当前位置: 仪器信息网 > 行业主题 > >

模拟洗车系统

仪器信息网模拟洗车系统专题为您提供2024年最新模拟洗车系统价格报价、厂家品牌的相关信息, 包括模拟洗车系统参数、型号等,不管是国产,还是进口品牌的模拟洗车系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟洗车系统相关的耗材配件、试剂标物,还有模拟洗车系统相关的最新资讯、资料,以及模拟洗车系统相关的解决方案。

模拟洗车系统相关的资讯

  • 雨水自助洗车装置
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 雨水自助洗车装置 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京市水科学技术研究院 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 赵飞 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 13366655725@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp √通过中试& nbsp & nbsp □可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/bbb07113-4835-43c4-a420-e773322d4014.jpg" title=" 13_副本.jpg" style=" width: 400px height: 533px " width=" 400" vspace=" 0" hspace=" 0" height=" 533" border=" 0" / /p p style=" text-indent:37px line-height:150%" span style=" line-height:150% font-family:宋体" 本设备收集屋顶雨水,经过净化后暂时储存,并利用。设备由初期雨水弃除装置、集雨箱(罐)、操作系统、计量系统及高压水枪等组成。降雨初期,雨水往往夹杂着尘土、落叶等垃圾,需要被弃除,较为干净的雨水则流入集雨箱,经过沉淀、过滤后,呈现清澈透明的状态,以满足洗车需求。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 使用时,打开手机微信扫描二维码,支付费用后,控制柜自动开启,使用者可拿出柜子里的水枪自助清洗车辆。设备计量系统会根据预设用水量自动计量,控制水泵的关停。设备可采用太阳能及市电带动水泵洗车。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 设计集雨箱容量2m³ ,按照屋顶集雨面积200 m2计算,降雨初期(2-5mm)一般污染严重,做为弃流处理,每次降雨12-15mm即可收集满。一次洗车用水50升计算,每箱水可以洗40辆车。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (1)节水节能,用户体验好 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (2)自助洗车,占地面积小,使用方便 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (3)移动支付,费用低 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (4)无需人工值守,降低人工费用和管理费 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (5)构造相对简单,维护方便 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (6)具有保温/防冻的功能 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (7)采用防盗外壳结构,设备安全性高。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 近年来,对于有车一族来说,洗车是生活中必不可少的项目,然而由于汽车保有量的增加,洗车费用不断攀升,时间占用过多等原因,洗车竟然渐渐成为了人们无法剥离的烦恼!随着“海绵城市”加快建设,集雨设施收集再利用雨水的方式越来越多样化,自助雨水洗车的问世就同时解决了雨水收集再利用和洗车不便的问题。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 按北京市汽车保有量600万辆计,每辆车利用本设备洗车一次可节约洗车开支9000万元(600万*15元/次=9000万元),保守估计,利用雨水30万m3(600万辆*50L/辆=30万m³ ),可节约洗车用水30万m3,按特殊行业用水160元/m³ 计节省水费4800万元,按中水用水3.5元/m³ 计节约水费105万元,生态效益和经济效益显著。目前,已有多台设备在本市学校、医院试点安装。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 本设备是我单位自主研发拥有自主知识产权,目前已申请国家专利,已完成初审。 /span /p /td /tr /tbody /table p br/ /p
