当前位置: 仪器信息网 > 行业主题 > >

色谱中方法

仪器信息网色谱中方法专题为您提供2024年最新色谱中方法价格报价、厂家品牌的相关信息, 包括色谱中方法参数、型号等,不管是国产,还是进口品牌的色谱中方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱中方法相关的耗材配件、试剂标物,还有色谱中方法相关的最新资讯、资料,以及色谱中方法相关的解决方案。

色谱中方法相关的资讯

  • 标准|《生物样品中放射性核素的γ 能谱分析方法》国家标准发布
    p & nbsp 近日,国家标准化管理委员会在2020年第8号中国国家标准公告中发布了《生物样品中放射性核素的γ能谱分析方法》(GB/T 16145—2020)。该标准将代替GB/T 16145—1995。新标准将在 span style=" color: rgb(255, 0, 0) " strong 2020年11月1日 /strong /span 实施。归口国家卫生健康委员会。 /p p & nbsp 该标准规定了用锗[HPGe,Ge(Li)]或碘化钠[NaI(Tl)] γ能谱仪分析生物样品中放射性γ核素的方法。标准中规定了 strong 生物样品& nbsp /strong ( strong B /strong strong iological Sample /strong ) 的概念以及样品处理的一般方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 356px height: 243px " src=" https://img1.17img.cn/17img/images/202005/uepic/2fbb8aed-e222-432e-8d7c-c5fc528c8527.jpg" title=" GEORADiS RT-30.jpg" alt=" GEORADiS RT-30.jpg" width=" 356" vspace=" 0" height=" 243" border=" 0" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(0, 112, 192) " strong 图为GEORADiS RT-30 手持放射性伽马能谱仪 /strong /span /p p & nbsp γ能谱仪设计用于监测和检测各种金属制品、建筑材料、地质样品、环境采样样品及食品中可能存在的放射性辐射。例如:钢铁厂内钢、尘、渣的快速辐射分析;建筑材料、岩石中钾、铀和钍的浓度检测以及食品、动物饲料和环境样品中可能存在的放射性辐射。 /p p & nbsp 仪器有台式机型和手持机型。手持版本便携、体积小、操作方便,在实验室外也可以轻松完成检测。 br/ /p p & nbsp span style=" color: rgb(255, 0, 0) " strong 标准原文 /strong /span span style=" color: rgb(165, 165, 165) " 待国家标准化委员会正式发布后上传。 /span /p p -------------#会议预报#------------------- /p p style=" text-align: center " strong style=" color: rgb(255, 0, 0) text-align: center " span style=" background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px " 欢迎报名“药品微生物检测技术” /span /strong strong style=" color: rgb(255, 0, 0) text-align: center " span style=" background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px " 专题网络研讨会 /span /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/Drug2020/" target=" _blank" title=" 微生物大会链接" img style=" max-width: 100% max-height: 100% width: 400px height: 300px " src=" https://img1.17img.cn/17img/images/202005/uepic/dfdb8120-0b79-41bd-b6f2-f2fc9417648b.jpg" title=" 微生物检测技术大会.jpg" alt=" 微生物检测技术大会.jpg" width=" 400" vspace=" 0" height=" 300" border=" 0" / /a /p p strong 报名链接 /strong : a href=" https://www.instrument.com.cn/webinar/meetings/Drug2020/" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong https://www.instrument.com.cn/webinar/meetings/Drug2020/ /strong /span /a /p
  • 中方新一轮反击 对美116项科学仪器及部件加征关税
    p   2019年8月15日,美国政府宣布,对从中国进口的约3000亿美元商品加征10%关税,分两批自2019年9月1日、12月15日起实施。美方措施导致中美经贸摩擦持续升级,极大损害中国、美国以及其他各国利益,也严重威胁多边贸易体制和自由贸易原则。 /p p   根据《中华人民共和国海关法》《中华人民共和国对外贸易法》《中华人民共和国进出口关税条例》等法律法规和国际法基本原则,国务院关税税则委员会决定,对原产于美国的5078个税目、约750亿美元进口商品加征关税。有关事项如下: /p p   一、自2019年9月1日12时01分起,对附件1第一部分所列270个税目商品加征10%的关税,对附件1第二部分所列646个税目商品加征10%的关税,对附件1第三部分所列64个税目商品加征5%的关税,对附件1第四部分所列737个税目商品加征5%的关税,具体商品范围见附件1。 /p p   二、自2019年12月15日12时01分起,对附件2第一部分所列749个税目商品加征10%的关税,对附件2第二部分所列163个税目商品加征10%的关税,对附件2第三部分所列634个税目商品加征5%的关税,对附件2第四部分所列1815个税目商品加征5%的关税,具体商品范围见附件2。 /p p   三、对原产于美国的附件所列进口商品,在现行适用关税税率基础上分别加征相应关税,现行保税、减免税政策不变,此次加征的关税不予减免。 /p p   四、相关进口税收的计征: /p p   加征关税税额=关税完税价格× 加征关税税率 /p p   关税=按现行适用税率计算的应纳关税税额+加征关税税额 /p p   进口环节增值税、消费税按相关法律法规等规定计征。 /p p   仪器信息网整理发现,本次加征关税涉及球磨机、气体或烟雾分析仪、核磁共振成像成套装置、X射线管、气相色谱仪、液相色谱仪、X射线无损探伤检测仪、试验机等116项科学仪器及其关键零部件。 /p p   据了解,国务院关税税则委员会将继续开展对美加征关税商品排除工作。750亿美元商品清单中,经审核确定的排除商品,按排除办法,不加征中方为反制美301措施所加征的关税 未纳入前两批可申请排除范围的商品,将纳入第三批可申请排除的范围,接受申请办法将另行公布。 /p p    strong 附录: /strong /p p style=" text-align: center "   span style=" color: rgb(255, 0, 0) " strong  中方对 /strong /span span style=" color: rgb(255, 0, 0) " strong 美加征10%关税的14科学仪器清单(8月23日公布) /strong /span /p p   533 84196011 制氧量≥15000立方米/小时制氧机 /p p   617 84742020 球磨式破碎及磨粉机器 /p p   732 90221200 X射线断层检查仪 /p p   733 90222910 γ射线无损探伤检测仪 /p p   734 90283011 单相感应式电度表 /p p   735 90283012 三相感应式电度表 /p p   736 90283019 其他电度表 /p p   737 90289090 非工业用计量仪表的零件、附件 /p p   901 90229010 X射线影像增强器 /p p   902 90303900 检测电压、电流、电阻或功率的其他仪器及装置,带记录装置 /p p   903 90318020 坐标测量仪 /p p   904 90318031 超声波探伤检测仪 /p p   905 90318032 磁粉探伤检测仪 /p p   906 90318033 涡流探伤检测仪 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 中方对美加征5%关税的102项科学仪器清单(8月23日公布) /span /strong /p p   1316 73259100 可锻性铸铁及铸钢研磨机的研磨球 /p p   1344 84131900 其他装有或可装计量装置的泵 /p p   1345 84135031 往复式柱塞泵 /p p   1346 84136040 螺杆回转泵 /p p   1347 84137010 转速≥10000转/分离心泵 /p p   1348 84137099 其他离心泵 /p p   1349 84139100 液体泵用零件 /p p   1351 84148040 空气及其他气体压缩机 /p p   1352 84149019 其他用于制冷设备的压缩机零件 /p p   1353 84183029 制冷温度& gt -40℃,容积≤500L柜式冷冻箱 /p p   1354 84184021 制冷温度& gt -40℃,容积500-900L立式冷冻箱 /p p   1355 84184029 制冷温度& gt -40℃,容积≤500L立式冷冻箱 /p p   1356 84186990 其他制冷设备 /p p   1413 85094090 食品研磨机及搅拌器 /p p   1443 85392190 其他卤钨灯 /p p   1444 85392999 税目8539中其他未列名的白炽灯泡 /p p   1491 90221910 低剂量X射线安全检查设备 /p p   1492 90248000 测试其他材料的机器及器具 /p p   1493 90261000 测量、检验液体流量或液位的仪器及装置 /p p   1495 90262090 其他测量、检验压力的仪器及装置 /p p   1496 90268010 测量气体流量的仪器及装置 /p p   1497 90269000 检测液体或气体变化量的仪器及装置的零件、附件 /p p   1498 90271000 气体或烟雾分析仪 /p p   1501 90318090 其他未列名的测量或检验仪器、器具及机器 /p p   2193 69091100 实验室、化学或其他技术用陶瓷器 /p p   2194 69091200 莫氏硬度为9或以上的实验室、化学或其他技术用品 /p p   2195 69091900 其他实验室、化学或其他技术用陶器 /p p   2223 70140010 光学仪器用光学元件毛坯 /p p   2564 84181010 容积& gt 500L冷藏-冷冻组合机 /p p   2565 84181020 200L& lt 容积≤500L冷藏-冷冻组合机 /p p   2566 84181030 容积≤200L冷藏-冷冻组合机 /p p   2570 84183010 制冷温度≤-40℃,容积≤800L柜式冷冻箱 /p p   2571 84183021 制冷温度& gt -40℃,容积500-800L柜式冷冻箱 /p p   2572 84185000 其他装有冷藏或冷冻装置的其他设备 /p p   2573 84186120 压缩式热泵,税目8415空调用除外 /p p   2574 84186190 其他热泵,税目8415空调用除外 /p p   2575 84186920 其他制冷机组 /p p   2576 84189100 冷藏或冷冻设备用特制家具零件 /p p   2577 84189910 制冷机组及热泵用零件 /p p   2578 84189991 制冷温度≤-40℃冷冻设备零件 /p p   2579 84189992 制冷温度& gt -40℃,容积& gt 500L的制冷设备零件 /p p   2580 84189999 税目8418其他制冷设备用零件 /p p   2581 84193200 木材、纸浆、纸或纸板干燥器 /p p   2582 84193990 其他用途的干燥器 /p p   2583 84194090 其他蒸馏或精馏设备 /p p   2584 84195000 热交换装置 /p p   2585 84196019 制氧量& lt 15000立方米/小时制氧机 /p p   2586 84196090 其他液化空气或其他气体的机器 /p p   2591 84211910 脱水机 /p p   2597 84222000 瓶子及其他容器的洗涤或干燥机器 /p p   2606 84233090 其他恒定秤、物料定量装料秤 /p p   2607 84238110 最大称量≤30kg的计价秤 /p p   2608 84238120 最大称量≤30kg的弹簧秤 /p p   2609 84238190 最大称量≤30kg的其他衡器 /p p   2610 84238210 30kg& lt 最大称量≤5000kg的地中衡 /p p   2611 84238290 30kg& lt 最大称量≤5000kg的其他衡器 /p p   2612 84238930 其他吊秤 /p p   2613 84238990 其他衡器 /p p   2614 84239000 衡器用的各种砝码、秤砣及其零件 /p p   3008 85392110 科研、医疗专用卤钨灯 /p p   3013 85393110 科研、医疗专用的热阴极荧光灯 /p p   3014 85393191 