四位置干浴器

仪器信息网四位置干浴器专题为您提供2024年最新四位置干浴器价格报价、厂家品牌的相关信息, 包括四位置干浴器参数、型号等,不管是国产,还是进口品牌的四位置干浴器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四位置干浴器相关的耗材配件、试剂标物,还有四位置干浴器相关的最新资讯、资料,以及四位置干浴器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

四位置干浴器相关的厂商

  • 400-860-5168转4811
    武汉高德智感科技有限公司成立于2016年11月,是上市公司武汉高德红外股份有限公司(SZ.002414)旗下全资子公司,专注于红外热成像产品在民用领域的研发、生产和销售业务。高德智感借助母公司高德红外拥有的自底层至全面的自主技术,能为各行业提供红外热成像产品和解决方案。 如今,高德智感的产品已广泛应用于电力、工业检测、安防监控、消防救援、工业自动化、环保、智能家居以及消费电子领域。 高德智感聚焦于红外热成像技术在新兴民用领域的应用和普及,旨在运用开放式的战略思维打造红外技术平台,与各行业合作伙伴共建一个全新红外生态圈,提供人人都能用上的红外应用解决方案,让智能感知提升我们的工作效率和生活品质,开启红外智能化和消费化的新时代。
    留言咨询
  • 重庆渝赣铭瑞自动化科技有限公司主营品牌:西门子罗宾康备件PLC:A-B罗克韦尔,GE-PLC,施耐德140模块,SST模块DCS:ABB贝利 ABB励磁,ABB执行器,ABB火检 ABB DCS,,上海新华XDC800,GE新华XDPS 400+ 400E定位器:Metso美卓定位器,ABB定位器,西门子定位器,FOXBORO定位器,YTC定位器仪器仪表:ABB水质分析仪,FOXBORO分析仪,ABB色谱仪备件,HACH哈希,Siemens分析仪,METRIX 迈确传感器:MTS传感器,HYDAC贺德克,Balluff巴鲁夫,SICK,P+F交换机:N-TRON交换机、MOXA交换机,Hirschmann赫斯曼等气动、电磁阀:parker派克,Rexroth力士乐,Aventics安沃驰,MOOG伺服阀,派克legris,ETN伊顿威格士VICKERS,Honwell电磁阀,ASCO电磁阀, WINNER电磁阀,CAMOZZI康茂胜,德国Bürkert等
    留言咨询
  • 赣州宇辉仪器设备有限公司位于素有有江南宋城、世界钨都、世界橙乡、稀土王国之美誉的赣州,是一家专业从事可靠性环境试验仪器研发、生产、销售的高科技企业。产品包括温度测试类、耐气候类、机械力学类以及大型综合测试类。经过多年的发展与积累,公司在各类环境试验设备,特别是高低温系列、湿热系列试验箱以及振动台等生产、销售和服务方面积累了丰富的经验。同时我们不断开发满足企业检测需求的高品质产品,全力为提高客户产品的品质服务。公司曾多次参与企事业单位的检测研发课题及提供检测方法。公司一直以质量第一,服务至上的宗旨, 为更多的用户提供高质量水准、高服务水平的产品和服务www.njyg17.com
    留言咨询

四位置干浴器相关的仪器

  • ASM13XY-G2四维组合位移台技术指标◆调整维数:X,Y,&theta x,&theta y四维◆调整行程:Tx,Ty:13mm,◆调整角度:&theta x,&theta y :30° 组合用产品:ASM13-1A平移台 二个TSMG15-W精密角位台 一个TSMG30-W精密角位台 一个
    留言咨询
  • ASM25XY-RV 四维组合位移台技术指标◆调整维数:X,Y,Z,θz 四维◆调整行程:Tx,Ty:25mm,Tz:5mm◆调整角度:θz :360°组合用产品:TSM25-1A平移台 一个RSM82-1A旋转台 一个TSMV5-1A升降台 一个
    留言咨询
  • ASM25XY-T4四维组合位移台技术指标◆调整维数:X,Y,&theta x,&theta z四维◆调整行程:Tx,Ty:25mm,◆调整角度:&theta x:± 4° &theta z :± 2.5° 组合用产品:ASM25-1A平移台 二个TSMT-4精密俯仰旋转台 一个BP-25转接板 一个
    留言咨询

