当前位置: 仪器信息网 > 行业主题 > >

涡轮减速机

仪器信息网涡轮减速机专题为您提供2024年最新涡轮减速机价格报价、厂家品牌的相关信息, 包括涡轮减速机参数、型号等,不管是国产,还是进口品牌的涡轮减速机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合涡轮减速机相关的耗材配件、试剂标物,还有涡轮减速机相关的最新资讯、资料,以及涡轮减速机相关的解决方案。

涡轮减速机相关的论坛

  • 伺服蜗轮蜗杆减速机润滑油的使用及更换

    第一次使用或更换蜗轮蜗杆减速机时运转150-400小时后更换润滑油,以后的换油周期小于或等于4000小时;  2、定期检查油的份量和质量,保留足够润滑油,及时更换混入杂质或变质的油;  3、注油量须按表要求,不同牌号的油禁止混用、牌号相同而粘度不同的油允许混用;  4、注油量附表一、油品按附表二;  5、蜗轮蜗杆减速机工作环境温度为—40°C~+40°C,当环境温度低于0°C时,起动前润滑必须加热到0°C以上或采用低凝固点的润滑油。

  • 摆线针轮减速机供应商|明业供|质量较好的减速机

    摆线针轮减速机供应商|明业供|质量较好的减速机1.摆线针轮减速机特点:〇高速比和高效率单级传动,就能达到1:87的减速比,效率在90%以上,如果采用多级传动,减速比更大。〇结构紧凑体积小由于采用了行星传动原理,输入轴输出轴在同一轴心线上,使其机型获得尽可能小的尺寸。〇运转平稳噪声低摆线针齿啮合齿数较多,重叠系数大以及具有机件平衡的机理,使振动和嗓声限制在最小程度。〇使用可靠、寿命长因主要零件采用高碳铬钢材料,经淬火处理(HRC58~62)获得高强度,并且,部分传动接触采用了滚动摩擦,所以经久耐用寿命长。〇设计合理,维修方便,容易分解安装,最少零件个数以及简单的润滑,使摆线针轮减速机深采用户的信赖。2.使用条件1、摆线针轮减速机允许使用在连续工作制的场合,同时允许正、反两个方向运转。2、输入轴的转速额定转数为1500转/分,在输入功率大于18.5千瓦时建议采用960转/分的6极电机配套使用。3、卧式安装摆线针轮减速机的工作位置均为水平位置。在安装时最大的水平倾斜角一般小于15°。在超过15°时应采用其他措施保证润滑充足和防止漏油。4、摆线针轮减速机的输出轴不能受较大的轴向力和径向力,在有较大轴向力和径向力时须采取其他措施。3.润滑1、卧式摆线减速机在正常情况下采用油池润滑,油面高度保持在视油窗的中部即可,在工作条件恶劣,环境温度处于高温时可采用循环润滑。2、摆线针轮减速机在常温下一般选用40#或50#机械油润滑,为了提高减速机的性能、延长摆线针轮减速机的使用寿命,建议采用70#或90#极压齿轮油,在高低温情况下工作时也可应重新考虑润滑油。3、立式安装行星摆线针轮减速机要严防油泵断油,以避免减速机的部件损坏。4、加油时可旋开机座上部的通气帽即可加油。放油时旋开机座下部的放油塞,即可放出污油。该减速机出厂时内部无润滑油。5、 第一次加油运转100小时应更换新油,(并将内部污油冲干净)以后再连续工作,每半年更换一次(8小时工作制),如果工作条件恶劣可适当缩短换油时间,实 践证明减速机的经常清洗和换油(如3-6个月)对于延长减速机的使用寿命有着重要作用。在使用过程中应经常补充润滑油。6、本厂新发出的减速机已加润滑油脂,每六个月更换一次。油脂采用二硫化铝-2#或2L-2#锂基润滑油脂。4.安装1、在摆线减速机的输出轴上加装联轴器、皮带轮、链轮等联结件时不允许采用直接捶击方法,因该减速机的输出轴结构不能承受轴向的捶击力,可用轴端螺孔旋入螺钉压入联结件。2、输出轴及输入轴的轴径选用GB1568-79配合。3、减速机上的吊环螺钉只限起吊减速机用。4、在基础上安装减速机时,应校准减速机的安装中心线标高,水平度及其相连部分的相关尺寸。校准装动轴的同心度不应超过联轴器所允许的范围。5、减速机校准时,可用钢制垫块或铸铁垫块进行,垫块在高度方面不超过三块,也可用契铁进行,但减速机校准后应换入平垫块。6、垫块的配置应避免引起机体变形,应按基础螺栓两边对称排列,其相互距离能足够使水浆在灌溉时自由流通。7、水泥浆的灌溉应密实,不可有气泡、空隙和其他缺陷。减速比:输入转速与输出转速之比。级数:行星齿轮的套数。一般最大可以达到三级,效率会有所降低。满载效率:在最大负载情况下(故障停止输出扭矩),减速机的传递效率。工作寿命:减速机在额定负载下,额定输入转速时的累计工作时间。额定扭矩:是额定寿命允许的长时间运转的扭矩。当输出转速为100转/分,减速机的寿命为平均寿命,超过此值时减速机的平均寿命会减少。当输出扭矩超过两倍时减速机故障。噪音:单位分贝dB(A),此数值实在输入转速3000转/分,不带负载,距离减速机1米距离时测量值。回差:将输入端固定,是输出端顺时针和逆时针方向旋转,当输出端承受正负2%额定扭矩时,减速机输出端由一个微小的角位移,此角位移即为回程间隙。单位是“分”,即一度的1/60。

