当前位置: 仪器信息网 > 行业主题 > >

生长纳米线炉

仪器信息网生长纳米线炉专题为您提供2024年最新生长纳米线炉价格报价、厂家品牌的相关信息, 包括生长纳米线炉参数、型号等,不管是国产,还是进口品牌的生长纳米线炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生长纳米线炉相关的耗材配件、试剂标物,还有生长纳米线炉相关的最新资讯、资料,以及生长纳米线炉相关的解决方案。

生长纳米线炉相关的资讯

  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。   宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。   纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。   邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • 扭曲纳米线:光电性能新突破!
    【研究背景】三维(3D)晶体半导体纳米线(如硅、锗或砷化镓)因其能通过蒸汽-液体-固体(VLS)生长法合成出极高的晶体质量而备受关注。这种方法中,纳米级液态“催化剂”将源材料从气相运输到固体晶体线的生长前沿。相较于传统的半导体材料,这些纳米线具有优异的光电性能和更高的热稳定性,广泛应用于光电子、能源转换等领域。然而,纳米线的生长过程中仍存在许多挑战,例如晶体缺陷和异质结界面问题,这些问题严重影响了器件的性能。为了解决这一问题,内布拉斯加大学林肯分校Peter Sutter, Shawn Wimer & Eli Sutter三个人在层状锗硫(GeS)纳米线的研究中取得了新进展。该团队通过金催化的低温VLS生长法成功合成了具有不同直径和均匀结构的GeS纳米线。这些纳米线的生长具有各向异性,且其c轴沿着纳米线的对称轴排列,而a和b方向的单位矢量则在垂直于纳米线的平面内。研究人员利用高分辨率透射电子显微镜(TEM)和高角度环形暗场扫描透射电子显微镜(HAADF-STEM)对GeS纳米线的晶体结构进行了表征,结果显示其晶格间距为1.06纳米。在对GeS纳米线的成像和进一步的衍射分析中,研究人员发现了无处不在的轴向螺位错,导致晶格的单向旋转现象。纳米线的直径与旋转角度之间的关系显示出直线依赖性,且细径纳米线的旋转角度相对更大。这种现象与Eshelby扭转理论相一致,研究表明,纳米线的螺位错和相应的扭转特性是其具有手性结构的重要原因。【表征解读】在本文中,作者采用了多种表征手段,重点通过扫描透射电子显微镜(STEM)及其电子衍射(ED)技术来研究纳米线的形态及其微观特征。具体而言,作者利用FEI Talos F200X型电子显微镜,通过小束电子衍射模式获取了纳米线的系列衍射图样,揭示了其近似的区轴特征。通过分析衍射图样,结合JEMS软件对数据进行处理,作者确定了样品的实际区轴,并计算了扭转角度。这一过程使作者深入理解了纳米线在微观尺度下的晶体结构变化。针对观察到的纳米线光致发光(PL)特性,本文进一步采用了阴极发光(CL)光谱技术,尤其是在STEM模式下的Gatan Vulcan CL装置。作者在110 K至300 K的温度范围内,以200 keV的电子能量对纳米线进行电子束激发,获得了纳米线的光谱特征。通过在纳米线上进行逐步的光谱线扫描,作者揭示了不同位置光谱特征的变化,发现在信号噪声比的变化下,光谱特征并未显著改变。这为后续对光谱特性的深入分析奠定了基础。为探讨在STEM-CL线扫描中观察到的宽光致发光峰的起源,本文进行了控制实验,分析了一根约5 μm长的GeS纳米线。通过分段扫描,作者观察到在不同的扫描位置上,谱线特征的重复出现。这种重复现象表明,局部产生的载流子(电子)在纳米线内发生了扩散,并且呈现出不对称的扩散特征。这表明载流子的扩散可能受到纳米线内部电场的影响,或者是由于局部扩散系数D的变化所致。这种现象可能与纳米线中的缺陷态填充以及电束激发载流子的再组合过程有关。在此基础上,作者将电子显微镜及阴极发光技术的结合,深入探讨了扭转莫尔(twist moiré)结构对光电性质的影响。通过对长GeS纳米线的光谱分析,作者观察到随着纳米线的扭转角度变化,电子结构的特征显著变化。结合Burgers矢量分析,作者确认了纳米线的螺旋结构,并观察到光谱特征在不同扭转区域的显著对应关系。总之,经过扫描透射电子显微镜(STEM)和阴极发光(CL)等多种表征手段的综合应用,本文深入分析了GeS纳米线的微观结构与光电性质之间的关系。这一研究不仅揭示了纳米线内部的载流子行为及其与缺陷态的相互作用,还为新型光电材料的设计提供了理论基础,推动了基于扭转莫尔结构的新材料的进步与应用。【图文速递】图1:扭曲的范德瓦尔斯纳米线。图2:分层GeS纳米线的Eshelby扭曲。图3:扭曲GeS纳米线的光电特性。【科学启迪】本文的研究揭示了扭曲GeS纳米线的光电特性与其扭转莫尔结构之间的密切关联。通过电子显微镜和衍射技术,科学家们探讨了纳米线的形态以及局部载流子分布的非对称性,进而分析了局部激发下载流子的漂移和扩散行为。这一发现强调了在纳米材料研究中,结构缺陷和界面效应对电荷载体行为的重要影响。此外,研究表明,扭曲莫尔结构在手性纳米线中呈现出独特的螺旋形态,这种结构的变化会对光发射特性产生显著影响,进而影响光电性能。进一步的研究可能会揭示更多关于电荷载流子动态及其与材料内部结构相互作用的机制,为新型光电器件的设计提供理论依据和技术指导。参考文献:Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). https://doi.org/10.1038/s41586-019-1147-x
  • 扭曲GeS纳米线:新型光电材料的突破!
    【研究背景】近年来,扭曲材料因其在光电子器件、柔性电子和纳米技术等领域的潜在应用而备受关注。特别是扭曲的范德华(vdW)材料,因其优异的机械和电子性能,与传统的二维材料相比,具有更好的灵活性和可调性。然而,扭曲结构的合成仍面临诸多挑战,包括如何有效控制材料的形态和扭曲角度等。近日,加州大学伯克利分校/劳伦斯伯克利国家实验室Jie Yao团队在vdW材料的研究中取得了新进展。该团队通过化学气相传输法成功合成了扭曲的锗硫(GeS)结构。这一研究不仅实现了对GeS材料的扭曲设计,还开辟了合成具有不同扭曲形态的vdW结构的新方法。通过利用Eshelby扭曲机制,该团队显著提高了GeS纳米线的性能。研究结果表明,所合成的扭曲GeS晶体在结构上具有清晰的螺旋形态,其扭曲周期范围从2微米到20微米,总长度可达数百微米。此外,研究还通过同步辐射X射线Laue微衍射分析揭示了这些扭曲结构的结晶特性,证实了其沿c轴的扭曲。【表征解读】本文通过扫描Laue X射线微衍射(μSXRD)分析发现了扭曲结构的晶体特性与取向,从而揭示了其在纳米线中的独特生长机制。通过在劳伦斯伯克利国家实验室的先进光源同步辐射源12.3.2束流线进行亚微米空间分辨率的测量,作者对样品进行了0.5 μm的步长扫描,在每一步都收集了Laue图样。通过XMAS软件对Laue图样进行索引,得到了样品的取向图谱,这为后续的微观机制研究提供了重要的基础。针对扭曲现象,作者利用透射电子显微镜(TEM)进行样品制备,从而实现对中尺度和纳米尺度扭曲GeS结构的微观机理表征。作者使用FEI Strata 235双束聚焦离子束(FIB)系统和FEI Nova 600 FIB制备了横截面TEM样品。为尽量减少侧壁损伤并使样品达到电子透明,作者采用900 eV的低能氩离子研磨。随后,作者将垂直生长的自由悬垂纳米线机械转移到铜TEM载物网格上进行TEM分析。在电子显微镜成像方面,作者利用Zeiss Gemini Ultra-55分析电子显微镜进行扫描电子显微镜(SEM)成像,同时在FEI Strata 235双束FIB上进行电子背散射衍射(EBSD)分析,EBSD取向图谱通过OIM软件进行生成和分析。TEM分析则使用FEI TitanX、JEOL 3010原位TEM、阿贡染色像差校正TEM(ACAT)以及FEI Titan 80-300 ST进行。这些高分辨率的HAADF-STEM图像是通过劳伦斯伯克利国家实验室的单色化、像差校正TEAM 0.5 TEM在200 keV下获得的,进一步揭示了材料的微观结构特征。在光学表征方面,采用Horiba Jobin Yvon LabRAM ARAMIS自动扫描共聚焦拉曼显微镜进行了光致发光测量和成像。这些表征手段的结合使作者能够深入探讨材料的光电性能与结构之间的关系。在理论模型方面,作者构建了一个半定量模型来解释纳米线中扭转边界的间距。模型根植于Eshelby扭转及相关的应变能理论,并结合纳米线与基板的结合状态以及错位的临界厚度概念。作者假设纳米线始终可以被建模为一个半径为R的圆柱体,并在轴向的螺旋位错的作用下迅速生长。随着纳米线生长到超出金滴的半径,其生长速度减缓,采用直接沉积机制。此时,螺旋位错引入的净扭转导致纳米线的总扭转速率固定,进而导致扭转应变能的过量储存。作者假设,扭转边界的引入可以有效降低这种应变能,从而推动了新材料的制备。通过上述多种表征手段,作者深入分析了扭曲结构的微观特征及其对材料性能的影响,进而制备出新型的扭曲GeS材料。这一进展不仅推动了对扭曲材料的理解,也为相关领域的研究和应用提供了新的思路和技术路径。总之,经过综合的表征与分析,本文为探索和开发新型功能材料奠定了基础,推动了相关技术的进步。【图文速递】图1:中尺度扭曲 GeS 晶体的结构。图2:中尺度 GeS 结构中的扭曲界面和扭曲角度。图3:具有 Eshelby 扭曲的 GeS 纳米线。图4: 扭曲 GeS 的形成机制。【科学启迪】本研究揭示了 Eshelby 扭曲在范德瓦尔斯材料中的重要作用,开创了合成具有多样化扭曲形态的新方法。通过观察和研究扭曲 GeS 结构,研究者们展示了在纳米尺度上引入螺旋扭曲的可能性。这种扭曲不仅改善了材料的性能,还为设计具有特定拓扑结构的纳米材料提供了新思路。利用化学气相输送法成功合成的扭曲 GeS 纳米线,展示了极具前景的结构特征和应用潜力。此外,本文通过系统的表征方法,如扫描电子显微镜和透射电子显微镜,提供了对扭曲结构的深入理解。研究表明,扭曲结构中层与层之间的扭转可以显著影响其光学和电学性能,这为探索新型电子器件和光电应用开辟了新领域。这一发现不仅丰富了对范德瓦尔斯材料的认识,也为未来的纳米材料设计和应用提供了理论依据和实践指导,推动了材料科学的发展。整体而言,本研究不仅具有基础研究价值,还展现出巨大的应用潜力,为相关领域的研究提供了新的方向。参考文献:Liu, Y., Wang, J., Kim, S. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019). https://doi.org/10.1038/s41586-019-1308-y
  • 仪器情报,科学家首次制备表征了新型铝纳米线!
