当前位置: 仪器信息网 > 行业主题 > >

气相分子仪

仪器信息网气相分子仪专题为您提供2024年最新气相分子仪价格报价、厂家品牌的相关信息, 包括气相分子仪参数、型号等,不管是国产,还是进口品牌的气相分子仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相分子仪相关的耗材配件、试剂标物,还有气相分子仪相关的最新资讯、资料,以及气相分子仪相关的解决方案。

气相分子仪相关的方案

  • 9 气相分子仪测定水质中的汞
    气相分子吸收光谱仪目前仅应用于测定水质中的总氮、硝酸盐氮、亚硝酸盐氮、氨氮、硫化物等,为拓宽应用范围,试用于测定水质中的汞取得了较好的效果。实验表明,该方法灵敏度高,检出限为0.002ng,能满足环境分析要求。
  • 6 气相分子吸收光谱法测定水中的氨氮
    应用气相分子吸收光谱法测定水中的氨氮,测定了该方法的检出限、精密度和准确度,并对实际样品进行了测定和加标回收实验,发现该方法的精密度和准确度均较好,在实际应用当中有一定的优越性。
  • 气相分子吸收光谱法测定印染废水中的氨氮
    , 纳氏试剂比色法测定印染废水的氨 氮, 减少废水的取样量能降低色度对氨氮测定的干扰。随着取样量的减少,相对标准偏差有所提高,说明取样量的减少对实验精密度会造成影响。气相分子吸收光谱法测定印染废水的氨氮,取样量的调整对氨氮浓度无明显影响,相对标准偏差也无明显区别。实验表明,气相分子吸收光谱法测定印染废水的氨氮,不需预处理,相比纳氏试剂比色法,方法简便,精密度高。
  • 11气相分子吸收光谱法在炼油废水水质分析中的应用
    文中从标准曲线的建立、精密度考察、准确度考察及样品干扰消除等方面分析了气相分子吸收光谱法对炼油废水中硝酸盐氮分析的适用性。结果表明,在采取了正确的消除干扰措施后,气相分子吸收光谱法能准确的测定炼油废水中的硝酸盐氮的含量。
  • 气相分子吸收法测定水中凯氏氮
    1、操作简单,检测限低;2、可用于地表水和废水乙醛、丙烯醛和丙烯腈项目的测定;3、本试验改进了水中凯氏氮的测定方法,使用气相分子吸收光谱仪,减少了样品分析时间,同时通过2次测定法,消除了亚硝酸盐对测定的影响。
  • 1 碱性过硫酸钾氧化-气相分子吸收光谱法测定水中总氮
    采用改进后的碱性过硫酸钾氧化-气相分子吸收光谱法测定水中总氮,方法灵敏度高,重复性和准确度良好,适用于海水、地面水、养殖水及入海排放口的水质监测。
  • 4 气相分子吸收光谱法测定沉积物中的硫化物
    本文将海洋规范的酸化吹气前处理方法与行业标准的气相分子吸收光谱法测定水中硫化物两种方法结合起来使用,求得沉积物中的硫化物含量。该法的操作简便,省力省时,精密度好,结果可靠。所得加标回收率为95%,相对标准偏差为3.0%。?