  • 常州减速机供应商|明业供|质量较好的减速机

    常州减速机供应商|明业供|质量较好的减速机

    http://ng1.17img.cn/bbsfiles/images/2016/06/201606162124_597167_3115522_3.jpg常州减速机供应商|明业供|质量较好的减速机1.摆线针轮减速机特点:〇高速比和高效率单级传动,就能达到1:87的减速比,效率在90%以上,如果采用多级传动,减速比更大。〇结构紧凑体积小由于采用了行星传动原理,输入轴输出轴在同一轴心线上,使其机型获得尽可能小的尺寸。〇运转平稳噪声低摆线针齿啮合齿数较多,重叠系数大以及具有机件平衡的机理,使振动和嗓声限制在最小程度。〇使用可靠、寿命长因主要零件采用高碳铬钢材料,经淬火处理(HRC58~62)获得高强度,并且,部分传动接触采用了滚动摩擦,所以经久耐用寿命长。〇设计合理,维修方便,容易分解安装,最少零件个数以及简单的润滑,使摆线针轮减速机深采用户的信赖。2.使用条件1、摆线针轮减速机允许使用在连续工作制的场合,同时允许正、反两个方向运转。2、输入轴的转速额定转数为1500转/分,在输入功率大于18.5千瓦时建议采用960转/分的6极电机配套使用。3、卧式安装摆线针轮减速机的工作位置均为水平位置。在安装时最大的水平倾斜角一般小于15°。在超过15°时应采用其他措施保证润滑充足和防止漏油。4、摆线针轮减速机的输出轴不能受较大的轴向力和径向力,在有较大轴向力和径向力时须采取其他措施。3.润滑1、卧式摆线减速机在正常情况下采用油池润滑,油面高度保持在视油窗的中部即可,在工作条件恶劣,环境温度处于高温时可采用循环润滑。2、摆线针轮减速机在常温下一般选用40#或50#机械油润滑,为了提高减速机的性能、延长摆线针轮减速机的使用寿命,建议采用70#或90#极压齿轮油,在高低温情况下工作时也可应重新考虑润滑油。3、立式安装行星摆线针轮减速机要严防油泵断油,以避免减速机的部件损坏。4、加油时可旋开机座上部的通气帽即可加油。放油时旋开机座下部的放油塞,即可放出污油。该减速机出厂时内部无润滑油。5、 第一次加油运转100小时应更换新油,(并将内部污油冲干净)以后再连续工作,每半年更换一次(8小时工作制),如果工作条件恶劣可适当缩短换油时间,实 践证明减速机的经常清洗和换油(如3-6个月)对于延长减速机的使用寿命有着重要作用。在使用过程中应经常补充润滑油。6、本厂新发出的减速机已加润滑油脂,每六个月更换一次。油脂采用二硫化铝-2#或2L-2#锂基润滑油脂。4.安装1、在摆线减速机的输出轴上加装联轴器、皮带轮、链轮等联结件时不允许采用直接捶击方法,因该减速机的输出轴结构不能承受轴向的捶击力,可用轴端螺孔旋入螺钉压入联结件。2、输出轴及输入轴的轴径选用GB1568-79配合。3、减速机上的吊环螺钉只限起吊减速机用。4、在基础上安装减速机时,应校准减速机的安装中心线标高,水平度及其相连部分的相关尺寸。校准装动轴的同心度不应超过联轴器所允许的范围。5、减速机校准时,可用钢制垫块或铸铁垫块进行,垫块在高度方面不超过三块,也可用契铁进行,但减速机校准后应换入平垫块。6、垫块的配置应避免引起机体变形,应按基础螺栓两边对称排列,其相互距离能足够使水浆在灌溉时自由流通。7、水泥浆的灌溉应密实,不可有气泡、空隙和其他缺陷。减速比:输入转速与输出转速之比。级数:行星齿轮的套数。一般最大可以达到三级,效率会有所降低。满载效率:在最大负载情况下(故障停止输出扭矩),减速机的传递效率。工作寿命:减速机在额定负载下,额定输入转速时的累计工作时间。额定扭矩:是额定寿命允许的长时间运转的扭矩。当输出转速为100转/分,减速机的寿命为平均寿命,超过此值时减速机的平均寿命会减少。当输出扭矩超过两倍时减速机故障。噪音:单位分贝dB(A),此数值实在输入转速3000转/分,不带负载,距离减速机1米距离时测量值。回差:将输入端固定,是输出端顺时针和逆时针方向旋转,当输出端承受正负2%额定扭矩时,减速机输出端由一个微小的角位移,此角位移即为回程间隙。单位是“分”,即一度的1/60。

  • 问个专业的问题,拉力机用减速机和同步轮传动孰优孰劣?

    如题啊,我培训过好多拉力机(培训的都是软件,硬件不是非常精通),基本都是0.5级的,可是有厂家用减速机直接连接丝杆,有的直接用同步轮同步带(大轮带小轮传动),其实成本算下来相差并不大,可是两者孰优孰劣,我问技术,人家说区别不大,各位有没有精通的,指导一下。

  • 关于机器人减速机的应用结构介绍

    关于机器人减速机的应用结构介绍

    机器人减速机采用双支撑支持机构和针轮机构。这种机构特点其具备高可靠性、高刚度、高精度、大力矩的特性;同时,为了支持更大的载荷,其内部装有大型角接触球轴承。出厂时该减速机内部已封装有润滑脂,独特的输入花键轴和电机法兰,可以与任何伺服电机相匹配。该减速机有法兰输出和轴输出两种输出形式。广泛应用于工业机器人、五面体加工中心以及数控旋转台等领域。http://ng1.17img.cn/bbsfiles/images/2013/11/201311021404_475069_2814155_3.jpg机器人减速机机型为中空结构,这使设计拥有更发的灵活性,使线缆及其他必要的设备可以轻松穿过中空轴孔,在机器人的设计中采用这种中空方式结构设计,可使电缆由减速机中部穿过,使机器人结构简单,体积更小。机器人减速机是一款高精度、高扭距、高刚度、高可靠性、承受大载荷、追求简单实用,已经在工业机器人、机床、半导体生产设备、包装机械、雷达等领域有广泛的应用。机器人减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力。适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定。

