,潘 红,马二琴,康怡平(上海市建设工程质量检测中心 浦东分中心,上海201209)摘要 :分别采用吸附剂为Tenax-TA和活性炭的吸附管模拟现场采集室内环境空气,了解Tenax-TA和活性炭对空气中苯的吸附性能。当Tenax-TA吸附剂以0.5L/min的流量采集10L空气时,苯存在漏出现象。说明空气中苯的采集不宜用Tenax-TA吸附剂替代活性炭吸附剂。关键词 :吸附剂 ;Tenax-TA ; 活性碳 ; 漏出中图分类号:O656 文献标识码:B 文章编号:1004-1672(2006)05-0012-02Comparison of Adsorptive Capacity of Benzene in Air between Tenax TA Adsorbent and Activated Carbon / Zhu Xiaohong et al // Shanghai Construction Engineering Quality Testing CenterAbstract: Through simulated sampling of the ambient air indoors with adsorption tube filled with Tenax TA adsorbent andactivated carbon respectively,adsorptive capacity of benzene in air from Tenax TA adsorbent or activated carbon could befound out. If 10 liter of air was sampled with Tenax TA adsorbent at a flow of 0.5L/min, benzene would leak out whichindicated that Tenax TA adsorbent was not suitable for sampling of benzene in the air instead of activated carbon.Key Words: adsorbent; Tenax TA; activated carbon; leakTenax-TA是一种多孔高分子聚合物,化学名为2,6- 二苯基对苯醚,具有良好的耐温性(极低流失性),对碳6以上的烃类具有良好的吸附性和热解吸性,被广泛应用于有机挥发物和半挥发物的吸附,在GB 50325-2001《民用建筑工程室内环境污染控制规范》中TVOC吸附管所采用的吸附剂就是Tenax-TA。活性炭亦是一种非常优良的吸附剂,它具有物理吸附和化学吸附的双重特性,对于非极性有机物有强的保留性,常温下适合采集蒸气态有机物,最常用的是椰子壳活性碳。在GB 11737-1989《居住区大气中苯、甲苯、二甲苯卫生检验标准方法气相色谱法》中苯吸附管所采用的吸附剂就是椰子壳活性炭本文通过试验比较吸附剂Tenax-TA和活性炭对空气中苯的吸附性能。1 试验部分1.1 仪器与试剂空气采样泵:Gilair-3型,流量范围:0.005~0.5 L/min,±5%恒流;空气流量校正器:Cilibrator-2 型,流量范围:0.02~6 L/min,一级皂泡式;气相色谱仪:GC6890型和GC122型 ;热解吸仪装置:ULTRATD+UNITY型和RJ-Ⅲ型 ;Tenax-TA吸附管 :不锈钢管(内填200 mg 的60~80 目Tenax-TA吸附剂) ;活性炭吸附管:玻璃管(内填100 mg椰子壳活性炭) ;温湿度计:TES1360型 ;大气压力表。标气-氮气中苯系物(BTX/N2) ;高纯氮。1.2 吸附管的活化填装好的吸附管在使用前需在高温下(TenaxTA 吸附管320℃,活性炭吸附管350℃)通高纯氮活化至少30 min,活化好的吸附管立即密封,保存在洁净的干燥器中。1.3 Tenax-TA吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。将Tenax-TA吸附管与恒流采样泵的采气口连接,以100 mL/min的流量抽取BTX/N2标气,每支Tenax-TA 吸附管含苯0.886 g,取下后密封,作为基准管待用。(2) 样品管的制备。在温度为23.6℃,大气压为101.6 kPa,相对湿度为45.0%RH的试验室环境条件下,模拟现场空气采样,将基准管用硅橡胶管与恒流采样泵连接,以0.5 L/min的流量分别抽取3L、4L、5L、6L和10L的高纯氮(3) 热解吸和气相色谱分析条件。