    【科学背景】铝纳米线(Al NWs)是一种具有高强度和优异电导、热导性能的一维纳米材料,因其在气体传感器、生物标记和光电子组件等领域的广泛应用而备受关注。与传统金属材料相比,Al NWs具有极少的晶体缺陷,导致异常的电子和声子散射现象,进一步增强了其性能。然而,尽管Al NWs在纳米技术中展现出巨大的潜力,传统的大规模生长方法仍然面临蒸汽压力和化学还原等问题,这给其应用带来了显著挑战。近日,来自浙江大学巨阳及名古屋大学Yasuhiro Kimura教授合作在铝纳米线森林的生长研究中取得了新进展。该团队通过控制固体薄膜内的原子扩散,成功实现了Al NWs在所需位置的大规模生长。研究表明,聚焦离子束(FIB)照射能够创造局部高应力区域,为原子扩散提供了必要的途径,进而促进了垂直NWs的生长。利用FIB优化蚀刻深度,团队显著提高了铝纳米线的密度和长度,成功获得了密度达到180×10⁵ /cm² 、长度达210微米的Al NWs。该研究还通过晶体学分析确认了NWs沿方向生长,显示出单晶高质量的特性。此外,局部晶粒粗化的现象为纳米线生长提供了核心种子,杂质的偏析进一步促进了生长过程。这一研究结果为铝纳米线的高效生产提供了新的方法,并为其在高性能纳米器件中的应用奠定了基础。通过这一研究,课题组不仅克服了传统方法的挑战,还为纳米材料的生长提供了新的思路和技术路径,推动了该领域的进步。【表征解读】本文通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、电子背散射衍射(EBSD)等多种表征手段,深入探讨了铝(Al)纳米线(NWs)森林的生长机制。这些技术的结合,使我们揭示了铝NWs在局部高应力区域内的生长特性及其微观结构变化。首先,通过30°倾斜SEM图像的分析,本文定量评估了不同聚焦离子束(FIB)蚀刻深度对Al NWs的长度和密度的影响。这些图像揭示了最佳的蚀刻深度可显著提高NWs的生长密度和长度,最高密度达180×10⁵ /cm² ,长度可达210微米。这些结果显示了FIB对提高NWs生长的有效性,为后续的生长机制分析提供了重要基础。接下来,针对FIB照射引起的局部晶粒粗化现象,本文通过STEM技术进行了微观机理的深入表征。STEM低角度暗场(LAADF)图像的分析表明,FIB照射导致了晶粒在表面附近的粗化,而未照射区域则保持超细晶粒的特征。通过这种晶体学分析,我们得到了局部晶粒粗化与NWs生长之间的关联,揭示了在FIB照射区域内,粗大晶粒为NWs的生长提供了核心种子。此外,使用电子背散射衍射(EBSD)技术进一步验证了FIB诱导的晶粒粗化对Al NW生长的影响。通过ACOM-STEM-EBSD对照明区域的定量晶粒分布分析,结果显示,粗大晶粒的存在为NWs的生长提供了必要的晶体方向和结构支持。同时,局部的O和Ga杂质偏析现象也在STEM-EDS和STEM-EELS分析中得到了验证,显示出它们对NWs生长的重要性。在此基础上,通过综合应用SEM、TEM、STEM、EBSD等表征手段,本文深入分析了Al NWs的生长机理及其依赖于FIB诱导的局部晶粒粗化的特性。结果表明,FIB不仅优化了晶粒的分布和结构,还通过调整应力场和各向异性扩散影响NWs的生长路径。这一发现为高性能Al纳米线的制备提供了新的思路。总之,经过多种表征手段的深入分析,本文揭示了铝纳米线森林的生长机制及其微观结构特征。这些研究成果推动了新型金属纳米线材料的制备,为未来在气体传感器、生物标记和光电子组件等领域的应用奠定了基础。通过优化生长条件和微观机理的理解,我们有望在高性能纳米器件的发展上取得进一步进展。【科学图文】图1:FIB 辐射区域的纳米线图像。图2:STEM 薄膜表征。图3:ACOM-STEM 分析。图4: Al 纳米线生长机制的探讨。【科学结论】本文提出了一种创新的铝(Al)纳米线(NW)森林生长技术,通过 FIB 辐射诱导的局部晶粒粗化克服了传统金属纳米线大规模生产中的难题。这一方法突破了以往仅关注驱动力增大的局限,通过精确控制晶粒粗化和杂质分离,实现了高密度、垂直生长的单晶纳米线森林。其次,该技术的可扩展性为其他金属纳米线的生产提供了新的思路,推动了纳米材料在高性能器件中的应用潜力,如气体传感器、生物标记物和光电组件。总体而言,本文的方法不仅拓宽了金属纳米线的生产范畴,还为未来的纳米科技应用奠定了基础,提供了有效的解决方案和新的研究方向。原文详情:Yasuhiro Kimura et al. ,Growth of metal nanowire forests controlled through stress fields induced by grain gradients.Science385,641-646(2024).DOI:10.1126/science.adn9181;
  • 科学家提出纳米线从InAs到Eu3In2As4的新转型!
    【研究背景】纳米线(NWs)是具有独特电子特性的准一维材料,因其在纳米尺度上的尺寸限制和调控能力而成为研究热点。然而,纳米线的生长面临显著挑战,如受限的晶体结构和元素组成,限制了其功能性和应用范围。为了解决这些问题,以色列魏茨曼研究Hadas Shtrikman & Haim Beidenkopf教授团队探索了固态拓扑互交换方法,将纤锌矿InAs纳米线转化为Zintl相Eu3In2As4。这种方法通过分子束外延技术,原位蒸发Eu和As到InAs纳米线上,导致了Eu从壳层和In从核心的互交换,最终形成了单相的Eu3In2As4壳层,逐渐消耗了InAs核心。该过程的成功实现得益于As基质的拓扑相似性,这使得拓扑互交换成为可能。研究表明,转化后的Eu3In2As4纳米线在约6.5 K的奈尔温度下经历反铁磁转变,并且其具有C2T轴子绝缘体的特性,支持手性铰链模式和不固定的Dirac表面态。这些成果为探索复杂的磁拓扑现象提供了新的平台,并有望在其他奇异化合物中应用该方法,扩展了纳米线生长的材料范围。【表征亮点】1. 实验首次实现了固态拓扑互交换,将纤锌矿InAs纳米线转化为Zintl相Eu3In2As4。这一过程利用了分子束外延(MBE)技术,通过在InAs纳米线上原位蒸发Eu和As,成功实现了Eu和In的相互交换。2. 实验通过在MBE过程中进行的拓扑互交换,获得了单相Eu3In2As4壳层。这种壳层逐渐消耗了InAs核心。这一拓扑互交换过程得到了As基质的支持,该基质在纤锌矿InAs和Zintl Eu3In2As4中具有相似的亚结构,确保了拓扑性。3. Eu3In2As4纳米线在约6.5 K下经历了反铁磁转变。第一性原理计算确认了其反铁磁基态,并将Eu3In2As4归类为C2T轴子绝缘体,具备手性铰链模式和不固定的Dirac表面态。【图文解读】图1: 在纤锌矿wurtzite,WZ InAs核上,Zintl Eu3In2As4壳交换生长。图2:六方晶系InAs到斜方晶系orthorhombic Eu3In2As4的拓扑轴性转变。图3:Zintl Eu3In2As4纳米线拓扑相互交换生长的参数空间。图4: Zintl Eu3In2As4的磁性表征。图5: 计算的磁拓扑相图。【科学启迪】本文展示了固态拓扑互交换生长方法的应用及其潜力,特别是在纳米线材料的设计和功能化方面。通过将纤锌矿InAs纳米线转化为Zintl相Eu3In2As4,研究揭示了在固态条件下实现拓扑材料的可能性,突破了传统方法的限制。该方法不仅克服了纳米线生长中面临的晶体结构和元素组成的挑战,还利用了As基质的拓扑特性,使得Eu3In2As4的单相壳层在纳米线中逐渐形成,从而引入了反铁磁性和轴子绝缘体特性。此技术的成功应用展示了拓扑互交换在创建复杂磁拓扑材料中的巨大潜力,开辟了探索磁拓扑现象的新途径,尤其是在稀有和奇异化合物中。这一发现不仅推动了纳米材料领域的研究,也为未来开发新型功能材料提供了重要的理论和实践基础。参考文献:Song, M.S., Houben, L., Zhao, Y. et al. Topotaxial mutual-exchange growth of magnetic Zintl Eu3In2As4 nanowires with axion insulator classification. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01762-7
  • 添加纳米线让锂离子电池更安全
    p style=" text-indent: 2em " 无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。 /p p style=" text-indent: 2em " 在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。 /p p style=" text-indent: 2em " 他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。 /p
  • 导热性能提升150%的硅同位素纳米线
    有电的地方就会产生热量,而这正是缩小电子设备的一个主要障碍。一个改变游戏规则的发现,可以通过传导更多的热量来加速计算机处理器的发展进程。TEM图像显示涂有二氧化硅(SiO2)的 28Si 纳米线。来源:Matthew R. Jones 和 Muhua Sun/莱斯大学科学家们已经验证了一种硅同位素(28Si)纳米线新材料,其热导率比先进芯片技术中使用的传统硅材料高出150%。这种超薄硅纳米线器件可以使更小、更快的微电子技术成为可能,其热传导效率超过了现有技术。由有效散热的微芯片驱动的电子器件反过来会消耗更少的能源——这一改进可以减轻燃烧富含碳的化石燃料产生的能源消耗,这种能源消耗导致了全球变暖。“通过克服硅导热能力的天然局限性,我们的发现解决了微芯片工程中的一个障碍,”报道此新研究成果的科学家 Junqiao Wu 说(课题组主页,https://wu.mse.berkeley.edu)。Wu 是加州大学伯克利分校材料科学系的一名教师科学家和材料科学与工程教授。01热量在硅中缓缓流动我们使用的电子产品相对便宜,因为硅 - 计算机芯片的首选材料 - 既便宜又丰富。可是,尽管硅是电的良导体,当它被缩小到非常小的尺寸时,它就不是热的良导体——而当涉及到快速计算时,这对微小的微芯片来说却是一个巨大问题。艺术家对微芯片的渲染。来源:dmitriy-orlovskiy/Shutterstock每个微芯片中都有数百亿个硅晶体管,它们引导电子进出存储单元,将数据比特编码为1和0,即计算机的二进制语言。电流在这些辛勤工作的晶体管之间流动,而这些电流不可避免地会产生热量。热量会自然地从热的物体流向冷的物体。但是热流在硅中变得很棘手。在自然形式中,硅由三种不同的同位素组成 - 化学元素的形式,其原子核中含有相同数量的质子,但中子数量不同(因此质量不同)。大约 92% 的硅由同位素 28Si 组成,它有14个质子和14个中子;大约 5% 是 29Si,有14个质子和15个中子;只有 3% 是 30Si,相对重量级为14个质子和16个中子,合作者 Joel Ager 解释道,他拥有 Berkelry Lab(伯克利实验室)材料科学部门的高级科学家头衔,也是 UC Berkeley(加州大学伯克利分校)材料科学与工程的兼职教授。左起:Wu Junqiao 和 Joel Ager。来源:Thor Swift/伯克利实验室 Joel Ager 的照片由加州大学伯克利分校提供作为声子,携带热量的原子振动波,在蜿蜒穿过硅的晶体结构时,当它们撞击 29Si 或 30Si 时方向会发生改变,它们不同的原子质量“混淆”声子,减慢它们的速度。“声子最终看到了这个表象,并找到了通往冷端以冷却硅材料的方法,”但这种间接的路径允许废热积聚,这反过来又会减慢您的计算机速度,Ager 说。02迈向更快、更密集的微电子学的一大步几十年来,研究人员推测,由纯 28Si 制成的芯片将克服硅的导热极限,从而提高更小、更密集的微电子器件的处理速度。但是,将硅提纯成单一同位素需要付出高昂的代价和能量水平,很少有设施可以满足 - 更没有哪家工厂能专门制造市场上可用的同位素材料,Ager 说。幸运的是,2000年代初的一个国际项目使 Ager 和杰出的半导体材料专家 Eugene Haller 能够从前苏联时代的同位素制造厂采购四氟化硅气体 - 同位素纯化硅的原料。(Haller 于1984年创立了伯克利实验室的美国能源部资助的电子材料项目,并曾是伯克利实验室材料科学部门的高级科学家和加州大学伯克利分校材料科学和矿物工程教授。)这直接导致了一系列开创性的实验研究,包括 2006 年发表在《自然》杂志上的一项成果,其中 Ager 和 Haller 将 28Si 塑造成单晶,他们用它来证明量子存储器将信息存储为量子比特或量子位,单位存储的数据同时作为 1 和 0 的电子自旋。99.92% 28Si 晶体的光学图像,伯克利实验室科学家 Junqiao Wu 和他的团队使用这种材料制备纳米线。来源:Junqiao Wu/伯克利实验室随后,用 Ager 和 Haller 提纯的硅同位素材料制成的半导体薄膜和单晶显示出比天然硅高 10%的热导率——这是一个进步,但从计算机工业的角度来看,可能不足以证明花一千多倍的钱用同位素纯硅制造一台计算机是合理的,Ager 说。