  • 关于机器人减速机的技术分享

    关于机器人减速机的技术分享

    机器人减速机采用双支撑支持机构和针轮机构。这种机构特点其具备高可靠性、高刚度、高精度、大力矩的特性;同时,为了支持更大的载荷,其内部装有大型角接触球轴承。出厂时该减速机内部已封装有润滑脂,独特的输入花键轴和电机法兰,可以与任何伺服电机相匹配。该减速机有法兰输出和轴输出两种输出形式。广泛应用于工业机器人、五面体加工中心以及数控旋转台等领域。机器人减速机机型为中空结构,这使设计拥有更发的灵活性,使线缆及其他必要的设备可以轻松穿过中空轴孔,在机器人的设计中采用这种中空方式结构设计,可使电缆由减速机中部穿过,使机器人结构简单,体积更小。同时也是一款高精度、高扭距、高刚度、高可靠性、承受大载荷、追求简单实用,已经在工业机器人、机床、半导体生产设备、包装机械、雷达等领域有广泛的应用。机器人减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力。适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定。http://ng1.17img.cn/bbsfiles/images/2013/11/201311041642_475303_2814155_3.jpg机器人减速机的技术优势:① 齿高较低,不需要很深的啮合距离就可以获得较大的啮合量,可承受较大的扭矩。② 齿宽较大,齿根弧度增大,减少发生断裂失效的风险。③ 由于所需柔轮变形量较小,可使柔轮的寿命得到极大提高。④ 多达20%~30%的齿参与啮合,齿面比压较小。

  • 【讨论】电子万能试验机采用同步带或减速机的优缺点

    如题:当今,国际国内的电子万能试验机生产厂家。有采用伺服电机+同步带驱动的。也有采用伺服电机+减速机驱动的。这两种方式,哪种更先进?更可靠?各有何优缺点?他们的主流应用厂家有哪些?它们的源头在哪里?欢迎 各位 大 大 探讨:)

  • 涡轮分子泵运转时需要注意的问题4

    (2)延迟充气  虽然在泵断开电源后就应给泵充气已被大家所接受,且很平常,但是,涡轮分子泵在切断电源后,泵要渐渐地减速,若延迟几秒或几分钟再充气会更好一些。在泵减速到它平时速度的30%~50%期间,此时泵仍能起到抽气和压缩作用。能有效地使真空室处在真空状态下且能防止碳氢化合物的返流。延迟充气也能使阀门有足够的时间关闭,在经常停电的情况下,延迟充气是很有用的。为了延迟充气, 前级真空必须维持在1 ~1000 μmHg (1 ×10- 3 mmHg ~1 mmHg 或133.3 mPa~133.3 Pa)范围之内,所以在涡轮分子泵与前级泵之间必须有一个真空阀,或者在前级泵内部装一个控制阀,该阀应在电源中断时,使涡轮分子泵与前级泵隔离开来。否则,通过前级泵、前级管道被充气,并导致了油的污染。

  • 减速器的应用

    减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。我们可以用减速器时应根据工作机的选用条件,技术参数,动力机的性能,经济性等因素,比较不同类型、品种减速器的外廓尺寸,传动效率,承载能力,质量,价格等,选择最适合的减速器。它还有一种相对精密的机械,使用它是用来降低速度,增加转矩,它的基本结构是由传动零件,齿轮,轴,轴承,箱体及其附件所组成的。你们知道它的安装方法吗?那我们就来看看吧。正确的安装,使用和维护减速器,是保证机械设备正常运行的重要环节。 因此,在您安装减速器时,请务必严格按照下面的安装使用相关事项,认真地装配和使用。 第一步是安装前确认电机和减速器是否完好无损,并且严格检查电机与减速器相连接的各部位尺寸是否匹配,这里是电机的定位、输入轴与减速器凹槽等尺寸及配合公差。第二步是旋下减速器法兰外侧防尘孔上的螺钉,调整夹紧环使其侧孔与防尘孔对齐,插入内六角旋紧。取走电机轴键。第三步是将电机与减速器自然连接,连接时必须保证减速器输出轴与电机输入轴同心度一致,且二者外侧法兰平行。如同心度不一致,会导致电机轴折断或减速机。

  • 【求助】分子涡轮泵的问题

    分子涡轮泵自动减速,停止。之前的征象是泵电流起初略高,~265mA,后来超高,~500mA,并停止工作。已经做过的诊断是diagnosis通过,前级泵无问题,风扇和电子元件除尘处理,仍无改善。我猜想会不会是泵自我保护?或是泵坏了(最好不是这样)请问高手:泵电流在哪些情况下会跑高?问题可能出在哪里?现在该做如何处理?谢谢!

  • 丝杆升降机常见问题及其原因

    [font=微软雅黑]丝杆升降机发热和漏油。蜗轮减速机为了提高效率,一般均采用有色金属做蜗轮,蜗杆则采用较硬的钢材,由于它是滑动磨擦传动,在运行过程中,就会产生较高的热星,使减速机各零件和密封之间热膨胀产生差异,从而在各配合面产生间隙,而油液由于温度的升高变稀,容易造成泄漏。主要原因有四点,一是材质的搭配是否合理,二是啮合磨擦面的表面质量,三是润滑油的选择,添加量是否正确,四是装配质量和使用环境。[/font]

  • 气象色谱后开门减速箱

    色谱后开门下面的减速箱坏了,里面的齿轮齿掉了几个,配不来齿轮,哪里可以单独买到减速箱啊,电机好好地,修色谱的不单卖,电机+减速箱一套好贵哦http://simg.instrument.com.cn/bbs/images/brow/em09.gif

  • 涡轮泵挂彩了?记一次质谱故障

    安捷伦5975C,昨天下午仪器在待机情况下涡轮泵和前级泵都停下来了,离子源和四级杆温度也降下来了,由于临近下班时才发现,于是先把仪器关机今天早上上班再检查。起初以为是哪里大漏导致真空达不到,仪器自己放空了。先是检查前级泵泵油,油位在最低位以上,泵油颜色也正常,接口也很紧,应该没什么问题。接着想要打开质谱真空仓检查,发现侧板还吸得挺紧的(感觉不太像是大漏吧),拧松放空阀卸掉真空(放空完顺手拧紧),打开侧板发现真空仓里面有些细小的金属粉末,立马意识到情况不妙,这是哪里来的呢?!先用镜头纸小心将颗粒物清扫出真空仓外吧,OMG!!!我的分子涡轮泵发生什么事了?!先上图吧,那个伤心。。。http://ng1.17img.cn/bbsfiles/images/2015/05/201505122122_545756_2905367_3.jpg请问各位版友,涡轮泵的扇叶是打到哪里了吗?怎么会打成这样?真空仓里面的金属粉应该是扇叶上磨出来的吧?仪器上次维护清洗离子源是去年的12月底,一直正常使用没什么问题,怎么突然就这样了?现在的情况是这样,我把真空仓清理干净试着重新开机,前级泵运行正常能把侧板吸住,仪器也有自检(嘀一声),但是涡轮泵没有运转,速度一直都是0.1,然后大概5分钟之后,涡轮泵长时间没有启动,仪器自动把前级泵也关闭了。这种情况感觉涡轮泵应该是挂彩了吧,下午联系了安捷伦的工程师也说可能是涡轮泵坏了,请大家帮忙分析一下故障的原因吧,仪器应该是06-08年买的(具体记不清了),期间也没坏过什么部件。前级泵和涡轮泵都是普法的,上一张涡轮泵外观图http://ng1.17img.cn/bbsfiles/images/2015/05/201505122221_545765_2905367_3.jpg还有联系了安捷伦维修报价,G3170-67000 New-HiPACE 80 Turbo Pump Service Kit 3万3千多(不含税),这个价格怎样,有没有被坑了?