四位置干浴器相关的资讯

  • 甘肃“四位一体”食药监管体系正在形成
    为加快推进食品药品监管体制改革步伐,确保按中央和省要求的时间节点完成改革任务,从2013年8月上旬开始,甘肃省督查组,先后赴临夏、甘南、兰州、定西、白银等市州实地调研,并听取了武威、天水等市州改革情况的汇报,督促检查市县食品药品监管体制改革进展情况,研究解决改革中出现的困难和问题。从督查情况看,各市州党委、政府高度重视食品药品监管体制改革工作,思想认识明确,组织领导到位,工作措施有力,改革进展迅速,实际成效明显。   各地认真贯彻落实省政府《关于改革完善市县食品药品监督管理体制的实施意见》,大部分市州分别设立了食品稽查局、药品稽查局、食品检验检测中心和药品检验检测中心,均为县级建制 各县区设立食品药品稽查局和食品药品检验检测中心,均为科级建制 在所有乡镇均设立食品药品监管所,科级建制。机构设置全,规格建制高,名称统一,职能统一,有效解决了食品药品监管基层执法机构和检验检测机构薄弱的&ldquo 短板&rdquo 问题,为形成行政管理、监管执法、技术监督、基层监管&ldquo 四位一体&rdquo 和&ldquo 横向到边、纵向到底、全覆盖、无盲区&rdquo 的食品药品监管体系奠定了基础。   各地在机构编制总量不增加的情况下,在挖掘潜力、调整结构、盘活存量上下功夫,积极支持食品药品监管体制改革,各级食品药品监管机构、执法机构及检验检测机构编制力量得到有效加强,人员编制均有较大幅度增加。各市州食品药品监督管理局&ldquo 三定&rdquo 规定和市县改革实施方案均已编制完成,其中兰州、白银、武威、临夏、甘南等市州已正式印发,酒泉、平凉待提交市委常委会审定,金昌、张掖、定西、庆阳待提交市政府常务会审议,嘉峪关、天水、陇南待提交市编委会研究,预计市级食品药品监管体制改革8月底完成。同时,各地对县、乡改革工作都提出了明确的时限要求,预计在11月底前基本完成,   下一步,甘肃省编办、省食品药品监督管理局将进一步加大督促检查力度,一是督促各地抓紧实施市州食品药品监督管理局&ldquo 三定&rdquo 规定,尽快全面履职 二是督促各地指导做好县、乡机构改革工作,保证按时间节点全面完成改革任务 三是督促各地抓好改革期间食品药品监管工作,全面保障食品药品安全。
  • 聚焦四位一体多组学解决方案,赛默飞与伯远生物共建联合实验室
    聚焦四位一体多组学解决方案,赛默飞与伯远生物共建联合实验室近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携手武汉伯远生物科技有限公司(以下简称:伯远生物)在武汉举办联合实验室签约暨揭牌仪式,现场 30 余位组学领域专家学者共同见证签约仪式。本次战略合作双方将基于作物研究、中草药研究以及医学研究等多方面,共同搭建高水平、高质量的多组学平台,共建“表观组—转录组—蛋白组—代谢组”四位一体的多组学解决方案,通过赛默飞 Orbitrap&trade Astral&trade 、Orbitrap&trade Exploris&trade 120 高分辨质谱仪和 TSQ Altis&trade Plus 三重四极杆质谱仪的质谱组合,打通组学和基因功能研究协作的最后一公里,完成从“基因克隆—功能验证—多组学分析—基因克隆”整个闭环的搭建!赛默飞与伯远生物签约仪式 Orbitrap技术凭借其卓越的分辨率、稳定性等“硬实力”,已成为组学公认的金标准!Astral凭借其颠覆性的性能和创新突破,刷新了蛋白质分析领域的行业标准!基于Orbitrap平台的蛋白质组学和代谢组学联合基因层面,以更全面的视角探索植物生命现象的本质,为我们双方产学研深度合作奠定坚实的基础! 作为一站式基因功能研究的引领者,伯远生物携手赛默飞的合作,将进一步帮助伯远生物基于转基因平台向上游的分子生物学和下游的植株检测、分析等延伸和拓展,通过蛋白质组学、代谢组学等多组学平台作为后基因时代的重要研究手段,深入解析生物学过程、揭秘分子机制,助力推动生物育种产业化赛默飞为伯远生物颁发 Orbitrap Astral 高分辨质谱仪中国首批用户证书在学术报告环节,赛默飞应用专家带来基于 Astral 超高分辨质谱平台的解决方案,以植物组学为例,利用高通量组学技术大规模、无偏见地筛选逆境相关的应答基因、蛋白和代谢终产物,是研究植物抗逆机制的重要手段之一。蛋白质的可逆磷酸化是目前已知的最主要的信号传递方式,Orbitrap 技术的飞跃式发展,结合功能强大的 Proteome Discoverer 软件分析平台,是蛋白质组学及翻译后修饰研究的金标准和最佳选择。对于精准医学来说,矩阵队列联合分析是实现疾病精准诊疗的有效方法,Orbitrap 质谱平台在长时间联系运行的稳定性上、不同实验室分析平台之间数据的重复性上,具有无可比拟的卓越性能,真正实现快速稳定、高通量,让精准医学更精准!作为 Astral 首批用户,伯远生物使用 Orbitrap Astral 高分辨率质谱仪已开展数据实测,其全方位革新了蛋白质组学的结果,达到其他高分辨机型前所未有的效果。具体数据如下:植物组织样品蛋白鉴定量超 8000(DIA/8min/单针进样),超11000(DIA/1h/单针进样);植物组织样品蛋白磷酸化位点鉴定数量超 10000(DIA/30min/单针进样);细胞系样品蛋白鉴定量超12000(DIA/1h/单针进样);单细胞样品蛋白鉴定量超5000(DIA/18min/单针进样)。表观组学、转录组、蛋白质组学和代谢组学作为后基因组时代的重要研究手段,可深入解析生物学过程、揭示分子机制,赛默飞与伯远生物的合作未来将进一步聚焦于作物研究、中草药研究、精准医学以及药物研发,同时将进一步开拓动植物小肽组学、单细胞蛋白组学、空间蛋白质组学等领域的解决方案,通过新技术推动生命科学领域研究的进程,加快成果转化落地!关于武汉伯远集团武汉伯远集团,总部位于武汉,黄冈和三亚设有分公司,下辖包括伯远生物、伯远医学、伯远试剂和伯远工程四大板块,另外面向未来产品开发还开辟了合成生物学产品管线。伯远生物通过通量规模的多组学平台、载体构建平台、遗传转化平台、检测平台、蛋白实验平台、合成生物学平台、伯远医学平台、伯远严选平台、伯远工程平台,致力于基础科学研究、基因编辑育种、疾病诊断及药物研发等相关领域应用研究,有效地支撑生命科学研究和人类健康两大领域的需求。
  • 像差校正电镜四位传奇老人获科维理奖:一段60年理论-实验-商业化典范