紧凑型荧光灯 /p p   3015 85393199 其他热阴极荧光灯 /p p   3016 85393230 钠蒸气灯 /p p   3017 85393290 金属卤化物灯 /p p   3018 85393910 科研、医疗专用的其他放电灯管 /p p   3019 85394100 弧光灯 /p p   3020 85395000 发光二极管(LED)灯泡(管) /p p   3025 85408100 接收管或放大管 /p p   3027 85409190 其他阴极射线管用的零件 /p p   3157 90022090 其他光学仪器或装置滤色镜 /p p   3159 90029090 其他光学仪器用未列名光学元件 /p p   3179 90139020 子目9013.8030所列仪器及器具用零件、附件 /p p   3180 90139090 税目9013所列其他仪器及器具的零件、附件 /p p   3184 90151000 测距仪 /p p   3185 90152000 经纬仪及视距仪 /p p   3187 90158000 其他大地测量仪器及装置 /p p   3188 90159000 税目9015所列仪器及装置的零件、附件 /p p   3189 90181299 其他超声扫描装置 /p p   3190 90181310 核磁共振成像成套装置 /p p   3191 90181390 核磁共振成像成套装置零件 /p p   3193 90182000 紫外线及红外线装置 /p p   3205 90221920 X射线无损探伤检测仪 /p p   3206 90221990 其他非医疗用的X射线应用设备 /p p   3209 90223000 X射线管 /p p   3211 90230090 其他专供示范(例如,教学或展览)而无其他用途的仪器、装置及模型 /p p   3212 90241010 电子万能试验机 /p p   3213 90241020 硬度计 /p p   3214 90241090 测试金属材料的其他机器及器具 /p p   3215 90249000 测试各种材料性能的机器及器具的零件、附件 /p p   3216 90251910 非液体的工业用温度计及高温计 /p p   3217 90251990 非液体的非工业用温度计、高温计 /p p   3218 90259000 税目9025所列仪器及装置的零件、附件 /p p   3219 90272011 气相色谱仪 /p p   3220 90272012 液相色谱仪 /p p   3221 90272019 其他色谱仪 /p p   3237 90309000 税目9030所列仪器及装置的零件、附件 /p p   3238 90311000 机械零件平衡试验机 /p p   3239 90312000 试验台 /p p   3241 90318039 其他无损探伤检测仪器 /p p   3242 90322000 恒压器 /p p   3243 90328100 液压或气压自动调节或控制仪器及装置 /p p style=" text-align: right " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 注:以上清单由仪器信息网整理,转载请注明来源 /span /p p style=" line-height: 16px "   span style=" color: rgb(0, 176, 240) "   /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201908/attachment/79c973e5-2c1b-43e0-bc47-dbe447b69d79.pdf" title=" 附件1-清单一.pdf" span style=" color: rgb(0, 176, 240) " 附件1-清单一.pdf /span /a /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201908/attachment/ad51e6f4-957b-4d20-a5eb-914272d9968e.pdf" title=" 附件2-清单二.pdf" span style=" color: rgb(0, 176, 240) " 附件2-清单二.pdf /span /a /p
  • 2020版药典专辑∣中药应用文集上新-气相色谱法篇
    中国药典中药应用文集8月19日,岛津中国公众号发布“2020版药典专辑∣中药增修订含量测定项目应用文集重磅推出”文章,获得医药、高校、食品等多个行业高度关注,部分用户近期咨询岛津技术人员该文集近期是否有更新。针对用户提出的需求,我们收集SGLC(岛津(上海)实验器材有限公司)应用工程师近段时间所做案例,同时为让大家尽快了解和使用,本期开始我们将推送系列子项目文集。 应用文集案例使用仪器及色谱柱汇总表应用实例 艾叶【含量测定】项下“桉油精和龙脑”测定对照品溶液色谱图供试品溶液色谱图 按照 2020《中国药典》 中方法,采用岛津色谱柱 SH-50 分析艾叶中桉油精和龙脑,2 个化合物峰形良好,目标物与相邻杂质色谱峰分离度 1.5 以上,龙脑的理论塔板数为 629637,大于药典要求的 50000,满足《中国药典》要求,此方法可为艾叶中桉油精和龙脑的同时测定提供参考。 麝香【含量测定】项下“麝香酮”测定对照品溶液色谱图供试品溶液色谱图 参照2020 版《中国药典》中色谱条件,采用色谱柱SH-50 分析麝香中麝香酮,麝香酮峰形对称,理论塔板数按麝香酮峰计算远高于1500,满足《中国药典》要求。此方法可为麝香中麝香酮含量测定提供参考。 本文内容非商业广告,仅供专业人士参考。
  • 贸易磋商中方回应 116项科学仪器加税新措施暂“归零”
    p style=" text-align: justify text-indent: 2em " 2019年12月15日,为落实12月13日 a href=" https://www.instrument.com.cn/news/20191214/518928.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 中美贸易磋商的友好结果 /span /a ,根据国务院关税税则委员会发布最新公告,自2019年12月15日12时01分起,116项科学仪器的最新加税措施将暂停实施。 /p p style=" text-align: justify text-indent: 2em " 本次最新被暂停的加税措施为《国务院关税税则委员会关于对原产于美国的部分进口商品(第三批)加征关税的公告》(税委会公告〔2019〕4号)。其中对附件2第一部分所列749个税目商品、第二部分所列163个税目商品,暂不加征10%的关税。附件2第三部分所列634个税目商品、第四部分所列1815个税目商品,暂不加征5%的关税。不过需要指出的是,本次公告仅仅是暂停实施加税措施。 /p p style=" text-align: justify text-indent: 2em " 另外,根据公告,自2019年12月15日12时01分起,《国务院关税税则委员会关于对原产于美国500亿美元进口商品加征关税的公告》税委会公告〔2018〕5号)、《国务院关税税则委员会关于对原产于美国约160亿美元进口商品加征关税的公告》(税委会公告〔2018〕7号)、《国务院关税税则委员会关于对原产于美国约600亿美元进口商品实施加征关税的公告》(税委会公告〔2018〕8号)三个公告中所涉及的商品,也将延续此前政策,继续暂停征收加征关税。 /p p style=" text-align: center " strong 被中方最新暂停加税的仪器设备明细 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " 中方暂停加征10%关税的14科学仪器清单(12月15日公布) /span /p p   533 84196011 制氧量≥15000立方米/小时制氧机 /p p   617 84742020 球磨式破碎及磨粉机器 /p p   732 90221200 X射线断层检查仪 /p p   733 90222910 γ射线无损探伤检测仪 /p p   734 90283011 单相感应式电度表 /p p   735 90283012 三相感应式电度表 /p p   736 90283019 其他电度表 /p p   737 90289090 非工业用计量仪表的零件、附件 /p p   901 90229010 X射线影像增强器 /p p   902 90303900 检测电压、电流、电阻或功率的其他仪器及装置,带记录装置 /p p   903 90318020 坐标测量仪 /p p   904 90318031 超声波探伤检测仪 /p p   905 90318032 磁粉探伤检测仪 /p p   906 90318033 涡流探伤检测仪 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " 中方暂停加征5%关税的102项科学仪器清单(12月15日公布) /span /p p   1316 73259100 可锻性铸铁及铸钢研磨机的研磨球 /p p   1344 84131900 其他装有或可装计量装置的泵 /p p   1345 84135031 往复式柱塞泵 /p p   1346 84136040 螺杆回转泵 /p p   1347 84137010 转速≥10000转/分离心泵 /p p   1348 84137099 其他离心泵 /p p   1349 84139100 液体泵用零件 /p p   1351 84148040 空气及其他气体压缩机 /p p   1352 84149019 其他用于制冷设备的压缩机零件 /p p   1353 84183029 制冷温度& gt -40℃,容积≤500L柜式冷冻箱 /p p   1354 84184021 制冷温度& gt -40℃,容积500-900L立式冷冻箱 /p p   1355 84184029 制冷温度& gt -40℃,容积≤500L立式冷冻箱 /p p   1356 84186990 其他制冷设备 /p p   1413 85094090 食品研磨机及搅拌器 /p p   1443 85392190 其他卤钨灯 /p p   1444 85392999 税目8539中其他未列名的白炽灯泡 /p p   1491 90221910 低剂量X射线安全检查设备 /p p   1492 90248000 测试其他材料的机器及器具 /p p   1493 90261000 测量、检验液体流量或液位的仪器及装置 /p p   1495 90262090 其他测量、检验压力的仪器及装置 /p p   1496 90268010 测量气体流量的仪器及装置 /p p   1497 90269000 检测液体或气体变化量的仪器及装置的零件、附件 /p p   1498 90271000 气体或烟雾分析仪 /p p   1501 90318090 其他未列名的测量或检验仪器、器具及机器 /p p   2193 69091100 实验室、化学或其他技术用陶瓷器 /p p   2194 69091200 莫氏硬度为9或以上的实验室、化学或其他技术用品 /p p   2195 69091900 其他实验室、化学或其他技术用陶器 /p p   2223 70140010 光学仪器用光学元件毛坯 /p p   2564 84181010 容积& gt 500L冷藏-冷冻组合机 /p p   2565 84181020 200L& lt 容积≤500L冷藏-冷冻组合机 /p p   2566 84181030 容积≤200L冷藏-冷冻组合机 /p p   2570 84183010 制冷温度≤-40℃,容积≤800L柜式冷冻箱 /p p   2571 84183021 制冷温度& gt -40℃,容积500-800L柜式冷冻箱 /p p   2572 84185000 其他装有冷藏或冷冻装置的其他设备 /p p   2573 84186120 压缩式热泵,税目8415空调用除外 /p p   2574 84186190 其他热泵,税目8415空调用除外 /p p   2575 84186920 其他制冷机组 /p p   2576 84189100 冷藏或冷冻设备用特制家具零件 /p p   2577 84189910 制冷机组及热泵用零件 /p p   2578 84189991 制冷温度≤-40℃冷冻设备零件 /p p   2579 84189992 制冷温度& gt -40℃,容积& gt 500L的制冷设备零件 /p p   2580 84189999 税目8418其他制冷设备用零件 /p p   2581 84193200 木材、纸浆、纸或纸板干燥器 /p p   2582 84193990 其他用途的干燥器 /p p   2583 84194090 其他蒸馏或精馏设备 /p p   2584 84195000 热交换装置 /p p   2585 84196019 制氧量& lt 15000立方米/小时制氧机 /p p   2586 84196090 其他液化空气或其他气体的机器 /p p   2591 84211910 脱水机 /p p   2597 84222000 瓶子及其他容器的洗涤或干燥机器 /p p   2606 84233090 其他恒定秤、物料定量装料秤 /p p   2607 84238110 最大称量≤30kg的计价秤 /p p   2608 84238120 最大称量≤30kg的弹簧秤 /p p   2609 84238190 最大称量≤30kg的其他衡器 /p p   2610 84238210 30kg& lt 最大称量≤5000kg的地中衡 /p p   2611 84238290 30kg& lt 最大称量≤5000kg的其他衡器 /p p   2612 84238930 其他吊秤 /p p   2613 84238990 其他衡器 /p p   2614 84239000 衡器用的各种砝码、秤砣及其零件 /p p   3008 85392110 科研、医疗专用卤钨灯 /p p   3013 85393110 科研、医疗专用的热阴极荧光灯 /p p   3014 85393191 紧凑型荧光灯 /p p   3015 85393199 其他热阴极荧光灯 /p p   3016 85393230 钠蒸气灯 /p p   3017 85393290 金属卤化物灯 /p p   3018 85393910 科研、医疗专用的其他放电灯管 /p p   3019 85394100 弧光灯 /p p   3020 85395000 发光二极管(LED)灯泡(管) /p p   3025 85408100 接收管或放大管 /p p   3027 85409190 其他阴极射线管用的零件 /p p   3157 90022090 其他光学仪器或装置滤色镜 /p p   3159 90029090 其他光学仪器用未列名光学元件 /p p   3179 90139020 子目9013.8030所列仪器及器具用零件、附件 /p p   3180 90139090 税目9013所列其他仪器及器具的零件、附件 /p p   3184 90151000 测距仪 /p p   3185 90152000 经纬仪及视距仪 /p p   3187 90158000 其他大地测量仪器及装置 /p p   3188 90159000 税目9015所列仪器及装置的零件、附件 /p p   3189 90181299 其他超声扫描装置 /p p   3190 90181310 核磁共振成像成套装置 /p p   3191 90181390 核磁共振成像成套装置零件 /p p   3193 90182000 紫外线及红外线装置 /p p   3205 90221920 X射线无损探伤检测仪 /p p   3206 90221990 其他非医疗用的X射线应用设备 /p p   3209 90223000 X射线管 /p p   3211 90230090 其他专供示范(例如,教学或展览)而无其他用途的仪器、装置及模型 /p p   3212 90241010 电子万能试验机 /p p   3213 90241020 硬度计 /p p   3214 90241090 测试金属材料的其他机器及器具 /p p   3215 90249000 测试各种材料性能的机器及器具的零件、附件 /p p   3216 90251910 非液体的工业用温度计及高温计 /p p   3217 90251990 非液体的非工业用温度计、高温计 /p p   3218 90259000 税目9025所列仪器及装置的零件、附件 /p p   3219 90272011 气相色谱仪 /p p   3220 90272012 液相色谱仪 /p p   3221 90272019 其他色谱仪 /p p   3237 90309000 税目9030所列仪器及装置的零件、附件 /p p   3238 90311000 机械零件平衡试验机 /p p   3239 90312000 试验台 /p p   3241 90318039 其他无损探伤检测仪器 /p p   3242 90322000 恒压器 /p p style=" text-indent: 2em " 3243 90328100 液压或气压自动调节或控制仪器及装置 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 更多中美贸易摩擦及磋商详情请点击进入下方专题了解: /span /strong /span br/ /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/tradewar" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/8691093b-e8b3-4a9a-a005-bd4f3bac7e3a.jpg" title=" 贸易磋商中方回应 116项科学仪器加税新措施暂“归零”.1.jpg" alt=" 贸易磋商中方回应 116项科学仪器加税新措施暂“归零”.1.jpg" / /a /p
  • 走进中方检测--珀金埃尔默焦作技术交流会
    2018年8月24日珀金埃尔默公司联合中方检测在中方检测实验室进行了一场专业光谱技术交流会。这是珀金埃尔默走进中国40周年活动之一——走进中原,走进中方。来自焦作、新乡、濮阳等地的企业、畜牧中心、环境监测、科研院校等近70位专家及老师参加了此次会议。 技术交流会现场 针对此次会议,珀金埃尔默公司派出了强大的技术团队,为各位专家、老师准备了一场专业的饕餮大餐。各位技术专家分别就原子吸收光谱仪、电感耦合等离子体光谱仪、电感耦合等离子质谱仪原理、应用及日常维护和各位专家老师进行了深入的交流。珀金埃尔默技术专家张萍老师在为客户讲解原子吸收光谱仪 中方检测是珀金埃尔默的合作实验室,在2018年年初,珀金埃尔默公司携手中方检测公司,举行共建实验室揭牌仪式。双方旨在联合彼此优势资源,共同合作,实现共赢。珀金埃尔默技术专家周映老师在为客户讲解ICP-OES中方检测(Sino Testing International)简称STI,是一家致力服务于“大众创业,万众创新”的综合性第三方检测技术服务机构。总建设面积10000平方米,实验室面积达7000余平方米,设有62个独立实验室。主要涉及6大领域,其中包括食品、环境、农业、化工、日用消费品检测和计量校准服务中方检测常规实验室另外中方检测为“豫货通天下”产品质量风险监测中心、中国标准化协会服务贸易分会理事单位。STI以互联网+检验检测为核心,以平台企业为基础,以互联网企业为客户开展“全网络覆盖”服务;以服务小微企业为根本,以服务企业刚需为标准,以服务全链条品控为目标开展“共享实验室”服务。中方检测原子吸收实验室 临近技术交流尾声,喜闻中方检测公司荣获CNAS实验室认可证书,此次CNAS认可的能力范围涵盖:长度、力学、热学、电学、化学、光学。获得CNAS实验室认可证书表明中方检测具备了按国际认可准则开展校准和(或)检测服务的技术能力。恭喜中方检测!相信未来中方检测会越走越好。 PerkinElmer进入中国已有40年,在此期间不断和共建实验室积极合作,共同努力为广大客户提供更好的产品与服务。2018,珀金埃尔默基于客户需求推出了倾力打造的两大平台,随时随地为客户提供海量资源:仪器前沿应用行业解决方案产品操作指导专家公益讲座欢迎关注微信公众号“珀金埃尔默”-“应用服务”。或者直接点击下方平台名称进入注册使用:应用文库视频平台
  • 屹路同行:初露峥嵘的中方检测
    屹尧科技河南的销售说:“屹路同行,也不能总是拜访大客户啊,中小客户不走走吗?比如我们这边的中方检测。”说得有道理,屹尧科技本身也是中小企业,二十年来,我们服务的客户主体同样是广大中小企业。我们感激华测、中广测等行业领导者的肯定和支持,帮助我们更上一层楼,同样,我们也不会忘记,屹尧科技问鼎国际一线微波消解仪厂商的根基,恰是像中方检测一样的广大中小企业用一台台仪器垒起来的。虽然采购量不大,但能够跟大家共同成长,屹尧科技同样深感荣幸;我们也期待着,有一天可以见证大家辉煌的未来。中方检测是谁?STI河南中方质量检测技术有限公司(Sino Testing International)总部不在郑州,而是焦作。公司技术负责人张二卫,这位已经干了二十多年检测工作的技术专家实诚地说:“公司领导层多是本地人或者已经在本地工作了多年,也算是为了报答桑梓吧,当然,焦作市领导当初给了我们很大的支持和优惠̷̷”这是个干实事的人,显然那些务虚的套路还不熟练。该不该说的都说完了后,他仿佛意识到什么,笑着跟我说:“不会都写吧?我就说你们还是采访我们李总更好。”说着,他无奈地看了我一眼,又看了一眼桌上摞起来的文件,显然,跟我聊天还不如干活让他更轻松。这家河南省科技中小型企业刚成立两年多,“崛起”这个词用在它身上有点为时过早,但毫无疑问,作为河南本土第三方企业的新势力代表,它已经初露峥嵘了。来之前,我一度疑惑,省市两级领导为什么频繁造访这家小公司?美国PE公司等国际巨头为什么选择他们合作办会?“省计量院和省质检院的生物安全柜,都是我们检验的。”张工笑着说:“我们业务发展挺快的,目前主要是河南、山西和内蒙古,服务涉及计量校准、食品、环境、农业、日用消费品、化工、公共卫生检测等七大领域。李总这些天忙得连轴转,他今天不在公司,要不然他可以给你介绍更多。”焦作在哪儿?云台山、青天河,中方检测我确实很想知道更多。这栋五层楼的建筑里有7000多平米的实验室,人机分离实验室的两侧,一侧是一群身穿浅蓝色制服朝气蓬勃的员工,另一侧是全球顶级品牌的仪器。AB的液质,安捷伦的液相和气相,PE的光谱,还有两台屹尧科技的微波消解仪,嗯,型号是TOPEX。“小型第三方企业刚成立的时候,买二手的或者租仪器不更划算吗?你们是我见过投入最大的新第三方企业了。”我惊叹地对张工说。“别提‘最’,我们都不提这个字的。”他满脸笑容,却摆着手说:“我们强调和追求的,是值得信赖的第三方检测机构,一切都是为了这个目标。”走在中方检测,草绿色和蓝色为基调的整体设计风格简约大气,紧邻着办公区的是休闲娱乐和健身运动区,前者侧方的墙上贴满了员工微笑的照片,跑步机的玻璃幕墙上则写着“奔跑吧,青春”几个大字。“这是在焦作?”我问张工。他哈哈大笑地说:“是在焦作,河南焦作。”说起焦作,估计外地人隐约知道是历史文化名城,或许还看过云台山、青天河的宣传片;但估计没多少人知道它不但是中国首批获得“世界杰出旅游服务品牌”的城市,还是全国首批资源枯竭型城市。随着煤炭等资源的枯竭,这座在历史上领先了千年的城市逐渐沉寂,如今的焦作人正在经历转型的阵痛,为子孙后代谋求新的出路和未来,中方检测就是其中一员。“到焦作的,也应该来中方检测看看。”我真诚地说:“你们这装修,是哪儿设计的?我回头给朋友也推荐一下。”听到这,张工的脸上忽然洋溢出自豪的表情,信心满满地说:“整个实验室的设计构想,基本上都来自我们李总的设想,为了实现这个设想,在实验室建设初期,他几乎每天都泡在工地上,在指导和监督着建筑公司,这是在构建着他自己心中的梦想。”末了,张工又说:“其实我们‘中方’现在也已经开始开展了实验室设计这个业务,目前,在河南省已有三家我们设计的实验室,对方对项目的设计非常满意”。李总是谁?中方检测总经理李伟,我这次采访最终缘悭一面。且不说公司的快速发展,单凭先进的实验室设计理念和企业文化塑造的匠心独运,就已经让我对他无比好奇。我很想知道,是怎样的一个老总,会在公司刚对外营业一个月,就发布了一部那么吸引人的企业宣传片。很多运营五六年的企业,所谓的企业宣传片都还是PPT改成的视频呢,中方的宣传片,那可是动用了航拍的。我很想当面了解一番,前瞻性背后的胸有成竹,底气何来?当我问起公司未来的发展目标时,张工自信地说:“我们希望在全国有一席之地。”这话背后,不只是野心,更是格局。李伟在30岁时已履新博爱县质监局局长,到目前为止有十多年实验室质量控制经验,建设省级气瓶质检中心,获得4个QC成果一等奖,兼具标准、特检、检测、计量实验室建设经验。2017年初,李局长离任,创建中方检测。“当时,局里挽留,家庭也反对。”张工笑着说:“这个决定太不容易了。”中方检测的名字是李伟确定的,“中”代表中立和公正,“方”则代表方圆和规矩。可能有些人知道焦作出了司马懿、李商隐和韩愈,却很少人知道另外一位名人——朱载堉。这位明朝王子首创的十二平均律是现代乐器制造的理论根基之一。他不但发明了世界上第一架定音乐器——弦准,还对计量学有着突出贡献,比如精确测量了水银的密度。四百年后,同样在焦作,计量校准已经成为中方检测主营业务之一。以服务,促发展“我们承接的政府业务不多,更多还是立足为中小微企业服务。”张工说:“我们公司现在中国标准化委员会和中国贸促会理事单位,河南省标准化协会和省认证认可协会的副会长单位,省农产品风险监测中心。我们始终认为服务中小微企业是我们的份内事,对到我们这边检测的企业用户,中方检测不只是出具一份检测报告,还会附送一份产品建议书,并定期进行回访,安排客户进行免费培训等。去年一年,我们就为周边企业进行了近三十次免费培训。为了更好地服务好客户,提升我们的技术和能力,公司架构中还专门设立了一个特殊的部门——专家技术委员会,现在成员中有五名博士、一名教授。”现代经济发展,早已经不是“多修路多种树”那么简单。检验检测行业对经济发展的重要性,下面这段文字可见一斑:“联合国工业发展组织和国际标准化组织把计量、标准化、合格评定认定为经济发展的三大支柱。检验检测是合格评定的重要内容,是质量发展的重要手段和技术基础,是产业链的必备环节,贯穿于企业产品研发、技术创新、质量控制、产品制造和进出口贸易全过程,在推动经济发展、保障质量安全、促进贸易平衡等方面发挥着重要的技术支撑和基础保障作用。”很高兴,能够认识中方检测,在焦作,在河南。“测得天下信必久,量得天地衡公平”中方检测大楼前这句话,愿意跟所有同仁共勉。
  • 欧盟配合中方多晶硅调查
    继欧洲对中国光伏产品展开反倾销调查后,中国当局批评了欧盟成员国实施的上网电价补贴制度。令事情更加复杂的是欧盟最新的普遍优惠制(Generalized Schemeof Preferences)计划。与此同时,一名发言人还评论了中国最近发起的多晶硅反倾销调查。   普惠制取代关税与贸易总协定,欧盟通过该制度对出口到欧盟的产品降低税率和实行零关税,扩大发展制成品和半制成品的出口。   修改后的普惠制将于2014年1月1日开始生效,修订细节显示尽管受益国数量降低到89个,中国依然在“中低收入”合作伙伴之列,这样一来其就可以从特定产品零关税或低关税中获益。   此外,根据优惠关税条件中国企业可以出口到欧盟的类别也扩大至用于生产太阳能产品的物品:碱和碱土金属(不包括钠和镉)、氧化铝(不包括人造金刚砂)、硫酸铵、硝酸钠、未加工铅、未加工镉粉。   外界可能会认为该措施与正在进行的反倾销调查相冲突,欧盟发言人JohnClancy表示:“这两件事情完全是独立的。贸易保护行动是根据世界贸易组织采取的一种法律程序。”“我们改革普惠制的目的是调整该系统使其更好的反映经济体的变化,也是为了给更贫穷国家提供更多的机遇,并从中受益。”   最近欧中太阳能贸易纠纷又有新的进展。11月5日,中国上诉世界贸易组织称欧盟部分成员国的法律规定,如果光伏发电项目的主要零部件原产于欧盟国家或欧洲经济区国家,该项目生产的电力即可获得一定金额或比例的上网电价补贴。中方认为,上述补贴措施违反了世贸组织协定关于国民待遇和最惠国待遇的规定,构成了世贸组织协定禁止的进口替代补贴。欧盟拒绝就此事发表评论,但就最近中国发起的多晶硅反倾销调查进行了说明。   Clancy表示:“欧盟委员会正仔细研究诉讼中提出的补贴指责。我们将在诉讼中全力配合中方以维护我们的利益,与德国和欧洲投资银行等被指责补贴项目相关方展开密切合作。”“同时,我们也希望中国商务部能够充分遵守世界贸易组织协定关于补贴和反补贴措施中的国际贸易规则。”   另外,美国国际贸易委员会(ITC)将于11月7日就美中太阳能贸易纠纷做出终裁。
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 核污染水排海或将影响整个生物圈?中方强势表态!
