当前位置: 仪器信息网 > 行业主题 > >

自旋共振仪

仪器信息网自旋共振仪专题为您提供2024年最新自旋共振仪价格报价、厂家品牌的相关信息, 包括自旋共振仪参数、型号等,不管是国产,还是进口品牌的自旋共振仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自旋共振仪相关的耗材配件、试剂标物,还有自旋共振仪相关的最新资讯、资料,以及自旋共振仪相关的解决方案。

自旋共振仪相关的论坛

  • 质子数为单数时能否有自旋和共振现象?

    质子数为单数的原子核存在核自旋现象在一定频率和强度的磁场中能够激发核磁共振现象请问假如分子中质子数为单数时该分子是否存在自旋现象能否在磁场中产生磁共振现象?

  • 核磁共振的原理

    核磁共振的原理   核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。      根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:      质量数和质子数均为偶数的原子核,自旋量子数为0   质量数为奇数的原子核,自旋量子数为半整数   质量数为偶数,质子数为奇数的原子核,自旋量子数为整数   迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P      由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。      原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。      原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。      为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

  • 【原创】核磁共振原理

    核磁共振用NMR(Nuclear Magnetic Resonance)为代号。 1.原子核的自旋 核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。 I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。 2.核磁共振现象 原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。 式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值, 当自旋核处于磁场强度为H0的外磁场中时,除自旋外,还会绕H0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。自旋核进动的角速度ω0与外磁场强度H0成正比,比例常数即为磁旋比γ。式中v0是进动频率。 微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是: m=I,I-1,I-2…-I 原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出: 向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。 目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。 3.1H的核磁共振 饱和与弛豫 1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。见图8-2。1H的两种取向代表了两种不同的能级, 因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,即符合下式。 核吸收的辐射能大? 式(8-6)说明,要使v射=v0,可以采用两种方法。一种是固定磁场强度H0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与H0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度H0,当H0与v射匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。 在外磁场的作用下,1H倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。1H-NMR的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1H核数目与处于高能态1H核数目相等,与此同步,PMR的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。 1H核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。其速率用1/T2表示,T2称为自旋晶格弛豫时间。自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。其速率用1/T2表示,T2称为自旋-自旋弛豫时间。自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。 4.13C的核磁共振 丰度和灵敏度 天然丰富的12C的I为零,没有核磁共振信号。13C的I为1/2,有核磁共振信号。通常说的碳谱就是13C核磁共振谱。由于13C与1H的自旋量子数相同,所以13C的核磁共振原理与1H相同。 将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。13C的天然丰度只有12C的1.108%。由于被检灵敏度小,丰度又低,因此检测13C比检测1H在技术上有更多的困难。表8-2是几个自旋量子数为1/2的原子核的天然丰度。 5.核磁共振仪 目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。 氢 谱 氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳胳上的位置。

  • 【分享】核磁共振仪的发明

    核磁共振仪广泛用于有机物质的研究,化学反应动力学,高分子化学以及医学,药学和生物学等领域。20年来,由于这一技术的飞速发展,它已经成为化学领域最重要的分析技术之一。      早在1924年,奥地利物理学家泡里就提出了某些核可能有自旋和磁矩。 "自旋"一词起源于带电粒子,如质子、电子绕自身轴线旋转的经典图像。这种运动必然产生角动量和磁偶极矩,因为旋转的电荷相当于一个电流线圈,由经典电磁理论可知它们要产生磁场。当然这样的解释只是比较形象的比拟,实际情况要比这复杂得多。     原子核自旋的情况可用自旋量子数I表示。自旋量子获得,质量数的原子序数之间有以下关系:     质量数 原子序数 自旋量子数(I)     奇数 奇数或偶数 1/2, 3/2 , 5/2……     偶数 偶数 0     偶数 奇数 1,2,3……     10的原子核在自旋时会产生磁场;I为1/2的核,其电荷分布是球状;而I≥1的核,其电荷分布不是球状,因此有磁极矩。     I为0的原子核置于强大的磁场中,在强磁场的作用下,就会发生能级分裂,如果用一个与其能级相适应的频率的电磁辐射时,就会发生共振吸收,核磁共振的名称就是来源于此。

  • 核磁共振的原理

    我是波普学的新人,很多知识都不太理解,想问一下大家,什么是核磁共振?在外来磁场作用下,原子核自旋到哪种程度?是与磁场的作用力相平衡么?又是怎么达到共振,产生信号的?谢谢!!