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 5月27日,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 346px " src=" https://img1.17img.cn/17img/images/202006/uepic/83325f9d-30af-42e2-a151-13dcd1110736.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 作为诺贝尔奖的补充,卡弗里奖是世界最高的科技奖之一,由挪威科学与文学学院、美国卡弗里基金会和挪威教育科研部联合成立。自2008年起,卡弗里奖每两年颁发一次,由三个学术委员会从世界各地提名的科学家中评选出该领域的获奖者,奖金为100万美元,奖金以外,每位获奖者还获得一块纯金的奖章。候选者则由各国享有盛名的科研机构推荐,这些科研机构包括中国科学院、法国科学院、德国马克普朗克学院、美国科学院、英国皇家科学院等。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 578px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d799119-7443-4b26-90fa-4728b7d3aa31.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 578" border=" 0" vspace=" 0" / /p p br/ /p p style=" text-indent: 2em " 在奖项设置上,诺奖涉及领域比较广,其分设物理、化学、经济学、文学等6个奖项。而卡弗里奖则只关注纳米科学、神经科学和天体物理三个细分领域,也是这三个科学领域中最具有权威性的奖项之一。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2020年度科维理奖宣传片: /span /p script src=" https://p.bokecc.com/player?vid=D8801874C0BE8E5D9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 纳米科学科维理奖授予了对像差校正电镜技术的发展做出贡献的四位欧洲科学家: /p p style=" text-indent: 2em " strong Harald Rose /strong (德国乌尔姆大学和达姆施塔特工业大学) /p p style=" text-indent: 2em " strong Maximilian Haider /strong (德国CEOS GmbH公司联合创始人,于1996年和Joachim Zach共同创立CEOS GmbH公司,目的是商业化生产像差校正器。目前是该公司高级顾问) /p p style=" text-indent: 2em " strong Knut Urban /strong (德国于利希研究中心) /p p style=" text-indent: 2em " strong Ondrej L. Krivanek /strong (美国Nion公司联合创始人,1997年,他与Niklas Dellby创立了Nion公司,他目前仍是该公司总裁。同时也是Gatan公司研发总监) /p p style=" text-indent: 2em " 以表彰他们20世纪90年代在 “用电子束进行亚埃级分辨率成像及化学分析” —— 即研制亚埃级电子显微镜方面的开创性工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/noimg/abb8cdf0-0b58-4e05-a0a3-4cbd0d1db1af.gif" title=" 3.gif" alt=" 3.gif" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " 左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p style=" text-indent: 2em " 眼见为实促进了科学的进步。2020年科维里纳米科学奖表彰了四位先驱,他们使人类能够在前所未有的微小尺度上看到材料的三维结构和化学成分。 /p p style=" text-indent: 2em " 纳米科学的主要目标是创建原子级精度组装的材料和设备,以获得新颖的功能。原子的大小约为一个埃米(0.1纳米)。因此,亚埃规模的材料和设备的成像和分析至关重要。经典显微镜的分辨率受到用于成像的探针波长的限制。因为可见光的波长大约是原子的5000倍,所以光学透镜无法对原子成像。在20世纪初期,具有原子级波长的电子束变得可用,从而促成了1931年电子显微镜的发明。然而,由于透镜像差的限制,制造理想的电子透镜成为一个重大的理论和实验问题。60多年来,人们一直在为此而奋斗!通过不懈努力、独创性以及对20世纪90年代计算能力提高的利用,获奖者们构造了像差校正透镜,并将亚埃成像和三维化学分析作为标准的表征方法。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 三位获奖者共同创立了两家公司,并将他们的像差校正镜片商业化,进一步促进了他们科学工作的重大影响 /span 。从那时起,他们的显微镜及技术在基础科学和技术领域发挥了巨大的作用,并被半导体、化学和汽车等行业广泛使用。 /p p style=" text-indent: 2em " 科维理纳米科学奖评审委员会认为,四位获奖者对像差校正电镜发展的贡献分别为: /p p style=" text-indent: 2em " Harald Rose:提出了一种新颖的镜头设计,即Rose校正器,这使得透射电子显微镜中的像差校正技术应用于常规和扫描透射电子显微镜成为可能。 /p p style=" text-indent: 2em " Maximilian Haider:在Harald Rose设计的基础上,打造出第一个六极校正器,并为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Knut Urban:为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Ondrej L. Krivanek:发展了四极八极校正器,并打造首台亚埃分辨率的像差校正扫描透射电子显微镜,非常适合于高空间分辨的化学分析。 /p p style=" text-indent: 2em " strong 科维里纳米科学奖委员会 /strong /p p style=" text-indent: 2em " Bodil Holst(主席),卑尔根大学,挪威 /p p style=" text-indent: 2em " Gabriel Aeppli,保罗谢勒研究所,瑞士 /p p style=" text-indent: 2em " Susan Coppersmith,新南威尔士大学,澳大利亚 /p p style=" text-indent: 2em " 李述汤,苏州大学,中国 /p p style=" text-indent: 2em " Joachim Spatz,德国马克斯· 普朗克医学研究所 /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 逐个原子的查看物质内部 /strong /span /p p style=" text-indent: 2em " 纳米技术和纳米技术的最终目标是在很小的范围内操纵物质——甚至精确到移动单个原子——以创建具有新功能的粒子和设备。