    福岛核电站发现大范围放射性核残渣,日本首相:核废水排海时间不变据报道,3日,日本首相岸田文雄称,日方将于今年春季到夏季将福岛核污染水排放入海,并称为实现福岛重建,这一时间无法推迟。5日,据日媒报道,日本东京电力公司对福岛第一核电站1号机组反应堆安全壳内部的调查结果显示,放射性核残渣很可能仍大范围分布在底部堆积物的表面。也有相关报道称,2022年12月,东电便向积水的安全壳内投放了配备辐射检测传感器的水下机器人。2023年2月分析结果发现,燃料碎片中散发出强烈的中子射线和放射性物质“铕-154”的放射线。日方核电专家:核污染水排海,或将影响整个生物圈近期,日本“原子力资料情报室”负责人伴英幸近日表示,福岛第一核电站核污染水中所含有的氚以及其他放射性元素,在海洋环境中有可能进入生物体内,并通过食物链形成生物富集,进而影响整个生物圈。伴英幸还表示:已有很多科研论文结果显示氚会形成生物富集。此外,氚还可能与脱氧核糖核酸中的氢元素发生置换,这一点也已得到了证明。中方代表在国际原子能机构三月理事会上表示,日本必须正视国际社会关切,不得不顾国家社会和本国人民的广泛质疑和强烈反对,不得擅自启动核废水排海。核污染与应急监测,生态环境部、北京市辐射安全研究会专家亲临直播现场!核辐射是指由原子核衰变所释放出来的高能电磁辐射或粒子辐射,它可以穿透物体,对人体有害。它由α粒子、β粒子、γ射线和中子组成,其中α粒子和β粒子是由原子核衰变而来,γ射线和中子则是核反应产生的。核辐射的危害主要来自它所释放的热能和电磁辐射,当它穿过物质时,会对物质的原子核造成破坏,造成细胞和DNA损伤,从而对人体健康造成潜在的危害。魏新渝:生态环境部核与辐射安全中心 正高级工程师报告题目:核动力厂取排水环境影响评价【摘要】 核动力厂冷却水取水量较大,取水卷塞和卷载的生物损失量大,可能的影响大。另外,在温排水影响方面,亟需制定温排水影响大小判定准则、温排水混合区准则、监测和后评估要求。基于上述考虑制定了《核动力厂取排水环境影响评价指南》,本报告对该指南进行了解读。熊小伟:北京市辐射安全研究会 秘书长报告题目:核电厂流出物监测与环境监测介绍【摘要】 主要介绍核电厂气载流出物中放射性惰性气体、放射性碘、气溶胶、氚和碳-14等在线和取样监测方法,液态流出物中氚、碳-14和其余核素在线和取样监测方法,核电厂运行后辐射监测技术方法。王海鹏:生态环境部核与辐射安全中心 高级工程师报告题目:核与辐射应急监测技术预约报名制参会,先到先得,审核通过将收到参会链接:(点击链接或图片可快速报名)https://www.instrument.com.cn/webinar/meetings/nuclearradiation2023/ 报名失败,可添加微信:13260310733
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 色谱发展印象:大连国际色谱学术报告会和展览会(DISEC)见闻
    2007年6月4日,大连国际色谱学术报告会和展览会在大连世界博览广场隆重开幕,莱伯泰科公司市场和技术人员赴会进行了学习。 这次大会的报告题目很广,范围包括液相色谱固定相及其应用、蛋白组学和代谢组学、基于芯片的分离、多维气相色谱、样品前处理和应用、LC联用技术、超临界色谱、毛细管电泳、UPLC等,因此这是一次很好的了解色谱界学术动态的大会。我们根据会议主题选择性地听了一部分报告,发现比较活跃的领域包括以下几个。快速分离继续被很多学者报导,延续着自WATERS推出UPLC以来的热度,各厂商也根据自身系统的设计特点进行报告和展览推介,方向有UPLC、小柱、小流量、小粒径填料等。分子印迹聚合物(MIPs)的制备和应用也多有报导,用MIPs进行亲合分离(主要包括色谱分离、膜分离、固相萃取等)是该技术应用最多的领域。由于会议的中方参与者众多,关于传统中药分析的题目较多,该类研究中LC-MSXMS是一种强有力的分析工具,被频繁使用。整体柱和手动分离技术也有一些报告。毛细管电泳和芯片分离技术是这次会议的一大主题,相关报告表现得较为活跃。其中大化所有多次关于芯片分离技术的报告,引起许多学者的兴趣。 综观各种报告,我们发现,对于系统的流动相流量要求似乎越来越偏重于小流量,纳升级应用很多。这与近来快速分离、液质联用的推广和应用有很大关系,也与实验室节能降耗的大趋势有关。我们要关注的下一个问题也许是:微流量级系统会不会在几年后成为标准系统或占主导地位? 莱伯泰科有限公司(LabTech,http://www.labtechgroup.com)是一家专业的实验室产品供应商。她是集分析仪器、实验室样品处理仪器、实验室设备、实验室信息管理软件和实验室设计与工程的开发、生产和销售为一体的高科技跨国公司。最近几年,随着业务在全球范围的快速增长,LabTech逐步在欧洲、北美、香港以及中国各省市建立了广泛的销售和售后服务网络,客户总数达上万家。
  • Nexis视角丨创新气相色谱技术助力钢铁行业高质量发展
    钢铁是现代社会重要的工业原料,钢铁工业的发展状况也是衡量一个国家工业水平的重要指标。我国钢铁行业发展快速,已经成为全球主要的钢铁生产国和消费国。 2022年2月,工业和信息化部、国家发展和改革委员会、生态环境部三部委联合发布《关于促进钢铁工业高质量发展的指导意见》,其中着重强调了“钢铁工业是国民经济的重要基础产业,是建设现代化强国的重要支撑,是实现绿色低碳发展的重要领域。“十四五”时期,我国钢铁工业仍然存在产能过剩压力大、产业安全保障能力不足、绿色低碳发展水平有待提升、产业集中度偏低等问题。”可以预见,在新的政策下,高质量发展仍是现阶段钢铁行业发展的重要目标,从追求产量增加向追求质量提高与追求绿色低碳环保发展。落实钢铁行业碳达峰实施方案,统筹推进减污降碳协同治理,提升高质量发展水平。 岛津气相色谱仪在钢铁冶金行业中应用非常广泛,具体涉及到煤气、粗苯、焦油加工产品、焦化废水等多方面,尤其是焦化工业中。相关需求可以大致分为三类: 焦化工业回收中的需求比如煤气主组成分析;硫化氢分析、粗苯、萘等含量分析;脱萘循环洗油中萘含量分析,贫富油中粗苯含量分析等。 焦油加工中的需求比如煤焦油萘含量分析;三混油分析;洗油分析;粗酚分析、以及深加工产品分析。 环保及安全性分析的需求比如大气中非甲烷总烃分析;焦化废水中酚类和其他污染物分析、工业废水中丙烯酸甲酯分析等分析。相关需求及应对方案举例如下:岛津气相色谱仪广泛应用于国内外钢铁冶金行业客户中,典型方案举例如下: 1 煤气全组分分析 炼焦炭时产生的煤气叫焦炉煤气。将焦炭送到高炉去炼铁,作为还原剂使用,把铁矿石中的铁还原出来,焦炭就生成了高炉煤气。焦炉煤气和高炉煤气等气体是钢铁冶金企业重要的燃料,准确测定煤气组成对于提高煤气利用率,降低综合燃料比和成本具有重要意义。常见分析标准有《GB/T 28901-2012 焦炉煤气组分气相色谱分析方法》和《GB/T 10410-2008人工煤气和液化石油气常量组分 气相色谱分析》等。 岛津高炉煤气分析(单TCD)方案此外,岛津还有高炉煤气分析(双TCD)等多种方案,以及岛津热值软件,满足不同客户的精细化分析需求。 2 煤气中H2S分析 焦化厂在炼焦的过程中会产生大量的H2S、SO2、COS、CH3SCH3等含硫气体,硫化物对人的身体健康,环境都有极大的影响。而且对后续焦炉气生产甲醇产生严重的影响,造成系统中设备、管路堵塞、腐蚀,催化剂中毒、失活等一系列问题。因此硫化物(H2S为代表的)的测定非常重要。常见标准:《YB/T 4496-2015 焦炉煤气 硫化氢含量的测定 气相色谱法》,《GB/T 28727-2012气体分析.硫化物的测定.火焰光度气相色谱法》。 形态硫色谱图硫化氢,羰基硫,总硫色谱图 此外,准确分析合成气、煤气等样品中痕量的总硫、总有机硫及形态硫含量,对保护反应过程中所使用的昂贵的催化剂有着极为重要的作用。同时,岛津也可提供搭载硫化学发光检测器Nexis SCD-2030的气相色谱分析方案,可高灵敏度检测各种痕量硫化物。 3 粗酚分析粗酚是焦油加工的副产品,主要分析标准是:《GB/T 2601-2008 酚类产品组成的气相色谱测定方法》,其中方法一:焦化产品中焦化苯酚、工业酚、邻甲酚等组成的测定。方法二:焦化产品中的工业甲酚、间对甲酚、工业二甲酚等组成的测定。 4 大气中非甲烷总烃分析 非甲烷总烃是钢铁工业大气污染物中非常重要的指标之一,一般是指从总烃中扣除甲烷以后其他气态有机化合物的总和,常见标准有:《HJ 604-2017 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》、《HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》。岛津拥有非常丰富的非甲烷总烃分析经验,目前有多套成熟的非甲烷总烃以及苯系物分析方案。 钢铁行业作为工业的重要领域,是能源消费大户,同时也是CO2排放大户,目前中国钢铁行业CO2排放约占全国的15%~17%,在工业领域中是仅次于电力行业的第二排放大户,深入推进绿色低碳环保和促进钢铁工业高质量发展对国家“双碳”目标的实现具有重要意义。岛津长久以来一直致力于提高气相色谱的性能,通过技术创新将硬件、软件、性能等进行优化,实现操作体验、产品性能、运行效率的融合,这些新技术将助力钢铁行业的分析工作更上一层楼。Nexis GC-2030加强版 ——Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 GC-2010 Pro ——GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。 本文内容非商业广告,仅供专业人士参考。
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 纺织品检测龙头中纺标拟使用4428.80万元募资购置仪器设备
    近日,作为轻纺产品检验检测龙头型企业的中纺标(873122),正式登陆北交所。上市首日(2022年9月27日)大涨86.25%,盘收14.90元/股,成交额9307.25万元,换手率79.45%。中纺标成立于2004年,是一家致力于提供轻纺产品检验检测相关技术服务的独立第三方专业机构。2019年-2021年,中纺标分别实现营业收入16,079.15万元、16,200.98万元和18,170.27万元,净利润3,468.25万元、3,349.72万元和3,633.64万元。截至招股说明书签署日,中国纺织科学研究院直接和间接控制中纺标82.18%股权,是公司控股股东。中国通用技术(集团)控股持有中国纺织科学研究院100%股权,国务院国资则是委授权管理中国通用技术(集团)控股有限责任公司国有资产,为中纺标实际控制人。根据招股书,中纺标此次IPO拟募资7400万元,分别用于新检测技术研发中心建设项目、全业务数字化管理平台建设项目、浙江检测实验室建设项目和晋江运动用品检测实验室建设项目,其中4,428.80万元用于各项目中的仪器设备购置及安装,涉及气相-质谱联用仪、高效液相色谱仪、微波消解仪、原子荧光光度计、超纯水机、高质量平行浓缩仪、原子吸收分光光度计、万能材料试验机、电感耦合等离子发射光谱仪、红外光谱等超两百套仪器设备。序号项目名称投资总额(万元)投入募资(万元)1新检测技术研发中心建设项目2,568.292,026.962全业务数字化管理平台建设项目1,927.311,521.083浙江检测实验室建设项目3,048.652,406.074晋江运动用品检测实验室建设项目1,832.031,445.88合计9,376.287,400.00新检测技术研发中心建设项目中纺标提到,经过多年的发展成长,公司的研发人员得到了快速发展,依据公司研发计划和技术需要开展实施研发活动,解决公司重大技术难题,并组织进行技术攻关,同时负责收集、整理国内外纺织及检测行业新产品、新技术的信息、 法律法规及发展动态,做好公司技术积累,推动公司新技术的研发、推广和应用,同时对外开展技术交流和技术合作。中纺标研发部门在检测事业部、标准事业部和计量事业部现有技术团队基础上,依托国家纺织制品质量检验检测中心等全国性行业机构的资源优势开展工作,其具体研发工作由研发部部组织开展,检测事业部、计量事业部、认证事业部为主体,各实验室技术骨干共同参与。新检测技术研发中心建设项目拟总投入2,568.29万元,其中项目设备购置费为1,950.00万元。此外,本项目拟建设环境仓并装修生物降解实验室。全业务数字化管理平台建设项目中纺标表示,根据公司的总体战略,以先进的管理思想为指导,以战略管理为龙头,以成本控制为核心,以信息技术为支撑,加强项目管理,建立企业级管理数字化应用系统,涵盖企业办公自动化、人力资源管理、经营管理、财务管理、项目管理、成本核算等方方面面,实现办公现代化、信息资源化、协作网络化和决策科学化,使各子公司及分支机构管理部门能够适时、便利地制定改进管理措施,全面提高企业综合管理水平,最终提升公司核心竞争能力。全业务数字化管理平台建设项目以“综合业务管理系统”的建设为核心,实现公司全业务流程的规范和高效,如业务受理、检测、审批、统计分析、客户服务等全流程活动的全面数字化管理,保证业务过程中数据传递的正确性、信息流通的顺畅性、业务组织的规范性、数据统计的及时性和数据保存的安全性,提升管理水平和工作效率同时,优化人力和设备资源的组合、内部能力的自动传承,达到业务流程的规范化、网络化运作,促进公司全业务的健康快速发展。本项目拟总投入1,927.31万元,其中设备购置费为200.00万元,软件购置费为1,554.00万元。浙江检测实验室建设项目浙江检测实验室建设项目通过新建检验检测试验场所,提升服用家用纺织品检验检测市场的占有率,开发产业用纺织品领域;全方位建设智能化、数字化实验室,将公司打造成纺织及其延伸领域的专业检验检测机构。本项目拟总投入3,048.65万元,其中项目设备购置费1,022.90万元,主要为实验设备及电子设备。新增设备情况见下表:晋江运动用品检测实验室建设项目本项目通过新建检测实验场所,并对检测工作场地进行合理化布局,以此满足日常工作开展的需要,提升检测流程的周转效率,将公司打造成为以运动用品检测为主的纺织、轻工类产品的综合性检测机构,并重点拓展鞋服的功能性检测和生态检测项目。本项目拟总投入1,832.03万元,其中项目设备购置费1,255.90万元。新增设备情况见下表:
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p   4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。 /p p   其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。 /p p   仪器信息网摘录如下: br/ /p table width=" 567" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 469" align=" center" valign=" middle" p style=" text-align: center " strong 标准名称 /strong /p /td td width=" 55" p style=" text-align: center " strong 性质 /strong /p /td td width=" 43" p style=" text-align: center " strong 状态 /strong /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫酸二甲酯和硫酸二乙酯的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种萘二酚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中二氯苯甲醇和氯苯甘醚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中38种限用着色剂的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种4-羟基苯甲酸酯的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中5种限用防腐剂的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中8-羟喹啉和硝羟喹啉的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中10种二元醇醚及其酯类化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫柳汞和苯基汞的测定 & nbsp & nbsp 高效液相色谱-电感耦合等离子质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中荧光增白剂367和荧光增白剂393的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 唇用化妆品中对位红的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中11种生物碱的检测 & nbsp & nbsp 液相色谱质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第21部分:砷量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第22部分:锑量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 锑矿石化学物相分析方法 & nbsp & nbsp 锑华 辉锑矿和锑酸盐的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 镍(钴)矿石化学物相分析方法 & nbsp & nbsp 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁矿石 & nbsp & nbsp 多种微量元素含量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁合金产品粒度的取样和检测方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料比表面积的测定 & nbsp & nbsp 亚甲基蓝吸附法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料电导率测试方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料表面含氧官能团含量的测定 & nbsp & nbsp 化学滴定法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 数字印刷版材中残留溶剂的检测 & nbsp & nbsp 顶空-气相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 & nbsp & nbsp 红外光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 光学遥感器在轨成像辐射性能评价方法 & nbsp & nbsp 可见光-短波红外 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 甲基乙烯基硅橡胶 & nbsp & nbsp 乙烯基含量的测定 & nbsp & nbsp 近红外法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中致敏染料的限量和测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中4-氨基偶氮苯的限量及测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中苯胺类化合物的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中甲醛的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 氦质谱真空检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 四极质谱检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铸钢铸铁件射线照相检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 铸件的工业计算机层析成像(CT)检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 耐火材料导热系数试验方法(铂电阻温度计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 隔热耐火材料导热系数试验方法(量热计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr /tbody /table p br/ /p
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。   许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。 中国科学院大连化学物理研究所 许国旺研究员   近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。   基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。   随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 873项标准废止 含大量色谱、光谱等仪器方法标准
    p   12月15日,国标委、国家质检总局联合发布“关于废止《发文稿纸格式》等873项推荐性国家标准的公告”。通知显示,被废止的标准涉及钢铁、船舶、电子电器、通讯、化工、饲料、烟草、汽车等行业。 br/ /p p   统计发现,本批废止的标准中约有200项仪器方法,主要为色谱、光谱、气质联用分析方法,且以汽车行业车间空气检测为主。汇总如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:center " strong 国家标准编号 /strong /p /td td width=" 512" p style=" text-align:center " strong 国家标准名称 /strong /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.16-1991 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 变色酸光度法测定钛量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.48-1985 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 223.55-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 碲含量的测定 示波极谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.57-1987 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 萃取分离-吸附催化极谱法测定镉量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 257-1964 /p /td td width=" 512" p style=" text-align:left " 发动机燃料饱和蒸气压测定法 (雷德法) /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 2900.82-2008 /p /td td width=" 512" p style=" text-align:left " 电工术语 核仪器 仪器、系统、设备和探测器 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 4298-1984 /p /td td width=" 512" p style=" text-align:left " 半导体硅材料中杂质元素的活化分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6098.2-1985 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6155-2008 /p /td td width=" 512" p style=" text-align:left " 炭素材料真密度和真气孔率测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6014-1999 /p /td td width=" 512" p style=" text-align:left " 工业用丁二烯中不挥发残留物质的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.1-2008 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第1部分:碳酸氢铵含量 酸碱滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.2-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第2部分:氯化物含量 电位滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.3-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第3部分:硫化物含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.4-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第4部分:硫酸盐含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.5-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第5部分:灰分含量 重量法 /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.6-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第6部分:铁含量 邻菲啰啉分光光度法 /span /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.7-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第7部分:砷含量 二乙基二硫代氨基甲酸银分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.8-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第8部分:砷含量 