  • 【转帖】核磁共振

    [em61] 基本原理    核子的自旋和磁矩的存在,使其能够在强大的磁场中旋进。Radi测出不同核子的角动量和磁矩。不同核子在同一磁场中其磁矩和角动量各不相同。同一核子在不同场强的磁场中,其振荡频率也不相同。    磁共振是共振现象的一种,是指原子核在进动中吸收外界能量产生的一种能量跃迁现象。这种跃迁只能出现在相邻两个能量级之间。所谓外界能量是指一个激励电磁场(射频磁场),它的磁矢量在某一个平面上旋转,因此,除其旋转频率正好与原子核回转频率相同外,其自旋方向必须和核磁矩相同,原子核才会吸收到能量,这是磁共振现象的必要条件。    磁共振成像技术的发展产生了许多成像技术方法,但总的设计思想是如何用磁场值来标记受检体中共振核子的空间位置。发生共振的频率与它所在的位置的磁场强度成正比。如果能使空间各点的磁场值互不相同,各处的共振频率也就不同,把共振吸收强度的频率分布显示出来,实际就是共振核子的分布,即核磁共振自旋密度图象。但不可能使同一时刻的三维空间中各点具有不同的磁场值,所以需设计突出各特定点信息的方案。    要达到此目的,首先可对观测的对象进行空间编码,把研究对象简化为由nx,ny,nz个小体积(体素)的组成,然后采用依次测量每个体素或由体素排列的线或面的信息量,再根据个体素的编码与空间位置的一一对应关系实现图象重建。由于成像的灵敏度、分辨率、成像时间和信噪比(S/N)等要求不同,产生了多种成像方法,归纳起来可分为两大类:一是投影重建法;二是非投影重建法,包括线扫描成像法和直接傅立叶变换(fourier transform)成像法。    图片说明:    磁共振成像的空间定位    1)矢向梯度磁场:平行于Y轴、梯度磁场自后向前变化,从而明确前后关系;    2)横向梯度磁场:平行于X轴、梯度磁场自右向左变化,从而明确左右关系;    3)轴向梯度磁场:平行于Z轴、梯度磁场自上向下变化,从而明确上下关系。

  • 2H, 14N不做核磁共振?

    这两天在看核磁共振原理,书上说只有自旋量子数大于0的原子核才有核磁共振现象,但2H, 14N的自旋量子数为整数,他们是否有核磁共振现象呢?还是说因为自旋量子数I为1或大于1的原子核具有非球形电荷分布,因而具有电四极矩,核磁共振谱线加宽,不利于检测,所以平时才不做2H, 14N的核磁共振呢?请教高手!

  • 【“仪”起享奥运】核磁共振nmr技术在化学实验中的应用及其重要性

    一、核磁共振技术的基本原理 核磁共振技术是一种基于原子核自旋磁矩的测量技术。当处于磁场中的核自旋时,将受到磁矩的作用,其自旋能级将发生分裂。当外加射频场作用时,将引起核自旋能级的跃迁,从而产生共振信号。通过测量共振信号的频率和强度,可以获得样品中各种原子核的分布情况,进而推断出样品的结构和性质。 二、核磁共振技术在化学实验中的应用 1. 结构分析 核磁共振技术是进行结构分析的重要手段之一。通过测量共振信号的频率和强度,可以确定分子中氢原子和碳原子的分布情况,进而推断出分子的三维结构。此外,还可以通过同位素标记等方法,进一步确定分子中特定位置的原子类型和数量,为深入研究分子的结构和性质提供有力支持。 2. 反应机理研究 核磁共振技术在研究化学反应机理方面具有很高的应用价值。通过观察反应过程中各物种的核磁共振谱图,可以了解反应过程中各中间体的结构和数量,进而推断出反应的历程和速率。此外,还可以通过测量反应动力学参数等手段,深入探讨反应机理的细节和影响因素,为优化反应条件和提高产物纯度提供理论依据。 3. 定量分析 核磁共振技术还可以用于定量分析化学样品中通各过组分共振信号的强度和相对比例,可以计算出样品中不同组分的相对含量。还可以结合其他检测手段,如色谱-质谱联用等技术,提高定量分析的准确性和可靠性。 4. 分子动态研究 核磁共振技术还可以用于研究分子动态行为。通过测量分子内部各原子核之间的核磁共振相关谱图,可以了解分子在不同时间尺度上的运动状态和运动模式。这有助于深入探讨分子在特定环境下的构象变化和化学反应活性等性质,为设计新型材料和药物等提供理论依据。 实验过程中核磁氢谱,碳谱,磷谱检测均可以提供通过测量共振信号的频率和强度,可以获得样品中各种原子核的分布情况,进而推断出样品的结构和性质。