  • 珠海汽车环境试验室(舱),环境试验舱 汽车排放室 环境模拟实验机
    http://www.oven.cc环境试验舱 汽车排放室 环境模拟实验室,汽车环境试验室(舱), 广东宏展科技有限公司为汽车生产厂家以及科研院所提供汽车各项性能试验的环境.可模拟汽车在道路上行驶时的各种气候条件(风速、温度、湿度、日照)和汽车运行状态(车速、行驶阻力等),以测定汽车在一定条件下运行的性能及与汽车工作的相容性。本试验室是汽车测试的重要研究手段,可大大缩短汽车的研发周期。 环境模拟参数 空气温度控制范围:-40~60℃ 温度精度 ± 0.5℃ 风速范围控制范围:0.5m/s~10m/s 风速精度± 0.1m/s 空气湿度控制范围:-30~95%RH 湿度精度± 5%RH 大气压力控制范围:0.03~0.1Mpa 排废气量和新风处理排废气量:2000m3/h 新风处理量:约2000m3/h,有调节室内外压力平衡的系统 日照强度控制范围:0-100000LUX 降水量控制范围:0~10 mm/h 降水精度± 0.2 mm/h www.oven.cc
  • 安捷伦隆重发布智能化系统模拟技术ISET
    安捷伦隆重发布智能化系统模拟技术   创造市场上首个通用 LC/HPLC/UHPLC 系统   2011 年 3月 15 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布隆重推出革命性的智能化系统模拟技术(Intelligent System Emulation Technology-ISET)。ISET 借助 Agilent 1290 Infinity LC 较宽的工作范围以及一流的精度与性能来模拟其它系统,实现不同品牌的液相色谱之间方法的无缝转换。   这一先进功能使得 1290 Infinity LC 成为世界上首个真正通用的 液相色谱系统,它可以运行其它高效和超高效液相色谱方法,并能提供与原仪器或原方法完全相同的色谱结果。   1290 Infinity LC 与 ISET 完美结合,可使研究者实现以下操作:    只需单击鼠标,即可模拟其它UHPLC 和 HPLC 仪器。    运行现有 UHPLC 和 HPLC 方法时无需调整方法或系统。    方法转换结果更出色,可得到相同的保留时间和色谱峰分离度。   ISET 促进并方便了实验室间 LC 方法的转换。QA/QC 实验室如今可以为未来做一项安全的投资了:因为实验室在继续运行传统方法的同时还能够充分利用1290 Infinity LC 的UHPLC 速度、分离度与灵敏度。现在,实验室能够通过 UHPLC 性能加快方法开发速度,并通过模拟目标系统对新方法进行微调,使方法更可靠地按照预期来运行。   安捷伦 1290 Infinity LC 产品经理 Christian Gotenfels 表示:“仪器间的方法转换通常是有困难的,尤其是在严格受法规制约的行业,因为要避免对仪器和原方法进行任何修改。安捷伦是全球首家提供方法无缝转换的公司,可在 1100 系列、1200 系列和新的 1220/1260 Infinity LC 之间实现方法无缝转换。”   安捷伦液相分析事业部高级市场总监 Stefan Schuette 说道:“这宣告了一个新纪元的到来。开发实验室、QA/QC 部门以及合同研究和生产机构如今可以在一台仪器上自由地开发、验证并运行所有的方法。”   配备 ISET 的 1290 Infinity LC 将于 2011 年第三季度面世。现有的 1290 Infinity LC 系统完全兼容并可升级到 ISET。   要了解更多信息,请访问: www.agilent.com/chem/1290:cn 。   关于安捷伦科技   安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户: 只需单击鼠标,即可模拟其他 (U)HPLC 仪器。 运行现有 (U)HPLC 方法,无需修改方法或系统。 与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 一份关于1420万元单一来源采购热模拟试验机系统的论证公示
    近日,中国政府采购网发布一则“教育部中南大学单一来源采购材料科学与工程学院热模拟试验机系统采购项目征求意见公示”。根据公示内容,中南大学材料科学与工程学院热模拟试验机系统采用单一来源方式采购,预算金额 1420万元(人民币),拟由Dynamic System Inc.(地址:323 NY 355, Poestenkill NY USA)提供。三位专业人员已针对该项目单一来源采购方式进行论证:专家一(职称:教授 单位:国防科技大学)热模拟试验机系统主要用于(1)材料试验研究:应力松弛析出试验(PTT图测定);蠕变/应力破坏试验;液化脆性断裂研究;固/液界面研究熔化和凝固试验等。(2)冶金过程模拟:挤压、焊接,包括HAZ热影响区、焊缝金属铸造和连铸;固液两相区加工过程 热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。