砷斑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.9-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第9部分:重金属含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.10-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝中硫量的测定 X 射线荧光光谱分析法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.1-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 重量法测定湿存水量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.2-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 电量法测定水分含量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.3-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 蒸馏-硝酸钍容量法测定氟量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.4-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 EDTA容量法测定铝量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.5-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝化学分析方法 火焰发射光度法测定钠量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.6-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定硅量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.7-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 邻二氮杂菲光度法测定铁量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.8-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 硫酸钡重量法测定硫酸根量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.9-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定磷量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中黄曲霉毒素B1的测定 & nbsp & nbsp 半定量薄层色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8381.5-2005 /p /td td width=" 512" p style=" text-align:left " 饲料中北里霉素的测定 /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381.8-2005 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中多氯联苯的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8432-1987 /p /td td width=" 512" p style=" text-align:left " 耐光色牢度试验仪用湿度控制标样 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 10470-2008 /p /td td width=" 512" p style=" text-align:left " 速冻水果和蔬菜 矿物杂质测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11113-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体中杂质的分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11114-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体位错的X 射线形貌检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12688.6-1990 /p /td td width=" 512" p style=" text-align:left " 工业用苯乙烯中微量硫的测定 氧化微库仑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12700-1990 /p /td td width=" 512" p style=" text-align:left " 石油产品和烃类化合物 硫含量的测定 Wickbold燃烧法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13080.2-2005 /p /td td width=" 512" p style=" text-align:left " 饲料添加剂 蛋氨酸铁(铜、锰、锌)螯合率的测定 凝胶过滤色谱法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13595-2004 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 拟除虫菊酯杀虫剂、有机磷杀虫剂、含氮农药残留量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 13596-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草和烟草制品 有机氯农药残留量的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13780-1992 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 自动光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13784-2008 /p /td td width=" 512" p style=" text-align:left " 棉花颜色试验方法 测色仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 14454.15-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 黄樟油 黄樟素和异黄樟素含量的测定 填充柱气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 14634.4-2002 /p /td td width=" 512" p style=" text-align:left " 灯用稀土三基色荧光粉试验方法 电传感法粒度分布测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15000.5-1994 /p /td td width=" 512" p style=" text-align:left " 标准样品工作导则(5) & nbsp & nbsp 化学成分标准样品技术通则 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15245-2002 /p /td td width=" 512" p style=" text-align:left " 稀土氧化物的电子探针定量分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.2-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 铜、锌、铅、镉的测定 原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.6-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 总铬的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.9-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 镍的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.1-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钐、钴量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.2-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 铁量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.3-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钙量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.4-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 氧量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16008-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的石墨炉原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16009-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16010-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16011-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫化铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16012-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的冷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16013-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16014-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16015-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的火焰原子吸收光谱测定方法 /span /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16016-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化镉的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16017-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的磷酸-高碘酸钾分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16018-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16019-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬、铬酸盐、重铬酸盐的二苯碳酰二肼分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16020-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16021-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中镍及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16022-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钴及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16023-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铍的桑色素荧光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16024-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中臭氧的丁子香酚-盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16025-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氧化硫的盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16026-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫酸及三氧化硫的氯化钡比浊测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16027-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫化氢的硝酸银比色测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16028-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硫化碳的二乙胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16029-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯的甲基橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16030-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氟化氢及氟化物的离子选择电极测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16031-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氨的纳氏试剂分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16032-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化氮的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16033-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氰化氢及氢氰酸盐的异菸酸钠-巴比妥酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16034-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷及五氧化二砷的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16035-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中砷化氢的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16036-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二磷的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16037-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中磷化氢的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16038-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16039-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16040-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16041-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16042-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16043-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16044-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16045-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16046-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16047-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16048-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16049-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16050-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16051-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16052-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16053-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16054-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16055-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中联苯-苯醚的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16056-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中萘的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16057-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醛的酚试剂(MBTH)分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16058-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16059-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16060-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16062-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16063-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16064-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16065-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16066-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16067-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16068-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16069-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16070-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16071-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醚的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16072-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的4-氨基安替比林分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16073-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16074-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16075-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16076-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧氯丙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16077-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中光气的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16078-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16079-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16080-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16081-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16082-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16083-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16084-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溴甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16085-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法(Apiezon L) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16086-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法 (PEG 20M) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16087-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16088-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (PEG 