  • 涡轮分子泵的工作原理

    涡轮分子泵是高或者超高真空泵,可以提供无油的超高真空度,因此是质谱仪的重要组成部分,想要更好的使用质谱仪,就不得不了解涡轮分子泵工作原理的基础及合适的(前级)泵的择。第一台涡轮分子泵是在1955年发明的。当时,Willi Becker博士在Arthur Pfeiffer Vakuumtechnik GmbH(现在的Pfeiffer Vacuum)已经任职13年,担任技术实验室负责人。他关注的问题是如何防止扩散泵中的油回流到泵壳中。为此,他将一个旋转风扇轮作为挡板。通过这种方式,气体粒子沿压力梯度方向流动,没有明显的传导损失。在这相反方向,倒流的油分子被旋转的风扇轮反射。这阻止了分子到达高真空一侧。在进一步的研究中,贝克尔博士注意到,这种设计不仅减少了扩散泵油回流的问题,同时还产生了较低的总压力。然后,他应用了一个转子-定子组合和多个串联的泵级。在这种设计中,他使用了左右两侧对称流模式--一个由皮带驱动的转子,速度达到16,000转/分钟。该泵重62公斤,抽速为900立方米/小时,在1956年获得专利,是今天所有涡轮分子泵的先驱。1958年,在比利时纳穆尔举行的国际真空大会上,该泵首次被展示。如果没有这项发明,我们的现代生活将是不可想象的--因为没有涡轮分子泵,半导体生产的许多制造步骤以及无数的真空镀膜工艺将不可能实现。[img]https://file.jgvogel.cn/134/upload/resources/image/323927.jpeg?x-oss-process=image/resize,w_700,h_700[/img]* 威利-贝克尔博士,1958年在阿瑟-普发真空技术有限公司(今天的普发真空)的实验室里[color=#222222]工作原理和压缩比[/color]涡轮分子泵是如何工作的?从快速旋转的叶片到被抽气的气体分子的动量转移是转子和定子叶片排列的泵送作用的基本原理,如图1。[img]https://file.jgvogel.cn/134/upload/resources/image/323928.jpeg?x-oss-process=image/resize,w_700,h_700[/img] 图1 涡轮分子泵的工作原理[color=#222222]撞击到叶片上的分子被吸附在那里,并在短时间内再次离开叶片。叶片速度v被叠加到分子热运动速度c。分子热运动速度c是分子离开泵的速度。分子流动必须在泵中占主导地位。否则,叶片传递的速度分量将通过与其他分子的碰撞而丢失。因此,平均自由路径T必须大于通道高度h。在泵送气体的过程中,动能泵中会出现背压,导致倒流。S[/color] [font=&][color=#222222]0 [/color][/font] [color=#222222]表示没有前级压力的抽速。它随着前级压力的增加而减少,在最大压缩比K时达到0值。[/color]压缩比K0,可以根据Gaede来估计。对于视觉密集型叶片结构,Gaede的公式适用。[img]https://file.jgvogel.cn/134/upload/resources/image/323929.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图2 转子和定子叶片的排列方式Gaede的公式[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323930.png?x-oss-process=image/resize,w_700,h_700[/img][/align]其中: p[size=11px]V[/size] = 前级真空压力 p[size=11px]A[/size] = 吸气压力 v = 叶片速度[font=微软雅黑, &][size=14px] = 平均分子热运动速度[/size][/font] L = 通道长度 h = 通道高度 g = 用于指定平均冲击距离的系数,是通道高度的倍数(1g3)在图中用v-cos α替换公式v,用b替换L,用t-sin α替换h,我们可以得到[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]根据Gaede的估计,假设叶片是视觉密集的,因此满足cos α = t/b的条件(见图1)。对于较大的叶片间距,这意味着压缩量减少。[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font][font=微软雅黑, &][size=14px]几何比率取自图1。因子g在1到3之间[2]。K[size=11px]0 [/size]因此,随着叶片速度v和 [/size][/font][font=微软雅黑, &][size=14px] aaan的增加呈指数增长。[/size][/font][font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]R 是通用气体常数。T 是热力学温度和。M 是分子质量。因此,氮气的压缩比要比氢气的压缩比高得多。抽气速度的计算抽气速度S [size=11px]0 [/size]与吸气面积A和叶片的平均圆周速度v,即旋转速度成正比。如果考虑到叶片角度α,就可以得到这个结果。[img]https://file.jgvogel.cn/134/upload/resources/image/323931.png?x-oss-process=image/resize,w_700,h_700[/img][font=微软雅黑, &][size=14px][color=#222222]图3 的Y轴上画出了以[/color][i]l[/i][color=#222222]s[/color][font=&]-1[/font][color=#222222] cm-2为单位的比抽速,X轴上画出了循环频率f和叶片的外半径(Ra)和内半径(Ri)的平均叶片速度v=π-f-(Ra+Ri) 。从X轴上的一个选定点垂直向上移动,与曲线的交点显示了该速度下泵SA的最大特征泵送速度。乘以输入盘的叶片面积:[i]A[/i]=(Ra2-Ri2)π ,就可以得到抽气速度。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/323932.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图3 涡轮泵的具体泵送速度[img]https://file.jgvogel.cn/134/upload/resources/image/323933.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4|泵送速度是相对分子量的函数[color=#222222]图3中输入的点是根据所示的Pfeiffer Vacuum泵的测量值确定的。远高于曲线的点在实际上是不可能的。以这种方式确定的泵送速度还不能说明轻质气体的数值,例如氢气(图4)。如果涡轮分子泵是为低极限压力而设计的,就会使用不同叶片角度的泵级,并对氢气的最大泵速进行分级优化。这样就能同时为氢气(约1000)和氮气提供足够的压缩比的泵。由于空气中的氮气分压很高,压缩比应该在10的9次方左右。对于由转子和定子盘组成的纯涡轮分子泵,由于其分子流的要求,前级真空压力需要达到约10[/color][font=&][color=#222222]-2[/color][/font][color=#222222] hPa(图5)。