符合材料学院提出的技术要求:热扭转变形技术、多轴大变形(MaxStrain)技术、Cryo Quench 技术等只有美国 Dynamic Systems Inc.(DSI)公司的产品具有专利技术符合要求。因此,必须把美国 Dynamic Systems Inc.制造的 Gleeble 热模拟试验机系统作为单一采购来源才是正确的选择。2022年11月6日专家二(职称:教授 单位:湖南大学材料学院)热模拟试验机系统主要用于(1)材料试验研究:各种不同几何尺寸的热拉伸试验;热压缩试验,包括单向流变应力试验、平面应变压缩试验、应变诱导裂纹扩展试验;熔化和凝固试验等。(2)冶金过程模拟:铸造和连铸;固液两相区加工过程 热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。从产品市场占有率来看,DSI生产的Gleeble热/力模拟试验机绝对领先。在中国已有近200台(套),市场占有率在95%以上,享有极高的口碑,而其它公司的热/力模拟试验机在中国极少。如日本富士电波公司的数量屈指可数,而且是由于少数大钢企在已有多台Gleeble的情况下,为了防止试验机品牌过于集中才购买的。比如宝钢有 Gleeble系统10多套(包括多套3800/3500/液压楔系统,MaxStrain单元,Lumet等),富士电波公司的仅有1台。从整体技术来看,美国Dynamic Systems Inc.(DSI)已有60多年历史,在热模拟技术开发方面一直处于世界领先地位,是世界公认的顶级热模拟试验系统,至今全世界已有1000多台(套)各种型号Gleeble试验机在运行,全世界著名钢铁企业基本都采用Gleeble系统,并且每家都是多台(如国内的宝钢,鞍钢,沙钢等等)。从专利和专有技术来看,符合材料学院提出的技术要求:零强和低力系统、ISO-Q超快冷技术、板带退火技术等只有美国Dynamic Systems Inc.(DSI)公司的产品符合要求。从售后服务来看,只有美国Dynamic Systems Inc.(DSI)在中国设有专门的技术服务机构,且有4位受过DSI专业培训的专职售后技术维护工程师。3位高级应用技术专家,1位零部件供应服务人员,可提供良好技术支持和技术服务。综上所述,把美国Dynamic Systems Inc.制造的Gleeble热/模拟试验机系统作为单一采购来源是必须和有益的。2022年11月7日专家三(职称:教授 单位:长沙理工大学材料学院)热模拟试验机系统主要用于(1)材料试验研究:各种不同几何尺寸的热拉伸试验;热压缩试验,包括单向流变应力试验、平面应变压缩试验、应变诱导裂纹扩展试验 熔化和凝固试验等。(2)冶金过程模拟:铸造和连铸;固液两相区加工过程;热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。从产品市场占有率来看,DSI生产的Gleeble热/力模拟试验机绝对领先,在中国已有近200台(套),市场占有率在 95%以上,享有极高的口碑,而其它公司的热/力模拟试验机在中国极少。从整体技术来看,美国Dynamic Systems Inc.(DSI)已有60多年历史,在热模拟技术开发方面一直处于世界领先地位,是世界公认的顶级热模拟试验系统。从专利和专有技术来看,符合材料学院提出的技术要求:零强和低力系统、ISO-Q 超快冷技术、板带退火技术等只有美国 Dynamic Systems Inc.(DSI)公司的产品符合要求。从售后服务来看,只有美国 Dynamic Systems Inc.(DSI)在中国设有专门的技术服务机构,可为用户提供良好技术支持和技术服务。综上所述,必须把美国Dynamic SystemsInc.制造的Gleeble热模拟试验机系统作为单一采购才能买到合符要求产品。2022年11月7日
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。 下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格) 作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。 两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。 该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。   新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。   美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。   加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。   据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。   本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。   模拟执行太空任务   据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。   当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。   