6000) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16089-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的热解吸气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16090-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16091-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16092-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中滴滴涕的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16093-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中六六六的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16094-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氟乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16095-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16096-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16097-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16098-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16099-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16100-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯胺的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16101-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化苦的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16102-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16103-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼及其化合物的硫氰酸盐分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16104-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钨或碳化钨的硫氰酸钾-三氯化钛分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16105-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二钒的N-肉桂酰-邻-甲苯羟胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16106-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氢氧化钠的酸碱滴定测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16107-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氢氧化钠的火焰光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16108-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锆及其化合物的二甲酚橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16109-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化氢及盐酸的硫氰酸汞分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16110-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中黄磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16111-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲基甲酰胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16112-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16113-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基甲苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16114-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中一硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16115-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16116-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中吡啶的巴比妥酸分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16117-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲基对硫磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16118-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16119-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16120-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中敌敌畏的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16121-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硫磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16122-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲拌磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16123-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中碘甲烷的1,2-萘醌-4-磺酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16480.3-1996 /p /td td width=" 512" p style=" text-align:left " 金属钇及氧化钇化学分析方法 氟量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16481-1996 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 稀土元素微波等离子体炬发射光谱(MPT-AES)标准谱表 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17062-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锡及其无机化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17063-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锑及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17064-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲硫醇的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17065-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中偏二甲基肼的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17066-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二乙胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17067-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17068-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17069-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17070-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17071-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氰的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17072-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硝基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17073-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17074-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醛的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17075-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17076-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中异丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17077-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫酸二甲酯的溶剂解吸液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17078-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基苯酚的高效液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17079-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17080-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17081-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17082-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17083-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17084-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-甲氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17086-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-丁氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17087-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼的等离子体发射光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17088-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N-甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17089-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N,N-二甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17090-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯乙烯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17092-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 19611-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 抑芽丹残留量的测定 紫外分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.6-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第6部分:没食子酸-示波极谱法测定锗含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.7-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第7部分:示波极谱法测定铅含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 20288-2006 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中有害物质检测样品拆分通用要求 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20396-2006 /p /td td width=" 512" p style=" text-align:left " 三系杂交水稻及亲本 真实性和品种纯度鉴定 DNA分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20899.11-2007 /p /td td width=" 512" p style=" text-align:left " 金矿石化学分析方法 第11部分:砷量和铋量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21131-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 环境烟草烟气 可吸入悬浮颗粒物的估测 用紫外吸收法和荧光法测定粒相物 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21132-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 二硫代氨基甲酸酯农药残留量的测定 分子吸收光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21133-2007 /p /td td width=" 512" p style=" text-align:left " 环境烟草烟气 可吸入悬浮颗粒物的估测 茄呢醇法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21134-2007 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 不溶于盐酸的硅酸盐残留物的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21135-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 空气中气相烟碱的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21198.2-2007 /p /td td width=" 512" p style=" text-align:left " 贵金属合金首饰中贵金属含量的测定 ICP光谱法 第2部分:铂合金首饰 铂含量的测定 采用所有微量元素与铂强度比值法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21274-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质铅、汞、镉检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21275-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质六价铬检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21276-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质多溴联苯(PBBs)、多溴二苯醚(PBDEs)检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/Z 21277-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 电子电气产品中限用物质铅、汞、铬、镉和溴的快速筛选 X射线荧光光谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23203.2-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中水分的测定 第2部分:卡尔.费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23225-2008 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23226-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23241-2009 /p /td td width=" 512" p style=" text-align:left " 灌溉用塑料管材和管件基本参数及技术条件 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23354-2009 /p /td td width=" 512" p style=" text-align:left " 卷烟 滤嘴总植物碱截留量的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23357-2009 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 水分的测定 卡尔费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 23358-2009 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气总粒相物中主要芳香胺的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 27410-2010 /p /td td width=" 512" p style=" text-align:left " 消费类产品中有毒有害物质检测实验室技术规范 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27523-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中挥发性有机化合物(1,3-丁二烯、异戊二烯、丙烯腈、苯、甲苯)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27524-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27525-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中苯并[a]芘的测定 & nbsp & nbsp 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 28971-2012 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中烟草特有N-亚硝胺的测定 气相色谱-热能分析仪法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29566-2013 /p /td td width=" 512" p style=" text-align:left " 蚊类对杀虫剂抗药性的生物学测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29567-2013 /p /td td width=" 512" p style=" text-align:left " 蝇类对杀虫剂抗药性的生物学测定方法 微量点滴法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29592-2013 /p /td td width=" 512" p style=" text-align:left " 建筑胶粘剂挥发性有机化合物(VOC)及醛类化合物释放量的测定方法 /p /td /tr /tbody /table p br/ /p
  • 安捷伦网络版色谱系统助推石化行业绿色发展
    新型炼化一体化发展模式,是石油化工行业降低成本,提高收益,优化利用资源,从分子层面向下游产业链延伸的内在需求,也是石油化工行业迎接双碳目标挑战、践行绿色发展的必由之路。在此大背景下石化实验室规模、一次性采购的气相数量的气相总数,不断刷新行业记录。上百台乃至几百台气相的实验室,在业内已经屡见不鲜。随时而来的海量实验室数据采集、保存、归纳,以及质量控制、任务下达、统计分析、异常数据处理等系列工作,带来实验室管理的挑战和发展机遇。围绕着这些挑战,安捷伦一直致力于实验室气相色谱智能化网络产品的创新与迭代。“石油化工行业——实验室信息化其实早在80年代,以“三桶油”率先开展将气相色谱单板机、纸质记录信息,转换到LIMS系统管理,化工行业就进入了信息化时代-LIMS应用,可以实现:信息化报表、信息分享–DCS/MES、数据挖掘、决策支持。作为行业领导者,安捷伦领先大规模部署了实验室信息化产品–网络版色谱系统。随着石化产业发展和实验室规模,安捷伦网络版色谱系统几经迭代,已经发展到CDS2.7。新一代网络版CDS色谱系统:CDS2.7与LIMS无缝链接,数据接口统一远程色谱控制、远程数据处理、多人协同工作兼容GCMS,LCMSD,LC仪器控制与数据处理可以在客户端任何电脑浏览管理数据,同时客户端电脑故障不会影响全局人机分离,远程控制仪器,数据集中处理统一报告版本,兼容旧版数据权限集中放置,管理和备份更加容易,提高效率数据备份方法简单,可集中在服务器进行在每个客户端均可以对仪器的数据进行备份,便于实现方法与数据的分享双机热备便于客户现场硬件设备的布局设计,并节省空间保护用户投资,节省成本(电脑和软件)提升数据安全性,符合法规要求安捷伦面向客户被问得相当多的一个话题:如何确保系统的安全性、稳定性?OpenLabCDS网络版软件冗余设计建议,是被行业广泛采用的安全理念:故障点1:服务器单点故障部署为双服务器,采用双机热备方案,提高业务连续性;OpenLabCDSAIC提供缓存机制,一旦服务器出现故障,当前进样可继续运行直至结束,保证数据安全;OpenLabCDS提供Failover功能(故障转移模式),当服务器出现故障无法立即恢复,可在企业SOP规定范围内,启动Failover模式,通过AIC继续运行样品。故障点2:交换机单点故障可做双交换机冗余故障点3:仪器单点故障仪器需要定期维护,保证性能稳定。同时企业需要配备足够数量的仪器,当一台仪器发生故障时,可使用另一台仪器继续实验。基于OMS的OpenLabCDS网络版软件异常事件提醒功能OpenLabCDS网络版环境下,一旦出现异常情况,如仪器断线,序列中断等,OMS工具会迅速识别错误信息,并将此信息以短信形式推送至用户手机。无论用户身在何地,都可以第一时间获取实验情况,并迅速做出决策。实验室仪器信息统计工具——OMSPetrochemicalIndustry-工业4.0您准备好了吗?Cloud/IIoT/VR/ML/Digitalization
  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办
    2010 年 9 月 15 日北京&mdash &mdash 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办。研讨会主要详细介绍了 沃特世公司于今年 6 月向全球新推出的 ACQUITY CSH &trade 和 XSelect &trade HPLC 色谱柱。沃特世新一代的色谱柱 采用表面带电杂化颗粒( Charged Surface Hybrid )技术重新定义了最广泛的分离选择性和最佳的性能。新的色谱能提供沃特世有史以来最广泛的分离选择性,并当使用酸性、低离子强度的流动相时大大改善色谱分离的性能。 沃特世公司在 9 月 15 日和 9 月 17 分别在北京和上海举行 &ldquo 最新色谱柱技术与方法开发研讨会 &rdquo 。会上由沃特世总部市场经理 Eric S.Grumbach 进行 CSH 技术及其色谱柱相关介绍,并与中国用户分享了 UPLC 方法开发系统策略。籍此与业界的学者与科学工作者共享沃特世最新的色谱柱和方法开发解决方案,并展开了中国分离科学业界所关心的行业热点话题探讨,以助提高实验室工作效率。 新的 ACQUITY ® 超高效液相色谱( UPLC ® )和 HPLC 色谱柱,为从事方法开发科学家提供了更多不同的分离选择性。三种新的色谱柱可以在 UPLC 、 HP LC 和制备色谱之间以及不同粒径之间进行无缝的方法转换。新一代色谱柱提供 1.7 ( UPLC )、 3.5 和 5 &mu m ( HPLC )的颗粒,并且非常适合用于最新沃特世 ACQUITY UPLC ® H-Class 系统配合 S-Matrix ® 公司开发的 Fusion 方法研发&trade 软件进行 HPLC 和 UPLC 方法开发。 benwen : http://www.jssxkj.net
  • 最强实用攻略 | 方法开发时,如何选择 C18 色谱柱?