但 Ager 知道,硅同位素材料在量子计算之外具有的科学重要性。因此,他把剩下的东西存放在伯克利实验室一个安全的地方,以备其他科学家可能的不时之需,因为他推断,很少有人有资源制造甚至购买到同位素纯硅。03用 28Si 实现更酷的技术之路大约三年前,Wu 和他的研究生 Ci Penghong 试图找到提高硅芯片传热速率的新方法。制造更高效晶体管的其中一项策略,涉及使用一种称为环栅场效应晶体管(Gate-All-Around Field Effect Transistor,GAAFET)的技术。在这些器件中,硅纳米线堆叠以导电,并同时产生热量,Wu 解释到。“如果产生的热量不能迅速排出,该器件将停止工作,这就像在没有疏散地图的高楼中发出火灾警报一样,”他说。FinFET(鳍式场效应晶体管)和环栅场效应晶体管(GAAFET)结构示意图。来源:Applied Materials但硅纳米线的热传递甚至更糟,因为它们粗糙的表面 - 化学处理的疤痕 - 更容易分散或“混淆”声子,他解释说。由硅纳米线桥接的两个悬浮垫组成的微器件的光学图像。来源:Junqiao Wu/伯克利实验室“然后有一天我们想知道,如果我们用同位素纯 28Si 制造纳米线会发生什么?”Wu 说。硅同位素不是人们可以在公开市场上能够轻松购买到的东西,有消息称,Ager 仍然在伯克利实验室储存了一些少量的硅同位素晶体,且仍然足以分享。“希望有人对如何使用它有一个很好的想法,” Ager 说,“如 Junqiao 的新研究就是一个很好的例证。”04纳米测试后的惊人大揭秘“我们真的很幸运,Joel 碰巧已经准备好了同位素富集的硅材料,正好可用于这项研究,”Wu 说。利用 Ager 提供的硅同位素材料,Wu 研究团队测试了 1 mm 尺寸的 28Si 晶体与天然硅的导热性 - 他们的实验再次证实了 Ager 和他的合作者几年前的发现 - 块状 28Si 的导热性仅比天然硅好 10%。尽管块状晶体硅具有相对较高的热导率(室温下 κ∼144 W/mK),但当其尺寸减小到亚微米范围时,由于声子显著的边界散射,κ 会受到强烈抑制。60 K 条件下,115 nm 尺寸的硅纳米线,κ~16 W/mK, DOI: 10.1063/1.1616981;300 K 条件下,31-50 nm 尺寸的硅纳米线,κ~8 W/mK,DOI: 10.1103/PhysRevLett.101.105501。现在进行纳米级别测试。Ci 使用一种化学蚀刻技术制造了直径仅为 90 nm(十亿分之一米)的天然硅和 28Si 纳米线 - 大约比一根人类头发细1000倍。为了测量热导率,Ci 将单根纳米线悬浮于两个装有铂电极和温度计的微加热器垫之间,然后向电极施加电流以在一个垫上产生热量,然后通过纳米线流向另一个垫。“我们预计,使用同位素纯材料进行纳米线的热传导研究结果只会有 20% 的增量效益,” Wu 说。但 Ci 的测量结果让他们都感到惊讶。28Si 纳米线的热导率提高不是 10% 甚至 20%,而是比具有相同直径和表面粗糙度的天然硅纳米线好 150%。这大大的超出了他们的预期,Wu 说。纳米线粗糙的表面通常会减慢声子的速度,那这是怎么回事呢?莱斯大学(Rice University)的 Matthew R. Jones 和 Muhua Sun 捕获的材料高分辨率 TEM(透射电子显微镜)图像发现了第一条线索:28Si 纳米线表面上的玻璃状二氧化硅层(SiO2)。而纳米线导热性研究的知名专家 Zlatan Aksamija 领导的马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)研究团队计算模拟实验表明,同位素“缺陷”(29Si 和 30Si 的不存在)阻止了声子逃逸到表面,其中 SiO2 层会大大减慢声子的速度。这反过来又使声子沿着热流方向保持在轨道上 - 因此在 28Si 纳米线的“核心”内不那么“混淆”。(Aksamija 目前是犹他大学(theUniversity of Utah)材料科学与工程副教授。)“这真的出乎意料。发现了两个独立的声子阻断机制 - 表面和同位素,以前被认为彼此独立的 - 现在协同作用,这使我们在热传导研究中获得了非常令人惊讶的结果,却也非常令人满意,“Wu 说。“Junqiao 和团队发现了一种新的物理现象,”Ager 说,“对于好奇心驱动的科学研究来说,这是一个真正的胜利。这真的是太令人兴奋了。”研究小组接下来计划将他们的发现推进到下一个阶段:研究如何“控制,而不仅仅是测量这些材料的热传导性能”,Wu Junqiao 说。莱斯大学、马萨诸塞大学阿默斯特分校、深圳大学和清华大学的研究人员参与了研究工作。这项工作得到了美国能源部科学办公室的支持。原文信息Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires,Penghong Ci, Muhua Sun, Meenakshi Upadhyaya, Houfu Song, Lei Jin, Bo Sun, Matthew R. Jones, Joel W. Ager, Zlatan Aksamija, and Junqiao Wu,Phys. Rev. Lett. 128, 085901 (2022)https://doi.org/10.1103/PhysRevLett.128.085901
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
  • 近场光学显微镜,SiC纳米线发表一篇Nature!
    表面声子极化激元(SPhPs)是由红外光和光学声子之间的耦合产生的,被预测有助于沿极性薄膜和纳米线的热传导。然而,迄今为止的实验工作表明SPhPs的贡献非常有限。近日,美国范德比尔特大学Deyu Li教授研究团队通过测量没有覆盖Au金属层和覆盖了Au金属层的3C-SiC纳米线的样品的热导率,成功证实了SPhPs对其热导率大小的影响。由SPhPs的预衰减所引起的热传导增加甚至超过了兰道尔基于玻色-爱因斯坦分布所预测极限的两个数量级。这进一步揭示了SPhPs对材料热导率的显著影响,也打开了通过SPhPs调节固体中的能量传输的大门。文章以《Remarkable heat conduction mediated by non-equilibrium phonon polaritons 》为题,发表于Nature 期刊上。 本文中,研究者通过分辨率优于10 nm的近场光学显微镜对其手中的两类纳米线进行了表征。其中S1为缺陷较小的纳米线,而S2则为层错较多的纳米线。通过对纳米线进行865 cm-1中红外激光的赝外差成像(SNOM),研究者成功获得了两类纳米线的纳米级相位成像。如下图所示,在层错较多的Sample S2中,SPhPs的传播衰减非常迅速。而在结构缺陷较少的S1, 这种衰减则要小得多。Sample S1: Sample S2: 随后,作者通过将德国Neaspec公司的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR联用,沿下图图a中的箭头方向对S1采集了610 - 1400 cm-1波数范围内的光谱。这一范围已经包括了3C-SiC纳米线全部的剩余射线谱带。其中对TO 和 LO 频率的较强振幅反馈和这种反馈沿箭头方向的衰减进一步证明了SPhPs在S1中的存在。以上结果表明层错的存在是使其成为SPhPs散射的决定性因素,而这种因素与温度的变化并不相关,进一步证明了在S1中,SPhPs是导致热导率变化的决定性因素。 值得注意的是,为了测量SNOM和Nano-FTIR,两类纳米线都被放置在了300 nm厚的SiO2薄膜基底上,相比单独存在的纳米线,放在SiO2薄膜基底上的两类样品的SPhPs的传播距离都大大减小,而信号衰减速度大幅增加,这对设备采集信号的信噪比和光学成像的空间分辨率都提出了更高的要求。 文中使用的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱能与传统FTIR,ATR-IR的红外光谱一一对应。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,为本实验的红外及光学成像等研究起到了关键性作用。 neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 综上所述,通过使用Neaspec近场光学显微镜,研究者建立并证明了SPhPs传播和材料热导率变化的关联性。也为将来通过SPhPs调节固体材料的热传导提供了可能性。这种调节可以在很多薄膜材料中抵消尺寸效应并改进固态器件的设计。参考文献:[1]. Pan, Z., Lu, G., Li, X. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature (2023). https://doi.org/10.1038/s41586-023-06598-0
  • 香港科技大学范智勇教授《Science Robotics》:基于半球形纳米线阵列的超宽视场针孔复眼
    自然界中的生物视觉系统因其多样化的功能引人注目,尤其是具有非凡视觉能力的复眼系统,如宽阔的视场角和强大的运动跟踪能力,在机器视觉的实际应用中具有巨大的潜力。当前制造复眼系统通常采用可变形电子技术,然而该技术面临包括全局形变的复杂性、应力稳定性、几何限制、以及光学组件与探测器单元之间不匹配的潜在问题,因此开发一体化的人工复眼系统并将其集成到自主平台如机器人或无人机上实现特定的视觉功能极具挑战性。近期,香港科技大学范智勇教授团队开发了一种独特的针孔复眼(PHCE)系统,该系统集成了3D打印的蜂窝状光学结构和半球形的全固态高密度钙钛矿纳米线(PNA)光电探测器阵列。这种无透镜的针孔结构(PHA)可以根据底层图像传感器的需求,设计制备出任意布局。该团队通过对比光学模拟和成像结果验证了该视觉系统的关键特性和功能,包括超宽视场、精准的目标定位和运动跟踪能力。该团队进一步演示了PHCE系统在无人机上的功能集成,使其能够跟踪地面上的四足机器人。这种独特的空中-地面协作机器人互动展示了PHCE系统在未来多机器人协作和机器人群技术开发中的潜在应用前景。相关工作以“An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision”为题发表于国际顶级学术期刊《Science Robotics》,并当选当月封面文章。香港科技大学电子与计算机工程系博士后周宇、孙梽博和博士研究生丁宇宬为文章共同第一作者,香港科技大学电子与计算机工程系讲席教授范智勇为文章通讯作者。该工作得到了香港研究资助局项目、粤港澳联合实验室项目、科学探索奖以及中银香港科技创新奖的大力支持。图1. PHCE及其集成组件的示意图和图像。(A)PHCE整体结构示意图。(B)PHCE系统的剖视图。(C)半球形多孔氧化铝膜中钙钛矿纳米线的横截面电镜图像和宏观照片。(D)强盗蝇眼的宏观照片。(E)安装在印刷电路板上的PHCE系统的侧视照片。(F)相邻针孔单元的横截面示意图。(G) 不同小眼间角下针孔像素数量与整体视场角的相对关系。(H)单个针孔和针孔阵列角度依赖的归一化强度分布。要点:研究者受到昆虫(例如强盗蝇)复眼独特几何结构的启发,设计了蜂窝状的针孔阵列,通过光学计算和模拟仿真优化了有限像素数下的接受角Δφ、小眼间角ΔΦ,确定了对应针孔的最佳长度直径比,可以消除相邻小眼之间的盲区并减少光效率损失。研究者使用摩方精密面投影微立体(PμSL)光刻3D打印技术(nanoArch® P140,精度:10 μm)制备了对应几何参数的针孔阵列,并与半球壳的凸面共形,原料为光敏树脂。由于高打印自由度和简化的结构,上述针孔阵列的参数可以很好地设计和协调,以满足对应图像传感器的需求。图2. 钙钛矿纳米线光电探测器的性能。(A)多孔氧化铝膜中不同钙钛矿纳米线的光致发光光谱。(B)不同组分钙钛矿纳米线的X射线衍射光谱。(C)单像素纳米线光电探测器各部分能级关系。(D)单像素探测器的时间依赖开/关光响应。(E)单像素光电探测器的光强依赖光电流密度和响应度。(F)未封装单像素光电探测器的工作稳定性。要点:钙钛矿纳米线是在氧化铝纳米通道内以铅纳米线作为前驱体之一生长的,未完全消耗的铅与钙钛矿形成接触,在除去基底后,通过热蒸镀的方式制备凹球面的铟电极,研究者使用PμSL 3D打印技术制备了与半球壳凹面共形的掩膜版。氧化铝多孔结构为钙钛矿材料提供了天然的封装,提高了器件的工作性能。通过调节钙钛矿中的卤素和金属元素,PNA光电探测器感测区域可以从可见拓展到近红外。在弱光下,探测器的响应度可达到2.9 A/W,随着光照强度的增加,光电流增加而响应度减小。此外,未封装的器件在常规环境中存放 10 个月后,仍保持超过80%的原始光电流数值。图3. PHCE系统的成像能力。(A)测量装置的示意图。(B)半球形成像系统的视场测量。(C)捕获的圆形图案图像。(D)捕获的十字和三角图案图像。要点:研究者集成了由121个小眼构成的单目复眼系统,半球形的几何结构赋予整个系统约140°的大视场角。PHCE系统能够在广阔的视场内成像。由聚光灯生成的圆形、十字和三角图案可以被PHCE系统准确捕获并成功识别。上述实验成像效果与模拟仿真结果高度吻合。图4. PHCE系统的目标定位和无人机运动跟踪。(A)包含两个 PHCE 的双目视觉系统照片。(B)双目视觉系统的工作原理。(C)在3D空间中移动点光源的空间位置和生成的移动路径。(D)无人机运动跟踪的工作原理。(E)安装在无人机上的PHCE照片。(F)-(H)光源和无人机移动期间的相对位置照片以及由无人机上的PHCE捕获的相应图像。要点:为了精确定位点光源在3D空间移动轨迹,研究者进一步构建了基于一对PHCE(分别具有37个小眼)的双目复眼系统,其中两个PHCE之间的角度固定为60°,整体视场增加到220°。双目系统可将整个区域可以分为三部分,即盲区、运动检测区和精确定位区。双目复眼捕获运动光源在不同位置的图像,研究者可以解析这些位置并重建其在3D空间中的运动轨迹。由于PHCE系统出色的角度选择性,研究者进一步将其安装在可编程的商业无人机上,实现了对载有点光源的四足机器人运动的实时定位和追踪。综上所述,受到昆虫复眼系统的启发,研究者设计并制造了一种独特的针孔复眼系统,具有广阔的视场、精确的目标定位和动态运动跟踪能力。通过进一步改进和技术升级,包括缩小设备尺寸、增加小眼数量、提高成像分辨率和响应速度,该复眼系统有望实现在智能光电传感和机器人技术领域的广泛应用。