据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。   训练海中溅落   哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。   在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。   据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style=" text-align: justify text-indent: 2em " 全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。 /p p style=" text-align: justify text-indent: 2em " 这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。 /p p style=" text-align: justify text-indent: 2em " 这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。 /p p style=" text-align: justify text-indent: 2em " MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任& nbsp Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。” /p
  • ITW宣布收购MTS Systems测试与模拟业务
    仪器信息网讯 近日,伊利诺斯工具公司(Illinois Tool Works Inc.,NYSE: ITW)宣布从Amphenol公司(NYSE:APH)手中收购MTS Systems公司(Nasdaq:MTSC,简称“MTS”)的测试与模拟业务,交易的细节条款并未披露。  MTS系统公司成立于1966年,是全球著名力学测试系统和传感器供应商,其业务主要分为传感器以及测试与模拟两个部门,产品被广泛的应用于材料力学性能测试、土木工程结构测试、航空航天以及汽车耐久性、性能测试等领域。截至2018年9月28日,MTS系统公司全球共有3400名员工,2018年的营销总额为7.78亿美元。  伊利诺斯工具公司是一家专业的工程配件和工业系统产品的跨国生产企业。公司成立于1912年,总部位于美国伊立诺州的芝加哥,是高性能紧固系统,专用和通用设备及工业、民用消费系统的研发生产厂家。通过整合新产品的开发,增加对原有客户的渗透,部门的重组,以及对企业的收购行为,使得公司不断成长壮大。目前ITW在40多个国家中拥有超过500间个别独立的运做结构,员工超过5万名,是《财富》500强公司之一。  去年12月,全球领先的高科技互连、天线和传感器解决方案供应商Amphenol公司宣布以每股58.50美元的现金价格收购了MTS(约合17亿美元)。  此次从Amphenol手中接过MTS测试与模拟业务,ITW董事长兼首席执行官Scott Santi表示:“MTS的测试和模拟业务与我们现有的测试和测量及电子业务具有高度互补性,使我们能够定位于新的具有吸引力的垂直行业。在同行因为新冠大流行而被迫重组或削减成本时,我们能够利用其优势地位寻求更高的市场份额。”  在同意收购MTS Systems公司的产品后,ITW的股价上涨了2.8%。
  • 上海微系统所在300mm大硅片晶体生长的数值模拟研究方面取得重要进展
    300mm大硅片是集成电路制造不可或缺的基础材料,对整个集成电路产业的发展起着关键支撑作用。针对我国集成电路制造行业对低氧高阻、近零缺陷等硅片产品的迫切需求,亟需解决大直径、高质量硅单晶晶体生长技术中的氧杂质输运、晶体缺陷调控等基础科学问题,进而开发大直径单晶晶体生长技术,实现特定的晶体杂质、缺陷的人工调控,满足射频、存储等领域的应用需求。   近日,中科院微系统所魏星研究员团队,在300mm晶体生长的数值模拟研究领域取得重要进展。该团队自主开发了耦合横向磁场的三维晶体生长传热传质模型,并首次揭示了晶体感应电流对硅熔体内对流和传热传质的影响机制,相关成果于2023年05月以 “Effects of induced current in crystal on melt flow and melt-crystal interface during industrial 300 mm Czochralski silicon crystal growth with transverse magnetic field”为题,发表在美国化学会旗下晶体学领域的旗舰期刊《Crystal growth & design》上。   在本工作中,通过对比三组仿真结果,系统的分析了晶体电导率、磁场强度、晶转速率这三个关键参数对晶体内感应电流的影响,进而分析了其对熔体对流、温度分布和界面形状的影响。结合实验数据,模型准确性得以验证,并预测了建模所需的合理的晶体电导率。研究结果表明,当晶体中感应电流增加时,界面下强制对流的驱动力逐渐从离心力转变为洛伦兹力,并改变强制对流的旋转方向,从而影响固液界面形状。这项研究弥补了传统模型的忽略晶体感应电流的不足,首次系统地揭示了晶转引起的感应电流以及关键工艺参数对传热传质、固液界面等的影响,大大提高了仿真结果的准确性,为近零缺陷硅片产品晶体生长技术的优化提供了理论支撑。   中科院上海微系统所陈松松助理研究员为文章的第一作者,魏星研究员为通讯作者。 中国科学院上海微系统与信息技术研究所原名中国科学院上海冶金研究所,前身是成立于1928年的国立中央研究院工程研究所,是中国最早的工学研究机构之一。中国科学院上海微系统与信息技术研究所学科领域为:电子科学与技术、信息与通信工程;学科方向为微小卫星、无线传感网络、未来移动通信、微系统技术、信息功能材料与器件。图 1 模型示意图2 (a)晶体感应电流,(b)强制对流驱动力示意图和熔体自由液面温场、流场分布图