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/323934.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图5|抽速与抽气压力的关系[img]https://file.jgvogel.cn/134/upload/resources/image/323935.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图6|霍尔韦克级的工作原理[color=#222222]霍尔韦克级的特殊功能[/color]Holweck级(图6)是一个多级Gaede分子泵,有一个螺旋形的泵通道。由于转子的旋转,进入泵通道的气体分子在泵通道的牵引方向上得到一个速度。由于转子和分离分隔Holweck级的挡板之间存在间隙,因此会出现回流损失。为了尽量减少回流,间隙的宽度必须保持较小。圆柱形套筒(1)被用作霍尔韦克平台的转子,它在定子(2)的螺旋通道中旋转。如果定子被安排在转子的外部和内部,两个霍尔韦克级可以很容易地被整合到一个泵中。这样,被泵送的气体颗粒首先通过转子外侧的定子通道,然后再通过转子内侧的定子通道向上输送。从那里,它们通过一个收集通道,到达前级泵。现代涡轮分子泵有时有几个这样的"折叠式"霍尔韦克级,其泵送速度S [size=11px]0[/size]是相同的。[font=微软雅黑, &][size=14px] [/size][/font]这里,b - h是通道的横截面,v - cos α是通道方向的速度分量。随着通道长度L和速度v - cos α[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323936.png?x-oss-process=image/resize,w_700,h_700[/img][/align]压缩比就会增加。[img]https://file.jgvogel.cn/134/upload/resources/image/323937.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图7|纯涡轮分子泵和涡轮拖动泵的压缩比今天,涡轮泵配备了Holweck级,是为了使极限压力在0.5-5hpa之间,以隔膜泵为前级建立起涡轮分子泵系统,这些被称为涡轮拖动泵。由于涡轮泵的高压缩比,只需要很小的泵送速度就可以为Holweck级产生低的本底压力。因此,排气通道--特别是通道高度和到转子的间隙--可以保持得非常小,分子流可以保持在1 hPa范围内。氮气的压缩比同时增加了所需的10的3次方数量级。在图9中,我们可以看到压缩比曲线向更高压力的方向移动了大约10的2次方。在为高气体吞吐量而设计的涡轮分子泵中,在气体吞吐量、前真空兼容性和颗粒容忍度之间做出了妥协。在这种情况下,Holweck级的间隙距离尺寸要大一些。[img]https://file.jgvogel.cn/134/upload/resources/image/323938.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图9|纯涡轮分子泵和涡轮拖动泵对氢气的压缩比[font=&]选择正确的前级泵[/font]涡轮分子泵和前级泵的压缩在获得最低的压力范围方面起着重要作用。这对于氢气等轻质气体来说尤其如此。在以前的超高真空应用中,前级泵已经能够提供10-2hPa左右的低压。涡轮分子泵的压缩比可以在此基础上确定。旋片泵、多级罗茨泵或泵站等前级泵可以提供这样的低前级压力。尽管旋片泵是比较经济的选择,但当涡轮泵关闭时,有油倒流的风险,特别是在错误操作的情况下。干式前级泵甚至泵站,能产生很低的前级真空,其价格要高得多,而且需要相对较大的空间,这在许多应用中是一个不利因素。这里最理想的解决方案是使用一个小型的、低成本的干式前级泵。大多数涡轮分子泵是全能型的。除了良好的压缩性能,它们还提供大的泵送速度和高的气体吞吐量。然而,在极少数超高真空应用中,高气体吞吐量根本没有发挥任何作用。相反,泵送速度和对轻质气体的出色压缩比才是最重要的。涡轮分子泵的霍尔韦克级为最大压缩值进行了优化,这不可避免地减少了泵的气体吞吐量。然而,这对上述应用来说是次要的。然而,备用泵和涡轮分子泵的总压缩比的很大一部分可以转移到涡轮泵上的事实是非常有利的。因此,带有压缩优化的霍尔韦克级的涡轮分子泵可以在明显高于前级压力的情况下排气,以达到相同的极限压力。因此,在使用带有压缩优化的霍尔韦克级的涡轮分子泵时,一个小型隔膜泵就足以产生超高真空(见图9,表1)。[font=微软雅黑, &][size=14px][font=&][img]https://file.jgvogel.cn/134/upload/resources/image/323939.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/font][/size][/font][font=&][/font][font=微软雅黑, &][size=14px][font=&]表1|使用Hipace300H和不同的前级泵所能达到的极限压力[/font][/size][/font] [img]https://file.jgvogel.cn/134/upload/resources/image/323940.gif?x-oss-process=image/resize,w_700,h_700[/img][align=left]这种优化的涡轮分子泵具有很高的真空兼容性,因此隔膜泵毫无疑问仍然可以在间歇模式下运行。只有当前级的真空压力达到一个不允许的高值时,才需要开启它。众多的应用表明,隔膜泵的运行时间不到总时间的10%。除了由此带来的能源节约外,前级泵较低的热辐射和最终在实验室中几乎无噪音的运行也不应被低估。[/align][align=left]此外,为了保持极低的压力(见图9和表1),通常连接在涡轮分子泵下游的离子捕集泵就不再需要了。[/align][align=left]因此,通过现代涡轮分子泵中Holweck级的智能互连,可以大大增加压缩比,特别是对轻质气体。简单、小型的前级泵可用于在低UHV范围内产生非常低的压力。与过去使用的选择相比,这是一个非常大的优势。然而,同样重要的是指出这些解决方案的局限性。高压缩比的涡轮泵不太适合大气体负荷。[/align]激光平衡技术[img]https://file.jgvogel.cn/134/upload/resources/image/323941.jpeg?x-oss-process=image/resize,w_700,h_700[/img]2021年,Pfeiffer真空公司已经推出了激光平衡技术。最后,小析姐分享给大家几个涡轮分子泵在使用小tips:1、为防止涡轮分子泵返油,开机前先将前级泵抽至2托,然后再启动涡轮分子泵。2、在涡轮分子泵与前级泵之间可串入一只挡油阱以防止机械泵油蒸汽的返油。3、不能在前级泵工作时(前级管路接通)和真空室处于真空状态时将涡轮分子泵停掉,否则将会使油蒸汽迅速从前级管路返流到泵的清洁端。4、选择系统前级泵大小时,应使涡轮分子泵的前级泵保持在分子流状态下。5、不能让涡轮分子泵在低于额定工作转速下运行。6、分子泵入口应装设防护网,以免异物进入泵内损坏转子和定子叶片。7、规范使用涡轮分子泵,可有效提升真空泵的使用效率,延长使用寿命