  • 质谱电离技术重要突破!超导纳米线检测单个蛋白质离子
    Fig. 1: View of the SuperMaMa laboratory at the University of Vienna. The hanging gold-plated insert is the radiation shield behind which the superconducting nanowire detectors are installed. C: Quantennanophysik @ Universität Wien  Fig. 2: Counting single proteins with a superconducting nanowire. The background and nanowire are altered in Photoshop with the Generative Fill AI. (Human Insulin PDB:3I40). C: CC BY-ND 4.0 Quantum Nanophysics University of Vienna.  据奥地利维也纳大学(University of Vienna, Boltzmanngasse, Vienna, Austria.)2023年12月4日提供的消息,由维也纳大学量子物理学家马库斯阿恩特(Markus Arndt)领导的国际研究团队在蛋白质离子检测方面取得突破:超导纳米线探测器凭借其高能量灵敏度,实现了蛋白质离子检测的突破(Quantum physics: Superconducting Nanowires Detect Single Protein Ions)。几乎100%的量子效率,比传统离子探测器在低能量下的探测效率高出1000倍。与传统探测器相比,它们还可以通过冲击能量来区分大分子。这允许更灵敏地检测蛋白质,并提供质谱分析中的附加信息。这项研究的结果于2023年12月1日已经在在《科学进展》(Science Advances)杂志网站发表——Marcel Straus, Armin Shayeghi, Martin F. X. Mauser, Philipp Geyer, Tim Kostersitz, Julia Salapa, Olexandr Dobrovolskiy, Steven Daly, Jan Commandeur, Yong Hua, Valentin Köhler, Marcel Mayor, Jad Benserhir, Claudio Bruschini, Edoardo Charbon, Mario Castaneda, Monique Gevers, Ronan Gourgues, Nima Kalhor, Andreas Fognini, Markus Arndt. Highly sensitive single molecule detection of macromolecule ion beams. Science Advances, 1 Dec 2023, Vol 9, Issue 48. DOI: 10.1126/sciadv.adj2801. https://www.science.org/doi/10.1126/sciadv.adj2801  参与此项研究的除了来自维也纳大学的研究人员之外,还有来自奥地利科学院(Austrian Academy of Sciences, Boltzmanngasse, Vienna, Austria)、荷兰MSVision(MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands)、荷兰单量子(Single Quantum, Rotterdamseweg 394, 2629 HH, Delft, The Netherlands) 瑞士巴塞尔大学(University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland)以及瑞士洛桑联邦理工学院(école Polytechnique Fédérale de Lausanne简称EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel, Switzerland)的研究人员。  大分子的检测、识别和分析在生命科学的许多领域都很有趣,包括蛋白质研究、诊断和分析。质谱法通常用作检测系统即一种通常根据带电粒子(离子)的质荷比分离带电粒子(离子)并测量检测器生成的信号强度的方法。这提供了有关不同类型离子的相对丰度的信息,从而提供了样品组成的信息。然而,传统探测器只能对具有高冲击能量的粒子实现高探测效率和空间分辨率——这一限制现已被使用超导纳米线探测器的国际研究团队克服。  低能粒子的合力(Joined forces for low energy particles)  在当前的研究中,由维也纳大学与代尔夫特的单量子、EPFL、MSVision和巴塞尔大学的合作伙伴协调的欧洲联盟首次展示了超导纳米线的使用所谓的四极杆质谱(quadrupole mass spectrometry)中蛋白质束的优秀检测器。待分析样品中的离子被送入四极杆质谱仪并进行过滤。“如果我们现在使用超导纳米线而不是传统探测器,我们甚至可以识别以低动能撞击探测器的粒子,”维也纳大学物理学院量子纳米物理小组(Quantum Nanophysics Group at the Faculty of Physics at the University of Vienna)的项目负责人马库斯阿恩特 (Markus Arndt) 解释道。这是通过纳米线探测器的特殊材料特性(超导性)实现的。  借助超导技术实现这一目标(Getting there with superconductivity)  这种检测方法的关键是纳米线在非常低的温度下进入超导状态,在这种状态下它们失去电阻并允许无损电流流动。进入离子对超导纳米线的激发导致返回到正常导电状态(量子跃迁)。在此转变期间纳米线电特性的变化被解释为检测信号。“通过我们使用的纳米线探测器,”第一作者马塞尔 施特劳斯(Marcel Strauß / Marcel Straus)说,“我们利用了从超导到正常导电状态的量子跃迁,因此可以比传统离子探测器性能高出三个数量级。” 事实上,纳米线探测器在极低的冲击能量下具有显著的量子产率-并重新定义了传统探测器的可能性:“此外,配备这种量子传感器的质谱仪不仅可以根据分子的质量到电荷状态来区分分子,还可以根据分子的动能对它们进行分类。这改善了检测并提供了更好的空间分辨率的可能性,”马塞尔施特劳斯说道。纳米线探测器可以在质谱、分子光谱、分子偏转或分子量子干涉测量中找到新的应用,这些领域需要高效率和良好的分辨率,特别是在低冲击能量下。图 2(Fig. 2)是用超导纳米线计数单个蛋白质。  团队和资金(Team & Funding)  单量子(Single Quantum)领导超导纳米线探测器的研究,洛桑联邦理工学院的专家提供超冷电子学,MSVISION 是质谱专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学将所有组件与其在量子光学、分子束和超导性方面的专业知识结合在一起。  本研究得到了戈登和贝蒂摩尔基金会 (Gordon and Betty Moore Foundation: 10771)、欧盟地平线2020框架计划(European Union’s Horizon 2020 Framework Programme: 860713 and 777222)的资助。  上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。  Abstract  The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in thegas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.文章来源:科学网 诸平
  • 有机核壳纳米线实现化学气体高效传感
    中科院化学所光化学院重点实验室的科研人员利用有机纳米光子学材料,实现了高效化学气体传感,相关成果发表在近期出版的国际期刊《先进材料》杂志上,并被作为即将出版的《先进光学材料》的内封面文章重点介绍。   据了解,光波导传感器具有普通传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在气体与生物传感中扮演着越来越重要的角色。   中科院化学所光化学院重点实验室的研究人员近年来一直致力于低维有机光子学方面的研究,围绕光子学集成器件中所需要的光波导、微纳光源、光子路由器等开展了一系列探索工作。   近来,他们又在有机纳米材料电化学荧光转换方面取得突破,相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为实现有机纳米光子学传感器件奠定了基础。   最近,在国家自然科学基金委、科技部和中科院的支持下,科研人员在前期工作的基础上,通过超分子自组装方法制备出二元有机复合纳米带,利用荧光共振能量转移中受体的杠杆效应,制备出高效的酸碱气体传感器。他们进一步将有机金属配合物的单晶纳米线引入电化学发光传感体系,实现了对生物分子多巴胺的高效、灵敏检测,相关工作发表在《先进材料》杂志上。   在此基础上,研究人员与活体分析化学实验室合作,制备出有机核/壳纳米结构作为光波导传感器,利用核壳之间的消逝波耦合,有效地放大了波导材料对气体的响应,从而实现了对H2O2气体的快速、高灵敏、高选择性的原位检测。
  • 上海应物所制出超高灵敏硅纳米线DNA传感器
    在最新一期的Nano Letters上(Nano Lett., 2011, 11 (9), pp 3974–3978, DOI:10.1021/nl202303y),中科院上海微系统与信息技术研究所王跃林/李铁课题组与上海应用物理研究所樊春海课题组以快报形式报导了他们在超高灵敏硅纳米线DNA传感器方面的合作研究进展。   研究人员在传统半导体加工技术的基础上,利用硅材料自身的工艺选择性,基于自上而下方法发展了硅纳米线加工技术,并实现了纳米级尺寸的精确控制。硅纳米线不但宽度可以达到20纳米,而且其三角形截面具有更大的比表面积,有利于器件性能的提高,为批量制备高检测灵敏度的阵列FET生物传感器迈出了坚实的一步。   通过对硅纳米线进行硅烷化修饰、表面单分子膜层自组装以及单链DNA探针的固定,他们研制的DNA传感器成功实现了对低至1 fM 的DNA靶标分子的响应,这是目前已报导的最灵敏的基于硅纳米线FET的DNA传感器。   这种DNA传感器还可以实现对单碱基错配的分析和对多种病原DNA序列的同时检测。
  • 研究人员利用原位TEM技术揭示ZnO微/纳米线疲劳行为
    近日,北京科技大学材料科学与工程学院张跃教授研究团队指导的博士生李培峰在一维纳米材料在各种场下的服役方面的研究取得新进展,并以第一作者身份在《Nano Letters》(影响因子12.94)和《ACS Applied Materials and Interfaces》(影响因子5.90)分别发表论文一篇。   在张跃教授的指导下,李培峰与中科院物理所的合作者利用原位TEM机械共振,研究了ZnO微/纳米线在高周应变下的疲劳行为。系统研了ZnO微/纳米线的弹性模量随直径的变化以及ZnO微/纳米线共振振幅在阻尼效应作用下随共振时间及周次衰减的区别。ZnO微/纳米线经过108&minus 109周次共振都显示了良好的疲劳性能,而遭受电子束辐照10 min后的ZnO纳米线共振几秒后即发生断裂,这在国际上尚属首次发现。   研究结果为我们设计、构建、优化及应用基于ZnO纳米材料的力电纳米器件提供了有益的指导,也为工作在紫外光、X射线下的纳米材料及器件的安全服役提供了参考。   另外,李培峰还利用自己实验室搭建的纳米操控系统研究了ZnO纳米线在电场中的服役行为。研究发现ZnO纳米线电致损伤的阈值电压随直径的增大呈线性增大,而电流密度随直径的增大呈指数减小。并提出了热核-壳模型对ZnO纳米线的电致损伤机制进行解释。纳米材料电致损伤研究对指导光电、力电和压电纳米器件的实际应用是非常有必要的。   此外一系列利用AFM研究ZnO纳米线在力场及力电耦合场中的服役行为的研究结果尚未公开发表。