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 7900万!西南交通大学拟单一来源采购MTS可移动地震模拟振动台试验系统
    近日,中国政府采购网发布一则“教育部西南交通大学单一来源采购可移动地震模拟振动台试验系统征求意见公示”。根据公示内容,西南交通大学可移动地震模拟振动台试验系统采购项目采用单一来源方式采购,预算金额为7900万元(人民币),拟由供应商MTS Systems Corporation(地址:14000 Technology Drive Eden Prairie, MN 55344 USA)提供(或承担)。三位专业人员已针对该项目单一来源采购方式进行论证:
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • 高精度电子测量仪器研发商模拟感知获数千万元融资
    5月5日消息,以高精度电子测量为特色的西安模拟感知信息科技(模拟感知)有限公司近日宣布完成数千万元人民币的首轮融资,投资方为上海超越摩尔(超越摩尔)。模拟感知信息科技位于西安,公司核心团队利用在高精度仪器研发领域积攒的经验,“降维”研发了多种现场仪表电子测量模组。将低噪声模拟链路设计、温漂/零漂抑制和精度补偿等技术成功应用在工业现场领域。模拟感知团队表示我国在电子测量领域大幅落后于西方,目前远不能满足我国经济发展的要求,有巨大的市场机遇。模拟感知基于技术相通性和产品归一化和积木化的原则,在仪表和仪器领域同时布局:• 在仪表领域,公司提供测量的核心模组(电路板卡),目标客户群体是我国广大的仪表厂商。公司在首系列产品的研发过程中,深刻感受到了来自客户的热情与支持,产品在测试阶段就收到了数量可观的订单。在下游客户的鼎力支持下,目前公司超声波气体流量计核心模组已完成了市场的闭环验证,气超整表准确度达到了0.5%级。公司会持续在仪表核心测量领域投入,助力我国仪表厂商实现产品的升级换代。• 在测量仪器领域,公司将于近期陆续推出用于实验室研发、新能源汽车测试、电池测试、电源芯片测试和航空发动机发电系统测试的相关产品。超越摩尔表示现代测量的实质是电子测量,无论是流量、温度还是形变,都是将被测量作为电信号进行采集、抽象和处理。 在被测信号进入数字处理芯片之前的模拟电路部分是整个测量系统的重中之重,也是我国同西方集团在通用电子测量领域差距最大的部分。模拟感知核心技术团队在相关领域耕耘多年,主导过多款超高精度仪器的研发和上市工作,在通用电子测量方向有非常明显的技术和经验优势,有实力成为行业的领军企业。
  • 英斯特朗 -- 【案例分享】采埃孚6自由度轴耦合道路模拟试验台
    采埃孚“底盘系统”业务部的轴耦合车桥试验台以其优异的特性被广泛应用于多种车辆类型的试验,从小型车辆,如大众Polo,到SUV,如戴姆勒M级,宝马X5,以及厢型车辆,如戴姆勒Sprinter,大众Crafter等车型车桥的测试中。轴耦合试验台对于车桥道路数据的模拟试验使设计人员能够在台架试验中获得实际路况条件下载荷时间函数。车轴的耐久性测试有两种方式:一种是在汽车制造商指定的放行试验试验场进行的道路试验,另外一种是轴耦合试验台进行的车桥道路谱模拟试验(车桥试验台简称“SSP”=道路模拟试验台),道路谱是利用记录在汽车制造商指定的测试路段上的实际采集数据。道路模拟试验可以代替驾驶试验,并且具备以下几个重要优势:1.节省试验时间 (因为24小时连续试验,使得测试时间减少到20%以下) 2.试验不受天气影响3.可过滤掉不会造成损伤的测试路段,以缩短测试时间4.载荷试验的可重复性精度提高轴耦合试验台由两个对称的加载单元组成,分别布置在静压支撑旋转平台上,这样的设计使得车桥在试验中可以转向。纵向、横向、垂直作用力以及制动、转向、外倾和动力输入等力矩可以被导入到车桥结构当中。方向盘的旋转由伺服控制液压马达完成。同时试验台也可以进行不带转向的试验。
  • 中仪科信发布ZYJY-DZ02人工模拟降雨系统新品