  • 涡轮泵挂彩了?记一次质谱故障

    涡轮泵挂彩了?记一次质谱故障

    安捷伦5975C,昨天下午仪器在待机情况下涡轮泵和前级泵都停下来了,离子源和四级杆温度也降下来了,由于下班时才发现,于是先把仪器关机今早上班再检查。起初以为是哪里大漏导致真空达不到,仪器自己放空了。先是检查前级泵泵油,油位在最低线以上,泵油颜色也正常,真空接口也很紧,应该没什么问题。接着想要打开质谱真空仓检查,发现侧板还吸得挺紧的(感觉不太像是大漏吧),拧松放空阀卸掉真空(放空完顺手拧紧),打开侧板发现真空仓里面有些细小的金属粉末,立马意识到情况不妙了,这是哪里来的呢?!还是先用镜头纸小心将颗粒物清扫出真空仓外吧,OMG!!!我的分子涡轮泵发生什么事了?!先上图吧,那个伤心。。。http://ng1.17img.cn/bbsfiles/images/2015/05/201505122122_545756_2905367_3.jpg 请问各位版友,涡轮泵的扇叶是打到哪里了吗?怎么会打成这样?惨不忍睹啊!真空仓里面的金属粉应该是扇叶上磨出来的吧?仪器上次维护清洗离子源是去年的12月底,期间一直正常使用没什么问题,怎么突然就这样了? 现在情况是这样的,我把真空仓清理干净试着重新开机,前级泵运行正常能把侧板吸住,仪器也有自检(嘀一声),但是涡轮泵没有运转,速度一直都是0.1,然后大概5分钟之后,涡轮泵长时间没有启动,仪器自动把前级泵也关闭了。这种情况感觉涡轮泵应该是挂彩了吧,下午联系了安捷伦的工程师也说可能是涡轮泵坏了,请大家帮忙分析一下故障的原因吧,仪器应该是06-08年买的(具体记不清了),期间也没坏过什么部件。前级泵和涡轮泵都是普发的,上一张涡轮泵外观图http://ng1.17img.cn/bbsfiles/images/2015/05/201505122221_545765_2905367_3.jpg还有联系了安捷伦维修报价,G3170-67000 New-HiPACE 80 Turbo Pump Service Kit 3万3千多(不含税),这个价格怎样,有没有被坑了?

  • 气质分子涡轮泵停止了。

    昨天做样是好好的,今天想做样时发现分子涡轮泵停止转动了。很奇怪?重启仪器分子涡轮泵工作,当真空到达一定值之后,Fore pressure值越来越大?难道是分子涡轮泵坏掉了?有没有遇到类似问题的?

  • 【分享】涡轮机和离心机有什么不同

    离心机:是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。 适用范围: 1、将悬浮液中的固体颗粒与液体分开。 2、将乳浊液中两种密度不同,又互不相溶的液体分开,例如从牛奶中分离出奶油。 3、用于排除湿固体中的液体,例如用洗衣机甩干湿衣服。 4、分离不同密度的气体混合物(特殊的超速管式分离机)。 5、对固体颗粒按密度或粒度进行分级(沉降离心机),利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点。 涡轮机:利用流体冲击叶轮转动而产生动力的发动机,按流体的不同而分为汽轮机、燃气轮机和水轮机,广泛用做发电、航空、航海等的动力机。 涡轮机是如何工作的? 涡轮增压器实际上是一种气体压缩机,通过压缩气体来增加进气量。它是利用高温高压的气体惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由管道送来的蒸汽,使之增压进入汽缸。蒸汽推动转子高速旋转,带动发电机或者其他设备工作。 离心机依靠高速旋转的离心力来分离比重不同的物体,而涡轮机依靠流体的膨胀来做功。

  • 涡轮分子泵运转时需要注意的问题2

    2、压缩比  涡轮分子泵的压缩比是指前级管道(排气口处)的压力与进气口处的压力之比。由于被抽气体的分子量不同,泵对各种气体的压缩比也不同。泵对氢的压缩比很小,一般为1000 左右,这样一来如果前级管道中氢的压力为1×10- 7Torr(13.33 μPa),那么进气口处氢的压力则小1000倍,即为1×10- 10 Torr(13.33 nPa),由于氢是超高真空系统中主要的残余气体,所以氢的压缩比是决定涡轮分子泵的极限压力的关键因素。?  涡轮分子泵对于大分子量的气体,如对那些碳氢化合物分子的压缩比是相当大的,一般高于1012。这个比值根据不同泵,以及不同分子量而不同,由于前级泵的不同和其它因素,涡轮分子泵的前级管道中的碳氢化合物的分压力在10- 4 Torr(13.33 mPa)~10- 6 Torr(133.3 μPa)之间,在这种条件下,在泵的入口处碳氢化合物的分压力将低了1012 倍,即为10- 16 Torr(13.33 fPa)或更低。这样几乎是无限小的压力,已超出了可测量的范围,即使最灵敏的质谱仪也难以测出。

  • 请问一下涡轮泵的价格!

