准直透镜谱镭光电可以提供多种光纤准直透镜产品,包括不同接口,焦距,材质等。74系列透镜74系列准直镜是我们多种采样附件中的通用光纤透镜,包括石英透镜(74-UV)、BK-7玻璃透镜(74-UV)和BaF10/FD10玻璃透镜(74-ACR)。74-UV准直透镜(200-2000 nm)74-UV是200-2000 nm范围内的石英透镜. 光束经过透镜后,发散角度不超过2° 。74-UV可以在UV-VIS或者VIS-NIR应用中调节光束。透镜外壁上有一白点作为74-UV的标记。74-VIS准直透镜(350-2000 nm) 74-VIS是LS-1光源的标准透镜,具有适用于VIS-NIR范围的BK-7透镜。由于散射和不同波长上具有不同折射率,单透镜系统会产生色差。透镜外壁上有一黄点作为74-VIS的标记。74-ACR准直透镜(350-2000 nm)74-ACR有两片光学透镜粘在一起形成消色差双合透镜,可以矫正球面像差和色差。透镜外壁上有两个黄点作为74-ACR的标记。74-DA准直透镜(200-2000 nm)74-DA准直透镜直接拧在SMA905接头上,可以增加光线的透过率。该透镜收集光后,将其聚焦到光谱仪狭缝。特性ü 黑色氧化表层的不锈钢ü 可以连接SMA905接头ü 可调焦距ü 视场可以在收敛到发散之间调节(~45° )技术参考ü 采用单透镜获得的光束发散角(a) 满足tan(a) = d/f。其中,f透镜焦距,d是狭缝宽度或光纤直径。ü 光纤视场大约是~25° 。对于某些实验来说,这可能不是一个最佳视场。准直透镜可以调节视场,实现大约~ 0° 到~45° 的视场角。ü 调节准直镜时务必小心,因为如果透镜聚焦不准将造成采样路径长度的改变。 项目直径焦距材质波长范围工作温度连接器74-UV5 mm10 mmf/2 fused silica Dynasil200-2000 nm150 ° CSMA 905, 6.35-mm ferrule, 3/8-24 external thread74-VIS5 mm10 mmf/2 BK-7 glass350-2000 nm150 ° CSMA 905, 6.35-mm ferrule, 3/8-24 external thread74-DA5 mm10 mmf/2 fused silica Dynasil200-2000 nm150 ° CSMA 905, 1/4-36 internal thread, 3/8-24 external thread74-ACR5 mm10 mmf/2 BaF10 and FD10 fused silica350-2000 nm150 ° CSMA 905, 6.35-mm ferrule, 3/8-24 external threadCOL-UV-3030 mm30 mmf/2 fused silica Suprasil200-2000 nm200 ° CSMA 905, 6.35-mm ferrule, 1/4-36 external thread84-UV-2525.4 mm100 mmf/2 fused silica Dynasil200-2000 nm70 ° CSMA 905, 6.32-mm ferrule, 1/4-36 external thread CF系列类型 描述固定的FC,APC或者SMA光纤准直器该系列准直透镜都经过预调整来适应来自FC/PC-, FC/APC-, 或者 SMA-接口光纤的光。每个准直透镜在出厂前都经过性能调整,使得在六个波长下(405, 543, 633, 780, 1064, 1310, 或者 1550 nm)的色散在有限的范围内。虽然准直透镜可以用于不同的波长,但是通常都在设计的波长具有最优的性能,因为在设计波长的色差是最小的,有效的焦距长度是和波长相关的。空气间隙双透镜,大光束准直透镜用于大光束应用 (Ø 6.6 - Ø 8.5 mm), 提供 FC/PC, SMA,和 FC/APC空气间隙双透镜,大光束准直透镜。 这种准直透镜在工厂经过预调整,由FC或SMA光纤入射的激光束对准到中心,在设计的波长仅产生有限的色散。可调光纤准直透镜该系列可脱卸式准直透镜被设计用于连接FC/PC 或者FC/APC到一个抗反射非球面透镜。非球面透镜和FC接口光纤的断面距离可以调节以补偿波长变化产生的色差或者重新准直到需要的波长和距离。FiberPort微调准直器该系列紧凑,超稳定的FiberPort微调整器,提供易于使用,结实稳定的工具,用来准直光进入FC/PC, FC/APC, 或者 SMA 接口光纤。它可以用于单模,多模,或者保偏光纤,可以安装到光具座,平台,或者激光器。内置的非球面或者消色差透镜可以选择三种不同的抗反射镀膜,并且有5个角度的调整(3个平移和2个定位)。紧凑的尺寸和长时间稳固的光学调整使得FiberPort成为光纤耦合,准直,或者集成到OEM设备。三透镜准直器高品质的三透镜光纤准直器采用了空气间隙三透镜,相比非球面透镜具有优异的光束质量。