    该系统由三大部分组成分为:蓄水罐、人工降雨管路、人工降雨自控系统。三大部分组成后全部实现水土浸浊实验中的模拟降雨整个过程,建成后不但能完成水土浸浊的实验,也可做土壤水分运移、植物生态、土木工程等领域相关科研实验工作。 一、主要技术参数:1、雨强连续变化范围: 20~200mm/h(可根据要求扩大雨强范围)2、降雨面积:定制3、降雨高度:定制4、降雨均匀度:>0.85(具体由降雨高度决定)5、降雨调节精度:6mm/h6、雨强变化调节时间:<30s7、雨量计承雨口内径:Φ200±0.6mm8、雨量计分辨力: 0.1mm/h9、主控制器工作电压: AC 220V 50Hz 10、 工作环境温度: 0~+60℃11、 工作环境湿度: ≤95%RH12、 数据采集器存储容量:任意13、 降雨采样间隔:≥3秒(可调)二、功能特性及参数1、喷头特性及参数:喷头分为1#(喷嘴直径:9mm)、2#(喷嘴直径:11mm)、3#(喷嘴直径:13mm)三种规格。喷头基本特性如下:1#喷头 (单一,不互相叠加)降雨半径:2.1—2.5米喷头工作压力:0.16-0.27MPa流量:173-255升/小时(19.3—49.7mm/h)2#喷头 (单一,不互相叠加)降雨半径:2.5—3.0米喷头工作压力:0.15-0.25MPa流量:226-355升/小时(43.6—103.92) 3#喷头 (单一,不互相叠加)降雨半径: 3.0—3.5米 喷头工作压力:0.15-0.25MPa 流量: 355-455升/小时 以上各喷头喷射角为45度,叠加可形成20~200 mm/h连续变化雨强2、自动控制系统特点:控制系统采用先进成熟的PLC模块控制,闭环自动控制技术,排除系统率定误差、管路、喷头偶然因素对降雨影响,消除供水滞后惯性波动,使雨强调控更平稳、快速;一体式触摸屏控制并显示,数据可存储导出,亦可根据要求,连接计算机控制显示。3、系统运行冗余设计:为了保证在任何条件下均可以开展模拟降雨,系统对水动力系统采用冗余设计,即使降雨过程万一出现意外,也可以切换冗余系统正常降雨工作。 三、配置清单:1、 水泵:1台2、 全自动降雨控制系统:1套3、 全自动降雨控制箱(柜):1个4、 降雨喷头:若干5、 降雨控制阀:若干6、 不锈钢管:若干7、 不锈钢卡盘:若干8、 钢丝软管:1根9、 电缆:若干10、 雨量计:1个11、 水箱(1t)1个四、部分客户列表:南京林业大学人工模拟降雨实验室清华大学环境学院珠江水利委员会珠江水利科学研究院上海理工大学华南环境科学研究所西南林学院河北农业大学植保学院中国海洋大学南开大学环境学院北京师范大学环境学院北京林业大学园林学院中国电力科学研究院中国水利水电科学研究院北京市城市雨水重点实验室(北京建筑工程学院大兴校区) 创新点:更新的控制器,新的材料设计 ZYJY-DZ02人工模拟降雨系统
  • 阿泰可发布阿泰可整车综合性能环境试验舱(转毂+红外线阳光模拟)新品
    该套环境舱主要用于整车高低温存放试验、整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。该产品主要由气候模拟试验室主体、升降温装置、新风/尾排系统、阳光模拟系统、仓内温度采集系统、电气控制系统构成。采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠 一. 主要技术指标1 温度指标温度范围:-40℃~+60℃;温度均匀度:≤±2℃(空载);温度偏差:≤±2℃(空载);温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)升温速度:≥1℃/min(带载,发动机不启动,全程平均);降温速度:≥0.7℃/min (带载,发动机不启动,全程平均);负载:汽车,重量≤6吨;依据标准序号试验项目依据标准1汽车起动性能试验方法GB/T12535-20072除霜除雾试验GB11556-20093电机性能试验GB/T 18297-2001(参考)4太阳辐射试验GB /T 2423.24-19955恒定湿热试验方法GB/T2423.3-20066汽车采暖性能要求和试验方法GB/T 12782-20077汽车空调整车性能试验方法QC/T658-2000 创新点:采用复叠式螺杆压缩机组 分布式IO控制系统应用 l 设备可靠性提高 l 压缩机使用寿命延长 l 动力平衡好,节能环保 l 控制系统更加灵活、可靠
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 国内首个自主研发的地球模拟器正式投入使用
    p   记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。 /p p   207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。 /p p   据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。 /p p   后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。 /p
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。 车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率 盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 中国科大量子模拟取得新进展