    在色谱方法开发过程中,分离度、柱效、峰形是考察色谱柱选择性是否合适的主要性能指标。方法开发中的分离度根据分离度(Rs)公式,分离度的影响因素主要有柱效(N)、选择性(α)和保留因子(或称容量因子,k):(公式 1)公式1作为分离度改善的理论基础。通常,方法开发过程中,通过提高化合物保留 (k)、提高柱效 (N)、以及提升选择性 (α) 来达到分离度的改善。选择性因子(α):(公式 2)式中 k1 和 k2 分别是第一个峰和第二个峰的保留因子。根据公式 1 和公式 2,当选择性因子提高 0.1 时,对分离度的贡献是 Rs 大约为原来的 1.8 倍。因此选择性的改变对分离度的改善效果显著,如图 1 所示。图 1. 分离度与柱效、选择性、保留因子的关系与选择性有关的因素:固定相:选择不同化学修饰的键合相(不同的 C18 柱或其它键合类型色谱柱)流动相:调整有机相的类型、pH 值、盐浓度、两相比例等柱温方法开发中的色谱柱选择在色谱固定相的选择和使用中,最常用的键合相类型是十八烷基硅烷键合硅胶(C18)。不过,由于固定相物理特性与化学修饰的差异,使得不同的 C18 选择性不尽相同。选择色谱柱时,如果一种类型的 C18 柱分离度不足,就可以选择与之选择性差异较大的 C18 柱来进行优化。以 Agilent InfinityLab Poroshell 系列中的 C18 液相色谱柱为例:Poroshell 120 EC-C18 为封端的碳十八固定相,对酸性、碱性、中性化合物都有良好的选择性,已经成为方法开发的首选,也是在 Agilent 1260 Infinity II 四元泵液相色谱系统中标配的色谱柱。与 EC-C18 柱不同,Poroshell 120 SB-C18 柱却是不封端的碳十八固定相。由于裸漏的硅醇基存在,可与待分离物发生氢键、离子间作用等,因此 SB-C18 的选择性与封端的 C18 柱存在显著差异。可以利用这个特点,在方法开发时 SB-C18 和 EC-C18 通常可以作为方法开发的起始色谱柱。另外,SB 的全称是 StableBond,顾名思义意为“稳定的键合相”,这里说的稳定,主要是在C18硅烷长链的两侧采用异丁基进行立体的保护,使得 SB-C18 在低 pH 下有较好的耐受性能。同样采用 Poroshell 120 的硅胶,HPH-C18 与 EC-C18 和 SB-C18 又有所不同。在进行键合之前,在 Poroshell 硅胶的表面多孔层,先进行了有机杂化处理,再进行 C18 键合和封端修饰,得到的 HPH-C18 色谱柱具有了高 pH 耐受的特点。因此,表面化学结构的差异,三种常用的 Poroshell C18 柱,在选择性上具有显著区别。表 1 列出了以 EC-C18 为基准,HPH-C18 与 SB-C18 的相似度因子 Fs。当 Fs 因子大于 3.0 时,固定相选择性存在差异。表 1. 三种固定相选择性差异比较(以 EC-C18 为基准)问渠哪得清如许,为有源头活水来,新产品 Poroshell CS-C18 上市!Poroshell 色谱系列在色谱分析行业已经得到了广泛的认可,安捷伦也一直在拓展 Poroshell 系列色谱柱的产品线。2020 年 11 月,安捷伦推出了新产品 Poroshell CS-C18 柱,进一步拓展了 C18 固定相的类型。该固定相是在 Poroshell实心核颗粒的表面多孔层在进行高 pH 耐受的杂化处理之后,再进行 C18 键合、封端和正电荷修饰,其中使用的键合相还进行了侧立基的保护。这样 CS-C18 固定相的表面,不仅具有 C18 提供的疏水作用、而且还具有正电荷的离子作用,选择性也与其它的 C18 键合相有显著差异。同时,硅烷链侧立基保护、多孔硅胶表面杂化处理,使得固定相pH耐受范围得到了拓宽。在 Poroshell C18 的四种 C18 键合相中,涵盖了 RPLC 模式下的主要作用力,选择性彼此之间有显著差异,见图 2。利用这些固定相的选择性差异,可以方便地进行方法开发中的色谱柱选择。图 2. Poroshell 的 4种 C18 固定相应用实例碱性条件下选择性差异在 pH=10 的体系下,耐碱的 CS-C18 与 HPH-C18 选择性存在显著差异。图 3. 农药组分在碱性体系下 LC-MSMS 色谱图结果比较酸性条件下选择性差异在酸性体系下,不同 Poroshell C18 柱的保留、分离度有显著差异。图片图 4. 阿片类药物在酸性体系下 HPLC 分析色谱图比较峰形及载样量比较在酸性体系下,在碱性药物阿米替林的杂质分析时,采用 CS-C18 与传统封端的 C18 柱进行比较,CS-C18 柱对碱性组分具有更好的峰形、载样量和分离度。图 5. 不同色谱柱对阿米替林及杂质(0.25%)不同进样量分析结果比较酸性体系下 LC/MS 灵敏度比较在甲酸体系下,在进行液质联用分析时,CS-C18 柱提供可更好的灵敏度、响应和峰形。图 6. 甲酸体系中低浓度标样(50ng/ml) 在 LC/MS/MS 中灵敏度比较安捷伦 &bull 618618 活动期间2024 年 6 月 3 日 ~ 30 日Agilent Poroshell 120 2.7um 全线 6 折!参考文献:1. L. R. SNYDER , J. J.KIRKLAND, J. W. DOLAN. Introduction to Modern Liquid Chromatography, ThirdEdition.2. 液相色谱手册-液相色谱柱与方法开发指南. 安捷伦科技.5990-7595CHCN3. Agilent InfinityLabPoroshell 120 CS-C18 助您将 pH 值用作方法开发工具. 安捷伦科技. 5994-2274ZHCN4. 使用 Agilent InfinityLab Poroshell 120 CS-C18 色谱柱改善碱性分析物的峰形. 安捷伦科技. 5994-2094ZHCN
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 多个化妆品相关检测方法公布 涉光谱、色谱、质谱等仪器
    近日,CFDA发布化妆品中巯基乙酸、二噁烷、利多卡因、汞、地氯雷他定等多中禁用物质的检测方法,涉及离子色谱法、液相色谱-质谱联用法、汞分析仪法、气相色谱法、原子吸收法、ICP-MS检测方法等。本次公布的检测方法共9项,方法中检测物质、检测方法、检测仪器等信息统计如下:附表1:附表2:附表3:  原通知如下:国家食品药品监督管理总局关于发布化妆品中巯基乙酸等禁限用物质检测方法的通告(2015年第69号)  为规范化妆品中禁限用物质检测技术要求,提高化妆品质量安全,化妆品中巯基乙酸的检测方法(离子色谱法)等9种化妆品相关检测方法(见附件1—9)已由化妆品标准专家委员会审议通过,现予发布。  特此通告。  附件:  1.化妆品中巯基乙酸的检测方法(离子色谱法).doc  2.化妆品中二噁烷的检测方法.doc  3.化妆品中利多卡因等7种物质的检测方法.doc  4.化妆品中汞的检测方法(汞分析仪法).doc  5.化妆品中甲醇的检测方法(气相色谱法).doc  6.化妆品中地氯雷他定等15种物质的检测方法.docx  7.化妆品中挥发性有机溶剂通用检测方法.doc  8.化妆品中铅的检测方法(原子吸收法).doc  9.化妆品中多元素ICP-MS检测方法.doc  食品药品监管总局  2015年9月28日
  • 基于三代测序的抗原抗体分析、RNAi药物研发的“专精特新”小巨人:中方基因
    二代的高通量测序,目前被广泛应用于生命科学、医学临床研究等范畴。经过十多年实际应用,科技工作者认为,因为二代高通量测序 " 片段短 "(150bp-300bp),在分析的过程中,还需再对零碎的基因片段进行 " 拼图 "。随着测序技术的发展,第三代测序技术,又称单分子测序技术,其平均检测长度可达几千、上万个碱基,能够较好的分析展现基因图谱。如 PacBio 的第三代测序,其测序的精度可达 99.9%。相比于第二代测序,第三代测序仪是后起之秀,使用者相对不多。一方面是因为以往的第三代测序仪的通量较难做到第二代测序一样的高通量水平,更重要的则是因为对于测序产出的数据,其分析系统还有待发展和完善。针对第三代测序分析的进一步开发应用, 动脉网近期采访到一家专注基因检测分析及基因药物开发的 " 专精特新 " 企业——中方基因。江苏中方基因生物医药科技有限公司 ( 以下简称:中方基因 ) 创立于 2017 年 4 月,由在全球率先设计和发表小核酸干扰(RNAi)和绿荧光蛋白(EGFP)基因共表达载体来研究 RNAi 对靶基因降解调控的戴方平博士,组织创立。戴方平拥有德国弗莱堡大学医学博士学位,且在该大学医学院拥有近 15 年研究经历,现任中国上海复旦大学遗传所、上海同济大学附属医院,纳米及应用国家工程研究中心等担任客座或兼职教授。在戴方平教授的带领下,中方基因的研发团队汇聚了计算机、生物、医学等专业的骨干学者,并与复旦大学、上海交大、中科院上海药物研究所和上海同济大学等知名高校或科研院所建立起深度合作关系。" 看懂 " 三代测序结果," 找出 " 新生抗原和抗体," 发现 " 抗病毒 RNAi 药物公司团队人数不多,但中方基因目前在基因检测领域取得的成就,不容小觑。首先,中方基因配备有 PacBio 三代测序仪、集群服务器,以及训练有素的专业工作团队,是负责中国人类标准物质转录子组三代测序和数据分析自动化平台建设的单位。中方基因也早在 2019 年就推出颇具竞争性的科研服务:1. 分析病毒在人肿瘤细胞基因组中的异常插入和整合状态 (与同济大学协作,有论文于 2022 年 9 月发表 Translational Research 杂志) 2.针对实体肿瘤新生抗原的检测,作为鲜有将三代测序技术与二代测序相结合应用到这一新兴检测服务的企业,在国际上也具有绝对的竞争优势。中方基因能够针对新鲜肿瘤组织和癌旁组织 / 血液,利用 PacBio 三代测序设备和二代测序 Illumina 设备,配合自主研发的个体化癌抗原智能识别系统进行癌症新生抗原分析,并且可视化分析,这是极少数掌握该技术的公司之一。