当前位置: 仪器信息网 > 行业主题 > >

同位素总有机

仪器信息网同位素总有机专题为您提供2024年最新同位素总有机价格报价、厂家品牌的相关信息, 包括同位素总有机参数、型号等,不管是国产,还是进口品牌的同位素总有机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合同位素总有机相关的耗材配件、试剂标物,还有同位素总有机相关的最新资讯、资料,以及同位素总有机相关的解决方案。

同位素总有机相关的论坛

  • 同位素技术在环境和生态上的应用(译)

    第二版由robert Michener 和 Kate Lajtha编辑自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样,理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。

  • 【讨论】大家都用同位素质谱做什么

    我们这个版块好像有点冷啊,我来给大家定个位,大家都说说自己是用同位素质谱做什么的,当然,只管理仪器的更好,我们可以随时请教专家。我以前是做第四纪地质的,用总有机质的碳同位素和碳酸盐碳氧同位素反映过去气候变化,我的论文是过去一万年的。现在学校又购置了一些外围装置,如GCC、TC/EA、Flash/EA等,可以做到单烃的同位素了,我的方向也变了,现在偏环境,想做大气降尘的有机研究,没有做过有机提取,也只用过双路进样系统,所以很摸不着头脑啊,我这里抛砖引玉了,希望做过同位素或正在做同位素的大虾们多多露面,指点指点,这厢有礼了

  • 大家来谈谈同位素内标法和同位素稀释法

    同位素内标法用在有机分析比较多,而同位素稀释法用在无机分析或无机元素的形态分析(如有机锡,有机汞等)比较多。同位素内标法是一种非常有效的校正实验中基质干扰,回收率差的手段,但它和和同位素稀释法是不同的。传统意义的内标法中选择和待测化合物性质相近并且样品中不含有的化合物作为内标,大家的经验是内标物可以校正仪器分析如气相色谱的偏差,比如进样量等,质谱检测器的基质效应等,但毕竟是不同的物质,在提取,净化等方面和待测物还会有很大区别,而且这样的物质宁不好找。同位素内标法会选用同位素标记了的化合物,即化合物的某个元素部分或全部由其同位素取代,比如C由C13取代,氢由氘取代,由于用于标记的同位素的自然丰度很低,所以样品中不会存在相同的同位素标记的化合物(或者说检测不出来),并且在一般情况下,同位素标记的内标物和待测化合物的色谱保留(出峰时间)十分接近或者一致,所以同位素内标法在质谱检测器中使用非常广泛。更重要的是,事实上他们的化学性质完全一样,所以在测试过程中的提取效率,净化过程的损失,基质影响等完全一致,可以用来校正这些带来的测试偏差。只是同位素标记内标物的价格十分昂贵。大家来分享下各自的经验,我的感觉还是同位素标记物难买,除非找人合成,那就得花大价钱了。

  • 地化所汞同位素示踪研究取得新进展

    近期,中科院地球化学研究所环境地球化学国家重点实验室冯新斌研究员带领研究团队在利用汞同位素示踪汞污染源研究方面取得新进展,为准确解析和评估环境流域中污染物的来源提供了有力的技术手段和理论依据。  汞是环境中毒性最强的重金属之一。环境汞污染问题一直是世界各国关注的焦点和热点。作为中国经济发达和城镇化建设最为典型的区域之一,珠江三角洲东江流域汞污染日益严重。准确分析环境流域中汞的来源和归趋问题不仅是目前研究汞的环境生物地球化学过程的难点,而且对评估和治理环境流域中汞污染具有重要意义。稳定同位素示踪是地球化学研究中的重要内容和技术。目前,国际上初步建立的汞同位素体系已明确汞同位素可以作为汞污染源和生物地球化学反应及其发生程度的示踪剂。  冯新斌研究员带领研究团队利用地化所矿床地球化学国家重点实验室的多接收电感耦合等离子体质谱仪(MC-ICP-MS),建立了一套精准的测定样品中汞同位素的方法,同时利用此项技术对东江流域沉积物汞同位素特征进行了深入的研究。研究结果表明,东江沉积物中不同生态单元的汞污染程度和汞同位素特征差异显著。通过深入分析和合理推断,结合沉积物中汞质量分馏和非质量分馏明显特征(图1),研究人员建立了流域汞污染源(自然源,生活源和工业源)三元混合模型,并采用东江流域各生态单元沉积物汞含量进行模型检验,明确证明不同来源的汞具有不同的汞同位素比值(图2)。由此证明,汞同位素技术可以有效用于示踪和量化沉积物中不同来源的汞。  相关研究成果已分别在地球化学和环境科学领域的国际杂志Chemical Geology(2011,287:81-89) 、(http://www.gdlord.com)Chinese Journal of Analytical Chemistry (2010, 38(7):929-934)、Applied Geochemistry(2010, 25:1467-1477) 等期刊上发表。  目前,冯新斌研究员带领的有害污染物研究课题组仍在进一步探索汞同位素技术在环境科学和地球化学领域的应用与发展。http://photocdn.sohu.com/20110922/Img320129065.jpg图1. 东江沉积物中不同生态单元的汞同位素特征(δ202Hg vs Δ199Hg)http://photocdn.sohu.com/20110922/Img320129068.jpg图2. 东江沉积物中不同汞来源的贡献比例(X, Y, Z 分别代表工业源,生活源和自然源)来源地球化学研究所)