  • 【“仪”起享奥运】+新手应该的解核磁共振波谱仪基础知识

    核磁共振波谱仪是一种重要的科学仪器,普遍应用于化学、生物、医学等领域的研究和分析。它利用核磁共振现象,通过测量样品中原子核的共振信号,来获取关于样品结构和性质的信息。核磁共振波谱仪的基本原理是基于原子核的自旋和磁矩。当样品置于强磁场中时,样品中的原子核会产生一个自旋磁矩,这个磁矩会与外加的射频脉冲相互作用。通过改变射频脉冲的频率,可以使得特定核自旋发生共振,从而产生一个共振信号。这个共振信号可以通过探测器接收并转化为电信号,再经过处理和分析,得到核磁共振谱图。核磁共振波谱仪由多个主要部分组成,包括磁体、射频系统、探测器和数据处理系统。磁体是核磁共振波谱仪的部分,它产生强大的恒定磁场,用于定向样品中的原子核。射频系统则提供射频脉冲,用于激发和探测共振信号。探测器负责接收共振信号并将其转化为电信号。数据处理系统则对接收到的信号进行处理和分析,生成核磁共振谱图,并提供相关的结构和性质信息。核磁共振波谱仪在化学领域的应用非常普遍。它可以用于确定化合物的结构、确定分子的构象、研究分子间的相互作用等。通过核磁共振波谱仪,化学家们可以了解分子的空间结构、键合情况、官能团的存在等重要信息,从而推断出化合物的性质和反应机理。在生物和医学领域,核磁共振波谱仪也发挥着重要的作用。它可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,研究代谢物在生物体内的分布和代谢途径,以及研究药物在体内的代谢和作用机制等。通过核磁共振波谱仪,科学家们可以深入了解生物体内的分子组成和相互作用,为疾病的诊断和提供重要的依据。总之,核磁共振波谱仪是一种强大而多功能的科学仪器,它在化学、生物、医学等领域的研究和分析中发挥着重要的作用。通过测量样品中原子核的共振信号,核磁共振波谱仪可以提供关于样品结构和性质的宝贵信息,为科学研究和应用提供了强有力的工具。[list][/list]

  • 【我们不一YOUNG】+核磁共振波谱仪应用场景及作用

    [font=微软雅黑][size=16px]核磁共振波谱仪是一种重要的科学仪器,普遍应用于化学、生物、医学等领域的研究和分析。它利用核磁共振现象,通过测量样品中原子核的共振信号,来获取关于样品结构和性质的信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的基本原理是基于原子核的自旋和磁矩。当样品置于强磁场中时,样品中的原子核会产生一个自旋磁矩,这个磁矩会与外加的射频脉冲相互作用。通过改变射频脉冲的频率,可以使得特定核自旋发生共振,从而产生一个共振信号。这个共振信号可以通过探测器接收并转化为电信号,再经过处理和分析,得到核磁共振谱图。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪由多个主要部分组成,包括磁体、射频系统、探测器和数据处理系统。磁体是核磁共振波谱仪的部分,它产生强大的恒定磁场,用于定向样品中的原子核。射频系统则提供射频脉冲,用于激发和探测共振信号。探测器负责接收共振信号并将其转化为电信号。数据处理系统则对接收到的信号进行处理和分析,生成核磁共振谱图,并提供相关的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪在化学领域的应用非常普遍。它可以用于确定化合物的结构、确定分子的构象、研究分子间的相互作用等。通过核磁共振波谱仪,化学家们可以了解分子的空间结构、键合情况、官能团的存在等重要信息,从而推断出化合物的性质和反应机理。[/size][/font][font=微软雅黑][size=16px]在生物和医学领域,核磁共振波谱仪也发挥着重要的作用。它可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,研究代谢物在生物体内的分布和代谢途径,以及研究药物在体内的代谢和作用机制等。通过核磁共振波谱仪,科学家们可以深入了解生物体内的分子组成和相互作用,为疾病的诊断和提供重要的依据。[/size][/font][font=微软雅黑][size=16px]总之,核磁共振波谱仪是一种强大而多功能的科学仪器,它在化学、生物、医学等领域的研究和分析中发挥着重要的作用。通过测量样品中原子核的共振信号,核磁共振波谱仪可以提供关于样品结构和性质的宝贵信息,为科学研究和应用提供了强有力的工具。[/size][/font]

  • 【讨论】核磁共振H谱的原理

    核磁共振H谱的原理,即是利用射频电磁波照射分子,使分子的原子核发生自旋跃迁的现象。对于H谱而言,是利用了处在不同化学环境的H核的电子云密度不一样,使得其对外加磁场会发生屏蔽作用,故不同的氢核发生自旋跃迁需要的磁场会有区别,从而将不同的氢核区别开,即不同的氢核会有不同的化学位移。

  • 锡盟信息港为你介绍核磁共振方面的内容

    核磁共振是我们现在医学中应用的比较多的一项技术,锡盟信息港小编今天想要为大家介绍的就是关于核磁共振方面的内容,希望大家简单的了解一下。  核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。  核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。另外,怀孕不到3个月的孕妇,最好也不要做核磁共振检查。

  • 关于核磁共振频率

    指相同的外加磁场下,自旋角动量相同的原子核其核磁共振频率是否都相同?若是同一种原子核呢?