采用TenaxTA 吸附/ 二次热解吸/ 毛细管气相色谱法的热解吸和气相色谱分析系统。ULTRA TD+UNITY热解吸仪和自动进样器各参数 解吸温度300℃,解吸时间6 min,冷阱低温-10℃;气相色谱分析条件按GB50325-2001《民用建筑工程室内环境污染控制规范》附录E 中规定的执行,采用程序升温,即初始温度 50℃保持 10 min,升温速率 5℃/min, 终止温度 250℃,恒温5 min。(4) 所有基准管和样品管的试验均做两次平行样试验。1.4 活性炭吸附剂对空气中苯的吸附性能的试验(1) 基准管的制备。 方法同1.3.1, 每支活性炭吸附管的苯含量为2.110 m g。(2) 样品管的制备。 在温度为16.0℃, 大气压为102.6 kPa, 相对湿度为60.0%RH的试验室环境条件下, 模拟现场空气采样, 将基准管用硅橡胶管与恒流采样泵连接, 以0.5 L/min 的流量抽取10 L 高纯氮。(3) 热解吸和气相色谱分析条件。 采用热解吸和填充柱气相色谱分析条件。 解吸温度350℃, 解吸时间 10 min ; 色谱条件进样口温度150℃, 检测器温度 150℃,炉温 90℃恒温。(4) 所有基准管和样品管的试验均做6次平行样试验。2 试验结果2.1 Tenax-TA吸附剂对空气中苯的吸附性能结果试验结果以回收率表示, 即不同采气体积的样品管与不采样的基准管进行峰面积比较, 峰面积的值取两个平行试验的均值。试验结果见表 1http://ng1.17img.cn/bbsfiles/images/2015/04/201504241124_543386_2206495_3.jpg由表 1 可看出:当采样体积大于 4 L 时,苯的回收率出现下降趋势, 尤其是采样体积达到10 L 时,苯的回收率明显下降,仅相当于基准管的 60% 活性炭吸附剂对空气中苯的吸附性能结果试验结果同样以回收率表示, 即采样体积为10L 时的样品管与不采样的基准管进行峰面积比较,峰面积的值取六个平行试验的均值。 试验结果证明,用活性炭管吸附苯,其回收率达到 95% 以上。3 分析与讨论3.1固体吸附剂采样原理本试验中的采样属于固体吸附剂富集采样, 其采样过程类似色谱法中的样品前处理分析, 空气作为一个混合样品穿过吸附柱, 空气中氧、 氮和二氧化碳由于它们的吸附性弱且含量高首先流出, 一些吸附性强些的组分留在吸附剂上。 采样开始时, 空气中多数组分都滞留在吸附剂进气端, 随着抽过空气体积的增加, 被吸附的各组分向前推进, 由于各组分的吸附性能存在差异, 各组分间拉开距离, 一些吸附性小的组分先流出。3.2讨论与建议从试验数据可看出, 当以 0.5 L/min 的采样流量,用不同的采样体积通过内含 200 mg Tenax-TA吸附剂的吸附管, Tenax-TA吸附剂对空气中苯的保留能力显著不同, 采样体积从3 L变化到10 L, 回收率从 101.69% 下降到 60.09%。同样的采样条件,当采样体积为 10L 时,活性炭对苯的回收率大于95%,而 Tenax-TA 对苯的回收率只有 60%。一般来说, 用固体吸附剂采样当流出气中某组分浓度是流入气浓度的 5% 时则认为有漏出。 也就是说, TenaxTA吸附剂应用于苯的采样过程中时, 若以0.5 L/min的采样流量,采样体积为 10 L,苯会有漏出现象;而用同样的采样条件, 活性炭吸附剂应用于苯的采样, 则未发生漏出现象。 尽管吸附管的吸附能力和吸附剂与被吸附组分的性质、采样流量、温度、湿度、浓度和共存物等等有关,但是,其中的主要原因是 Tenax-TA 比活性炭对苯的吸附能力要弱。现行国家标准 GB 50325-2001 《民用建筑工程室内环境污染控制规范》 中规定, 空气中苯的采样采用活性炭吸附剂,TVOC 的采样采用 Tenax-TA 吸附剂。由于在 TVOC 的检测中,其中包含了苯的检测,为了省时省力,有些检测单位就以 TVOC 测定中的苯含量替代苯的检测,即对苯和 TVOC 的检测只做 TVOC 的检测,苯的数据就直接 TVOC 中报出。试验证明, 这种做法是不科学的, 因为在Tenax-TA吸附剂对苯的采样过程中,苯会有漏出现象发生,最终造成得到的 TVOC 测定中的苯含量结果会偏低。据此,笔者认为对于空气中苯的采样,其吸附剂不能用 Tenax-TA 替代活性炭。参考文献: GB50325-2001, 民用建筑工程室内环境污染控制规范