  • 江汉大学研发新纳米线可大幅提高红外探测仪器灵敏度
    p   江汉大学曹元成教授团队与英国兰开斯特大学半导体中心首席研究员庄乾东博士团队合作研发新材料,可大幅提高红外探测灵敏度。4月10日,英国自然网站在线发表了他们撰写《基于柔性石墨基板铟砷纳米线红外光探测器》,该文将全文刊登在本月晚些时候出版的《自然》子刊《科学报道》。 /p p   曹元成介绍,铟砷纳米线作为高光电转换效率材料,是科学家们研究的主要对象,尤其是基于碳的铟砷一维纳米线,是高集成度光电子集成电路的研究热点。然而,上述材料在制备过程中,晶体结构容易产生缺陷,导致这类材料对光的响应效率低下或者无响应,特别是在中长红外波段方面尤其明显。 /p p   曹元成团队在砷化铟中掺入锑元素,合成一种新的锑掺杂砷化铟纳米线,大幅降低了铟砷纳米线的结构缺陷,同时通过锑元素的自我催化功能,显著提升新物质对红外光子的响应性。曹元成说,这种纳米线对光的响应波长,达到了5.1微米,从而涵盖整个中红外光谱,是目前最长的红外波响应纳米线,可应用于室温下高效工作的中波红外、长波红外光电探测器、红外发射器、高灵敏度光电晶体管等等,是制造各种光电子设备的理想材料。 /p p   据了解,上述研究应用于实践,比如导弹红外探测和夜视仪,可以在目前的基础上,提高50%探测灵敏度,让现有的大部分防红外伪装失效,民用方面则更加广泛。 /p
  • 国家国际科技合作重点专项“高性能纳米线钒系锂离子动力电池联合研发”通过验收
    受科技部国际合作司委托,湖北省科技厅于6月27日组织专家组在武汉召开了由武汉理工大学承担的国家国际科技合作重点专项“高性能纳米线钒系锂离子动力电池联合研发”项目验收会。验收会技术验收由复旦大学赵东元院士主持,来自全国各地7位专家参加了验收。  该项目面向清洁高效能源的可持续发展,通过与哈佛大学开展合作,建成了单次百公斤级纳米线钒系正极材料中试线和自动化电子生产线,完成了纳米线钒系动力电池的装配和装车实验,进行了电动汽车示范运行,该项目依托武汉理工-哈佛大学纳米联合重点实验室和材料复合新技术国际联合研究中心,实现强强合作,发表高水平学术论文60余篇,申请国外发明专利2项、国内发明专利50余项,授权专利18项,培养人才30多人,对我国发展清洁高效能源系统产生了积极影响。
  • Advanced Materials: 可调谐低损耗一维InAs纳米线的表面等离激元研究
    亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。可喜的是:近期,由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。图1 neaspec超高分辨散射式近场光学显微镜neaSNOM图2 InAs纳米线中表面等离激元的红外近场成像研究a) s-SNOM实验测量示意图;b) InAs纳米线的AFM形貌图;c) InAs纳米线的红外(901 cm?1)近场光学成像;d) 相应的模拟结果;e) c和d相应区域的界面分析;f) InAs纳米线的红外(930 cm?1)近场光学成像;g) InAs纳米线的红外(950 cm?1)近场光学成像;h) InAs纳米线的红外(930 cm?1)近场光学成像。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合901–985 cm?1可调谐中红外QCL激光器,采用neaspec公司具有的伪外差近场成像技术的neaSNOM近场光学显微镜,对约为104 nm长的InAs纳米线的表面等离激元进行了研究。从近场成像图(图2 c)中可以看出,在930 cm?1红外光及AFM探针的激发下,表面产生的等离激元沿InAs一维纳米线传播,并从纳米线边缘反射回来产生相应的驻波图形。另外,可以通过定量分析表面等离激元传播的相邻的两个节点((λp/2)的空间距离来推断表面等离激元传播的波长(λp)。同时,作者也在不同的红外波长下(930, 950, 和985 cm?1,图2 f, g, h)对InAs纳米线的表面等离激元进行了纳米尺度近场光学成像研究,结果显示出相似的驻波图形。上述研究结果证实作者通过neaspec公司的散射型近场光学显微镜对InAs纳米线的近场成像研究成功观察到了InAs纳米线中的一维等离激元。该研究在通过s-SNOM红外近场光学显微镜展示了在InAs纳米线中等离激元的真实空间成像。作者的进一步研究表明其等离激元的波长以及它的阻尼都可以通过改变InAs纳米线的尺寸和选择不同基底来调控。研究显示半导体的InAs纳米线具有应用于小型光学电路和集成设备的巨大潜力。作者的发现开辟了一条设计与实现新型等离激元和纳米光子设备的新途径。同时,该研究也展示了neaspec公司的散射型近场光学显微镜在半导体一维或二维材料纳米光学研究中的广阔应用前景。截止目前为止,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户不断的努力,neaspec国内用户2018年间发表了关于近场光学成像和光谱的文章共14篇:其中包括4 篇Advance Materials; Advance Functional Materials;Advance Science;Advanced Optical Materials和Nanoscale等。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内群的不断的持续增加,我们坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551 https://doi.org/10.1002/adma.201802551相关产品及链接:1、 超高分辨散射式近场光学显微镜 neaSNOM:https://www.instrument.com.cn/netshow/C170040.htm2、 纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 太赫兹近场光学显微镜 THz-NeaSNOM:https://www.instrument.com.cn/netshow/C270098.htm
  • 上海微系统所等研制出微纳光纤耦合超导纳米线单光子探测器
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。 /p p   SNSPD器件主要有两种光耦合方式,一种是垂直光耦合方式,光纤端面平行于SNSPD光敏面,光子垂直入射到纳米线上,采用光学腔体或反射镜结构实现高效光耦合。利用该类耦合结构,中国科学院上海微系统与信息技术研究所已实现NbN基SNSPD系统探测效率超过90%,相关结果发表后受到国内外广泛关注。该光耦合结构的特点是,可以实现高光耦合效率,但受限于光耦合结构,工作波长范围受限。另一种光耦合方式是波导光耦合方式,将纳米线制备在光波导上,可实现高效的本征吸收。但光纤到波导的耦合效率较低,使这类器件仅能作为片上光子学的解决方案,无法作为独立单光子探测器使用。 /p p   上海微系统所/中国科学院超导电子学卓越创新中心尤立星研究员团队和浙江大学教授方伟、童利民团队合作,首次提出微纳光纤耦合的SNSPD器件结构。该结构将SNSPD器件置于微纳光纤的倏逝场内,实现纳米线对微纳光纤中传输的光子吸收。光学计算显示,该类结构有望实现高吸收效率的同时,保持很好地宽谱特性。经过上海微系统所巫博士君杰和浙江大学博士徐颖鑫等近3年实验探索,科研团队研制出微纳光纤耦合SNSPD器件。在1550nm/1064nm工作波长,系统探测效率分别达到20%/50%。相关成果近日发表在 em Optics Express /em 上,该结果有望在新型SNSPD器件及微纳光纤领域开辟新的研究方向。 /p p   研究工作得到了国家重点研发计划项目“高性能单光子探测技术”、中科院战略性先导科技专项(B)“超导电子器件应用基础研究”、自然科学基金以及上海市科委等的资助。 /p p br/ /p p style=" text-align:center " img alt=" " oldsrc=" W020171213665024470514.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/bc478657-1ca0-4a06-a7b0-fc3659b0aeca.jpg" / /p p style=" text-align: center " 微纳光纤耦合超导纳米线单光子探测器原理示意图 /p
  • PRL发表|王建波团队氧化锌纳米线可逆结构相变研究获突破
    p   武汉大学新闻网消息,近期,武汉大学物理科学与技术学院王建波教授课题组在氧化锌纳米线可逆结构相变研究中取得重要突破,实现了相变前后原子尺度结构变化的原位测定和基于第一性原理计算的机理理解。 br/ /p p style=" text-indent: 2em " 11月19日,物理学顶级期刊Physical Review Letters(《物理评论快报》)在线发表了论文“Surface- and strain-mediated reversible phase transformation in quantum-confined ZnO nanowires”(《量子限域氧化锌纳米线中基于表面和应力效应的可逆相变》)。武汉大学物理科学技术学院、电子显微镜中心和高等研究院为第一署名单位及唯一通讯作者单位,物理科学与技术学院博士生赵培丽和高等研究院博士生管晓溪为论文共同第一作者,王建波教授、郑赫副教授为通讯作者。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 192px " src=" https://img1.17img.cn/17img/images/201911/uepic/b6141e00-65f5-42f7-bccb-55a424c73a8f.jpg" title=" 0.jpg" alt=" 0.jpg" width=" 600" height=" 192" border=" 0" vspace=" 0" / /p p   氧化锌(ZnO)作为一种宽禁带半导体材料,由于其多态性和可调的电子光学性质,在量子点发光、自旋功能器件等核心技术领域具有广泛应用。但是当ZnO尺寸接近其激子玻尔半径(~2纳米)时,由于量子限域效应导致其晶体结构及光电性能的变化,可能引起器件失效。然而,相关理论计算和实验研究方面的机理研究一直存在较大分歧:尽管大量理论计算预测低维ZnO具有比纤锌矿(WZ)结构更稳定的类石墨结构(h-MgO)或体心四方结构(BCT),但由于技术条件限制,实验上一直未予验证,同时其相变机理也还未完全厘清。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7a5b7c13-f97a-4232-82d7-c501fe48b90c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ZnO纳米线中可逆结构相变过程的实验测定(a-f)和第一性原理计算(g) /span br/ /p p   在前期相关工作的基础上(Nano Lett. 18: 4095 (2018) Phys. Rev. Mater. 2: 060402(R) (2018) ACS Appl. Energy Mater. 2: 7709 (2019) Microscopy 10.1093/jmicro/dfz038 (2019)(特邀综述)),王建波课题组通过原子尺度原位技术首次观察到低维 ZnO纳米线(宽度约为2纳米)在拉伸应力作用下从WZ到BCT再到h-MgO结构的原子尺度相变过程(如下图)。在应力撤去时,该相变过程是可逆的。进一步基于第一性原理计算,揭示了尺寸、表面及应力对低维ZnO结构稳定性的影响机理。研究结果为理解量子限域的低维ZnO中不同晶体结构的稳定性及其相变机理提供重要的实验依据和计算分析,可为实现相关体系的结构-性能调控提供参考。 /p p   该研究受到国家自然科学基金、湖北省自然科学基金及江苏省自然科学基金的项目资助。 /p p style=" text-indent: 2em " strong 原文链接: /strong /p p style=" text-indent: 2em " a href=" https://link.aps.org/doi/10.1103/PhysRevLett.123.216101" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://link.aps.org/doi/10.1103/PhysRevLett.123.216101 /span /a /p p style=" text-align: right " 内容参考自:武汉大学新闻网 /p
  • NanoFrazor 3D纳米高速直写技术研讨会于北航成功举办,毕加索名画及纳米线套刻工艺数秒呈现!