中方基因与同行的武汉菲沙基因公司及高校合作,已经完成了单细胞转录子 (包括抗体、受体) 三代高通量长读长测序数据自动化分析系统的建设。结合前文对第三代测序目前面临的分析应用上的滞后, 不难看出,中方基因努力解决了第三代测序结果分析难度大的问题,发挥了第三代测序 " 测得长 " 方面的强大优势。其自主打造的单细胞 mRNA 第三代长读长测序分析平台不仅能够做到对新生抗体全长重链和轻链自动匹配识别的努力,还能对肿瘤异常融合基因及对应的融合蛋白质进行分析,以及分析病毒在人基因组插入整合状态、我们细胞的抗体 / 受体 /MHC 特点等,从而服务于抗病毒、抗肿瘤的免疫治疗。不仅如此,中方基因还把测序大数据自动化分析平台应用到了病毒基因组的分析,并开展了 RNAi 药物的设计和药效的研究。 其实,中方基因与 RNAi 药物的故事可以追溯到更早,早在2005 年,戴方平教授一篇关于 "RNAi 定向诱导基因片段沉默" 的研究成果论文就已发布,相比 RNAi 在 2006 年诺贝尔奖中被众人知晓,还要早一年。因此,基于戴方平教授在 RNAi 领域的丰富经验,再加上如今测序分析自动化平台建设的加持,中方基因建立了抗病毒的 RNAi 设计及实验流程,探讨将基因检测分析与基因药物开发形成研发闭环。基于 RNAi 技术可能引发出的药物:抗新冠病毒雾化剂、抗 HPV 新药针对病毒,中方基因采用对病毒数据库大数据的对比分析。在对特定致病性病毒进行特点分析后,启动针对病毒设计 RNAi 药物,并通过自有的 RNAi 药物药效分析系统和纳米递质效率分析系统,在分子生物学、细胞生物学层面进行药效评估,旨在为后序开发出针对难治性病毒感染性疾病的治疗药物。目前,抗 COVID-19 病毒和抗 HPV 病毒等感染性疾病的 RNAi 药效研究是中方基因的主要研发方向之一。野生型致病性病毒有不同方式的传染性。从实验研究的细胞学水平,中方基因根据自有专利,在对针对传染性病毒进行 RNAi 的药效研究时,首先建立了仅需取病毒的基因片段在实验细胞转基因表达作为 RNAi 的靶基因作为研究模型,不存在面临因转录成病毒蛋白而产生感染风险,生物安全性高。中方基因对新冠病毒各种突变株基因组及 S 蛋白质基因进行了分析,精准选取 S 蛋白编码基因的关键保守区域作为打击靶点,自主完成了 RNAi 药物序列的设计。该 RNAi 药物的作用机理明确,靶点能够适用于目前已有的所有病毒突变,且 RNAi 药物化学合成快,对未知的潜在新突变也能尽快做出应对。目前,该药物在分子和细胞生物学水平均表现出较好的药效研究结果, 由中方基因戴方平教授团队的张韦唯等科研工作者撰写的论文发表于 2022 年发表在 "Nano Biomed Eng" 杂志上。并有 2 项国家发明专利受理。由中方基因自主研发的抗新冠病毒棘突 ( S ) 蛋白质基因的 RNAi 已经显示了其药效。如果通过进一步的动物实验及药物安全评价,该 RNAi 药物将以脂质体为载体,通过雾化的方式进入呼吸系统并直达肺部表面,不需进入血液循环,进而能够安全地清除感染细胞内的新冠病毒 S 蛋白质基因,抑制病毒的繁殖。可能发展为一款广谱性的抗新冠病毒的雾化剂药。除了新冠病毒感染我们人体,其他一些病毒也感染我们。如宫颈癌是一种女性妇科最常见的恶性肿瘤之一 , 几乎都是因为高危 HPV 病毒感染引起的。中方基因的另一款重磅在研 RNAi 药物针对的是 HPV 病毒。 团队根据 RNA 干扰技术原理。研发 RNAi 药物主要针对 HPV16、HPV18 等宫颈癌高危病毒的不同基因(E6、E7、L2、L1 等)的 mRNA,从而抑制 HPV 病毒在人体内的表达和增殖。目前,中方基因已经自主完成了对高危病毒 HPV16、HPV18 的 E6、E7、E1、E2、L2 和 L1 等基因的 RNAi 药物设计,以及 RNAi 药物递送物质的比较。再通过试验筛选,已经发现能有效降解 HPV16 和 HPV18 的多个基因 mRNA 的 RNAi 药效成分。后续针对 HPV5、HPV6、HPV11 等皮肤 HPV 病毒也已进入药物设计阶段。中方基因目前在研的 3 条管线均以获得阶段性成果,后续除相关论文发布与专利申请外,公司也已经与中科院上海药物研究所、上海交大纳米技术及应用国家工程研究中心、上海同济大学附属医院、南通市妇幼保健院等高校和医院协作,以稳步推进药物安评、及探讨后续的临床研究。不断创新,扩大合作,肿瘤分析可为长远战略在采访中,戴方平教授也表示,中方基因最期待的商业模式既是 " 创新+ 合作 ",这也是公司最理想的市场关系。通过对所处领域的不断深耕进行创新,由创新驱动的自身特色也将成为吸引合作的原动力。因此,不断创新也成为中方基因未来发展的关键词。目前,中方基因将继续拓展肿瘤基因测序分析技术与高校和科研院所的项目合作,后续也将拓展至 mRNA 的三代测序、抗原抗体检测分析、包括单细胞转录子三代测序分析的科研服务。RNAi 药物也将会是公司将会重点打造的方向,随着药物开发的深入,技术转让、合作生产、药品销售等都在其商业规划内。对于更长远的战略规划,戴方平教授认为还是应该放在肿瘤的分析。伴随我国免疫治疗、细胞治疗技术的发展,对肿瘤新生抗原、抗体、受体的关注度也会明显上升,再结合自身对于第三代测序技术的分析能力加强,相信未来行业将会呈现融合发展的态势, 造福患者!
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 技术干货 | 无惧干扰,快速分析土壤中放射性核素污染
    锶-90(90Sr)是铀和钚的裂变产物,是核泄漏的主要污染物之一。其半衰期为29 年,因此能够在环境中留存相当长的时间。90Sr 本身可以衰变为钇-90(90Y),然后再衰变成稳定的锆-90(90Zr)。当生物体摄入90Sr 时,该元素在骨骼中积累并持续产生辐射,可能对生物体产生危害。因此,评估环境中的90Sr 污染对当地人类和环境健康问题至关重要。常规的90Sr 测定技术通常耗时长(数天)、成本高,并且效率较低,无法实现大量样品的分析,从而快速确定源于核反应堆的90Sr 污染程度。利用电感耦合等离子体质谱仪(ICP-MS)进行分析能够解决上述问题,但同样存在巨大的挑战:90Sr 与锆(Zr)主要同位素的质量数相同(51.45% 高丰度),会造成质谱干扰;同时Zr 在正常环境样品例如土壤中的含量比90Sr 高约十二个数量级(Zr 含量在ppm 级,Sr 含量在sub-ppq 级)。必须克服上述挑战才能有效利用ICP-MS 测量土壤中的90Sr。样品在福岛第一核电站西北方向10 到20km 存在强辐射的区域内,在2cm 深的位置采集表层土样本(100-150g),并用塑料容器搜集、储存样本。样品前处理每个聚四氟乙烯微波消解罐中放一克干燥土壤,之后加入10mL 浓度为10% 的硝酸。按照表1 所示的微波消解程序进行消解,然后冷却至室温并保持20 分钟。之后将溶液转移至塑料离心管中,并以2500rpm 的转速进行10 分钟的离心操作。在进行ICP-MS 分析前,利用孔径为0.45μm 的滤膜过滤样品,留存上清液、去除沉淀物。可将同一采样地点采集的土壤样品同时消解和过滤后,将上清液混合在一起以增加总样品量。表1 微波消解程序由于90Sr 含量较低,所以采用珀金埃尔默FIAS 400 流动注射系统和50mm × 4.6 mm 色谱柱(Eicrhom Technology,Lisle,IL,USA,填料为锶离子选择性树脂,粒径50-100 μm)对Sr 富集并去除其他基体元素。先利用1.9 mL/min 的流速使样品流经色谱柱,然后以0.75mL/min 的流速将浓度为20% 的HNO3 泵入色谱柱,持续90 秒,以去除质谱柱中除Sr 之外质荷比为90 的全部其他同质异位素。最后,用流速为1.9 mL/min 的去离子水冲洗色谱柱90 秒,从而洗脱Sr。在去除基体和洗脱Sr 步骤之间,利用浓度为20% 的HNO3 冲洗整个系统(不包括色谱柱),以清洗阀门。FIAS流动注射系统经前处理后的样品溶液直接注入超声雾化器中,雾化后的气溶胶被导入珀金埃尔默ICP-MS 中,并利用氧气作为反应池气在DRC 模式下检测90Sr;仪器参数如表2 所示。每个样品的总分析时间是14.6 分钟,其中大部分时间主要用于预富集程序。表2 ICP-MS参数氧气反应消除干扰的原理Sr、Zr、Y 和氧气的反应速率常数如下所示: Sr+不能与氧气发生反应,而Zr+ 和Y+ 均可与氧气快速反应,这说明氧气可以将干扰物90Zr+ 和 90Y+ 从90Sr+中有效消除。虽然这些反应似乎可以解决干扰问题且无需进行基质分离,但土壤中90Zr 和90Sr 之间显著的含量差异(6.5-11 μg/g 的Zr 与ppq 含量的90Sr)构成了挑战:在反应池中用O2 除去所有90Zr+ 时,与O2 分子的碰撞会导致90Sr+动能损失。鉴于90Sr+ 含量极低,这种动能损失足以造成90Sr+灵敏度过低从而无法检测。为了克服这一问题,在前处理中特采用基质分离方法。然而,进一步研究表明,在基质分离步骤之后仍然存在显着的Zr 信号(分离之后色谱柱上仍有0.23% 的Zr 残留)。这此种低含量的Zr用氧气反应模式,则可以轻松去除,并且不会影响90Sr的灵敏度。因此,在预富集和基体分离之后利用反应池进行氧气反应去除干扰是最佳的解决方案。可用以下方程式将质量浓度转化为放射性: 表3 记录了从福岛核电站西北10 到20 公里处所取三个土壤样品的分析结果(均取四个测量值的平均值)。运用本文所述方法分离样品后进行分析,同时采用常规方法进行90Sr 测定。两种方法的结果在95% 的置信水平上显示一致。之所以结果出现了少许不吻合现象,是因为90Sr 在土壤中分布不均。表3 土壤中90Sr 分析结果此项研究证实了采用ICP-MS 方法测量土壤中90Sr 含量的有效性;由于土壤中90Sr 含量低、Zr 含量高,因而此项分析工作颇具挑战性。运用基质分离/ 预富集步骤,可将大部分基质元素去除并对90Sr 进行预富集。然而,此步骤后仍存在基质干扰,需用动态反应池进行反应模式消除干扰。与传统的90Sr 分析方法相比,本分析方法在分析效率上具有非常明显的优势。想要了解更多详情,请扫描二维码下载完整的应用报告。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制