M2 值非常接近 1 (高斯分布),更小的发散,和更少的波前误差。反射式准直透镜金属镀膜反射式准直透镜基于90° 离轴抛物面反射镜。反射镜不同于透镜,在很宽的波段上具有恒定的焦距。由于这个特性,一个抛物面反射镜不需要针对不同的波长进行光学调整,使得它非常适合复合波长的光. 我们的反射式准直透镜也非常适合单模光纤应用。带尾纤的准直透镜尾纤式准直透镜带有一条1米长度的单模或者多模光纤。光纤和抗反射镀膜非球面透镜被牢固地安装在不锈钢外壳内。可以在6个波长进行准直:532, 830, 1030, 1064, 1310, 或者 1550 nm。虽然准直透镜可以用于不同的波长,但是通常都在设计的波长具有最优的性能,因为在设计波长的色差是最小的,有效的焦距长度是和波长相关的。渐变折射光纤准直透镜渐变折射GRIN光纤准直透镜可用于980, 1064, 1310, 或者 1550 nm 和FC,APC接口或者无接头的光纤。GRIN准直透镜具有Ø 1.8 mm的 通光孔径,有抗反射镀膜,确保极低的背向反射返回到光纤中。准直透镜与标准的单模光纤连接在一起。渐变折射透镜渐变折射(GRIN)透镜具有抗反射镀膜,可以用于630, 830, 1060, 1300, 或者 1560 nm波长,非常适合将半导体激光耦合到光纤,以及光纤出射的光穿过光学系统后耦合到另一根光纤,还有耦合光纤出射光到探测器,或者耦合激光。可调节非球面FC准直器四个焦距/数值孔径组合ü 焦距=2.0毫米,数值孔径=0.50ü 焦距=4.6毫米,数值孔径=0.53ü 焦距=7.5毫米,数值孔径=0.30ü 焦距=11.0毫米,数值孔径=0.30 三种增透膜非球面透镜可供选择ü 350 - 700纳米(CFC-2X-A为400 - 600纳米)ü 650 - 1050纳米(CFC-2X-B为600 - 1050纳米)ü 1050 - 1620纳米(CFC-2X-C为1050 - 1600纳米)ü 与FC/PC光纤跳线一起使用可以达到衍射极限性能ü 不锈钢外壳 Thorlabs的CFC系列可调焦FC准直器由安装在不锈钢外壳内的一片弹簧承载镀增透膜的非球面透镜构成,设计用于对光纤出射的光进行准直。对于光纤到光纤的耦合,我们推荐使用PAF系列FiberPort或者光纤发射纳米定位平台。这里提到的可调节准直器具有FC/PC插座。通过旋转准直器的外套筒可以使内置的非球面透镜沿光轴平移,从而可以调节透镜和光纤头之间的距离。光学元件通过两个紧定螺丝固定就位,可平移达1.5毫米。CFC系列准直器具有四种不同焦距的选择(2.0毫米、4.6毫米、7.5毫米或11.0毫米),每款都提供非球面透镜表面三种不同的增透膜。除了11毫米焦距外,其它焦距都提供FC/PC和FC/APC双兼容性。对于所有的准直器,APC光纤头具有标准的8度楔角,使光束相对外壳机械轴偏转4度。请注意对于2.0毫米、4.6毫米和7.5毫米焦距的准直器,它们连接FC/PC和FC/APC接头,如果使用FC/APC接头,光将不会通过非球面透镜的中心。对于受非球面的离轴性能影响的波前敏感的应用,考虑使用具有6维自由度的FiberPort,可以调整光学元件的位置确保光束通过。三镜片光纤准直套件ü 现有库存版本分别以405、543、633、780、1064、1310、或1550纳米波长进行准直ü 低扩散ü 低瞄准误差ü 每个准直器都附带一个测试数据表ü FC/PC:2 毫弧度(最大)ü FC/APC: 3 毫弧度(最大)Thorlabs公司的高品质三镜片光纤准直套件使用空气介质的三合透镜,与非球面准直透镜相比,能够提供卓越的光束质量性能。其低扩散三镜片设计具有光束衍射倍率因子M2接近1(高斯光)、发散更小和波前误差更小等优点。三镜片光纤准直器目前库存中具有七种不同准直波长的型号,并且具有FC/PC或FC/APC这两种接头。每个准直器中的透镜都镀有宽带抗反射膜,用于最小化表面反射引起的损耗。我们的三镜片光纤准直包使用高精度插座,能够重复进行准确对准。这样一来,用户在移除或替换光纤后就不需要重新对准系统。该准直器的外壳外径为12毫米,使其能够同时兼容AD12NT和 AD12F安装适配器。这些准直器能够用于将自由空间中的激光光束耦合到一根光纤中。为了获得较高的耦合效率,跳线的数值孔径NA应大于或等于准直器的NA,被聚焦的光束直径则应小于光纤的模场直径MFD。