    为便于国内外科研学者交流新纳米结构研究成果,共同推动纳米加工学科和新技术的蓬勃发展。2017年6月23日, Quantum Design中国子公司与北京航空航天大学国际交叉科学研究院进行良好合作,在该院校微纳实验平台的基础上举办“NanoFrazor 3D纳米结构高速直写技术研讨会”,对国内外高端纳米加工技术展开详细介绍与讨论,同时就NanoFrazor Explore 3D纳米结构高速直写设备向国内各地课题组开放良好合作机会。 会议中,Quantum Design中国子公司在Swisslitho厂商及国际交叉科学研究院老师们的大力支持下,就微纳米加工技术,微纳器件制备与性能,MEMS/NEMS,光学/光子学等领域进行了现场学术交流,Swisslitho厂商技术指导在NanoFrazor纳米加工平台上现场演示了高通量光刻、纳米叠加等纳米加工工艺操作,毕加索名画及纳米线套刻工艺数秒呈现,引起了大家的大兴趣。 NanoFrazor Explore 3D纳米结构高速直写技术是一种真正意义上的纳米3D图形加工技术,可以实现多种材质的3D微纳结构加工,实现XY轴高10nm加工线宽和间距,1nm的Z向精度,广泛应用于微纳光子学,半导体器件,表面等离子激元,MEMS等研究领域,并取得多项突出研究成果。感谢北京航空航天大学国际交叉科学研究院对本次微纳研讨会成功举行提供的各项支持,期待这项IBM新研发技术能够帮助纳米直写领域的院校及老师们取得更加突出的科研成果!相关产品链接3D纳米结构高速直写机 http://www.instrument.com.cn/netshow/SH100980/C226568.htm无掩模激光直写光刻系统 http://www.instrument.com.cn/netshow/SH100980/C155920.htm
  • 1216万!山西大学超导纳米线单光子探测器系统和X射线三维高分辨显微成像系统(工业CT)采购项目
    一、项目基本情况(一)项目一1.项目编号:1499002024AGK02380(SDXZYGK-24059)2.项目名称:山西大学超导纳米线单光子探测器系统采购项目3.政府采购计划文号:ZFCG-149900-2024-1-0331634.采购方式:公开招标5.预算金额:8000000.00元6.最高限价:8000000.00元7.采购需求: 本项目共1包,参与招标的供应商提交的投标文件必须实质上响应本招标文件的要求。序号货物名称数量单位用途备注1超导纳米线单光子探测器系统1套超导纳米线单光子探测器系统,主要应用于低温系统和真空泵组提供低温环境,结合超导纳米线探测器及其控制系统,实现高效率、暗计数光纤通信波段单光子探测。2超导纳米线单光子探测器系统3套是否允许代理商参加是交货地点山西大学执行标准及验收标准详见招标文件第五部分商务、技术要求。服务要求详见招标文件第五部分商务、技术要求。相关政策要求详见招标文件内具体要求。注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。8.合同履行期限:自合同签订之日起100天。(二)项目二1、项目编号:SDHXGK-240412、采购计划文号:ZFCG-149900-2024-1-033164;3、项目名称:山西大学X射线三维高分辨显微成像系统(工业CT)采购项目;4、采购方式:公开招标;5、预算金额:4160000元;6、最高限价:4160000元;本项目预算实行总包控制,超出预算(最高限价)视为投标无效。7、采购需求:本次招标项目共1包,参加投标的投标人所投项目必须完全响应招标文件中所列内容。序号标的名称数量单位简要技术需求备注1X射线三维高分辨显微成像系统(工业CT)1台详见招标文件国产产品注:(1)上述采购内容中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。(2)范围包括:货物的供货、运输、安装、调试、售后服务、质保期等及招标文件规定的其它项目和服务等。具体报价范围、采购范围及所应达到的具体要求,以本招标文件中商务、技术和服务的相应规定为准。8、合同履行期限:签订合同后90日历天内完成供货、安装及调试。9、本项目不接受联合体投标。 二、获取招标文件 1、获取时间:2024年9月30日00时00分至2024年10月14日00时00分(招标文件的发售期限自开始之日起不得少于5个工作日)(北京时间,法定节假日除外)。2、获取方式:山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)线上获取。3、售价:免费 三、对本次采购提出询问,请按以下方式联系 1、采购人信息名 称:山西大学地 址:山西省太原市坞城路92号联系方式:0351-70112552、采购代理机构信息名 称:山西华兴项目管理有限公司地 址:太原市小店区南中环街企联大厦东区6层联系方式:0351-7818598、135464143003、项目联系方式项目联系人:朱妍、石佳奇、李想电话:0351-7818598、13546414300
  • 有机纳米光子路由器研制成功
    低维有机纳米光子路由器   纳米光子学主要研究如何在微纳米尺度上对光子运动进行操纵、调节和控制,在未来信号传播和信息处理方面具有广泛的应用前景。中科院化学所光化学重点实验室的科研人员成功研制出低维有机纳米光子路由器,可实现单点激发、多通道不同的光信号输出。相关结果近日发表于《美国化学会志》,英国皇家化学会《化学世界》杂志也对该成果作了报道。   据了解,该实验室近年来在低维有机材料光子学方面进行了系统的研究。在前期对一维有机光波导材料的研究中,研究人员发现了有机材料中的弗伦克尔激子与光子的强耦合作用所形成的激子极化激元(EP)在有机光子学中的作用机制 进而利用三重态敏化,通过EP传播过程中的双向能量转移作用,实现了稳定白光输出的光波导器件 进一步利用有机晶体材料中的激子极化激元的超高折射率,实现了双光子泵浦有机纳米线激光器。相关工作证实了有机低维材料在纳米光子学中的巨大潜力,为实现基于低维有机材料的光子学功能元件奠定了基础。   在此前研究的基础上,该实验室科研人员联合美国西北大学,从有机纳米线异质结的可控制备入手,利用有机小分子特定的组装与生长特性,通过液相和气相两步法,实现了客体分子在主体分子的一维主干结构上的可控外延生长,从而得到了一维有机分枝型异质结构。将有机异质结构中的荧光共振能量转移(FRET)和光波导性质结合起来,实现了信号可调制的纳米光子路由器。   这些成果为深入研究有机功能分子体系的组装行为,控制合成功能化有机复杂微纳结构,研究复杂结构中光子学的内在机制,以及探索光子通讯与运算中需要的各类元器件提供了重要的借鉴。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。 近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。 金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。 中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • 纳米结构AgBiS2材料在宽带和环保型光电子传感中的应用研究
    导言纳米材料的功能化与图案化是电子和光电子器件先进制造中一个有潜力的方向。当前的微图案化策略对于后刻蚀/剥离工艺是不可或缺的,这些工艺会污染/损坏功能材料。在本文中,作者开发了一种创新的低温、无需后剥离、种子限制的制造策略以应对这个问题,从而在任意刚性或柔性基底上实现微米或宏观尺度的花状AgBiS2纳米结构的指定图案。由图案化的AgBiS2纳米结构制成的光电导体显示出宽带、灵敏和快速的光响应。此外,进行了单像素光栅扫描阵列成像,光学图案可靠和清晰的电响应,展示了光电导体在实际成像应用中的潜力。值得注意的是,图案化过程实现了应变释放的微结构,制造出了一种即使在1000多次弯曲/恢复测试周期后仍具有高耐久性的柔性光电探测器。这项研究提供了一种简单、低温和环保的策略,以应对当前非侵入性微制造和半导体任意图案化的挑战,这些挑战有望满足可扩展和可穿戴光电子传感器进一步新兴技术的发展。分享一篇来自北京理工大学王卓然团队的新研究成果,本文以“Patterned growth of AgBiS2 nanostructures on arbitrary substrates for broadband and eco-friendly optoelectronic sensing”为题发表于期刊Nanoscale,原文链接:https://DOI: 10.1039/d4nr00499j 希望对您的科学研究或工业生产带来一些灵感和启发。正文在微尺度上对纳米结构进行图案化一直是推动纳米技术前沿发展的主要动力。特别是,光电子学、量子点、纳米线、二维材料及其分层的三维组装体已经展示了增强的光-物质相互作用,它们的微图案化在显示和传感方面取得了快速进展,朝着可扩展性和新形式(即,机械柔性)发展。标准的微图案化遵循自上而下的方法,其中半导体的薄连续层通过光刻掩模和刻蚀。相比之下,低温可加工纳米材料实现了自下而上的制造,避免了使用高腐蚀性试剂对半导体进行刻蚀,这对于脆弱的纳米材料尤为重要。例如,纳米材料的墨水可以喷墨打印在任意基底上,用于发光二极管(例如,QLED)、图像传感器和柔性太阳能电池。然而,通过物理喷嘴直接打印微尺度图案非常具有挑战性,这使得光刻图案转移对于高分辨率应用不可或缺。然而,后剥离需要完全暴露于丙酮或氧等离子体等试剂中以去除光刻胶,这些试剂虽然温和,但不可避免地会降解这些对表面敏感的功能材料。因此,对于下一代微纳米光电子学,非常需要无需后剥离的纳米材料微图案化创新。在这方面,低温下种子诱导的纳米结构直接生长是一种优越的解决方案。例如,Jiang等人利用预图案化的ZnO种子实现ZnO纳米线的水热和亚微米周期生长,用于超高分辨率图像传感器。Fan等人利用垂直纳米通道底部的铅金属纳米簇启动高质量钙钛矿纳米线生长,用于半球形图像传感器和LED。然而,迄今为止,只有有限的材料适用于这一领域。因此,需要新的材料系统和策略,它们可以在低温下图案化,并且具有超出硅光谱(紫外线和可见光)的扩展光谱范围。在所有显示出卓越光电子功能的半导体中,AgBiS2以胶体纳米晶体形式在光伏领域取得了快速进展,这源于其阳离子无序均匀化带来的异常高的光吸收能力。此外,AgBiS2无毒、环保,符合有害物质限制(RoHS)要求,因此适合普遍的物联网应用。此外,AgBiS2被报道具有约0.8电子伏特的窄带隙,因此显示出宽带和短波红外(SWIR)光电探测的前景。此外,它的低温可加工性以及其高吸收系数使得超薄设备配置尤其重要,这对于开发柔性应用非常重要,但尚未被探索。在这项研究中,作者报道了一种创新的低温、无后剥离微制造策略,用于在刚性和柔性基底上合成任意图案的微尺度花状AgBiS2分层纳米结构,并展示了它们作为柔性光电探测器的宽带(320-2200纳米)、快速(微秒级)光响应以及在极端弯曲下的耐用性。这项工作提供了一种高度功能性、环保、低成本和柔性的策略,以促进下一代光电子传感应用,如成像、通信、可穿戴设备和健康监测。