    向大家请教一下,一般在电镜上用的涡轮泵大概是什么价格?有用国产的嘛?特别是用剑桥/LEO系列的朋友,你们的真空系统用的是涡轮泵吧?是否都需要用机械泵做前级泵?[em54]

  • 【原创大赛】记一次由空调引发的涡轮泵故障

    【原创大赛】记一次由空调引发的涡轮泵故障

    [align=left] 实验室有两台安捷伦[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url],一台是5975C,一台是5977A。新仪器在质谱方面增加了涡轮泵的软启动功能(HiVac SoftStart),可以使涡轮泵阶段性平稳地加速至100%,通过维护菜单能将此功能关闭或开启。[/align][align=center][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011640395597_7406_2478053_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011640549012_8230_2478053_3.jpg!w690x517.jpg[/img][/align][align=left] 实验室的检测业务量不大,但是项目杂多,所以平时基本都是开机的状态(柱温箱等部分的温度是关闭的,节省一点儿电能),赶上放长假或者维护时才放空关机,每天下班前和上班后我也必进实验室检查一下两台质谱。七月一个周一的早上,我打开实验室的门便感到一阵热浪,空调停机了,同时还听到了异响,是5977A,涡轮泵有金属摩擦的声音,响度不大,赶快放空了质谱,平日里涡轮泵需要很时间的降速过程,这次仅用了两分多钟便降了下来。与安捷伦工程师电话沟通,肯定答复是涡轮泵损坏,只能换。新泵是PFEIFFER,用旧泵瓦里安抵了一部分购置费,工程师到场后也再次开机确认,新泵安装调试用了三个小时。当时没拍照片,失误。 八月份北方内陆城市气温高,那个周末是37度,发布了高温预警,空调意外停机后实验室温度上升,我周一早上看的温度计显示室温是35度,安捷伦工程师建议涡轮泵工作的环境温度不能超过33度,否则散热不良会引起涡轮泵损坏。吃惊的是,同处一室的5975C涡轮泵度过了高温,至今还在工作。 小结:质谱实验室除了考虑UPS,空调也是很重要的一个方面,尤其是在夏季,加装一台备用空调或者其他办法,使空调有足够的能力来控制好室温。[/align]

  • 气质分子涡轮泵不转了,求帮忙看看是不是分子涡轮泵真的坏了

    最近我单位气质分子涡轮泵不转了,请大家帮忙看是否分子涡轮泵坏了。我们的仪器是安捷伦5975C,于2009年11月安装的,平时都是开机状态,于今年7月25日实验楼电的问题,直接被关机了(我们有配UPS,不知为什么中午下班3小时怎么,电源和仪器都关机了),不过7月25日维护一下仪器进样口,抽真空一天后,仪器调谐正常,并且于7月30日和8月1日运行检测样品还正常,可是于昨天发现分子涡轮泵不转,前级泵开机2分钟左右后也停止不动了,四级杆和离子源的温度也都上不去了,打800问了,说可能分子涡轮泵坏了,需要更换8万多元啊!

  • 分子涡轮泵的维护

    今天在上报仪器配件计划时,想起去年1月份单位进的Agilent 6890GC 5975MSD仪出现的一起故障。当时该机上电启动后,表头压力一直降不下来,涡轮泵转速显示零点几,就依次检查机械泵,泵油,放空口,柱子,各接口密封,未发现异常,因该机从安装到这次故障不到2年,当时没有怀疑涡轮泵会出问题,就又反复检查,仍没发现问题,就联系厂家,后来厂家维修工程师说是涡轮泵故障,无法修复,只能更换,要7万块,事后被领导狠狠剋一顿,扣了奖金。现在想来,这事故来的很突然,没有征兆,让人疑惑。平时使用中,因一周一次分析,我们就一周连续开机3天,停4天。一般的检查维护就按教程执行和记录,不知学友们有否这方面的经验给予指导?

  • 涡轮流量计故障快速查询

    一体化液体涡轮流量计结构为防爆设计,可以显示流量总量,瞬时流量和流量满度百分比。电池采用长效锂电池,单功能积算表电池使用寿命可达5年以上,多功能显示表电池使用寿命也可达到12个月以上。 从结构上来说,分为本体和转换器2个部分。那么我先来说说转换器部分,直接找一把带磁性的螺丝刀,在本体与转换器连接的下方金属处滑动螺丝刀尖,多试几次,如果表头无瞬时流量,则说明表头有问题,请及时更换表头。如果表头有流量跳动,则判断表头良好,本体叶轮有异物卡死或叶轮损坏。必须对本体进行检查。 国内液体涡轮基本通用,方法简单,准确。 纯手工撰写!!! ——江苏丰辉仪表有限公司

  • 涡轮流量计最佳安装方法

    涡轮流量计最佳安装方法为了确保涡轮流量计的测量准确,必须正确地选择安装位置和方法涡轮流量计对直管段的要求:流量计必须水平安装在管道上(管道倾斜在50以内),安装时流量计轴线应与管道轴线同心,流向要一致。流量计上游管道长度应有不小于2D的等径直管段,如果安装场所充许建议上游直管段为20D、下游为5D。涡轮流量计对配管的要求:流量计安装点的上下游配管的内径与流量计内径相同。涡轮流量计对旁通管的要求:为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。涡轮流量计对外部环境的要求:流量计最好安装在室内,必须要安装在室外时,一定要采用防晒、防雨.防雷措施,以免影响使用寿命。涡轮流量计对介质中含有杂质的要求:为了保证流量计的使用寿命,应在流量计的直管段前安装过滤器。涡轮流量计的安装场所:流量计应安装在便于维修,无强电磁干扰与热辐射的场所涡轮流量计对安装焊接的要求:用户另配一对标准法兰焊在前后管道上。不允许带流量计焊接!安装流量计前应严格清除管道中焊渣等脏物,最好用等径的管道(或旁通管)代替流量计进行吹扫管道。以确保在使用过程中流量计不受损坏。安装流量计时,法兰间的密封垫片不能凹入管道内。涡轮流量计接地的要求:流量计应可靠接地,不能与强电系统地线共用。涡轮流量计对于防爆型产品的要求:为了仪表安全正常使用,应复核防爆型流量计的使用环境是否与用户防爆要求规定相符,且安装使用过程中,应严格遵守国家防爆型产品使用要求,用户不得自行更改防爆系统的连接方式,不得随意打开仪表。选型在规定的流量范围内,防止超速运行,以保证获得理想准确度和保证正常使用寿命。安装流量计前应清理管道内杂物:碎片、焊渣、石块、粉尘等推荐在上游安装5微米筛孔的过滤器用于阻挡液滴和沙粒。流量计投运时应缓慢地先开启前阀门,后开启后阀门,防止瞬间气流冲击而损害涡轮。加润滑油应按告示牌操作,加油的次数依气质洁净程度而定,通常每年2-3次。由于试压、吹扫管道或排气造成涡轮超速运转,以及涡轮在反向流中运转都会可能使流量计损坏。流量计运行时不允许随意打开前.后盖,更动内部有关参数,否则将影响流量计的正常运行。小心安装垫片,确保没有突出物进入管道,以防止干扰正常的流量测量。流量计在标定时要在流量计取压口上采集压力。