Item #AlignmentWavelengthAR Coating(nm)Da(mm)&Theta bfc(mm)Alignment FiberdConnector StyleTC12FC-405405 nm350 - 6501.98 mm0.015° 11.14S405-HP FC/PCTC12FC-543543 nm350 - 6502.33 mm0.017° 11.80460HPTC12FC-633633 nm350 - 6502.25 mm0.021° 12.00SM600TC12FC-780780 nm650 - 10502.42 mm0.024° 12.19780HPTC12FC-10641064 nm1050 - 16202.70 mm0.029° 12.38SM980-5.8-125TC12FC-13101310 nm1050 - 16202.24 mm0.042° 12.48SMF-28e+TC12FC-15501550 nm1050 - 16202.38 mm0.047° 12.56SMF-28e+TC12APC-405405 nm350 - 6501.98 mm0.015° 11.14S405-HP FC/APCTC12APC-543543 nm350 - 6502.33 mm0.017° 11.80460HPTC12APC-633633 nm350 - 6502.25 mm0.021° 12.00SM600TC12APC-780780 nm650 - 10502.42 mm0.024° 12.19780HPTC12APC-10641064 nm1050 -16202.70 mm0.029° 12.38SM980-5.8-125TC12APC-13101310 nm1050 - 16202.24 mm0.042° 12.48SMF-28e+TC12APC-15501550 nm1050 - 16202.38 mm0.047° 12.56SMF-28e+a使用准直光纤型以准直波长测量准直器输出的光束直径b全发散角c焦距与波长有关d不包含光纤 发散角的理论近似上述规格表中所列的发散角,是在设计波长下通过规格表下标注的光纤使用光纤准直器时所测量光束的发散角。只要光纤发出的光具有高斯强度分布,发散角就可以用下列的公式进行理论近似。这对于单模光纤非常有效,但当非高斯强度分布的光从多模光纤发出时,这样估算的发散角将小于实际值。&theta Divergence AngleDMode-Field Diameter (MFD)fFocal Length of Collimator 发散角(单位:度) ,其中D和f必须单位一致。 光纤光学准直器特性ü 光纤准直器适用于带SMA接头的单模光纤跳线ü 普通SMA接头ü 每个准直器在出厂前都经过校准简化自由空间激光到光纤的耦合这些光纤准直包经过预先校准,以准直从SMA接头光纤发出的光,并具有衍射极限性能。由于这些光纤准直器没有移动部件,它们结构紧凑,不易受到不对准的影响。由于色差,非球面透镜的有效焦距(EFL)与波长相关。结果,这些准直器只有在设计波长下才有最佳的效果(更多信息,见焦距变化标签)。非球面透镜经过工厂校准,当插入到准直器内时,它距离光纤头一倍焦距长度(根据波长调节)。此外,非球面透镜具有增透膜,最大限度地减少表面反射。这些准直器也可以用于将自由空间激光束耦合到光纤里。为了获得高耦合效率,光纤跳线的数值孔径必须大于或等于准直器的数值孔径,以及需要聚焦光束的直径比MFD/光纤的纤芯更小。 SMA空气间隔胶合透镜准直器紧凑型光纤准直封装提供带FC/PC或FC/APC接头的SM光纤尾纤提供订制的波长和接头CFS系列带尾纤的光纤准直器是OEM应用的一种紧凑型解决方案。准直器由不锈钢外壳和非球面透镜组成。每个准直器使用1米长的单模光纤尾纤,在设计波长可以达到衍射极限的效果。作为准直封装尾纤的光纤末端镀有增透膜,可最小化设计波长处的反射。此外,CFS2和CFS5系列准直封装的光纤末端是平面抛光的,CFS11和CFS18系列准直封装的光纤末端是带角度抛光的,为了匹配带角度抛光的光纤,CFS11和CFS18使用带角度的外壳(更多信息参见文档和图例标签)。光纤另一端为用于532,1030和1064纳米波长封装的FC/PC窄插销接头,以及用于850,1310和1550纳米波长封装的FC/APC窄插销接头。这些准直封装可以方便地为客户提供可见和近红外光谱区的定制服务。 反射准直器ü 消色差设计,实现整个反射镜反射带内近乎高斯准直ü 保护银膜提过高反射ü 输出光束直径 - RC04系列:Ø 4毫米(光纤数值孔径:0.13) - RC08系列:Ø 8.5毫米(光纤数值孔径:0.13)ü 非常适合将多色光耦合入多模光纤ü Ø 11毫米孔径ü 带SM05外螺纹的外壳RC系列反射准直器基于90° 离轴抛物面反射镜。和透镜不一样,反射镜的焦距在一个宽的波长范围内保持不变。由于这种内在的属性,一个抛物面反射镜准直器并不需要为适应各种波长的光而进行调整,这使它们成为使用多色光的理想选择。通过使用镀有保护银膜的反射镜,这些准直器在从450纳米到20微米的波长范围内提供了出色的可用性。普通的应用包括使用多个需要准直的波长、在红外范围内准直/耦合,和把多色光耦合进复大纤芯多模光纤中的系统。光束直径反射准直器产生准直光束,该准直光束正比于从光纤中出来的待准直光束的数值孔径。这种近似是: 输出直径= 2× 数值孔径(光纤)× 有效焦距注意从多模光纤出来的光不能很好地被准直。然而,如果您试图准直从多模光纤出来的光,光纤的数值孔径应该小于0.36(RC04)或0.167(RC08),以避免从光纤头发出的光被准直器的外壳阻挡。
留言咨询