  • 金刚石或成未来核磁共振技术的关键

    美国能源部(DOE)伯克利劳伦斯国家实验室(Berkeley Lab)和加州大学(UC)伯克利分校的研究人员已经论证,金刚石可能是未来的核磁共振(NMR)和磁共振成像(MRI)技术的关键。 Alex Pines的研究小组记录了第一块室温下任意磁场和晶体取向下,金刚石中碳-13原子核的原位NMR超极化。 Alexander Pines是伯克利实验室材料科学部和伯克利大学Glenn T. Seaborg化学教授席位的高级学院教授,在其主导的一项研究中,研究人员记录了第一块室温下任意磁场和晶体取向下,金刚石中碳-13原子核的原位NMR超极化。超极化的碳-13自旋信号显示NMR/MRI信号敏感度得到了相对于传统的NMR/MRI磁体在室温下通常可能的信号敏感度超出多个数量级的增强。此外,这种超极化是使用微波实现的,而不是依靠精确的磁场来进行超极化转移。 Pines是发表在《Nature Communications》上一篇关于本研究的论文的通讯作者。该论文的标题是《金刚石中光泵浦氮空位中心的室温原位原子核自旋超极化》。Pines研究小组的一位成员JonathanKing是该文的第一作者。 作者报告,观察到了百分之六的体原子核自旋极化,这是一个比热平衡大170000倍左右的核磁共振信号增强。超极化自旋信号可以通过标准NMR探针进行原位检测,不需要来回移动样品或者精确的晶体取向。作者认为这种新的超极化技术应该可以使在室温条件下对固体和液体的核磁共振研究的灵敏度得到数量级上的增强。 “我们的研究结果代表了一个与Weizmann科学研究所的Lucio Frydman和其同事在其开创性实验中得到的结果相当的核磁共振信号增强,但是是在金刚石中通过微波诱导动态原子核超极化,不需要精确控制磁场和晶体取向,”Pines说:“室温超极化金刚石打开NMR/MRI极化从一个惰性、无毒、易分离的源转移到任意样本的可能性,这是当代NMR/MRI技术长期追求的一个目标。” 同时具有化学特异性和非破坏性的特点使NMR/MRI技术在包括化学、材料、生物和医学等的广泛领域内成为一种不可或缺的技术。然而,它的敏感度问题仍然是一个持久的挑战。NMR/MRI信号是基于电子和原子核的一种被称为“自旋”的本征量子特性。电子和原子核可以像一个旋转的小磁铁棒一样被分配一个“向上”或“向下”的方向状态。NMR/MRI信号取决于被往一个方向极化的核自旋的大多数——即极化程度越高,信号越强。Pines和他的研究小组成员经过几十年的努力,已经开发了大量的方法来超极化原子核的自旋。在过去的两年中他们一直专注于金刚石晶体和一种称为氮空位(NV)中心的杂质,在氮空位中心里光学和自旋自由被耦合在一起。 “当纯金刚石晶体的晶格中相邻的两个碳原子被从晶格中删除,留下两个空隙,其中一个被一个氮原子填充,另一个保持空缺的时候,就得到了一个氮空位(NV)中心,”Pines解释说。这使得在氮原子和空位之间出现非束缚的电子,产生独特和明确的电子自旋极化态。” 在之前的研究中,Pines和他的团队发现,低强度磁场可以用来将NV中心电子自旋极化传递到附近的碳-13原子核,从而产生超极化核。这个被称为动态核极化的自旋转移过程在以前就已经被用于增强核磁共振信号,但总是在高强度磁场和低温条件下进行。Pines和他的团队通过在金刚石旁边放置一个永久磁铁消除了这些要求。 “在我们的新研究中,我们利用微波而不是磁场来匹配电子和碳-13原子核之间的能量,从而消除了一些困难的对磁场强度和对准的限制,使得我们的技术更容易使用,”King说:“另外,在我们以前的研究中,我们通过光学测量间接推断核极化的存在,因为我们无法测试是样品整体极化还是只有非常接近NV中心的核被极化。通过完全消除对磁场的需要,我们现在能够用NMR直接测量大块样品。 在《Nature Communications》的文章里,Pines, King和其他共同作者说,可以有效地集成到现有的制造技术并创造高表面面积金刚石器件的超极化金刚石应该可以为极化转移提供一个通用的平台。 “我们希望利用现有的极化转移技术——如固体中的交叉极化和液体中的交叉弛豫,或NV中心外围核的直接动态核极化——来得到液体和固体的高度增强核磁共振,”King说,应该注意到,这种转移到固体表面和液体的极化转移之前已经被Pines的研究团队用激光极化Xe-129论证过。”我们基于光学极化NV中心的超极化技术更为强大和有效,应该适用于任意的目标分子,包括必须保持在接近室温条件下的生物系统。”