  • 【转帖】同位素质谱

    同位素质谱(资料来源:http://www.cmss.org.cn/xshd/isotope.htm)专业简介: 中国质谱学会成立以来,我们同位素质谱获得了重大发展。一大批从事同位素质谱工作的专家在同位素地质学、核科学和基础科学中取得了不少重要的研究成果。同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展: (1)同位素地质学方面同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。 (2)核科学与核工业方面同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;3)U、Li等同位素标准参考物质的研制。 (3)核物理研究方面包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用: 研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额; 高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。(4)标准参考物质的研制发明方面标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。(5)在临床医学方面进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。(6)在生物学和化学研究工作中的应用稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。 用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。 用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。 在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。(7)环境科学中的应用近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。(8)在农业增产方面的应用现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。⑴合理使用肥料;⑵农药毒性的研究;⑶用轻水灌溉;⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;(5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。(9)其他应用如石油、冶金、电子等方面。

  • 铅的同位素

    用ICP-MS测定总铅的含量,我一般是测定 206 207 208 这三个同位素。我发现还有一个同位素204 ,为什么不需要一起测定?

  • 【原创】同位素质谱的学科应用与发展

    [size=4][font=[color=#DC143C]黑体]同位素质谱的学科应用与发展[/color][/font][/size]同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展包括:  (1)同位素地质学方面  同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。  (2)核科学与核工业方面  同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:  1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;  2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;  3)U、Li等同位素标准参考物质的研制。  (3)核物理研究方面  包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用:   研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额;   高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。  (4)标准参考物质的研制发明方面  标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。  (5)在临床医学方面  进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。  (6)在生物学和化学研究工作中的应用  稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。  用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。   用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。   用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。   在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。  (7)环境科学中的应用  近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。  (8)在农业增产方面的应用  现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。  ⑴合理使用肥料;  ⑵农药毒性的研究;  ⑶用轻水灌溉;  ⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;  (5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。  与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。  (9)其他应用  如石油、冶金、电子等方面。

  • 同位素标记物、同位素技术_生物素标记肽

    同位素标记物、同位素技术_生物素标记肽

    随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[align=center][img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151433525331_7755_3531468_3.jpg!w422x228.jpg[/img][/align]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQELHPLC分析:[align=center][img=,562,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434210520_3873_3531468_3.jpg!w562x236.jpg[/img][/align]MS分析:[align=center][img=,562,256]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434419961_6047_3531468_3.jpg!w562x256.jpg[/img][/align]合肥国肽生物官网:http://www.bankpeptide.com[img=,690,163]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151435146731_1710_3531468_3.jpg!w690x163.jpg[/img]

  • 同位素离子峰强度计算式

    同位素离子峰的强度与组成该离子的各同位素的丰度有关,可以通过各同位素的丰度估算分子离子峰和其他同位素离子峰的相对强度。对于仅含C、H、N、O的有机化合物CwHxNyOz来说,最大丰度的分子离子峰与其它同位素离子峰的强度比为:http://ng1.17img.cn/bbsfiles/images/2011/12/201112141800_338133_1601435_3.gif为什么是这样计算,不理解,谢谢高手指教