因此,如果没有允许以原子分辨率研究材料和设备的成像技术,这些都将无法实现。 /p p style=" text-indent: 2em " 在授予奖项时,科维里纳米科学奖委员会选出了以上四位科学家,他们为两种类型的仪器的开发和使用做出了贡献,这两种仪器通常被称为像差校正透射电子显微镜,可以提供亚埃级分辨率有关结构和其他性质的信息,即可以获得单个原子信息。 /p p style=" text-indent: 2em " 光学显微镜最多只能分辨几百纳米的尺度,因此需要一种不同的方法来区分单个原子。 1980年代发明的扫描隧道显微镜和原子力显微镜实现了原子分辨率,但是,它们都只能在暴露的表面上起作用,对于大多数纳米级结构,必须研究不同材料或同一材料的不同相之间的掩埋界面。最有希望的途径是优化Ernst Ruska于1931年发明的透射电子显微镜。这种仪器的原理是利用一束电子直接照射到给定材料的薄样品上,电子束与材料中原子的相互作用产生电子散射。利用散射电子,显微镜的电磁物镜和附加镜头形成一个放大的图像,并用CCD或CMOS相机记录。Ruska的设计今天被称为CTEM,用于传统的透射电子显微镜。“常规”是指,除了利用电子辐射外,CTEM还遵循光学显微镜的设计。1937年, Manfred von Ardenne发明了扫描透射电子显微镜STEM。在这种情况下,用细电子束扫描样品,并通过电磁透镜将其准直,并且穿过样品的电子被收集在样品后面。然后通过在视频屏幕上显示这些电子的强度来创建图像。 /p p style=" text-indent: 2em " STEM的一个独特优势是,对于电子束所聚焦的材料的每一个点,它也可以分析当电子束从材料中的原子散射时,电子所损失的能量。这种技术被称为电子能量损失光谱学(EELS),可以提供材料内部原子组成和电子状态的信息。 /p p style=" text-indent: 2em " 虽然到20世纪80年代末,CTEM和STEM的分辨率都达到了埃米级,但要解决大多数材料的详细原子排列是不可能的。问题是使用的电磁透镜比光学透镜有更多的像差。举例来说,穿过透镜的电子远离透镜的中心,聚焦的距离与穿过透镜的电子靠近透镜中心的距离不同,从而使图像变得模糊。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202006/uepic/70eb2c83-548b-486e-9c1b-5abb84cff363.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " Harald Rose在1990年的论文中的像差校正器示意图。 Optik 85,19-24(1990) & copy Elsevier GmbH /span /p p style=" text-indent: 2em " 1990年,任职达姆施塔特大学的Harald Rose在先前有关各种像差校正技术工作的基础上,设计了一种基于电磁六极杆的透镜系统(上图),可以对其进行调整以消除标准电子透镜的像差,这对CTEM和STEM均适用。在随后的几年中,Rose与当时位于海德堡的实验员Maximilian Haider和位于Jü lich的Knut Urban合作,以实验方式实现了他对CTEM的提议。1998年,这项合作发表了第一批使用像差校正CTEM改进的图像。 1996年,Haider和Joachim Zach一起创建了德国CEOS GmbH公司(相关电子光学系统),以使“Rose校正器”商业化,如今,这种校正器已在CTEM和STEM中广泛使用。 /p p style=" text-indent: 2em " 在过去20年中,像差校正CTEMs有了长足的发展,分辨率现已达到0.5埃米。因此,与未经校正的TEM相比,相对于电子波长的分辨率可以提高7倍。查看晶格中单个原子的能力已使局部原子结构与原子性质之间的关系成为可能。要研究的材料。下图显示了一个漂亮的例子,图中使用像差校正的TEM直接将经典铁电材料中原子的位置与极化方向的变化联系起来。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/5f5a10bf-6174-4e26-b218-076702c9bd4b.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 通过像差校正的TEM获得的材料PZT中不同铁电畴的原子结构。两相中原子(O,蓝色,Pb,黄色,Zr / Ti,红色)的位置可以直接与极化方向(Ps)关联。摘自C.-L. Jia et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Μater. 7, 57–61 (2008) & copy Springer Nature Ltd /span /p p style=" text-indent: 2em " 当Rose,Haider和Urban在开发像差校正CTEM的同时,一位长期从事电子光学和EELS的专家Ondrej Krivanek于1995年开始在英国剑桥与Mick Brown和Andrew Bleloch合作开发STEM的像差校正。1997年,Krivanek与Niklas Dellby一起创立了Nion公司,以商业方式开发像差校正的STEM。2002年,Krivanek,Dellby和他们的IBM同事Phil Batson发布了使用Nion四极八极STEM校正器获得的亚埃分辨率分辨率图像(下图)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 736px " src=" https://img1.17img.cn/17img/images/202006/uepic/53af0e89-ff35-41da-8356-3c6d72b118e0.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 500" height=" 736" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 非晶碳衬底上的Au岛的原子分辨率图像。该岛被金的单原子簇包围。岛周围不同区域的衍射图表明,这些簇在邻近已建成岛的各种结构中有序排列。Nature 418, 617-620 (2002) & copy Springer Nature Ltd. /span /p p style=" text-indent: 2em " 在过去的20年中,STEM的发展更加迅速。