  • 薄层层析法用的吸附剂

    关于薄层层析法用的吸附剂应符合的条件中,叙述不正确的是()。 A、有一定的吸附力,而且可逆性大,即容易解吸 B、在展开过程中,吸附剂不与欲分离物质和展开剂发生化学反应而改变性质 C、结构均匀,有一定的机械强度,但纯度要求不高 D、吸附剂的颗粒应具有一定的细度和较大的表面积

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 【求助】测油时硅镁吸附剂是如何处理的

    我单位要上水质中石油及动植物油的检测,其中用硅镁吸附剂吸附动植物油,我想请教以下问题:1.分析完一个样品的吸附剂能否重复使用?2.如果可以,应如何操作? 多谢了!

  • QuEChERS中吸附剂的问题

    QuEChERS,处理柑桔(全果),GC-MS测定多残留。对比了三种情况:不加吸附剂;加PSA;加PSA+GCB,上清液颜色依次减弱。但SIM模式下,三种情况下的总离子流图基本一致。还没有试过C18,貌似C18的吸附农药的能力强于PSA。目前,QuEChERS是不是只有这三种吸附剂了,有新型的吸附剂吗?

  • 测水中石油类的硅镁吸附剂用法讨论

    在测试石油类时,按国标,要先将烘好的硅镁吸附剂加入适量的蒸馏水,然后放置12h,不知道为什么这么做,硅镁吸附剂加水后不会影响测试结果吗?水对石油类测是干扰这么大!大家平时怎么对待这一步的。

  • 【资料】吸附剂-基础和应用

    吸附剂-基础和应用(英文资料)[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36929] 吸附剂-基础和应用[1].part1.rar [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36930]吸附剂-基础和应用[1].part2.rar[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36931]吸附剂-基础和应用[1].part3.rar[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36932]吸附剂-基础和应用[1].part4.rar[/url]