  • 气相分子吸收光谱法快速测定水中高锰酸盐指数
    采用 DG200 加热反应器消解,用亚硝酸盐还原 后,直接用分子吸收原子吸收光谱法进行测定的方 法。具有测定快速、准确度高、浊度影响少、所用试 剂安全环保的特点,特别适合于应急、在线监测、流 动注射领域的仪器的开发与使用。
  • 气相分子吸收光谱法在环境污染物分析中的应用
    1.采用空心阴极灯作光源,配合自动灯架,转换测试波长仪器自动换灯,并自动微调灯位置。2.测试时只需选定测试项目就可自动生成仪器参数,不需根据不同项目手动设定测试条件。3.流动注射进样系统,进样泵替代手动进样,进样流量电子调节系统,流量精度0.1%。大口径进样管,无需为样品可能会堵塞管路而烦恼。4.全密闭反应分离器系统,反应过程在全密闭环境中完成。流路系统全部为耐腐蚀高强度高分子聚合材料。5.加热系统:配备全内置自动在线加热模块,过热设定温度自动停止,确保安全。6.内置式氨氮在线氧化系统, 自动氧化氨氮成亚硝酸盐,无需人为添加氧化剂;7.氨氮测定时自动除去亚硝酸盐氮干扰。8.配备除水系统,分析过程中完全不使用任何干燥剂。9.电子压力报警系统:压力不足或缺气时,报警并自动关闭进样及加热系统。
  • 气相分子吸收光谱法测定土壤中的硝酸盐氮
    1.采用进口长寿命连续光源,1个灯涵盖现有标准所有项目测试波长。可以对待测物质自动扫描,选择最大吸收峰。2.测试时只需选定测试项目就可自动生成仪器参数,不需根据不同项目手动设定测试条件。转换测试项目只需30秒就可完成,无需换灯预热。3.流动注射进样系统,进样泵替代手动进样;进样流量电子调节系统,流量精度0.1%。大口径进样管,无需为样品可能会堵塞管路而烦恼。4.全密闭反应分离器系,反应过程在全密闭环境中完成。流路系统全部为耐腐蚀高强度高分子聚合材料。5.加热系统:配备全内置自动在线加热模块,过热设定温度自动停止,确保安全。6.内置式氨氮在线氧化系统, 自动氧化氨氮成亚硝酸盐,无需人为添加氧化剂。7.氨氮测定时自动除去亚硝酸盐氮干扰。8.配备除水系统,分析过程中完全不使用任何干燥剂。9.电子压力报警系统:压力不足或缺气时,报警并自动关闭进样及加热系统。10.强大的软件操作系统,有断电保护功能,如突然断电或死机,已测试数据不会丢失。11.软件系统具有自检功能: 测定前仪器自动检测通讯口、波长、狭缝及灯位置等。12.软件具有反控功能,由软件直接设置仪器测试波长,泵转数,进样时间等测试条件。
  • LISICO LS-1 分散均质分析测试仪在高分子聚合物浆料的应用
    高分子聚合物浆料是专业技术厂家开发的分散溶液,在钽电容器生产厂家已大量使用。高分子聚合物浆料对其组成物质要求是十分严格的。其品质的高低、含量的多少,以及粒度大小对浆料性能都有着密切关系。在目前的工业生产中,高分子聚合物浆料的表征手段主要是粒度测试、粘度测试以及使用性能评价,这些测试方法均不能表征浆料的分散性,以及原始状态下填料与液体介质之间的相互作用。对于固液两相体系,在固体相表面会附着一层液相分子,这些液相分子因固体相的吸附作用而运动受限。但未与固体相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,两者相差约2~3个数量级。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,计算固体颗粒的湿润比表面积,并用来研究固体纳米颗粒在溶剂中的分散性和稳定性等问题。
  • 凝胶相分离现象:水凝胶材料特性与低场核磁共振技术的应用
    水凝胶作为一种多功能的软材料,在生物医学、药物释放、组织工程等领域具有广泛的应用。凝胶相分离作为影响水凝胶性能的关键因素,对其研究至关重要。本文将探讨凝胶相分离现象,水凝胶的特性,以及低场核磁共振技术在水凝胶研究中的应用。
  • 奥龙集团:利用X射线衍射仪进行多相物质的相分析