  • 《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    今天到这里来发布一个消息,对坛里各位师生都有用,版主不要认为是广告帖,高抬贵手啊。《核磁共振原理与实验方法》原书由武汉大学出版社出版,ISBN:9787307059894。出版时间:2008-04-01。大32开本,32个印张,精装版,每本定价95元,该书是核磁共振专著。前5章为核磁共振基础知识;第6章是介绍核磁共振谱仪和操作程序;第7和第8章是理论计算方法和表象理论,很有看点;第9章是该书所特有,如想设计新的实验就有必要一读;第10章一维谱,包括谱仪各种指标测试和13C谱编辑;第11章自旋回波和驰豫时间测量;第12 章双共振,重点讨论各种自旋去偶;第13章二维谱,是读者感兴趣的部分; 第14章多量子跃迁,比较专业;第15章供关心固体高分辨的读者一阅;第16章是书中的重点,分析了84个实用脉冲序列,体现了理论与实验相结合的价值。《核磁共振原理与实验方法》适用于从事核磁共振研究的专业人员,应用核磁共振技术做结构分析的相关工作人员,以及大学教师、研究生、科研人。该书2008年出版,很快售罄,一直未再版。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011326_540416_2995925_3.jpg网上对该书需求度很高。现在,两位老师(高汉宾、张振芳)不顾年事已高,重新整理,与时俱进,以数字出版方式,在武汉大学出版社的天线出版网上正式网络出版,出版号: UDPN 978-7-307-01368-1。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011333_540417_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011334_540418_2995925_3.jpg扫一扫同时,两位老师的另一新作《磁共振成像原理》也以数字出版形式出版,出版号: UDPN 978-7-307-01369-8。该书没有纸质出版,数字出版是唯一形式。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011338_540419_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011339_540420_2995925_3.jpg扫一扫该书简介:随着磁共振成像在临床诊断中普遍应用,磁共振影像已为大众所熟悉,希望了解磁共振成像的人与日俱增,为此,需要一本具有一定深度的普及读物供大家阅读和参考。本书从物理角度论述磁共成像原理,全书共分14章。 第一章 磁共振成像概述 第二章 连续与离散傅里叶变换 第三章 离散采样与傅里叶重建像 第四章 稳态κ空间采样 第五章 稳态快速κ空间采样 第六章 κ空间分区采样和回波平面成像(EPI) 第七章 Bloch方程的解与旋密度、T1、T2 的测量 第八章 分辨率、信噪比、对比度 第九章 化学位移谱成像和抑制脂肪信号 第十章 磁场不均匀对图像的影响 第十一章 随机运动、弛豫与扩散 第十二章 运动伪影和速率补偿 第十三章 磁共振血管成像(MRA) 第十四章 磁化率成像与脑功能成像(FMIR)参考文献

  • 请问 什么是自旋挠痒?

    根据照射场的强度和具体试验方法,双照射技术分为:普通自旋去偶,NOE,核间双共振,自旋挠痒等那么什么是自旋挠痒?谢谢

  • 电子顺磁共振实验技术

    讲述了ESR溥仪的一些情况包括构造、磁场系统和信号的采集多重电子自旋共振技术[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14272]电子顺磁共振实验技术[/url]

  • 核磁共振原理简单介绍

    核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振(MRI)又叫核磁共振成像技术。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。  MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