  • [转贴]生物医药专用示踪剂-18O稳定同位素分离的研究

    生物医药专用示踪剂-18O稳定同位素分离的研究2005-12-1 13:25:09 来源:国家科技成果网 “生物医药专用示踪剂-18O稳定同位素分离的研究”项目的产品为稳定性同位素产品,属于同位素新材料技术领域,已被列入国家《当前优先发展的高技术产业化重点领域指南(2004年度)》和《上海市高新技术产品目录》,符合当前国家引导经济结构战略性调整,改善投资结构以及审批投资项目的重点鼓励发展的十个方面的134项高技术产业化重点领域的产业化方向。重氧(18O)同位素产品作为无放射性的示踪原子广泛应用于化学反应机理、生命科学、环境科学、医药研究、核医学等高端研究领域,尤其是在核医学PET领域的显影药物上是极为重要的应用试剂。重氧(18O)同位素产品是上海化工研究院自主开发、具有知识产权的高新技术产品。本项目申请发明专利3项,实用新型专利3项,授权专利1项,被认定为上海市高新技术成果转化项目(A类),项目的技术水平达到国际先进。上海化工研究院自2002年开始进行重氧(18O)同位素产品的研发,经三年多的努力,成功开发和掌握了全丰度范围(10%~97%)重氧(18O)的分离生产关键技术,开发了稳定性同位素专用分离技术、特殊的填料表面处理技术、微小流量均布技术、氢转化技术、级联技术等一系列关键技术,建立以天然水为原料,“高效规整填料恒压级联(真空)精馏法”的新工艺。并利用所掌握的技术建立了国内首套制取重氧(18O)同位素产品的多塔级联、中试规模的生产研究装置,生产获得低丰度10%~高丰度97%重氧(18O)同位素产品。产品达到国际同类产品的质量标准要求,经复旦大学附属华山医院PET中心试用,可完全替代国外同类产品。填补了国内产品和技术的空白,经科技查新证明“达到国际先进水平”。重氧(18O)同位素产品具有极高的经济附加值,每克产品国际市场售价50?70美元,国内市场售价高于1000元,而本项目技术生产获得的产品成本低于150元/克,重氧(18O)同位素产品作为高新技术产品可完全替代进口,进入日益扩大的国内外市场,节汇创汇,扩大就业,具有良好的社会经济效益。本项目成功产业化,不仅能填补国内稳定性同位素领域重氧(18O)同位素产品制备技术和产品的空白,避免国外技术垄断,满足医疗、科研等研究领域发展的需要,更能作为示踪剂应用于医学临床诊断领域疾病诊断PET设备,促进PET的发展和大规模应用,对于全面提高人民健康水平具有重要意义。同时,参与国际市场竞争,带动了其它稳定同位素产品的开发和相关标记化合物系列产品的研制,全面提升我国稳定同位素研究领域及行业技术创新水平和核心竞争能力,促进我国医学、生命科学、环境科学等高新科学技术领域深入广泛发展,拖动效应深远,前景广阔,社会效益显著。

  • 同位素肽_同位素标记_同位素技术

    同位素肽_同位素标记_同位素技术

    目前我们国肽生物合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/05/201905091355121241_560_3531468_3.jpg!w422x228.jpg[/img]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122172;17718122684;17730030476;17718122397

  • 【求助】关于同位素的若干问题!

    从来没接触过同位素方面的东东,有几个菜菜的问题请教下大家我要做一个同位素示踪的试验(要用到氧的同位素)。不知道这个氧的同位素价格 大概 多少,很贵么?是做完实验后用到同位素质谱分析产物呢还是在做的过程中就要用到同位素质谱进行分析?也或许是分析这个产物不用同位素质谱而用其它的同位素分析的仪器?还有大概做这个样的分析价格怎么样??(呵呵,我这问法不知道大家能不能看懂-_-!!)