AgBiS2纳米花的任意图案化基于AgBiS2的低温溶液可加工性,作者首次开发了一种新颖的“自下而上”的方法,以实现在微米或宏观尺度上对功能材料进行精确和任意的图案化。制造过程遵循一个简单的三步流程,如图1a所示:图1 AgBiS2纳米花图案化过程。(a) 图案化过程的示意图。(b) 用培养的AgBiS2纳米花对10微米、5微米和2微米宽度的超细图案进行SEM表征。(c) 4厘米×4厘米大小的玻璃基底上由AgBiS2纳米花组成的各种图案的照片。(d) 大学徽标、樱桃、玻璃、柔性PI和SiO2/Si基底上的互指电极的微型图案的光学显微镜图像,右下角的樱桃的SEM图像显示它们具有共同的纳米花形态。(e) 在两英寸晶圆级蓝宝石、SiO2/Si、PET和PI基底上的各种图案的照片。这一三步流程包括:首先,通过热蒸发在基底上形成约10纳米的银层,并通过剥离过程实现预定图案;其次,银层在温和的氧等离子体处理后转化为Ag2O,作为“种子”促进下一步的功能材料生长;最后,通过旋涂DMF溶液并进行低于200°C的热处理,生长出花状AgBiS2纳米结构,精确复制了初始图案。这种方法避免了有害的后刻蚀过程,分辨率理论上仅受银层限制,能够实现10微米至2微米宽的微通道图案化。该方法的优势在于直接图案化纳米材料,且适用于多种金属图案化技术,包括纳米压印和阴影掩模,适用于微米或宏观尺度的功能材料制造。作者已经在4厘米×4厘米的玻璃基底上展示了多种图案,包括北京理工大学的微米级徽标和互指型微电极,证明了这一技术的通用性和对复杂形状的复制能力。此外,该过程适用于任意刚性或柔性基底,整个制造过程在200°C以下进行,适合CMOS集成和柔性电子制造。作者在PI和PET柔性基底上成功复制了多种图案,展示了这一方法在开发柔性和可打印微电子方面的潜力。精细结构表征作者深入研究了AgBiS2纳米花的生长过程,发现这些纳米花的生长类似于自然植物的栽培。在生长初期,微小的Ag2O种子在前驱体溶液和加热器的作用下促进了纳米花的萌芽。经过多次涂覆和烘烤,这些孤立的纳米花逐渐长大并变得更加密集。通过SEM和TEM图像,作者观察到这些“纳米芦荟”由重叠的枝条组成,每个枝条上都有细小的针状次级结构。AgBiS2作为一种新兴的光电材料,因其卓越的光吸收能力而受到关注。紫外-可见-近红外光谱分析显示,AgBiS2在整个可见光和短波红外范围内具有约10-5 cm-1的高吸收系数。通过Tauc图估计,其窄间接带隙约为0.74电子伏特,表明其具有超宽带吸收特性,这使得AgBiS2在制造多光谱光电探测器方面具有巨大潜力。这些特性将在后续部分进行详细讨论。图2. AgBiS2纳米花的特性和示意图机制。(a) AgBiS2纳米花生长的不同阶段的示意图和相应的SEM表征图。(b) 高倍SEM图像。(c) HRTEM图像。(d) SAED图案。(e) XRD图案。(f) 元素映射显示了Ag、Bi和S元素在AgBiS2纳米花上的分布。(g和h) AgBiS2纳米花中Ag、Bi和S元素的高分辨率XPS光谱。(i) 制备的AgBiS2纳米花的吸收光谱。(j) 间接Tauc图估算出0.74电子伏特的带隙。宽带光电探测器作者通过在紧密排列的AgBiS2纳米花“微通道”上沉积金电极,构建了一种宽带光电探测器。该设备的通道长度为约100微米,已通过阴影掩模定义。在黑暗中或在520纳米和1122纳米照明下评估了设备的电流-电压(I-V)特性,观察到照明下电流显著增加,表明光生电荷载流子成功分离。光谱响应探测显示设备具有从紫外到短波红外(320-2200纳米)的宽带光电探测能力,峰值Rλ和EQE分别为约271 mA W-1和63%。Rλ/EQE光谱显示光响应起始点在约1450纳米,与之前探测到的吸收一致,证实了其宽带光电探测能力。尽管在超过1450纳米波长下EQE显著下降,但在1550纳米处仍可观察到明显的光响应,这对于光通信至关重要。此外,在2200纳米处仍可发现显著的亚带隙响应,表明通过缺陷/能带工程可以进一步扩展设备的工作环境。图3. 基于AgBiS2纳米花光电探测器的光电性能测量。(a) 单通道设备的示意图,插图是相应的SEM图像。(b) 设备在黑暗中或在520纳米和1122纳米(约0.8 W cm-2)照明下的I-V特性。(c) 在0.26 mW cm-2光强照明下,不同光波长下的Rλ和EQE。(d) 在0.7 W cm-2光强照明下的多波长光电流响应。(e) 在不同光强下,单通道光电导体在520纳米照明下的响应度和EQE。(f) 多通道设备的示意图;插图是相应的SEM图像。(g) 在520纳米(0.8 W cm-2)照明下,“通道”数量与光电流之间的相关性,以及(h) 光电流与“通道”数量的相应拟合曲线,展示了明确定义的线性关系。(i) 十通道设备在520纳米照明(0.8 W cm-2)下的频率特性,以及(j) 响应速度曲线。为了提高光电流,作者制造了包含多个“微通道”的设备。当应用20个“微通道”时,光电流放大到约200纳安。通过机械探针刮擦过程检查了“通道”数量与光电流之间的相关性,观察到良好的线性关系,突出了光电特性的均匀性和图案化过程的可靠性。这对于进一步规模化和集成光电子应用至关重要。光电探测器的另一个关键参数是带宽,作者的设备在高达5 kHz的频率下表现出高速响应,上升和下降时间均在100微秒范围内,估计的3 dB带宽至少为4 kHz,足以满足高帧率成像或生物光体积描记传感器的需求。图3中的光谱响应度信号及外量子效率(EQE)数据使用卓立汉光公司的DSR300微纳器件光谱响应度测试系统测试得到。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的绝对光谱祥响应度测量,能满足不同探测器测试功能的要求,是微纳器件研究的优选。成像传感作者将光电导体技术应用于光学成像,首先将其作为单像素传感器,通过2D电机舞台进行光栅扫描模式下的成像。利用阴影掩模技术,将天鹅图案直接投影到光电导体上。在可见光、近红外和短波红外光照射下,成功获得了天鹅形状的光电流图,证明了材料和器件的灵敏度和稳定性,适用于多光谱成像。进一步,作者制造了一个28×12像素的光电探测器阵列,用于焦平面阵列(FPA)成像,这是一种无需移动部件的成像技术。通过金属条定义通道,制作了高密度且性能一致的光电探测器。所有336个探测器的光电性能均一,表明了在1伏偏压和520纳米照明下,暗电流和开关比高度一致。通过阴影掩模将“B”、“I”和“T”字母图案投影并由探测器阵列成像,验证了电学重建简单光学图案的可行性。此外,使用1342纳米短波红外激光成功成像了复杂的蝴蝶图案,展示了在红外成像方面的潜力。图4. 单像素成像传感系统。(a) 单像素成像传感系统的示意图。(b) 在白光(7.9 mW cm-2)、520纳米(0.1 W cm-2)、1060纳米(0.08 W cm-2)和1342纳米(0.15 W cm-2)波长下获得的单像素成像系统的图像。(c) 在图bi中,X = 1、-1、-2.5和-3毫米位置下,用箭头指示的相应电流轮廓。(d) 在图bii-iv中,X = -2.5毫米位置下,用箭头指示的在不同波长下的相应电流轮廓。尽管这些研究还处于初步阶段,但作者已经证明了这种方法在光电传感各种形状和多光谱图像图案方面的可行性,为解决当前宽带和红外成像领域的挑战提供了环保的解决方案。总结在这项研究中,作者开发了一种新颖的方法,涉及任意图案化和种子辅助半导体生长,成功制造了花状AgBiS2纳米结构,这些结构在微米或宏观尺度上形成了指定的图案。直接在5微米线结构上制造了一个原型光电导体,显示出宽带(320纳米至2200纳米)、灵敏(Rpeak = 1.56 AW-1)和快速(小于100微秒)的光响应,有用于多光谱/短波红外光电探测和高质量光电子传感的潜力。同时采用了单像素光栅扫描和28×12焦平面阵列成像来展示光学信号矩阵的可靠和清晰电学再现。此外,由于AgBiS2纳米花自包装在“岛桥”配置中的可图案化微结构上,构建了一个柔性光电探测器,展示了出色的鲁棒性和功能性。这项工作提供了简单、环保、低温的解决方案,以应对当前非侵入性微加工和半导体任意图案化的挑战,以及具有新形式因素的宽带光电探测等,这对于下一代可扩展和可穿戴光电子传感技术的发展至关重要。北京理工大学王卓然老师简介王卓然,北京理工大学集成电路与电子学院教授/博导,国家级青年人才,北京理工大学“特立青年学者”,欧盟“玛丽居里学者”。9年海外经历,西班牙光子科学研究所ICFO独立研究员/博士后(师从菲涅尔奖得主Gerasimos Konstantatos),加拿大麦吉尔大学(QS排名世界31)博士后/博士,具有材料工程(博士)、物理电子学(硕士)、光电信息工程(学士)的多学科专业背景,主持国家自然科学基金,曾主持/参与多项欧盟ERC与加拿大NSERC研究项目,担任Nano-Micro Letters期刊青年编委,Electronics客座编辑。相关产品推荐本研究采用的是北京卓立汉光仪器有限公司DSR300微纳器件光谱响应度测试系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1175_1495.html免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 长春光机所研制出高性能微米线日盲紫外探测器
    日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为&ldquo 日盲&rdquo 。在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。近日,中国科学院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器(Nano Lett. 2015, 15, 3988&minus 3993)。   氧化锌/氧化镓核壳结构微米线采用一步CVD生长法制备。这种方法所生长的核壳结构微米线,核层氧化锌和壳层氧化镓都是高晶体质量的单晶,并且两种材料的界面非常陡峭,无明显界面缺陷和位错的存在。通过在核层与核层分别制备金属电极,就构成了异质结结构的日盲紫外探测器件。器件的响应峰值在254 nm,响应截至边266nm,对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应。在-6 V的电压驱动下,器件的明暗电流比可以达到106以上,响应度可达到1.3× 103 A/W, 探测率为9.91× 1014 cm· Hz1/2/W,响应时间小于20 &mu s,该结果为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si雪崩二极管。通过对器件的性能进行深入的研究,发现器件具有雪崩增益,其增益高达104。   该团队多年从事半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器(Nanoscale, 2013, 5, 2864),以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等(J. Mater. Chem. C, 2014, 2,5005)。 器件的结构示意图以及各项性能指标