如前所述,STEM可用于执行EELS,并且此组合已用于获取有关材料化学组成(下图)甚至原子之间键合类型的信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 498px " src=" https://img1.17img.cn/17img/images/202006/uepic/685d3129-54a8-497c-923d-e8c17190020f.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 500" height=" 498" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 使用EELS在STEM上获得的(La,Sr)MnO3 / SrTiO3多层膜的原子分辨率化学图,显示了La(绿色),Ti(蓝色)和Mn(红色)原子。白色圆圈表示La列的位置;视场3.1 nm。自D. A. Muller et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)。 /span /p p style=" text-indent: 2em " Rose,Haider,Urban和Krivanek的开创性工作促进TEM和STEM成为研究实验室常规使用的仪器。得益于相关技术的进步,首先是最重要的是实现了高度灵敏的电子探测器,这两种仪器现在都可以用于非常精细的样品,包括例如石墨烯和其他二维材料。一些仪器被用作小型实验室,其中化学反应是在直接的原子分辨率观察下原位进行观察。也有团队尝试超越成像,并操纵晶格内的单个原子。在工业上,这些仪器经常用于监视设备的质量和可靠的制造。 /p p style=" text-indent: 2em " 正如卑尔根大学的Bodil Holst教授和纳米科学委员会科维理奖主席所说:“今年的科维理奖的背后是60多年的理论和实验斗争。这是科学创造力,奉献精神和坚持不懈的完美典范。我们向四位获奖者致敬,他们使人类得以看到我们以前看不见的地方。” /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" strong span style=" color: rgb(192, 0, 0) " 【近期相关电子显微学在线讲堂推荐】 /span /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/202006/uepic/12067d80-b34c-4523-9321-7bc0bc78a0d3.jpg" title=" dzxwx1125_480(1).jpg" alt=" dzxwx1125_480(1).jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8906587b-e68b-4d40-bd11-fa2cb7bd5f69.jpg" title=" 1590032360.png" alt=" 1590032360.png" / /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(192, 0, 0) " /span /strong a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 40余位电镜知名专家在线讲堂邀您线上参加 strong 【扫码或点击免费报名】 /strong /span /a /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 获奖人简介与自传 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/20fb159f-7c22-4e42-a6f3-07cee486be23.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " Maximilian Haider,德国CEOS GmbH公司,奥地利 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Maximilian Haider是奥地利物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。 /p p style=" text-indent: 2em " 他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。 /p p style=" text-indent: 2em " Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。 /p p style=" text-indent: 2em " 他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 1950年,我出生在奥地利的一个历史小镇,我的父母Maximilian Haider和Anna Haider在那里拥有一家钟表店。我父亲接管他父亲商店, 长兄也继承他们的职业,成为一个钟表匠。为了扩大业务,在我童年的早期,我就同意成为一名眼镜师& #8230 & #8230 a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " 【点击查看自传全文】 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/91b36629-908d-449c-8019-9fb14da2dc83.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " Ondrej Krivanek,美国Nion 公司,英国和捷克共和国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p script src=" https://p.bokecc.com/player?vid=C5FEDAA47F2B90169C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " Ondrej Krivanek是居住在美国的捷克和英国国籍的物理学家。他出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。 /p p style=" text-indent: 2em " 在剑桥大学毕业后,Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。 /p p style=" text-indent: 2em " 1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该结果于2002年发表。 /p p style=" text-indent: 2em " Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我出生于捷克斯洛伐克的布拉格(现为捷克共和国),当时苏联和其他社会主义国家为自己的科学技术成就和教育体系感到自豪。 1961年4月,Yuri Gagarin成为第一个绕地球轨道飞行的人时,我们受到鼓励,在宇航员中成立了俱乐部,我和学校里的朋友们也成立了一个俱乐部& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9f37a0dd-f804-444e-a93e-d44c6afe39df.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Harald Rose,乌尔姆大学,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,他在1930年代做了一些电子显微镜的开创性工作。 /p p style=" text-indent: 2em " Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。 /p p style=" text-indent: 2em " 他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。 /p p style=" text-indent: 2em " 自2009年以来,Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖。他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我于1935年2月14日出生在不来梅,是我父母Anna-Luise和Hermann Rose的第二个孩子,他们俩都是数学天才。我父亲在一个家里长大,家里的每个人都在演奏一种乐器,我父亲弹钢琴。他开始学习数学,但在20世纪20年代初,他的父亲因为恶性通货膨胀失去了财产,他被迫从商。& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/00a314d6-767a-4fac-b80f-c3a9ad87f226.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Knut Urban,德国于利希研究中心,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Knut Urban是德国物理学家。他曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-indent: 2em " 1986年,他被任命为德国埃尔兰根-纽伦堡大学材料性能教授,仅一年后,他成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,他与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该结果于1998年发表。 /p p style=" text-indent: 2em " 随后,Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-indent: 2em " 2004年,他被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,他一直是亚琛工业大学的JARA高级教授。 Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与Rose和Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。他还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我成长于战后早期的德国斯图加特。这个城市以其汽车工业和大量的中小型工业公司而闻名。我的父亲是一名电气工程师,他经营一家生产小型电动机的工厂。在过去的几十年里,他以自己的一系列发明为公司定下了基调& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 关于科维理奖的故事 /span /strong /p script src=" https://p.bokecc.com/player?vid=D3F66A9BB31443E49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 如果我们能了解宇宙的起源呢?如果我们可以通过控制原子结构来改善生活呢?如果我们能真正理解人类大脑的复杂性呢? /p p style=" text-indent: 2em " 科维理奖背后的故事始于20世纪30年代,一个名叫Fred的好奇男孩在挪威埃里斯峡湾的高山中长大。对自然和宇宙的好奇心一直伴随着Fred,贯穿了他在美国学习物理和创业的整个过程。 /p p style=" text-indent: 2em " 直到他最终建立了一个慈善基金会,以推进科学造福人类为愿景。该基金会的首批活动之一便是从2008年开始的科维理奖的成立。该奖项由卡维里基金会、挪威科学与文学院和挪威教育与研究部合作,每两年颁发一次。 /p p style=" text-indent: 2em " 三个国际奖项的奖金都是100万美元和一枚金牌,由挪威王室成员在奥斯陆主持的颁奖仪式上颁发。 /p p style=" text-indent: 2em " 挪威科学院以提名委员会的建议选出Kavli奖得主,该委员会由来自天体物理学,纳米科学和神经科学这三个科学领域的来自世界上最著名的六个科学学会和研究院的领先国际科学家组成。 /p p style=" text-indent: 2em " 科维理奖的获奖者是由挪威科学院根据评奖委员会的推荐选出的,评奖委员会由来自世界上六个最著名的科学学会和学院的领先国际科学家组成,他们来自三个科学领域:天体物理学、纳米科学和神经科学。 /p p style=" text-indent: 2em " 分别代表宏观、微观、复杂。 /p p style=" text-indent: 2em " 科维理奖有四个最终目的:表彰杰出的科学研究,表彰富有创造力的科学家,促进公众对科学家及其工作的理解和欣赏,促进科学家之间的国际合作。 /p p style=" text-indent: 2em " 我们一次又一次地看到,实现这些目标对于使世界变得更美好至关重要。科维理奖继续受到Fred Kavli的敬畏感和好奇心的驱使,他在最壮美的大自然中成长,体验着宇宙的浩瀚。 /p p style=" text-indent: 2em " br/ /p