    中国科学技术大学潘建伟、苑震生等与清华大学翟荟、兰州大学么志远等合作,使用自主开发的超冷原子量子模拟器,研究了格点规范场理论中的非平衡态热化过程与量子临界性之间的关系,揭示了具备规范对称性的多体系统处于量子相变临界区域时易于热化到平衡态的规律。这项研究成果近日以“编辑推荐”的形式发表于《物理评论快报》。规范理论和统计力学是物理学的两大重要基础理论。从经典电动力学的麦克斯韦方程组到描述基本粒子相互作用的量子电动力学、标准模型等,都是满足特定群对称性的规范理论。统计力学,则是基于玻尔兹曼等提出的最大熵原理,将大量微观粒子(原子、分子等)组成的系综的微观状态与其宏观统计规律连接起来的学科,如微观粒子的能量分布是如何影响其压力、体积或者温度等宏观量的。那么,由规范理论描述的、远离平衡态的量子多体系统会热化到热力学平衡态吗?回答这一问题将推动人们对规范理论、统计力学及两者关系的理解。虽然理论物理学家们提出了各种模型来分析这一问题,但是在实验上难于构建一个既由规范理论描述、又可人工操控并观测其热化过程的物理体系。近年来,超冷原子量子模拟器的出现为同时研究规范理论和统计物理提供了理想的实验平台。2020年,中国科大的研究团队开发了71个格点的超冷原子光晶格量子模拟器,首次对U(1)格点规范理论--施温格模型的量子相变过程进行了实验模拟;2022年,他们对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”。近期,此次工作的合作者翟荟和么志远等通过理论研究指出,在此类格点规范模型中,量子热化和量子相变之间存在关联,并从反铁磁Neel态出发,预言系统只有在量子相变点附近才能达到完全的热化 。进一步观测格点规范理论的量子热化和量子相变之间的关系,对之前的实验能力提出了新的挑战:如何在单格点精度原位地、可区分原子数地操控和探测多体量子态。潘建伟、苑震生团队在他们已有的超冷原子量子模拟器基础上,将量子气体显微镜、自旋依赖超晶格和可编程光学势阱等技术相结合,开发了单格点精度、粒子数可分辨的原子操作和检测技术。基于此,他们得以制备和探测任意原子构型的多原子量子态,并在满足规范对称性约束下,追踪多体量子态的动力学演化过程。在该工作中,他们在实验中制备了特殊原子构型的初态,利用绝热演化的方法研究了满足规范对称性约束的量子相变过程,通过有限尺寸标度理论首次在实验中精确地确定了相变点。同时,他们研究了同一构型初态在远离平衡条件时的退火动力学过程,揭示了具备规范对称性的多体系统处于量子相变临界点附近时易于热化到平衡态的规律。
  • 2016年分子模拟学习体验日(免费)
    尊敬的老师和同学,您好! 近20年来,诺贝尔化学奖已两次授予计算化学学科(1998年度和2013年度),这充分说明了理论计算和模拟在科学研究中的重要性,不仅在化学和生命科学领域,科学计算和模拟结合高性能计算机,已经成为认识和解决所有复杂的科学和工程问题的重要方法。Discovery Studio(简称DS),作为面向生命科学领域的综合性分子模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与大分子模拟技术和工具,从而得到了广大用户的认可与青睐。 2015年创腾科技有限公司在北京成功举办了Discovery Studio4.5体验日,共吸引超过120多位相关领域的科研工作者。为满足更广大客户的学习需求,我们计划于2016年在全国(暂定五大区:成都、沈阳、武汉、西安、南京)继续举办该学习体验活动,为更多科研人员提供一个免费交流学习Discovery Studio软件在药物设计和生物大分子模拟领域应用的机会与平台,帮助更多的科研人员了解Discovery Studio软件的应用并学以致用。 随着Discovery Studio2016版本的正式发布,本年度活动将以Discovery Studio2016软件为依托,介绍Discovery Studio2016新功能,并围绕经典的模拟技术手段进行介绍和案例分享,内容涵盖:基本界面和入门操作、分子对接、药效团模型、蛋白质理性设计等,从而帮助大家系统了解该模拟技术并应用于蛋白(核酸)-小分子相互作用机理解释、化合物的虚拟筛选、化合物构效关系的分析、反向找靶、抗体设计和酶设计等方面。活动具体信息如下: 一、活动城市和时间:二、活动日程安排: 详情见创腾科技网站活动页面(www.neotrident.com)三、参加对象: 对分子模拟感兴趣、希望了解分子模拟并将模拟技术应用于药物研发、蛋白结构功能研究、抗体研究或酶研究领域的高校或企业科研人员;对Discovery Studio软件感兴趣、希望了解Discovery Studio软件的高校或企业科研人员。 四、活动费用:免费活动(食宿交通等费用自理) 五、学习电脑: 学习体验日现场涉及上机操作,需自带电脑(具体会有后续通知)。请在活动开始前自行下载并安装DS软件。学员可根据自己手提电脑配置自行下载所对应的版本: Windows 32bit下载 链接: http://pan.baidu.com/s/1i4ho54x 密码: 4n4u Windows 64bit 下载 链接: http://pan.baidu.com/s/1qXtR8SG 密码: qh5m Linux 64bit下载 链接: http://pan.baidu.com/s/1qXiwsby 密码: bixs 六、报名方式:请填报名回执并发送到market@neotrident.com信箱,提交回执后3个工作日内会收到一封确认邮件,敬请留意!注:1)自通知发布后接受报名,以报名先后顺序安排座位,因场地名额限制,额满为止! 2)若临时取消报名,务必提前通知工作人员;活动当日请提早报到,若活动开前5分钟仍不到现场,为您预留的座位将由旁听席学员顶替。 报名邮箱:market@neotrident.com