  • 【“仪”起享奥运】核磁共振技术在环境监测中的应用

    [font=微软雅黑, &][color=#1f1f1f] 核磁共振(NMR)是一种基于原子核自旋和磁场相互作用原理的物 理现象,广泛应用于各个领域,尤其在化学和医学领域中被广泛运用。 然而,在环境监测领域中,核磁共振技术的应用也具有巨大潜力。本 文将详细讲解核磁共振技术在环境监测中的应用,并探讨其实验准备、 过程以及其他专业性角度。 一、核磁共振技术的基本原理 核磁共振技术是基于原子核的磁共振现象。原子核带有自旋以及正、 负电荷,因此会产生磁矩。当物质处于外加磁场中时,原子核会在这 个磁场的作用下发生预先的进动运动,这种现象称为共振。核磁共振 技术通过探测原子核共振的频率和强度来提供有关物质的结构和特性 的信息。 二、核磁共振技术在环境监测中的应用 1. 检测有机污染物:核磁共振技术可以用来检测环境中的有机污染 物,例如挥发性有机物、农药和工业化学品。通过观察样品中有机污 染物的核磁共振信号,可以确定其存在的类型、浓度和其他相关信息。 2. 分析水质:核磁共振技术可以用于对水样中的化学成分进行分析, 例如饮用水中的微量有机物、重金属和放射性物质。通过核磁共振技 术,可以快速、准确地确定水样中的污染物含量,并评估其对环境和 人体健康的潜在影响。 3. 研究土壤污染:核磁共振技术可以被应用于土壤样品的分析,为 了解土壤中污染物的来源、分布和迁移过程。通过核磁共振技术,可 以非侵入地观测土壤样品中有机物和无机物的分布情况,帮助决策者 有效地制定土壤污染防治策略。 4. 监测大气污染:核磁共振技术可以用于监测大气中的污染物,例 如挥发性有机物、大气颗粒物和臭氧。通过分析大气样品中的核磁共 振信号,可以了解大气污染的来源和分布情况,并为制定环境保护政 策提供科学依据。 三、核磁共振技术的实验准备和过程 1. 实验准备: a. 选择合适的核磁共振仪器:根据实验需要选择适合的核磁共振仪 器,例如高分辨率核磁共振仪。 b. 准备样品:根据实验目的,选择合适的样品,例如水、土壤或大 气样品。将样品制备成适合核磁共振分析的形式,例如通过提取、浓 缩或纯化等方法。 c. 设置实验条件:根据样品特点设置合适的实验条件,包括磁场强 度、温度、溶剂和脉冲序列等参数。 2. 实验过程: a. 样品放入核磁共振仪器:将准备好的样品放入核磁共振仪器中, 根据仪器的要求进行正确的样品适配。 b. 设置实验参数:根据实验目的和样品特性设置核磁共振仪器的参 数,例如磁场强度、温度和脉冲序列等。 c. 数据采集:启动核磁共振仪器进行数据采集,记录核磁共振信号 的频率和强度等信息。 d. 数据分析:对采集到的核磁共振数据进行分析处理,根据信号的 特征和模式进行结构推断和定量分析。 四、核磁共振技术在环境监测中的其他专业性角度 1. 定量分析:通过测量核磁共振信号的强度,可以对环境样品中的 污染物进行定量分析,通过与标准曲线或参考物质进行比对,可以得 出样品中污染物的浓度。 2. 精确结构确定:核磁共振技术在环境监测中还可以用于精确确定 污染物的分子结构和立体构型,为进一步研究其环境行为和生物效应 提供重要依据。 3. 无损检测:核磁共振技术是一种非侵入性的检测方法,可以通过 对样品的扫描分析,获取详细信息,同时不会对环境样品造成损坏。 [/color][/font]

  • 【转帖】关于核磁共振成像的问题

    关于核磁共振成像的原因,关于核磁共振成像的相关知识。核磁共振成像(Nuclear Magnetic Resonance Imaging‎ ,简称NMRI‎ ),又称自旋成像(spin imaging‎ ),也称磁共振成像(Magnetic Resonance Imaging‎ ,简称MRI‎ ),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance‎ ,简称NMR‎ )原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

  • 武汉磁共振中心第七期核磁共振技术培训-2014.4

    武汉磁共振中心第七期核磁共振技术培训班暨有机化学与药物研究核磁谱图解析高级培训班通知(第一轮)随着科学技术的进步和现代分析仪器的发展,核磁共振已成为化学和药学研究中必不可缺的分析鉴定手段。通过授课使学员了解核磁共振波谱学的发展,学习核磁共振基本原理、实验方法、特别是各种谱图的解析方法和综合解析技巧,结合计算机分子模拟,培养学员分析问题和解决问题的能力,掌握现代核磁共振新技术和新方法。武汉磁共振中心(中科院武汉物理与数学研究所、波谱与原子分子物理国家重点实验室)将于2014年4月11日-4月14日樱花绽放之时在武汉举行有机化学与药物研究核磁谱图分析高级研讨班。届时将由国内核磁共振领域知名专家和学者进行专题讲座,培训的主要内容为核磁谱图解析。因采取授课和上机指导交互进行,人数将控制在30人以内,对象为全国各高校和科研院所具有相关领域背景的教师、研究人员、在读研究生。诚挚邀请贵单位科研人员和研究生参加培训和研讨。被邀请的报告人:崔育新教授 北京大学药学院,授课22个学时林崇熙教授 北京大学化学与化工学院,授课2个学时刘惠丽 高工 武汉物理与数学研究所,授课4个学时刘红兵 博士 武汉物理与数学研究所,授课4个学时 (1个学时为45分钟)培训内容:核磁共振基本原理和基础知识(1) 核磁共振基本原理和基础知识(2) 化学位移和影响化学位移的因素(3) 自旋偶合,偶合常数与分子结构的关系(4) 核磁共振信号强度比(5) 弛豫时间现代核磁共振实验方法及其应用(6) 一维核磁共振实验方法(7) 二维核磁共振实验方法(8) 同核化学位移相关技术(9) 异核化学位移相关技术(10) 二维NOE技术(11) 二维J[size=12p