    一、实验目的1.概括了解X射线衍射仪的结构及使用。2.练习用PDF(ASTM)卡片及索引对多相物质进行相分析。二、X射线衍射仪简介传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。图实2-1为日本理光光学电机公司生产的D/max-B型自动化衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进入脉冲高度分析器。操作者在必要时可利用该设备自动画出脉冲高度分布曲线,以便正确选择基线电压与上限电压。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经微处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样( )及探测器(2 )进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。
  • 锂辉石的物相分析
    锂辉石由于Li2O含量较高,是目前新能源汽车产业主要的锂源。本文使用岛津XRD-7000衍射仪测试了送检的两种锂辉石样品,对得到的衍射谱图进行了物相解析,两个样品主物相分别为α -锂辉石和β -锂辉石,推测两个样品分别为浮选后的锂精矿和焙烧料。通过Rietveld精修给出了焙烧料的物相定量组成。XRD给出的物相定性和定量信息,对于检查焙烧效果、优化焙烧工艺和后续的提锂工艺、控制锂盐质量有着重要意义。
  • 头孢氨苄的液相分析残留原因排查
    使用资生堂CAPCELL PAK C18 MGII S5 4.6mm i.d.×250mm色谱柱,按照药典方法分析头孢氨苄片,结果如图1所示,在进完样品后进样空白溶剂时,发现有色谱峰残留。进一步实验中发现,当进完样品后,取下自动进样器进样,该残留峰消除,如图2所示。故该残留峰的出现来源于自动进样器中进样针或者阀残留。采用洗针的方法连续进样,可看到该残留峰逐渐减小到基本消失。综上所述,由于头孢氨苄液相分析中使用盐浓度较高的梯度条件,可能在自动进样器进样针或者进样口出现盐析或样品残留,导致残留影响定量结果。这一残留可以通过反复进样冲洗自动进样器来消除。
  • LC-40双进样液相分析系统同时测定化妆品中甲基异噻唑啉酮等23个组分和吡硫鎓锌等18个组分含量
    本文使用岛津LC-40双进样液相分析系统建立了同时分析甲基异噻唑啉酮等23个组分和吡硫鎓锌等18个组分两个项目方法。41种组分在各自的浓度范围内,其相关系数大于0.999,各浓度点的回读准确度在87.9%~112.7%之间,线性相关性良好。稳定性考察中,41种组分的保留时间相和峰面积的相对标准偏差分别在0.011~0.165%和0.133~1.36%之间,仪器精密度良好;加标回收结果显示,41种防腐剂的加标回收结果为91.8%~104.2%,RSD为0.31%~3.62%,并对实际样品进行分析。该系统可以实现一次同时分析两组样品,分析快速,能满足《化妆品安全技术规范》(2022年)征求意见稿,“4 防腐剂检验方法”中4.1和4.2章节项目同时检测的需求。
  • DMA在高分子材料研究中的应用
    DMA是测定高分子材料的各种转变,评价材料的耐热性、耐寒性、相容性、减震阻尼效率及加工工艺性能等的一种简便的方法,并为研究高分子的聚集态结构提供信息。由于高分子的玻璃化转变、结晶、取向、交联、相分离等结构变化都与分子运动状态的变化密切相关,而分子运动的变化又能在动态力学性能上灵敏的反映,因此,动态力学分析是研究高分子结构变化-分子运动-性能的-种有效手段。对于研究高分子材料科学与材料工程方面有着重要的指导意义。
  • 气相分子吸收光谱法对水体中硫化物的测定应用
    节能型氧化沟除了传统的氧化沟功能外,还具有明显的缺氧区和厌氧区,污染物去除率高,特别是脱氮效果明显,采用双层结构克服传统氧化沟占地面积较大的不利因素。
  • 气相分子吸收光谱法测定水中硝酸盐氮浓度不确定度评定
    0.050)的相对标准偏差≤ 1%。6、测定成分浓度范围宽,最低可至0.001ppm,高可达1000ppm。
  • 中科院士李永舫有机光伏巨分子受体(GMAs)与小分子受体结构