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

  • 高分子吸附剂及其在天然产物提取分离中的应用

    中草药是我国宝贵的医药资源,在提高人民生活质量,保证人民生活健康中发挥了极大的作用。然而中药成分的复杂性和不可知性影响了它的进一步应用,中药现代化成为了中药发展的迫切要求。而中药现代化的关键技术之一就是有效成分或有效部位的提取分离。溶剂萃取分离技术是天然产物分离的经典技术,但溶剂消耗量大,分离效率低,操作安全性差,一般仅适用于实验室小量样品的制备,而不宜用于工业生产。柱色谱分离法采用一定的色谱填料作为固定相,当中药提取液通过色谱柱时,不同的成分即可得到分离。该方法操作简单,适宜于工业生产。尤其是随着高分子产品的出现和发展,色谱填料的种类越来越多,其中以离子交换树脂、大孔吸附树脂和聚酰胺为主。一、离子交换树脂及其在天然产物提取分离中的应用1、离子交换树脂的结构和分类离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。根据树脂所带的可交换离子性质,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂。阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。根据酸性功能基在水中的电离性质,可分为强酸性离子交换树脂和弱酸性离子交换树脂。阴离子交换树脂是一类在骨架上结合有季铵基、伯胺基、仲胺基、叔胺基的聚合物。根据胺基的碱性强弱,可分为强碱性离子交换树脂和弱碱性离子交换树脂。根据骨架结构的不同,离子交换树脂可分为凝胶型和大孔型树脂两类。凝胶型树脂是一种呈透明状态的无孔聚合体。在水溶液中,树脂吸水溶胀,树脂相内产生微孔,反离子可扩散进微孔内进行离子交换,树脂的交联度越低,吸水量越大,溶胀也大,产生的微孔也较大。大孔离子交换树脂在整个树脂内部无论干、湿或收缩、溶胀都存在着比一般凝胶型树脂更多、更大的孔道,因而比表面极大,在离子交换过程中,离子容易迁移扩散,交换速度较快。2、离子交换树脂的作用原理离子交换反应是可逆反应,这种反应是在固态的树脂和水溶液接触的界面间发生的。在水溶液中,连接在离子交换树脂骨架上的功能基能离解出可交换的离子B+,该离子在较大范围内可以自由移动并能扩散到溶液中。同时,溶液中的同类型离子A+也能扩散到整个树脂结构内部,这两种离子之间的浓度差推动着它们之间的交换。其浓度差越大,交换速度就越快。另外,离子交换树脂对不同的离子表现出了不同的交换亲和吸附性能,这种选择性与树脂本身所带有的功能基、骨架结构、交联度有关,也与溶液中离子的浓度、价数有关。一般情况下,离子价数越高,与树脂功能基的静电吸引力越大,亲和力越大;对同价离子而言,原子序数增加,树脂对其选择性也增加。3、离子交换树脂在天然产物提取分离中的应用自从1935年Adams 和Holms 研究合成了酚醛型离子交换树脂以来,离子交换树脂的应用已经有60多年的发展历史。其应用范围日益扩大,已经由最初的水处理工业发展到当前的化工、电力、电子、环境科学、食品加工、医疗药物等领域中,并且在天然产物的提取分离中的应用逐渐增加。1)离子交换树脂法提取分离氨基酸、蛋白质、多肽和酶氨基酸是一类含有氨基和羧基的两性化合物,在不同的pH条件下能以阳、阴或两性离子的形式存在。因此,应用阳离子交换树脂和阴离子交换树脂均可富集分离氨基酸。同时,因为多肽、蛋白质和酶是由α-氨基酸缩合而成的生物高分子,某些氨基酸残基含有羧基或碱基,使这些生物高分子成为两性物质。因此,在一定的pH条件下,离子交换树脂能够提取、分离和纯化多肽、蛋白质和酶。因为蛋白质和酶在强酸或强碱条件下不稳定,强烈的疏水作用也会使其变性,因此所用的树脂应当是亲水的弱酸树脂或弱碱树脂。2)离子交换树脂法提取分离生物碱生物碱是许多中草药中的重要有效成分,它们在中性或酸性条件下以阳离子形式存在,能用阳离子交换树脂从其提取液中富集分离出来。离子交换树脂吸附总生物碱之后,可根据各生物碱组分的碱性差异,采用分部洗脱或分部提取的方法,将其中的各生物碱组分一一分离。樊振民等对三种常用的分离方法进行总结,并给出工艺流程,可分别得到弱碱性生物碱、中等碱性生物碱和强碱性生物碱。将此三种方法分别用于实际,可分别从麻黄草的稀盐酸浸液中分离麻黄碱和伪麻黄碱,从洋金花的0.1%盐酸浸液中分离莨菪碱和东莨菪碱,从护心胆根的0.5%盐酸浸液中分离紫堇块茎碱、毕扣灵碱和南天竹碱等,均取得良好的分离结果。