  • 如何使用3D模拟准确沟通外观标准及外观解决方案
    外观的复杂性不仅仅局限于颜色,它是材料独特属性的集合体,包括纹理、光泽、透明度和特殊效果等。这些属性与环境因素如光照、背景及观察角度相互作用,共同影响我们对物品外观的感知。在设计到生产的过程中,初期外观特性的准确传递常受阻,导致匹配错误、审批延迟和成本增加。解决这一挑战的方法在于采用可以精确测量、编辑和通用地沟通外观特性的虚拟环境,以确保设计意图的精准实现和流程的高效进行。一、涂料、涂层和汽车行业中的外观在涂料、涂层和汽车行业中,外观的理解远超过简单的颜色识别。对于下图中的车辆,尽管许多人可能会直接回答“蓝色”,这样的描述并没有全面捕捉到车辆外观的复杂性和细节。真实的外观特性或属性包括但不限于颜色的深浅、光泽度、金属质感或珠光效果、以及涂层的质感和透明度等。这些细节共同构成了我们对车辆外观的全面感知,而简单归纳为“蓝色”未能充分表达这种多维度的视觉体验。虽然用“蓝色”来描述车辆是一种便于理解和沟通的方式,比如帮助某人在停车场中找到这辆车,但这种描述并没有涵盖汽车外观的全部信息。例如,这辆车在直射光下会呈现出蓝绿色,而在阴影下则转变为接近黑色的深墨蓝。此外,其高光泽漆面能够产生镜面般的反射效果,而使用的特效颜料则赋予了车身独特的光泽度。这些复杂的变化和细节共同构成了车辆独特的视觉特性,超越了简单的颜色描述,反映了光线和观察角度对汽车外观感知的影响。二、时尚、家居与电子产品材料外观随着材料日益复杂,制造商和品牌越发认识到,描述外观不能仅限于颜色。为了吸引供应商同时加速产品上市,紧跟潮流和消费者偏好变化成为了他们的共同目标。然而,沟通外观的过程充满挑战。一方面,靠图像传达复杂的外观特性并非易事,因位置和光线的不同,外观会产生变化,如光泽、纹理等。即便使用数字图片,设备校准仍不能完全解决由外部环境引起的误差问题。另一方面,长久以来,依赖手工原型来沟通和审批外观虽然在颜色准确性上有优势,但其耗时且成本高昂,尤其在全球制造流程中,还会引入额外的运费和时间延误。因此,越来越多的品牌转向虚拟设计作为指定、设计和沟通外观的优选路径。这种方法不仅加快了决策过程,还降低了成本,并提高了效率和准确性。三、通过虚拟设计,时间从数月缩短至数分钟虚拟设计技术已将产品开发周期从数月缩短至数分钟,推动了生产效率和市场响应的加速。通过3D CAD和逼真渲染技术,企业能够节约成本并快速审批。然而,虚拟设计面临的一个关键挑战是如何精确模拟真实世界材料的外观,包括其物理和光学特性。尽管传统方法通过手动模拟这些特性,但这既耗时又难以达到完美精度,且难于在不同工具间共享。因此,行业正在探索更先进的解决方案,以更真实地反映材料的特性,提升虚拟设计的效果和实用性。在2016年,X-Rite推出了一种创新的供应商中立文件格式—Appearance Exchange Format (AxF),性地提供了一种存储和共享颜色及外观数据的精确方法。AxF使品牌所有者、设计师和制造商得以在整个设计到生产流程中,以数字形式准确共享和展现颜色与外观信息,从而保证数字原型、展示、电子商务和销售环境中的视觉一致性。AxF的应用范围远不止颜色,它允许创建包含特效涂层、皮革、塑料、织物、木材和拉丝金属等复杂材料的全面数字模型,真实反映材料的视觉效果。这一格式大幅简化了设计和审批流程,缩短了产品上市的时间,有效提升了工作效率和市场反应速度。AxF的另一突出优势在于其能够跨不同应用程序共享虚拟文件,实现了将庞大数据量的信息从千兆字节压缩到仅仅几兆字节。这种压缩技术产生的3D文件不仅可以轻松集成到产品生命周期管理(PLM)、计算机辅助设计(CAD)系统中,还适用于最先进的美术渲染应用程序。AxF的这一能力极大地促进了工作流程的高效性,确保了从设计到渲染的过程中信息的一致性和准确性,加速了产品从概念到市场的整个过程。四、外观解决方案作为X-Rite Total Appearance Capture (TAC&trade ) 生态系统的核心部分,AxF获得了广泛赞誉。TAC技术使得准确材料外观的整合成为可能,为真实感的数字材料捕捉和3D设计带来了提升。一个具体例子就是下方展示的,这不是一张照片,而是利用TAC生态系统生成的一双鞋的真实外观渲染图。之前提及的皮革、织物和纯色表面样本同样通过TAC技术的外观数据实现了精准渲染。AxF技术已在众多行业得到广泛应用,X-Rite正在与各大硬件和软件供应商以及研究机构合作,探索新的整合可能和功能增强。在涉及品牌所有者、设计师、供应商和制造商的复杂供应链中,沟通外观的复杂性远超颜色。在全球分布的制造过程中,确保颜色和尤其是材料的完整外观信息的准确传递,存在许多挑战。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。   前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。   “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。   据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。   据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制