当前位置: 仪器信息网 > 行业主题 > >

微电极拉制仪

仪器信息网微电极拉制仪专题为您提供2024年最新微电极拉制仪价格报价、厂家品牌的相关信息, 包括微电极拉制仪参数、型号等,不管是国产,还是进口品牌的微电极拉制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微电极拉制仪相关的耗材配件、试剂标物,还有微电极拉制仪相关的最新资讯、资料,以及微电极拉制仪相关的解决方案。

微电极拉制仪相关的资讯

  • 大脑多巴胺在体(in vivo)记录用电化学微电极研制
    成果名称 大脑多巴胺在体(in vivo)记录用电化学微电极研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 多巴胺是中枢神经系统中一种重要的神经递质,其胞体主要分布在中脑黑质致密部和腹侧背盖区,轴突末梢主要分布在纹状体、伏隔核、海马等区域。多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,监测脑内多巴胺分泌水平具有十分重要的意义。目前,国内外研究人员主要采用Microdialysis法检测脑内多巴胺的平均水平,但这种方法的局限是无法实时地进行检测。 北京大学分子医学研究所周专课题组研发的在体碳纤微电极电化学监测技术可以灵敏、实时探测脑内多巴胺的分泌,这种方法需要研制在体检测多巴胺分泌的电化学微电极,并采用不同的动作电位编码进行电刺激,以研究在黑质-纹状体通路中刺激模式对分泌的调控作用。 2009年,周专教授申请的&ldquo 大脑多巴胺在体(in vivo)记录用电化学微电极研制&rdquo 项目得到了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的资助下,通过实验仪器与研制材料的购置,周专课题组开展了富有成效的工作,包括:(1)改进实验室原有的在体电极系统;(2)将该系统应用到具体的大脑多巴胺分泌检测中;(3)优化电极的制作,为更大规模的生产奠定基础。目前,该项目已经顺利结题,其研制的碳纤维电极直径仅7um,制作方便,对脑组织损伤较轻,并已经能够在动物实验中稳定检测多巴胺的异常分泌活动。 应用前景: 多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,实时监测脑内多巴胺分泌水平具有十分重要的意义。由于目前临床上没有较好的检测神经性精神疾病患者多巴胺分泌水平的方法,该技术进一步完善后,将在未来应用到临床辅助多巴胺检测和神经外科手术治疗中。
  • 仪器信息网讲座预告——微电极阵列技术对胰岛进行非侵入性电信号记录的发展与应用
    BUSINESS MEETING会议介绍2020-10-29 14:00,哈佛仪器携仪器信息网将举办“微电极阵列技术对胰岛进行非侵入 性电信号记录的发展与应用”讲座直播会议将对胰岛细胞外中通量电生理记录的新兴技术进行详细的介绍 欢迎大家点击链接报名参加!https://www.instrument.com.cn/webinar/meeting_22140.htmlBUSINESS MEETING主讲人Jessie Wang王娟哈佛仪器亚洲区技术支持会议时间:2021-10-29 14:00BUSINESS MEETING会议内容胰岛电生理活性传统研究方法简介微电极阵列技术与胰岛细胞外电生理记录的发展与特点微电极阵列技术在胰岛细胞外电生理记录中的应用a.氧化应激对胰岛电生理活性的影响b.胰岛在微电极阵列电极上的长期培养与记录Beta Screen与MEA2100-MINI 系统简介BUSINESS MEETING主讲人简介王娟,上海交通大学医学院硕士,曾参与5-HT抑制坏死性调往信号通路改善糖尿病胃肠神经病变的机制研究,具有多年神经电生理、神经电化学、离体器官灌流、动物行为学等产品的应用经验,现任哈佛仪器资 深产品应用专家,为哈佛电生理产品线提供技术支持。BUSINESS MEETING参会说明一、参会条件1.免费报名无需任何差旅费用,只需一台电脑或一部手机,网络宽带超过128K。2.讲座PPT将实时传送给所有参会者,参会者也可通过文字向报告人提问,报告人在报告结束后统一进行解答。二、参会方式1.报名参会并通过审核后,您将收到邮件通知,并在会前一天收到提醒参会的短信通知。2.会议当天进入仪器信息网网络讲堂首页(webinar.instrument .com.cn),点击“进入会场”,填写报报时手机号,即可登陆会场参会。
  • 天津拓普国内首台小型自动纤维拉制机研制成功