3)离子交换树脂法提取分离天然酸性有机化合物中草药中含有一些具有药理作用的羧基化合物和酚性化合物,可以用离子交换树脂法分离纯化。甘草酸是甘草的有效成分,以弱碱树脂Duolite A34从甘草水浸液中提取甘草酸,经2%氨水洗脱即得产品。也可用阴离子交换树脂(OH-型)富集甘草酸,以4-6%氨水洗脱后,再用弱酸性阳离子交换树脂(H+)除去铵离子,可得到高纯度的甘草酸。另外,应用阴离子交换树脂可以从动植物中和微生物发酵液中提取分离天然有机酸,如乳酸、柠檬酸等。4)离子交换树脂法分离纯化糖类化合物糖类化合物分子中含有许多醇羟基,只有极弱的酸性,但在中性水溶液中仍能与强碱性阴离子交换树脂(OH-型)发生离子交换作用而被吸附。但是由于许多糖类物质在强碱条件下会发生异构化和分解反应,限制了强碱性阴离子交换树脂在糖类物质分离纯化中的应用。人们根据糖中顺式邻二羟基能与硼酸形成复盐阴离子的特性,采用硼酸性阴离子交换树脂或硼酸溶液作流动相,从而使糖类物质能在阴离子交换树脂上进行分离纯化。Khym等用此法成功地分离了果糖、半乳糖和葡萄糖。同样,此法也适用于多糖的纯化。黄芪用水提取,经Pb(OAC)2沉淀除去蛋白质,加乙醇可使多种糖沉淀出来。粗多糖再溶于水,通过硼酸型DEAE-纤维素柱,以0.01mol/L硼砂溶液洗脱,再用乙醇、丙酮处理,可得黄芪多糖成分AG-1。其它黄芪多糖成分如AH-1和AH-2等也用同样的工艺进行了分离纯化。由于多羟基化合物与钙盐、钡盐有较强的亲和力,由此发展了另一种离子交换树脂法,用于糖类化合物的分离纯化。将磺化聚苯乙烯型阳离子交换树脂转化为钙型用作固定相,可分离葡萄糖和果糖、木糖醇和山梨醇。由以上的应用可以看出,离子交换树脂对中草药有效成分的作用主要是通过其可交换基团的离子来进行的。但是,离子交换树脂骨架的疏水作用、树脂上化学基团与被分离物质基团之间的氢键作用、偶极作用等也对分离起着重要的作用。二、吸附树脂及其在天然产物提取分离中的应用1、吸附树脂的种类吸附树脂又称聚合物吸附剂,它是一类以吸附为特点,对有机物有浓缩分离作用的高分子聚合物。按照树脂的表面性质,吸附树脂一般分为非极性、中极性和极性三类。非极性吸附树脂是由偶极矩很小的单体聚合物制得的不带任何功能基的吸附树脂。典型的例子是苯乙烯-二乙烯苯体系的吸附树脂。中极性吸附树脂指含酯基的吸附树脂,如丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸酯等交联的一类共聚物。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。此外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂,强极性吸附树脂与离子交换树脂的界限很难区别。2、吸附作用机制及影响吸附的因素吸附作用是指一种或多种物质分子附着在另一种物质(一般是固体)表面上的过程。吸附剂之所以能够吸附某些物质,主要是因为吸附剂的表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。吸附是一种界面现象,吸附树脂的表面发生吸附作用后,可以使吸附树脂界面上溶质的浓度高于溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降,在给定温度和压力下,吸附都是自动进行的。吸附剂在溶液内能否吸附某种物质,与该物质在溶剂内的表面张力有关,任何能降低溶剂表面张力的溶质都能被吸附剂吸附。水的表面张力能较高,许多溶质能降低其数值,所以在溶液内能被吸附剂吸附。乙醇的表面张力远远低于水,许多溶质降低乙醇表面张力不如降低水表面张力大,故在一般情况下,溶质在水里较在乙醇里被吸附的多,在水里被吸附的物质可以在乙醇里被洗脱。非极性吸附树脂对物质的吸附主要是通过疏水作用进行的,这是因为该类树脂的表面是聚苯乙烯的疏水性结构,在吸附过程中,溶质分子的疏水部分优先被吸附在该疏水聚合物表面,而溶质分子的亲水部分则留在水相中。研究表明,被吸附物质通常并不进入树脂的微球相,而是被吸附在微球相表面。所以吸附和洗脱的过程一般都比较快。中极性吸附树脂由于表面亲水性部分和疏水性部分共存,因此当从水中吸附有机物时,吸附质分子的亲水部分和酯基表面之间以极性键联,而疏水部分和吸附树脂骨架之间以标准范德华力相互作用。极性吸附树脂则主要通过它的功能基团与吸附质之间的静电相互作用和氢键等进行吸附。在实际应用中,对于某一种树脂,应该综合考虑各种可能的作用机制,一般的吸附往往是几种机