  • 【讨论】ABsciex仪器的分子涡轮泵使用

    最近发现API4000的分子涡轮泵Q0和Q3的涡轮泵又发热了,温度在60℃左右。不知道大家的仪器分子涡轮泵的都有多少度啊?温度过高都怎么处理的啊?前面我也遇到温度比较高的情况。基本上涡轮泵的温度较高,多半是由于仪器真空度不够,分子涡轮泵负荷过重导致的。处理方法:1、更换机械泵泵油,提高一级真空度,使涡轮泵的负荷降低,使用时间也可以延长; 2、清洗或更换机械泵与四级杆之间的密封圈,及涡轮泵与四级杆间的密封圈,增加气密性,提高真空度; 3、物理冷却,除了用空调降低室温,可用风扇吹吹,降低温度,涡轮泵的使用时间也可以延长。不知道大家都怎么处理这类问题啊?交流交流。

  • 提示涡轮分子泵转速不对

    早上开机点火后,提示涡轮分子泵转速不在要求范围内,自动熄火。我把截取锥和采样锥都重新安装后,重新点火,发现点火瞬间发生噼里啪啦的声音,还闪了几下,之后仪器正常运行。请问这是正常现象吗?是什么原因导致涡轮分子泵转速不对的,谢谢!

  • 【原创】焦炭机械强度测定转鼓机使用说明

    焦炭机械强度测定转鼓机使用说明 一、用途MKM-2000焦炭机械强度测定转鼓机,是用于测定焦炭机械强度(M40、M25、M10)、焦炭试样的专用设备,该机采用优化设计,使其结构紧凑,操作简便,严格按照GB/2006-94《冶金焦炭机械强度测定方法》设计制作,各项指标符合中华人民共和国国家标准,是各钢球厂、焦化厂、铸造厂等生产和使用焦炭厂家理想首选专用检测设备。转鼓直径Φ1000±5mm转鼓长度1000±2mm转 速25±1.5r/min电机功率2.2KW试样重量50kg电 压380V/220V预置转数0-9999重 量约750kg二、技术参数三、结构概述转鼓主要由机架、转筒、减速系统、放料系统、控制装置等组成。机架由优质钢材焊接而成,通过两端半轴、轴承、轴承座安放于机架上,形成一个回转的筒体。焦炭放入转筒内转动时,焦炭随之滚动,在钢板筋的作用下,被抛下自碰破碎和与桶体磨损而碎,达到检测强度的目的。达到预置数后,转筒停止转动,物料从料口放出,完成一个试验周期。减速系统:由电机、联轴器、蜗轮减速机等组成。起到带动转筒恒定运转。减速系统配有手动调整装置,便于放料。卸料装置:有转筒卸料口、活络支撑架、卸料板等组成。转鼓达到预置转数停止后,进入放料工作。因蜗转减速机有自锁功能,需人工搅动装在减速机输入轴上的摇把,使活络支撑架对准料口上的卡座,然后松动压紧螺栓,掀开料口盖板,进行卸料工作。摇把只用于放料工作,放料工作完成即取下,以防止通电转动时出现危险。计数装置:主要起到预置转数、数字显示转数、自动停机的作用。四、安装与试车转鼓要安装在混凝土地基上,地基深度在600±50毫米以上。混凝土地基达到凝固期后,地脚螺栓拧紧,电源线接上,接地线可靠接地。也可以将机器放于平整的

  • 涡轮流量计常见问题及处理

    涡轮流量计常见问题及处理

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501121615_532010_2940874_3.jpg涡轮流量计不记流量了怎么处理?如果通电有显示,有可能是叶轮掉了。建议返厂检修。涡轮流量计输出一般与什么链接?一般由三个形式的连接;1:PLC你的主控系统2:记录仪(无纸/有纸均可)3:积算仪 (适合无显示的流量计涡轮流量计的叶轮转速过快对轴和轴承有什么影响,还有想加大流量计量程上限需要怎么改动叶轮?涡轮流量计的叶轮有一个适用流速范围。在这个流速范围的1/3以下轴和轴承的影响明显,超过适用流速 1/3后轴和轴承的影响随流速增加而逐渐线性加大,到适用流速上限时超出精度要求,再加大轴和轴承的影响明显上升。自己改叶轮很难,最好联系厂家。涡轮流量计的重复性是什么意思?流量计有两个指标,一个是准确度,一个是重复性。重复性就是指连续几次校验同一流量段的数值差值比,重复性越高说明流量计稳定性越好 在涡轮流量计中有个术语叫“零点漂移”,请问这个事什么意思? 仪表充分预热后,在输入使输出为零信号,周围环境和输入不变的情况下,输出偏离零位的现象称零点漂移,零点漂移主要是由于温度引起的,就是流量值应该为0的时候,流量计输出的不是为0,可以通过流量积算仪进行设定。 涡轮流量计本身显示不存在零点漂移问题(输出的电流信号有可能漂移),因为涡轮必须旋转切割磁力线,才能产生流量脉冲,进入运算显示出来。如果停输后还有流量,原因可能是:1、下游阀门没有关严,导致小流量测量。2、现场有电磁干扰出现误信号,正常测量时不宜察觉 涡轮流量计如何接线?[/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制