  • 【资料】核磁共振技术(共2讲)

    [B][center]核磁共振技术 (1)[/center][/B] 磁矩是由许多原子核所具有的内部角动量或自旋引起的,自1940年以来研究磁矩的技术已得到了发展。物理学家正在从事的核理论的基础研究为这一工作奠定了基础。1933年,GO斯特恩(Stern)和I艾斯特曼(Estermann)对核粒子的磁矩进行了第一次粗略测定。美国哥伦比亚的II拉比(Rabi生于1898年)的实验室在这个领域的研究中获得了进展。这些研究对核理论的发展起了很大的作用。当受到强磁场加速的原子束加以一个已知频率的弱振荡磁场时原子核就要吸收某些频率的能量,同时跃迁到较高的磁场亚层中。通过测定原子束在频率逐渐变化的磁场中的强度,就可测定原子核吸收频率的大小。这种技术起初被用于气体物质,后来通过斯坦福的F.布络赫(Bloch生于1905年)和哈佛大学的EM珀塞尔(Puccell生于1912年)的工作扩大应用到液体和固体。布络赫小组第一次测定了水中质子的共振吸收,而珀塞尔小组第一次测定了固态链烷烃中质子的共振吸收。自从1946年进行这些研究以来,这个领域已经迅速得到了发展。物理学家利用这门技术研究原子核的性质,同时化学家利用它进行化学反应过程中的鉴定和分析工作,以及研究络合物、受阻转动和固体缺陷等方面。1949年,WD奈特证实,在外加磁场中某个原子核的共振频率有时由该原子的化学形式决定。比如,可看到乙醇中的质子显示三个独立的峰,分别对应于CH3、CH2和OH键中的几个质子。这种所谓化学位移是与价电子对外加磁场所起的屏蔽效应有关。(1)70年代以来核磁共振技术在有机物的结构,特别是天然产物结构的阐明中起着极为重要的作用。目前,利用化学位移、裂分常数、H—′HCosy谱等来获得有机物的结构信息已成为常规测试手段。近20年来核磁共振技术在谱仪性能和测量方法上有了巨大的进步。在谱仪硬件方面,由于超导技术的发展,磁体的磁场强度平均每5年提高1.5倍,到80年代末600兆周的谱仪已开始实用,由于各种先进而复杂的射频技术的发展,核磁共振的激励和检测技术有了很大的提高。此外,随着计算机技术的发展,不仅能对激发核共振的脉冲序列和数据采集作严格而精细的控制,而且能对得到的大量的数据作各种复杂的变换和处理。在谱仪的软件方面最突出的技术进步就是二维核磁共振(2D—NMR)方法的发展。它从根本上改变了NMR技术用于解决复杂结构问题的方式,大大提高了NMR技术所提供的关于分子结构信息的质和量,使NMR技术成为解决复杂结构问题的最重要的物理方法。①2D—NMR技术能提供分子中各种核之间的多种多样的相关信息,如核之间通过化学键的自旋偶合相关,通过空间的偶极偶合(NOE)相关,同种核之间的偶合相关,异种核之间的偶合相关,核与核之间直接的相关和远程的相关等。根据这些相关信息,就可以把分子中的原子通过化学键或空间关系相互连接,这不仅大大简化了分子结构的解析过程,并且使之成为直接可靠的逻辑推理方法。②2D—NMR的发展,不仅大大提高了大量共振信号的分离能力,减少了共振信号间的重叠,并且能提供许多1D—NMR波谱无法提供的结构信息,如互相重叠的共振信号中每一组信号的精细裂分形态,准确的耦合常数,确定耦合常数的符号和区分直接和远程耦合等。③运用2D—NMR技术解析分子结构的过程就是NMR信号的归属过程,解析过程的完成也就同时完成了NMR信号的归属。完整而准确的数据归属不仅为分子结构测定的可靠性提供了依据,而且为复杂生物大分子的溶液高次构造的测定奠定了基础。④2D—NMR的发展导致了杂核(X—NMR),特别是13C—NMR谱的广泛研究和利用。杂核大多是低丰度,低灵敏度核种,由于灵敏度低和难以信号归属,以往利用不多。但X—NMR谱包含有大量的有用结构信息,新颖的异核相关谱(HET—Cosy)提供的异核之间的相关信息(如H—C,C—C,H—P,H—N)不仅为这些杂核的信号归属提供了依据,而且能提供H—NMR所不能提供的重要结构信息。⑤2D—NMR技术的发展也促进了NOE的研究和应用的发展。NOE反映了核与核在空间的相互接近关系,因此它不仅能提供核与核之间(或质子自旋耦合链之间)通过空间的连接关系,而且能用来研究核在空间的相互排布即分子的构型和构象问题。2D—NMR技术由于其突出的优点和巨大的潜力,在谱仪硬件能够满足2D—NMR实验(即进入80年代)以后的短短几年时间内,已有1000余篇论文和数十种评论和专著出现。