    有机太阳能电池(OSCs)因其在柔性和可穿戴光伏设备制造中的低成本溶液加工方法而备受关注。特别是全聚合物太阳能电池(all-PSCs),由于其良好的柔性和形态稳定性,在柔性设备领域显示出巨大潜力。然而,早期用于all-PSCs的聚合物受体在近红外区域的吸收能力较弱,且分子堆积不理想,限制了其进一步发展。为了克服这些挑战,提高功率转换效率(PCE),研究人员提出了聚合小分子受体(PSMA)的概念,利用窄带隙小分子受体(SMAs)作为关键构建模块。PSMAs不仅具有低带隙和强吸收的优点,还具有适合的分子堆积和较小的激子结合能,这些特性促使all-PSCs的PCE超过了17%。尽管PSMAs在all-PSCs的发展中取得了显着成就,但其光伏性能受批次变化的影响较大。为了解决这一问题,并实现更低的扩散特性,需要开发具有精确定义结构和接近聚合物分子量的新材料。在这样的背景下,中科院院士李永舫团队设计了一系列巨大分子受体(GMAs),包括DY、TY和QY,它们分别具有两个、三个和四个小分子受体亚基。这些GMAs通过逐步合成方法制备,并用于系统地研究亚基数量对受体结构和性能的影响。基于这些受体的器件中,TY基膜显示出适当的给体/受体相分离,更高的电荷转移态产率和更长的电荷转移态寿命。结合最高的电子迁移率、更高效的激子解离和更低的电荷载流子复合特性,基于TY的器件实现了16.32%的最高PCE。发表于Nature Communications的结果不仅表明GMAs中的亚基数量对其光伏性能有显着影响,而且还证明了通过GMAs的结构多样化,可以深入理解从SMAs到PSMAs的性能差异,这对于推动高效率和稳定的有机太阳能电池应用至关重要。
  • 苯磺酸二甲双胍及其杂质的液相分析
    近日接到资生堂色谱柱用户的依赖实验,希望提供能够把羟苯磺酸、二甲双胍以及杂质三者同时保留的液相分析方法。 在考虑到二甲双胍使用SCX色谱柱分析的前提下,我们使用了资生堂CAPCELL PAK CR 1:4 S5 4.6mm i.d.×150mm色谱柱,在pH为2的酸性缓冲盐条件下,尝试对苯磺酸二甲双胍进行分析,结果客户所关注的杂质峰在较强酸性流动相下依然未能得到保留。 之后,我们又尝试使用资生堂高表面极性CAPCELL PAK ADME S5 4.6mm i.d.×250mm色谱柱,同样在酸性缓冲盐条件下进行分析,多方调整盐浓度后,得到图2结果。在反相机理下,二甲双胍和羟苯磺酸二者出峰顺序翻转,同时所关注的杂质得到保留。 综上所述,使用CAPCELL PAK ADME S5 4.6mm i.d.×250mm色谱柱可得到羟苯磺酸、二甲双胍以及杂质三者的同时保留,完成实验目标。
  • 巧用绝缘聚合物矩阵, 全小分子有机太阳能电池的稳定性
    有机太阳能电池(OPV) 凭借其轻薄、 柔性可弯曲和成本低廉等优势, 成为新一代光伏技术的重要发展方向。 而近年来, 全小分子有机太阳能电池(ASM OPV) 因其更易于合成、 更高的材料可重复性、 以及更易于精确调控材料特性等优点, 受到科研人员的广泛关注。 与聚合物太阳能电池相比, 全小分子有机太阳能电池ASM OPV 具有以下显著的优势和劣势:优点:1. 高纯度和可控性: 小分子材料可以通过精确的化学合成获得高纯度, 这使得材料特性更易于控制和重现, 从而提高电池性能的一致性和稳定性。2. 电子迁移率高: 小分子材料通常具有较高的电子迁移率, 这有助于提高电池的光电转换效率。3. 溶液加工性: 小分子材料通常易溶于有机溶剂, 适合溶液加工技术, 例如旋涂、 刮涂和印刷, 这些技术具有低成本和大面积制备的潜力。4. 结构灵活性: 小分子材料的化学结构可以通过分子设计灵活调整, 以优化光吸收、 电荷传输和能级匹配。5. 热稳定性: 小分子材料的结构稳定性较高, 一般具有更好的热稳定性, 这有助于提高电池的使用寿命。缺点:1. 薄膜形成难度: 小分子材料在成膜过程中容易出现结晶和相分离现象, 这会影响薄膜的均匀性和电池性能。2. 溶剂选择有限: 虽然小分子材料可以溶解在有机溶剂中, 但合适的溶剂选择有限, 这可能会影响制程的灵活性。3. 机械柔韧性较差: 小分子材料的机械柔韧性一般不如聚合物材料, 这可能会影响电池在柔性基板上的应用。4. 成本相对较高: 由于小分子材料的合成过程较为复杂, 纯度要求高, 其成本通常高于聚合物材料。5. 能级匹配挑战: 小分子材料的能级匹配需要精确设计, 这对材料设计和制备提出了更高的要求。另外, ASM OPV 系统也存在着一些问题, 例如 其分子堆积和聚集结构通常比聚合物系统更加脆弱, 导致其在实际应用中更容易发生性能衰退。近期, 香港理工大学李刚教授团队 在 Advanced Materials 期刊上发表了重要研究成果, 为提升全小分子有机太阳能电池的稳定性指明了新方向。
  • 上海禾工科学仪器:HPLC法测定华中五味子中五味子甲素含量