  • SHMFF装置助力科研团队首次人工实现纳米螺旋-解旋-再螺旋
    近期,南京大学陆轻铱教授&高峰教授课题组与中国科学院合肥物质院强磁场中心、中国科大合作,依托稳态强磁场实验装置(SHMFF),发现一种晶体结构中微妙的竞争和协作关系,在螺旋和解旋产物晶体结构之间建立了微妙的能量平衡,首次实现了纳米线与纳米螺旋之间的多重可逆变化(图1)。研究成果在线发表在Nature Communications上。   纳米螺旋的可逆变化是自然界、生命过程中最精致和最重要的现象之一。然而,纳米材料扭转形成螺旋晶体通常比较困难。目前已报道的纳米螺旋生成的驱动力通常是不可逆的,其反向过程(解旋)难以实现,纳米螺旋经解旋后再重新螺旋则更加困难。因此,化学反应的两个稳定晶态产物之间的多重可逆扭转变化是超低概率事件,需要在它们之间建立非常微妙的能量平衡。长期以来,这种纳米螺旋的可逆变化一直被认为难以获得。本项研究中,电子顺磁共振(ESR,包括高场ESR)(图2)证明纳米螺旋中Co(II)配位环境的变化以及对称性的降低。固体核磁共振谱和太赫兹谱表明π-π相互作用是螺旋生长中的关键作用力。研究人员结合理论计算和各种验证实验,推测出螺旋机制来源于缩合反应和π-π堆积过程之间的竞争作用(图3),这种独特的竞争生长机制以及生长方式的微观可调性,是构建细致可调的能量平衡体系、实现螺旋可逆变化的关键。针对性地设计改变分子间作用力,精细调控不同方向生长速度,使整体结构保持不变,能量平衡方向定向改变,成功实现了纳米结构的螺旋、解旋和再螺旋。   本研究提出了一种晶体可逆变化设计的新概念,这种基于调控分子间相互作用促成晶体多重可逆转化的精细调变技术,为晶体学带来一个全新视角,丰富了晶体学理论,使多重复杂可逆过程的实现成为可能。   南京大学博士研究生杜薇为文章的第一作者,南京大学陆轻铱教授和高峰教授、中国科学院强磁场中心陆轻铀研究员和王俊峰研究员、中国科大江俊教授为共同通讯作者,该研究得到了国家自然科学基金、国家重点研发计划等的经费资助。
  • ACS Nano:原子层沉积技术助力复杂纳米结构的合成和精准调控取得新进展
    MoS2(二硫化钼),由于其优异的带隙结构(直接带隙为1.8 eV),高表面体积比和的场效应晶体管(FET,field effect transistor)性能,已成为具代表性的二维过渡金属硫族化合物(TMDC, transition-metal dichalcogenide)。使用纳米晶(Nano-Crystal,NC)修饰MoS2,即可以保持每个组成部分的立特性,同时又提供了复合材料产生的协同特性,大的扩展了MoS2材料的应用领域。控制纳米晶(NC)在 MoS2基底上的形貌,包括浓度,尺寸大小和表面体积比,对电子器件的整体性能影响是至关重要的。原子层沉积技术(ALD,Atomic layer deposition)是基于自限制的表面化学反应,对缺乏表面活化学反应基团的二维材料可实现选择性表面纳米晶修饰,其中NC大小可以通过循环次数来控制。美国斯坦福大学化学工程学院的Stacey F. Bent教授,通过使用台式三维原子层沉积系统-ALD发现了一种合成ZnO修饰MoS2基杂化纳米结构(纳米片或纳米线)的新方法。ZnO纳米晶的特性,包括浓度、大小和表面体积比,可以通过控制ZnO循环次数以及ALD磺化处理得到的MoS2衬底的性能来进行系统的合成和调控。通过材料化学成分(XPS以及 Raman),显微镜观察(TEM, SEM)和同步加速器X射线技术(GIWAXS) 分析ZnO与ALD沉积次数的相互关系,并结合量子化学计算的结果,作者阐明了ZnO在MoS2衬底上的生长机理及其与MoS2衬底性能的关系。MoS2纳米片的缺陷密度和晶粒尺寸可以由MoO3的硫化温度进行控制,ZnO纳米晶会选择性地在MoS2表面的缺陷位置处成核,且尺寸随着ALD循环次数的增加而增大。ALD循环次数越高,ZnO纳米晶的聚结作用越强,使得ZnO在MoS2衬底表面的覆盖和自身尺寸大幅增长。此外,复合结构的几何形貌可以通过改变MoS2衬底的取向进行调控,即采用MoS2的垂直纳米线(NWs,nanowires)作为ALD ZnO NCs的衬底,可以大幅改善复合结构的表面体积比。该类材料有望用于一些新拓展的领域,尤其是依赖过渡金属卤化物和NCs相互耦合结构的,如基于p−n异质结的传感器或光电器件。该工作发表在2020年的国际知名期刊ACS Nano (2020, 14, 1757−1769)上。图1. (a)ZnO@MoS2复合纳米结构示意图;(b)800°C-MoS2表面的HR-STEM图像;(c)两步合成二硫化钼的工艺,即在三个不同的退火温度下(600,800,和1000°C)下使用H2S硫化ALD 合成的MoO3;(d)600 °C-, 800 °C-, 和1000 °C-MoS2的Raman光谱图,(e)Zn 2p XPS谱图(循环次数为50次),(f)相对原子比 Zn/(Zn + Mo),(g)TEM图像,(h)表面覆盖度,(i)MoS2表面ZnO颗粒的数密度及(g)GIWAXS(grazing incidence wide-angle X-ray scattering,掠入射小角X射线散射) 图样(不同沉积次数下);(k)800 °C-MoS2 纳米线的SEM,TEM和HR-TEM图像;(l)DEZ(diethylzinc,二乙基锌)反应的量子化学计算结果,在MoS2的边缘位和基面上进行DFT分析,黄色和绿色原子分别表示S和Mo。 上述工作中作者团队采用的原子层沉积设备来自于美国ARRADIANCE公司的GEMStar系列台式三维原子层沉积系统-ALD(如图2所示),其在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在8英寸基体上膜厚的不均匀性小于99%,而且更适合对超高长径比的孔径3D结构等实现均匀薄膜覆盖,对高达1500:1长径比的微纳深孔内部也可实现均匀沉积。GEMStar系列ALD系统广泛应用于高深宽比结构沉积,半导体微纳结构制备,微纳粉末包覆等,服务于锂离子电池,超电容器,超电容器,LED等研究领域。图2. 美国ARRADIANCE公司生产的GEM-tar系列台式三维原子层沉积系统 参考文献:[1]. Il-Kwon, et al., Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer Deposition., ACS nano., 2020,14(2), 1757-1769.
  • 岛津原子力显微镜——多维度纳米材料测试
    纳米材料是近十余年来新兴的功能材料类型,一般而言纳米材料在指在三维空间中至少有一维处于纳米尺度,即100 nm以下,或是由此尺度的单元构成的材料。100nm相当于不到1000个原子紧密排列在一起,在这个尺度下,材料表现出了不同于宏观状态的力、光、电、磁、热等属性。因此成为化学和材料学科中研究非常广泛,进展很快的领域。 在纳米尺度下,对此类材料的形貌表征普通的光学观察方式不再适用。因此常用的是电子显微镜和原子力显微镜。而原子力显微镜因为具备三维高分辨表征能力而且环境适用范围广,被广泛运用于纳米材料的分析与检测。 纳米材料按维度可以分为零维材料、一维材料、二维材料、三维材料。 零维材料是指电子无法自由运动的材料,如量子点、纳米颗粒与粉末等。 硅量子点太阳能电池形貌及粒度分布 GaAs (100)衬底上生长的In0.7Ga0.3As量子点 对于零维材料,普遍关注的是颗粒的粒径以及粒径分布情况。从以上两个用案例可以看出,原子力显微镜可以很方便地获得图像及粒径统计数据。 一维材料是指电子只能在一个方向上自由运动的材料,如纳米线、量子线。早期研究较为深入的一维材料是碳纳米管。 单壁碳纳米管 上图是对单壁碳纳米管的观测。不仅可以直观地看到其形貌,而且可以通过断面测量获得管径数值。 同样的,如果视野中观察到了多条纤维,原子力显微镜的分析处理软件也可以对其进行统计分析。 2004年曼彻斯特大学Geim 小组成功分离出单原子层的石墨材料——石墨烯,由此带动了对二维材料的研究。主要包括石墨烯、拓扑绝缘体、过渡金属硫系化合物、黑磷等。 其中研究较为深入的是石墨烯。由于其各种优良属性均依赖于单层或少数几层。所以对石墨烯的基本且重要的测试要求就是对层数的测量。 在这一点上,原子力显微镜具有很好的优势,也因此被列入了国家标准(GBT 40066—2021 纳米技术氧化石墨烯厚度测量——原子力显微镜法)。 氧化石墨烯图像 GBT 40066—2021中规定的厚度计算公式 上图计算得到的计算数据,可知该片氧化石墨烯厚度为0.630±0.039nm,由此可推测这片氧化石墨烯为单层石墨烯。 综上所述,在纳米材料领域,原子力显微镜因其高分辨而且是三维成像的属性,成为各类纳米材料常用的分析工具。 岛津原子力显微镜历经三十余年的发展与积累,应对各种需求,不断推出新型号和新功能,为科学研究和技术发展提供得力的工具。本文中所有图片均为岛津原子力显微镜获得。 本文内容非商业广告,仅供专业人士参考。
  • 纳米快报:纳米净水器可杀死水中98%细菌
    据美国物理学家组织网近日报道,斯坦福大学的研究人员将一种普通棉纱浸入银纳米线和碳纳米管的混合液中,制成了一种高效、廉价的新型净水过滤器,其能杀灭水中98%的细菌,杀菌速度是传统微孔网筛过滤器的8万倍。研究成果发表在近期出版的《纳米快报》杂志上。   碳纳米管具有良好的导电性,98%以上的埃希氏大肠杆菌只要在20伏的电流中呆上几秒就会被杀死。银也能杀菌,巴氏灭菌法和冰箱出现以前,人们常常在牛奶瓶底放一枚银币来消毒。   斯坦福大学材料研究生物工程专家小组的莎拉海尔肖恩称,碳纳米管和银这两种材料“携手”制成的过滤器可最大限度地发挥杀菌效能。其中的银纳米线能够杀死任何滞留在孔隙中的细菌,因此避免了传统过滤器普遍存在的一大缺陷,即细菌会在过滤器上形成生物膜从而污损设备。   传统的过滤器都采用物理方法来吸附细菌,而新型过滤器内含有的棉花纤维包了一层“纳米外套”,其形成的电场可以杀死流经的细菌,而且棉花纤维有多层,厚达6.4厘米,足以杀死水中的大部分细菌。   斯坦福大学材料科学与工程副教授崔毅(音译)介绍说,该新式过滤器的成本也很低。一方面,银纳米线所用的银很少,成本几乎可以忽略不计。另一方面,所需的电流很少。纳米材料的吸附性很高,银纳米线较长的一端和纳米管连接,另一端伸入棉花纤维中间的空隙,在棉纤维上会生成一层光滑无间隙的覆层,导电效果很好,因此,电流强度只需几毫安,一块小型太阳能电池或一对12伏的汽车电池就能满足。而传统的过滤器要用电泵把水抽进微孔,耗电量大,在实验室里过滤等量的水,新型过滤器的耗电量仅为传统过滤器的1/5。   崔毅也表示,新型过滤器的净化速度非常快。传统过滤器的过滤微孔很小,将细菌从水中吸附分离时很容易阻塞微孔 而新型过滤器孔隙比较大,只杀灭细菌却不吸附细菌,因此,不会减缓水流的速度,净水速度是传统过滤器的8万倍。这种过滤器在无法用氯气来给水消毒的偏远地区很实用,可以大大减少以水为介质进行传播的霍乱、伤寒和肝炎等疾病的大面积扩散。   研究人员计划下一步研发针对不同类型的细菌进行过滤的过滤器,并测试多重组合过滤器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制