  • 我的『核磁共振波谱学的基本原理和实验』图书

    我的『核磁共振波谱学的基本原理和实验』图书

    书名:核磁共振波谱学的基本原理和实验作者:原现瑞出版社:河北人民出版社;出版年:2019年;页数:348页;装帧:平装;ISBN:978-7-202-12132-0;内容介绍:核磁共振(Nuclear magnetic resonance,NMR)包括液体NMR、固体NMR和NMR成像(Magnetic resonance imaging,MRI)等内容。液体NMR主要应用于化学,固体NMR应用于材料学,MRI应用于生物学和医学领域。本书论述液体NMR波谱学的基本原理和实验。 本书从量子力学的基础知识出发,介绍NMR波谱学的基本理论,用乘积算符公式分析一些经典脉冲序列和常用的1D和2DNMR实验,并给出NMR谱用于研究有机小分子结构的应用实例。 本书的目的是向这些非物理学专业人员介绍NMR波谱学的基本理论和常用实验,书中所采用的数学和物理的概念、模型或方法以简单介绍为主,数学公式的演算尽可能详细,以方便读者理解。 目前该书没有电子版,仅有纸质版,如有需要请与李润岩联系,电话:13784334153。谢谢!目录:第一章:核磁共振的概念和经典力学的理论解释第二章:量子力学基本知识第三章:量子力学中的算符和力学量;第四章:密度算符;第五章: 单自旋-1/2;第六章:二自旋体系;第七章:二自旋体系乘积算符之间的转化;第八章:一些经典的脉冲序列;第九章:一维NMR实验;第十章:同核二维NMR实验;第十一章:异核二维NMR实验;第十二章: 弛豫动力学;第十三章:用NMR谱研究有机化合物的分子结构;练习题及提示答案附录封面:[img=核磁共振波谱学,690,1064]https://ng1.17img.cn/bbsfiles/images/2020/07/202007151026532286_9904_1267429_3.jpg!w690x1064.jpg[/img]

  • 【转帖】残留知识普及一百篇之十三【核磁共振技术的概述及重要成果的回顾】

    摘要:核磁共振是指原子核在外加恒定磁场作用下产生能级分裂,从而对特定频率的电磁波发生共振吸收的现象。因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。核磁共振现象发现五十多年来,已经有多位著名科学家因从事NMR或与NMR有关的研究而获得诺贝尔奖。本文联系一些有重要贡献的科学家的主要贡献对核磁共振及其相关研究作简要的回顾。关键词:核磁共振(NMR),诺贝尔奖,循序指认法,核磁共振成像。原子是由电子和原子核组成的。原子核带正电,它们在不断地做自旋运动。当外磁场时,按量子力学原则,允许的自旋态也是量子化的,因此在磁场中不同取向的自旋核所具有的能量就会有所不同,即能级产生了分裂。当外加合适频率的电磁波时,可以引起原子核两个能级的跃迁:处于低能级的核可以吸收频率与其旋转频率相同的电磁波跃迁到高能级,使原子核的能量增加,而处于高能级者则发射能量回到低能级,两者的跃迁的几率是相同的,但由于任意温度下处于低能级的核总是多于处于高能级的核,因此总起来说仍表现为对电磁波的净吸收现象。核磁共振(nuclear magnetic resonance,简称NMR),是指原子核在外加恒定磁场作用下产生能级分裂,从而对特定频率的电磁波发生共振吸收的现象。科学家在1945年核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。NMR波谱学研究的对象是原子核自旋。核自旋系统可以用射频场进行随心所欲的操纵,这就为理论物理学家和实验物理学家演示量子力学和统计力学的基本概念提供了最简单的和教科书式的测试系统。核自旋实际上已成为科学家探讨物质世界的“探针”。这些“探针”极端定域,能够详尽地报告它们自己以及近邻的状态核变化。它们之间的偶极-偶极相互作用和标量耦合相互作用能够分别提供原子核间距或化学键二面角等分子几何信息,从而使从分子和原子水平上研究宏观物质成为可能。NMR技术已经发展成为研究液态分子的极为重要的手段,而对于溶液中的DNA和蛋白质构象的研究,NMR是目前唯一的方法。因此,化学家和生物学家成了NMR及自旋系统最大的受益者。核磁共振现象发现五十多年来,已经有多位著名科学家得诺贝尔奖。现联系一些有重要贡献的科学家的主要贡献对核磁共振及其相关研究作简要的回顾。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制