四位置干浴器相关的方案

四位置干浴器相关的资料

四位置干浴器相关的试剂

四位置干浴器相关的论坛

  • 人生的四种思维(立体思维更适合质量工作)

    一位心理学家给学生出了这样一道考题:在一块土地上种植四棵树,使得每两棵树之间的距离都相等。考生在纸上画了一个又一个的几何图形:正方形、菱形、梯形、平行四边形,然而,无论什么样的图形都行不通。这时,心理学家公布了答案,其中一棵树可以种在山顶上!这样,只要其余三棵树与之构成正四面体的话,就能符合题意要求了。考生找不到答案,原因在于他们没有学会使用一种创造性的方法——立体思维。 立体思维也称“多元思维”、“方位思维”、“整体思维”、“空间思维”或“多维型思维”,是指跳出点、线、面的限制,能从上下左右各个角度去思考问题的思维方式。我们通常所说的直觉,心理学家称之为“立体思维”。 点式思维 有一天,一条蛇的头和尾忽然争执起来。蛇尾对蛇头说:“今天应该我走前面。”蛇头说:“我常常走在前面,怎么可以倒过来走呢?”蛇头和蛇尾都认为自己有理,相持不下。结果,蛇头就自管自向前走去,蛇尾却缠住了树牢牢不放。这样,蛇头走不动了,只得让蛇尾走在前面。不料蛇尾因为没有眼睛,掉入火坑中,这条蛇就这样被活活烧死。 头和尾本是一个相互依存、不可分割的有机体,但过分强调自己就会伤害对方和整体。 为了个人名利而不顾整体的利益,为了眼前的小利而忽视长远的发展,在强调个人自由与权利的同时,损害了他人的自由与权利。这种以自己的利益为出发点、以自我为中心的思维方式,为点式思维。拥有这种思维的人,只知有自己不知有他人,沉醉于编织自己的理想王国,也常因一些小事而与人争执,人际关系紧张。 线性思维 一位青年,翻山越岭,进入深山求道。一天,他来到一个长期与世隔绝的村庄。好客的村民设宴招待他。求道者很快发现,该村的居民都有一个共同特点,即所有人都没有长耳朵。与此同时,村民们也注意到,求道者的头上多出了两块东西(即两只耳朵)。经商议,大家一致认为,求道者生了病,而且很严重,应该立即治疗。因此大家一起动手,把求道者绑起来,准备为他做切除耳朵的手术。求道者拼命解释:“正常的人都有耳朵,你们没有耳朵才不正常呢!”村民们听后大笑说,“我们从来都没有听说过人的头上会长两块东西,你明明病得不轻,还不肯就医,真是无药可救啊!”一边说,一边动手把求道者的两只耳朵割了下来。 孤陋寡闻的村民以简单的逻辑思考来处理问题,是直线型思维的典型例证。拥有直线型思维的人往往以传统与权威为其逻辑思维的依据,误将自己的见解作为普遍公理来对待,遇事不知变通,容易保守,看问题缺乏灵活、开阔的思路和方法。这种人在逻辑思维的影响下,因过于自信而听不得不同意见,固执己见,坚持所谓的“对”与“错”,把自己和他人都逼上了绝路。 其实,世间万事万物,都是因缘条件组合而成,组成事物的任何元素一旦发生发化,事物也随之发生变化,怎能用僵化、静止的观点来对待发展的事物呢?在这样的认知下,相对的“对”与“错”是存在的,但以单一的思维看待事物,无异于盲人摸象;只有以不同的角度思考,将各种观点统一起来,才有助于我们了解事物的本来面目。 平面型思维 有位老师进了教室,在白板上点了一个黑点。他问学生:“这是什么?”大家都异口同声说:“一个黑点。”老师故作惊讶地说:“只有一个黑点吗?这么大的白板大家都没有看见?”这则由点到面的游戏,描述了平面型思维的特点:不受传统经验束缚,思路开阔,敢于创新,可塑性强。更重要的是,它能令人绝处逢生。卖豆子的故事就是对此种思维的最好注脚。 一位聪明的卖豆人说,这世界上卖豆子的人应该是最快乐的。因为,他们永远不必担心豆子卖不出去。如果豆子卖得动,直接赚钱;如果豆子滞销,分三种办法处理:(1)把豆子腌了,卖豆豉;如果豆豉还是卖不动,加水发酵,改卖酱油。(2)把豆子做成豆腐,卖豆腐;如果豆腐不小心做硬了,改卖豆腐干;如果豆腐不小心做稀了,改卖豆腐花;如果实在太稀了,改卖豆浆;如果豆腐卖不动,不必担心,放几天,改卖臭豆腐;如果还卖不动,让它长毛彻底腐烂后,改卖腐乳。(3)让豆子发芽,卖豆芽;如果豆芽滞销,再让它长大点,改卖豆苗;如果豆苗还卖不动,再让它长大点,干脆当盆栽卖,命名为“豆蔻年华”;如果盆栽还卖不出去,建议拿到闹市区进行一次行为艺术创作,题目是“豆蔻年华的枯萎”;如果行为艺术没人看,赶紧找块地,把豆苗种下去,灌溉施肥除草,3个月后,收成豆子,再拿去卖? 立体型思维 上帝创造羊群A和羊群B后,放在草原的东、西两边,相互隔开。上帝对A、B羊群说:“你们必须选择一种天敌:一只狼或两头狮子。当然选择狮子的羊群同一时间只会有一头狮子和你们在一起,另一头待在天上,由我保管,供你们随时更换之用。请注意,天敌一旦选定,就无法更改。” 羊群A想,狮子比狼凶猛得多,还是要狼吧;而羊群B想,狮子虽然凶猛,但其中一头若是太坏,我们还有更换的机会,还是要狮子吧。两群羊开始了草原的新生活。 狼进入羊群A后,因身体小,食量也小,咬死一只羊够它吃好几天,相对比较平静。而狮子一进入羊群B后,因其食量惊人,大开杀戒,不停地追杀羊群B,惊恐万状的羊群赶紧请上帝换一头狮子。不料,上帝保管的那头狮子一直没有吃东西,正饥饿难耐,它扑进羊群,比前面那头狮子咬得更疯狂??羊群B虽不停地更换狮子,但两头狮子同样凶残,情况并未有任何改变。最后,羊群B彻底丧失信心,索性任由一头狮子吃得膘肥体壮,让天上那头狮子饿得精瘦,在死亡线上挣扎。此时,羊群B想,“快要饿死的狮子,应该没有力气追杀我们吧”。于是请上帝换下这头瘦狮子。 瘦狮子经过饥饿的折磨后,终于悟出一个道理:自己的命运是操纵在羊群手里的,所以对羊群特别客气,只吃死羊和病羊。羊群喜出望外,有只小羊甚至提议干脆一直留下瘦狮子。一只老羊提醒说:“瘦狮子因怕挨饿才对我们这么好。万一肥狮子饿死了,只剩一头狮子,我们没有了选择的余地,那瘦狮子很快就会恢复凶残的本性。”羊群觉得老羊说得有理,为了不让肥狮子饿死,羊群B赶紧把它换回来。 几经饥饿折磨的肥狮子也悟出了同样的道理,为了能在草原上待久一点,表现特别好。羊群B终于过上了自由自在的生活??羊群A的处境却越来越悲惨,那只狼因为没有竞争对手,变得肆无忌惮,每天都咬死几十只羊。一段时间之后,所有的羊都被它咬死了,那只狼也被活活饿死? 以上寓言故事告诉人们,羊群B与狮子确实是天敌,但这只是两者复杂关系中的一种,是事物的一面。然而,羊群B与狮子之间又处于相互“制约”与“被制约”的关系网络中,相互依赖,互为条件,一荣俱荣,一损俱损。这种特点的思维方式,就是立体思维。 思维决定观念,观念决定行为,行为决定命运。换而言之,事物往往存在多面性,我们若能试着从不同角度去看问题,掌握的层面越多,越有利于我们建立全局思维方式,把握事物的本质,作出正确的行动,改变我们的命运。---转自《中国质量新闻网》