  • 【资料】同位素辐射技术

    1. 同位素与辐射技术基本内容分类 放射性同位素的应用是核能利用的一个重要方面。 随着核技术的发展,核反应堆、加速器的不断建造,核燃料循环体系的建立,为放射性核素的应用提供了日益丰富的物质基础。另一方面,放射性核素应用研究的开展,又为更经济有效地利用上述设备,综合利用这些“资源”开辟了一条新的途径。同位素辐射技术在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益。 2. 放射性同位素的制备 放射性同位素的制备是同位素与辐射技术应用的物质基础。目前人工放射性同位素制备大体有三种方法:在核反应堆中生产,用于制备丰中子同位素,简称堆照同位素;用带电粒子加速器制备,多用于贫中子同位素生产,简称加速器同位素;从核燃料后处理料液中分离提取同位素,这种同位素通常称为裂片同位素。 3. 放射性同位素在工业上的应用 工业同位素示踪 放射性同位素的探测灵敏度极高,这是常规的化学分析无法比拟的。利用微量同位素动态追踪物质的运动规律是放射性示踪不可替代的优势。目前,这一技术已广泛用于石油、化工、冶金、水利水文等部门,并取得显著的经济效益。 同位素电池 放射性同位素在进行核衰变时释放的能量,可以用作制造特种电源——同位素电池。这种电池是目前人类进行深空探索唯一可用的能源。空间同位素电池(如钚-238电池)的特点是:不需对太阳定向,小巧紧凑,使用寿命长。 同位素监控仪表 放射性同位素放出的射线作为一种信息源可取得工业过程中的非电参数和其他信息。根据这一原理制作的各种同位素监控仪表,如料位计、密度计、测厚仪、核子秤、水分计、γ射线探伤机和离子感烟火灾报警器等可用来监控生产流程,实现无损检测,以及探知火情等。 辐射加工方面 辐射加工是利用电离辐射作为一种先进的手段对物质和材料进行加工处理的一门技术。这种加工方式目前已在交联线缆、热缩材料、橡胶硫化、泡沫塑料、表面固化、中子嬗变掺杂单晶硅、医疗用品消毒、食品辐照保藏以及废水、废气处理等领域取得显著成效,形成产业规模。  4. 同位素在农业上的应用 辐射育种 辐射育种,是利用γ射线等射线诱发作物基因突变,获得有价值的新突变体,从而育成优良品种。我国辐射突变育种的成就突出育成的新品种占世界总数的四分之一。特别是粮、棉、油等作物的推广,取得了显著的增产效果。 示踪技术方面 同位素示踪在农业中的应用主要是从事肥料与农药的效用和机理、有害物质的分解与残留探测、畜牧兽医研究以及农用水利方面检查测定堤坝、水库的泄漏等。另外还可以用于生物固氮、家畜疾病诊断及其妊娠预测等方面的研究。 昆虫辐射不育 昆虫受到电离辐射照射可使昆虫丧失生殖能力,从而降低害虫的数量,进一步达到防治甚至根除害虫的目的。昆虫辐射不育是一种先进的生物防治方法,不存在农药的环境污染问题。国外使用该技术在大面积根除地中海果蝇以及抑制非洲彩蝇方面取得了重大成果。而我国用此法对玉米螟、小菜蛾、柑桔大实蝇等害虫的辐射不育研究,也取得了较好的防治效果。 食品辐照保藏 食品辐照保藏,就是利用电离辐射对食品进行照射,以抑制发芽、杀虫灭菌、延长货架期和检疫处理等,从而达到保存食品的目的。经辐照彻底灭菌的食品是宇航员和特种病人最为理想的食品。目前,国外食品辐照已作为预防食源性疾病和开展国际农产品检疫的一种有效手段。 核医学诊断与癌症放射性治疗 核医学诊断是根据放射性示踪原理对患者进行疾病检查的一种诊断方式。在临床上可分为体内诊断和体外诊断。体内诊断是将放射性药物引入体内,用仪器进行脏器显像或功能测定。体外诊断是采用放射免疫分析方法,在体外对患者体液中生物活性物质进行微量分析。我国每年约有数千万人次进行这种核医学诊断。 电离辐射具有杀灭癌细胞的能力。目前,放射治疗是癌症治疗三大有效手段之一,70%以上癌症患者都需要采用放射治疗。放射治疗可分为外部远距离照射、腔内后装近程照射、间质短程照射和内介入照射等。 体内放射性药物治疗是近来颇受医学界关注的临床手段。单克隆抗体与放射性核素结合生成的导向药物(“生物导弹”),可能为恶性肿瘤的内照射治疗提供一种新的有效途径。

  • 在那可以买到同位素标记的产品

    大家好,我第一次来这里,现在想向大家求助,请问在那可以买到标记过的同位素产品,我是做农药的,想在农药上进行同位素的标记,利用同位素示踪技术,现在很愁,没有我需要的产品,因为大多数都是在肥料上进行标记的.希望在这里能得到大家的帮助!麻烦诸位了,谢谢!