  • 您家做水中动植物油类分析萃取用的是什么牌子的硅酸镁吸附剂?

    您家做水中动植物油类分析萃取用的是什么牌子的硅酸镁吸附剂?

    各位老师: 您好! 我们是一家第三方环境监测实验室,在做水中动植物油类分析时遇到如下问题: 测定完总油加入硅酸镁吸附剂(60~100目)吸附后,有的时候会出现石油类测定浓度高于总油的情况。为此我们对空白的四氯化碳加入硅酸镁吸附剂(60~100目)吸附后测定石油类(事先调零),发现吸附后四氯化碳中的石油类浓度变为1mg/L左右,得出结论为吸附剂的问题,但是没找到合适的厂家。 不知道您家用的是哪家的硅酸镁吸附剂?求推荐http://simg.instrument.com.cn/bbs/images/default/em09509.gif 另附我们用的硅酸镁吸附剂照片http://ng1.17img.cn/bbsfiles/images/2015/01/201501161152_532503_2429565_3.jpg

  • 非极性吸附剂的几种基体:硅胶、高通量硅胶和聚合物

    硅胶键合硅胶是一种刚性原料,在不同溶剂中收缩和膨胀系数都很小,这点与聚苯乙烯基质的树脂吸附剂有所不同。基于此性能,键合硅胶吸附剂在新的溶剂条件下,会在很短的时间内达到平衡,因此可适用于复杂萃取过程,例如在萃取过程中需要变换使用多种不同溶剂的情况。用来制造键合硅胶吸附剂的硅胶颗粒粒径分布基本在15~100μm之间。另外硅胶颗粒形状通常为不规则形的,并不是球形颗粒。这些物理特性都保证了在最小真空和压力下(10~15个psi),溶剂可以很迅速地流过吸附剂柱床。本手册描述的大多数吸附剂的标称孔径为60Å,可满足分子质量达15000Da的化合物的萃取,超过此分子量的物质会被排除在60Å的孔径之外,并且由于与吸附剂官能团的扩展相互作用,这些大分子物质与吸附剂的表面接触很小,因此,这些大分子在萃取时会穿过吸附剂,而不被保留。利用这种特性,可以采用硅胶吸附剂去除样品中的大分子干扰物而保留低分子的目标分析物,达到净化目的。如果需要萃取更高分子量的目标分析物,则需要选择4000 Å以上的大孔径吸附剂。键合硅胶吸附剂从很多方面来讲,都是色谱分离的理想材料。首先是由于硅胶表面可以键合多种不同的官能团,另外硅胶吸附剂还具有以下优势:● 键合硅胶是一种刚性材料,不会收缩或溶胀● 对于生产更高选择性的吸附剂有更大的选择空间● 在宽范围的有机相和水相中稳定● 可以形成干净基体,有利于键合官能团的附着。聚合物吸附剂聚合物基体的吸附剂,象Varian的Bond Elut LMS、PPL、ENV和NEXUS与其它萃取介质相比,有很多优势:● 无需酸性或碱性洗脱改性剂,因为聚合物吸附剂不会表现出硅醇基的次级相互作用● 具有超强的非极性特性,是从水样中萃取强极性分析物的最佳选择● 无pH限制,可以在pH 1~14范围内使用● 高容量,意味着可以使用更小的柱床体积以及更小的样品体积● 最佳的粒径尺寸和形状,有利于样品以及溶剂的快速流动高通量硅胶基体的吸附剂除了标准的40μm粒径产品外,Varian还提供120μm粒径的吸附剂,可以保证更快的样品和溶剂流速。这些产品是采用重力自流操作处理血清和尿液中样品用户的首选。

  • 商业化固相提取的吸附剂类型

    商业化固相提取的吸附剂类型吸附剂类型分子作用十八碳烷基(C18)疏水辛烷基(C8)疏水环已烷基 (CH)疏水乙烷基(C2)疏水、氢键苯基 (PH)分散、疏水丙烯酸 (Acrylic acid)离子交换、氢键丙烯酰胺 (acrylamide)离子交换、氢键氰丙基(CN)分散、疏水二醇基 (2OH)氢键氨丙基(NH2)氢键(质子受体)苯磺酰丙基(SCX)阳离子交换磺酰丙基(PRS)阳离子交换羧甲基(CBA)阳离子交换二乙氨丙基(DEA)阴离子交换三甲胺丙基(SAX)阴离子交换硅胶氢键中性氧化铝氢键弗罗里硅土氢键

  • 动植物油所用的硅镁吸附剂

    按国标方法,高温处理的硅镁吸附剂还需要按比例添加蒸馏水,请问这个是为什么?还有,添加了蒸馏水的硅镁吸附剂,需要在什么条件下保存,可以用多长时间?

  • 【求助】关于热解吸的吸附剂耐水的问题

    我想要用顶空连用热解析的办法来分析一水样中的痕量有机污染物。实验的计划是反复取顶空气吹扫热解析管,吸附之后再用阀切换干燥氮气做载气解吸进样。但是考虑到以往做热解吸都是绝水环境,现在在含水环境tanex会不会遇水变性呢?求教各位啦,要是谁有类似的经验,能推荐几种耐水吸附剂那就更好啦!谢谢大家

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制