四位置干浴器相关的耗材

  • 北京诺植 四位烧瓶平行反应系统
    HBF系列烧瓶加热适配器特点: 此系统配合加热磁力搅拌器使用, 可以同时进行4个烧瓶的加热平行反应。 200mm见方的铝方板作为基板,有四个大圆孔,可以放置25ml-250ml的烧瓶适配器。基板上有定位小孔,当烧瓶加热适配器底部拧上定位螺丝后,可以保证每个烧瓶加热适配器都处于同一圆上。 加热器的磁力搅拌会侧向驱动烧瓶内的磁搅拌子旋转,实现搅拌。外置温度探头可以插入其中任意一个适配器金属模块的测温孔,用于控制整体温度,如果必要,温度探头也可以放 入烧瓶中以控制溶液温度。 因为四个烧瓶适配器处于非常相似 的加热和搅拌状态中,这种四位板提供了一个四个烧瓶平行反应的经济方案。 四头夹是四位平行反应必须的配 件,用于夹住烧瓶或回流冷凝管,可 夹持直径15-43mm。四头夹的横杆必 须固定在一根垂直立杆上。 分水器是为实现一路供水给多个回流系统使用而设计,WSC-4分水器可以实现一路供水分到六路使用,配合四位反应板使用时,会使用其中的四路。分水器可以固定在12mm支撑杆上。 订货编号: >HOF-4 四位烧瓶平行反应板 四位烧瓶平行反应板,200x200mm方形,18mm厚,4个99mm圆孔,用于烧瓶平行反应。 烧瓶加热适配器需另配。根据客户加热面板尺寸,提供限位配件 *可同时放置25ml,50ml,100ml,250ml中任意四个烧瓶适配器。>FH-4 四头烧瓶夹四头烧瓶夹,配合四位平行反应板使用,同时夹住四个烧瓶,夹持直径15mm-43mm。>WSC-4 分水器 分水器, 一供六分,分水口宝塔头8mm,供水口宝塔头8mm/10mm/12mm。>SCT1/1 不锈钢支撑杆直径12mm不锈钢杆,200mm长,前端带孔,可用于放置温度探头。>Sr1 不锈钢支撑杆直径12mm不锈钢支撑杆,600mm长,适合Stuart品牌加热板使用。
  • 谱峰思维系列离子色谱仪与扩展模块之间的连接电缆,1 m
    谱峰思维系列离子色谱仪与扩展模块之间的连接电缆,1 mCable Extension Module - Professional IC, 1 m订货号: 6.2156.070谱峰思维系列离子色谱仪与扩展模块之间的连接电缆技术参数长度(m)1.0
  • 光电位置传感器
    光电位置传感器由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,以超低价格提供扫描振镜.这款扫描振镜专用的光电位置传感器(Electro-optical position sensor)属于电磁旋转激励器,专业为激光光束的扫描应用设计,这个系列的光电位置传感器采用移动电磁技术和光电角位置探测器,具有超高速度和精度,非常适合舞台灯光,激光打标,激光雕刻等应用。光电位置传感器,扫描振镜传感器详情请联系我们索取资料和报价。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制