  • 【求助】新手求助:氮同位素示综测定硝酸还原作用

    我是做沉积物中硝酸还原作用的,还原产物主要有2种,一氧化二氮和氨。我想用同位素示综来做。主要是想测有多少硝酸盐被还原成了氨。我的想法是:加入氮15标记的硝酸盐(丰度21.8%),培养后测定氨中氮15的浓度。用这个浓度除以21.8%就得到由硝酸还原生成的氨的浓度。请问这样是正确的吗?希望各位大侠帮帮忙知道一下。

  • 同位素内标法

    为什么说同位素标记物做内标只有GC-MS才可用,其他检测器都不能用呢 , 还有内标法做标准曲线是用什么做横坐标 什么做纵坐标啊

  • 【原创】同位素比值R、δ值及同位素标准

    同位素比值R为某一元素的重同位素丰度与轻同位素丰度之比,例如 D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且很冗长繁琐不便于比较,故在实际工作中采用了样品的δ值来表示样品的同位素成分。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=133463]稳定同位素比值R、δ值及同位素标准[/url]

  • 稳定同位素标记技术

    稳定同位素标记技术

    随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[align=center][img=,422,228]https://ng1.17img.cn/bbsfiles/images/2018/12/201812241644402644_187_3531468_3.jpg!w422x228.jpg[/img][/align]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQELHPLC分析:[align=center][img=,562,236]https://ng1.17img.cn/bbsfiles/images/2018/12/201812241645167954_971_3531468_3.jpg!w562x236.jpg[/img][/align]MS分析:[align=center][img=,562,256]https://ng1.17img.cn/bbsfiles/images/2018/12/201812241645336844_2050_3531468_3.jpg!w562x256.jpg[/img][/align]合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122684;17718122172;17730030476;17718122397[img=,220,52]https://ng1.17img.cn/bbsfiles/images/2018/12/201812241646038848_1454_3531468_3.jpg!w220x52.jpg[/img]