    五味子商品中尚有一种南五味子,又称西五味子,为植物华中五味子的果实,主产于四川、湖北、陕西、山西、云南等地。主要有效成分为五味子甲素和五味子酯甲等。五味子甲素和五味子酯甲具有收敛固涩、益气生津、补肾宁心、保肝、降低转氨酶的作用。华中五味子中五味子甲素的含量测定方法已有报道,本文选用环己烷提取生药有效成分,改进了流动相,建立了HPLC测定华中五味子中五味子甲素方法。
  • PEDOT分散液的分散解决方案及快速稳定性分析
    对于固液两相体系,在固体相表面会附着一层液相分子,这些液相分子因固体相的吸附作用而运动受限。但未与固体相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,两者相差约2~3个数量级。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,计算固体颗粒的湿润比表面积,并用来研究固体颗粒在溶剂中的分散性和稳定性等问题。
  • 布鲁克FTIR气体分析仪在特气分析中最新技术—谱形拟合算法的定性定量
    近几年,随着国内特气行业市场需求的不断增长,各气体厂家对产品的质量控制方法和效率有了进一步的要求,气相分析手段已经广泛应用于各气体生产与质控过程。与此同时,相对于工业化产品生产速度,气相色谱等方式分析效率相对较低、适用性相对较窄的缺点也逐渐体现。各生产商开始寻求更高效、全面的气体分析方法。其中,傅里叶变换红外气体分析法具有效率高,种类全,无耗材等诸多优势,FTIR气体分析仪也成为特气行业炙手可热的分析仪器。
  • 【EmStat3Blue电化学应用】检测植物调节剂吲哚-3-乙酸的无线电化学传感器
    基于金纳米粒子和三维还原氧化石墨烯改性丝网印刷碳电极检测植物调节剂吲哚-3-乙酸的无线电化学传感器植物激素是作物生长和生产中重要的调节物质。在这项工作中,利用金纳米粒子和三维还原氧化石墨烯(AuNPs-3DGR)修饰的丝网印刷碳电极(SPCE)成功建立了一种无线电化学传感器,用于检测植物调节剂吲哚-3-乙酸(IAA)。植物。超声辅助液相分散氧化石墨烯(GO)和Au 3+还原制备AuNPs-3DGR纳米复合材料采用水热法混合。复合材料在SPCE上滴涂改性,通过智能手机控制的无线便携式电化学工作站检测IAA,线性范围更宽(0.25~120.0 μmol/L和135.0~500.0 μmol/L),下限为检测(0.15 μmol/L,3σ/S)。之后,将该传感器应用于绿豆芽不同组织中IAA含量的检测,结果令人满意。改进的SPCE与小型蓝牙工作站和智能手机的结合对于构建便携式、低成本、简单、快速的电化学传感平台非常有用。
  • 高分子防水卷材的水蒸气透过量测试方法
    近几年我国政府对建筑节能越来越重视,使得高分子防水卷材在我国得到大力推广。高分子防水卷材是一种新型的高分子防水材料,在加强建筑气密性、水密性的同时,其独特的水蒸气透过性能,可使结构内部水汽迅速排出,避免结构孳生霉菌,保护物业价值,并完美解决了防潮与人居健康,是一种健康环保的新型节能材料。Labthink兰光生产的W3/030透湿性测试仪,符合GB 1037(B)测试方法,可用于高分子防水卷材的水蒸气透过量检测。
  • 海能仪器:低分子有机物熔点测定的两种方法研究(毛细管法)
    在对塑料改性时用到的低分子有机物材料进行熔点测定时,从测试周期、测试成本、结果判断和实际生产指导考虑,推荐使用数字熔点仪法。   在使用数字熔点仪对低分子有机物进行熔点测试时,要将样品充分混合,测试3次以上,几次结果接近方可接受,熔点取平均值。
  • 白金纳米粒子凝聚温度及氛围气的影响
    测试仪器: 组合型多功能X线衍射仪RINT-UltimaⅢ+ X线衍射-差热扫描同时测试装置XRD-DSCⅡ 想了解什麽? 粒径数十nm以下的金属纳米粒子与块状粒子在很多点存在不同的特性、各方面应用研究在不断向前发展。 但到了20nm以下时、随着粒径的減少,表面能量急剧变大易凝聚,采取各种凝聚抑制政策的同时,正在研究适度凝聚的方法。  白金纳米粒子催化活性较高、期待有广泛的应用,不会引起凝聚及表面劣化,还要保持高催化活性比较困难。采用X线衍射-DSC同时测试仪器,很容易得知因温度和氛围气带来的易凝聚之区别。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制