  • 【分享】气相色谱同位素比质谱仪联用技术在地球化学中的应用现状 四

    [size=4][font=黑体][color=#DC143C][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]同位素比质谱仪联用技术在地球化学中的应用现状与前景[/color][/font][/size] 之四====================================================4 生物地球化学中的应用 稳定同位素应用于地球科学之后,在生物地球化学的应用近几年显得非常迅速。在生态系统研究中,各种生物种群之间的摄食关系、营养物质和能量流动是生态学研究的一个难题。用生态系统中有机碳和氮稳定同位素组成动态变化的稳定同位素技术为解决这一生态学难题提供了新的研究手段[20],稳定同位素技术的优点在于使得这些生态问题研究能够在没有干扰的情况下进行。以稳定同位素作为示踪剂研究生态系统中碳源、能量流动、营养结构、污染物的生物放大作用[20],成为了解生态系统动态变化主要研究手段之一。生物中δ15N值受食物源和生物的新陈代谢两方面因素的影响,生物的新陈代谢会引起同位素的分馏使δ15N同位素在生物体内进一步沉积,这样逐级积累从而实现了不同营养级之间同位素的富集作用,因此δ15N是一种较好的营养层次指示剂[23 -24]。通过使用稳定性同位素技术,可以使生态学家测出许多随时空变化的生态过程,同时又不会对生态系统的自然状态和元素的性质造成干扰。在过去的十几年中,一些生态与环境科学的最令人瞩目的进步依赖于稳定性同位素技术,稳定性同位素能够被用来解决与生物地球化学有关的生态许多问题, 例如 C3植物如何有效地利用水分[23] , 可以用13C, 15N确定土壤中碳和氮周转速率, 研究人员可以用15N, 18O, 2H确定植物的分布区域。 有些问题还只能通过利用稳定同位素技术来解决。例如,植物在光合作用倾向于吸收含有轻碳同位素12C的CO2,其吸收程度受有效水含量和光合途径影响,水分有效性和光合途径是干旱或湿润环境植物的重要特性。因此,植物13C组成能够在时间尺度上整合反映植物的水分利用效率[22]。通过测量植物茎水2H和18O组成,也能够判定植物对表层水和深层水的依赖程度。 5 环境地球化学中的应用 稳定同位素在环境治理中用于追踪污染物的来源[31]也有着广泛的应用,如果地下水有几种不同地区的降水补给来源,而且在不同地区形成这些降水的蒸发,凝结条件也各不相同,那么在不同地区降水来源的图δD—δ18O上的直线就会出现不同的斜率和截距[26],据此就可以判断地下水的补给来源。如山西229煤田地质队与中科院地质与地球物理研究所所运用氢氧同位素也曾对山西太原地区地下水资源评价和开发作了研究。其中,太原地区大气降水线为δD=7.6δ18O+10;汾河水的氢氧同位素平均值为δD=-62.3±2.8‰,δ18O=-8.32±0.4‰。西山岩溶水的δD和δ18O之间呈线性关系为δD=5.56δ18O-16.1 [25]可见,西山岩溶水中混入了受强烈蒸发作用的汾河水及浅层水,它与汾河渗漏水及上覆石炭、二叠系裂隙水有明显的水力联系。利用这一原理,我们可以进行地下水污染源的追踪。地下水源如果遭到地表污水的影响,利用稳定同位素方法,一旦地下水与地表水的δD和δ18O存在一定的联系,就可以判定该地下水与地表水之间的水力联系,确定污水的地表来源。利用氮同位素追溯硝酸盐污染源[28] ,稳定氮同位素还可用于生物对多氯联苯(PCBs)、和Hg、Cd 、Zn等重金属的生物放大研究。利用稳定同位素示踪的方法,与常规污染物调查相结合来研究陆源污染物的扩散运移规律以及在食物网中的生物放大和积累作用,可为环境污染的综合治理提供科学技术支持。彭林等用正构烷烃单分子碳同位素组成对兰州大气污染源的探讨[27],近期稳定同位素示踪技术也有效地应用于赤潮的研究中,通过追踪引起赤潮主要物种的发展变化,可以研究赤潮的产生机理、发展过程和对水体及生态系统营养层次的影响[21]了解赤潮消失的原因及赤潮的预防手段,咸水和现代海水的D 和18O的δ值因古今温度的变化而有很大差异。因此可以根据稳定同位素δ值的变化范围确定海水入侵范围,例如,潘曙兰用同位素方法研究了我国莱州湾海水入侵的成因及变化发展趋势[28]。结果表明,在莱州湾西部的广大地区属于卤水入侵区,在莱州湾东部的龙口地区属于现代海水入侵区)从而有效地监视和跟踪海水入侵的变化趋势。 6其它应用 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-C/TC-IRMS技术还应用于土壤科学、医药科学、食品科学、法庭医学以及运动员违禁药物检测和等很多研究和应用领域。进口商品中通过碳氮同位素分析,可以确定肉类的产地, 通过检测蜂蜜中碳同位素组成 可以检测蜂蜜的真假;还可以通过碳同位素确定柠檬酸和食用香料是人工合成还是天然产品;通过测量植物中的碳氮比可以得知农作物施肥的最佳配方比和时间;在刑事侦查中,通过检测缴获的海洛因碳同位素组成可以推知制造海洛因原料的产地,通过检测运动员尿液类固醇的某些有机物的碳同位素可以推断运动员是否服用兴奋剂等。 7 结论 目前国内很多单位都引进了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-燃烧/热转换-同位素比质谱连用仪器,但由于同位素的实验室标准不统一、实验条件不同,数据还存在有的差异,有时候难以直接对比,影响了有机物质单体同位素在各个方面的应用。由于自然环境的复杂性和观测手段的局限性, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-C/TC-IRMS技术与其它技术方法的结合使用和对比,将会更富有成效地解决问题。随着社会的进步和科学技术的发展,由于稳定同位素技术以其快速可靠,数据稳定准确的特点,应用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-C/TC-IRMS连用仪器的种类也越来越多。在国外,测定同位素的组成工作越来越深入,已经从原来的测定某种化学物质的同位素平均组成到现在的测定某种物质分子内部官能团的的同位素组成,这样更好地了解地球化学过程对周围的物质,特别是有机分子,同位素分馏机理及其平衡过程。这样可以为稳定同位素应用跨上一个新台阶。总之,地球化学的发展需要,会促使越来越多的同位素方法将应用于更广泛的领域,以便更好更准确地解决地球科学及相应学科领域中的理论和实际问题,,技术水平的提高必然促进学科的发展,总之[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-C/TC-IRMS连用技术在科学研究领域具有广阔的应用前景。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制