    热烈庆祝天津市拓普仪器有限公司国内首台小型自动纤维拉制机研制成功。 小型自动纤维拉制机简介: 小型自动纤维拉制机系统是一个由光学、机械、电子与软件结合的系统,用来拉制光纤(常规光纤及锥形光纤)、玻璃丝以及熔点低(低于1000摄氏度)的其他材料纤维。整套系统功能完善,可扩展性能强,并且实用性强,拥有很高的研究和实用价值。小型纤维拉丝机可拉制出直径稳定、光学与机械性能良好的纤维。采用了光的衍射原理,对纤维直径进行无接触式测量,并将测量结果实时反馈给计算机,计算机通过驱动电路控制步进电机的转速,进而带动机械传动装置自动调整拉丝速度,控制纤维直径。 技术原理: 自动光纤拉制设备包括:预制棒喂料系统,加热系统,光纤直径测量系统,光纤涂敷系统和光纤收集系统等五部分。 其中,预制棒喂料系统采用了步进电机驱动的丝杠滑台,根据纤径、预制棒直径、拉丝速度等参数将预制棒以一定速度送入加热系统中。 加热炉由镍铬电热丝制作而成,炉温最高可达到1000度,完全可以满足对磷酸盐玻璃(软化点小于600度)预制棒拉制的要求。为了实现温度的精确测温及自动控温,电炉中安装了K型热电偶,利用带有冷端补偿的运算放大器芯片AD595将热电偶产生的电压放大,并由MX7705转换为16位精度的数字信号并传输给单片机。单片机利用PID控制算法,输出可变占空比方波驱动可控硅加热电炉,使整个加热系统稳定于± 4℃之内。 施棒的系统,构如下就要从炉中拉成丝后,光纤冷却定型,通过两个针孔式的限位器垂直通过氦氖激光束,采用激光衍射的经典方法对光纤进行无接触式测量。当激光束照射光纤时产生衍射,衍射条纹由摄像头采集,并送入PC机中计算拉制光纤的直径。 当光纤经过直径测量系统后,我们采用了当今流行的紫外线固化技术进行对光纤进行涂敷保护。根据实验室的特点设计了一套涂敷系统,主要由涂敷模具,储液瓶,固化盒,高压汞灯及电源构成。设备简单紧凑,造价低,并且涂敷层与光纤的同心度和均匀性都比较理想。 最后,经过若干次涂敷固化的光纤进入光纤收集系统,光纤收集系统通过调整绞盘收集速度控制光纤直径,进而收集到成品标准光纤。 自动光纤拉制设备采用PC机与单片机结合的控制方式,PC机利用串口转换卡将RS232串口总线转换为RS485总线,并挂接五个AT89S52单片机作为下位机,实现自动控制与参数显示。喂料与拉丝绞盘所使用的步进电机由四枚LMD18245芯片驱动,实现了电机的单步八细分,提高了系统运行的稳定性,减少了抖动。PC机的控制软件由Visual C++编写,负责图像采集处理、数据采集显示与下位机任务分配,协调整套设备的运转。 整个拉丝塔运转起来后,可以做到自动控制,无需人为操作,提高了光纤的生产效率,并且可以针对不同材料的特性,调整拉丝塔及控制台的参数,做到不同类型特种玻璃光纤的拉制生产。 工艺流程: 1, 制作直径符合要求的预制棒,装卡在滑台上; 2, 打开控制电源,预设参数; 3, 加热炉温,达到软化温度; 4, 拉丝; 5, 测量直径,将数据传输给计算机,经分析处理后控制拉丝速度; 6, 涂敷固化; 7, 绕盘。 与进口纤维拉制设备相比我公司自行研发的光纤拉制机具有以下优点: 一、价格低廉:一套由外国研制的拉丝设备的价格一般在百万元以上,而我们所应用的材料及设备均是市场常见的,因此总体造价非常低廉; 第二、可扩展性强:可以方便地进行硬件和软件上升级和改造; 第三、实用性强:可以针对实际需求将特殊材料玻璃棒拉制成各类规格的导光原件。 第四,可操作性强,操作简单方便。 技术指标: 1 喂料速度:0.37-10毫米/分钟(可以通过更改程序调整); 2 预制棒最大行程:11厘米; 3 可安装的预制棒直径范围:12~17毫米; 4 电炉尺寸及最高温度:电炉内腔圆柱形,直径35毫米,高65毫米,最高温度900摄氏度; 5 温度稳定性:当温度大于400摄氏度以后,温度波动变化不大于2%; 6 可测量直径:80 ~ 250微米; 7 光纤拉制速度:0.1-1米/秒; 8 绞盘直径:30厘米; 9 拉丝柜高度为2.5~3m: 拉丝机外观 人机界面 拉丝机控制台 拉丝机控制软件界面 拉丝机内部结构 成品光纤 锥形光纤
  • 4重好礼,不容错过!快来享显微注射系统全线产品钜惠!
    显微注射实验已成为研究基因表达、功能和基因间的相互作用、以及各类药物传递等关键方法,具有效果稳定、重复性强、注射样品自由度大、适用细胞种类广泛等优点。瑞沃德MM-500电动显微操纵器、MP-500微电极拉制仪、R-480玻璃微电极注射泵可组成显微注射实验解决方案,除了覆盖常见病毒注射、眼球注射实验之外,还可针对线虫、斑马鱼等模式生物的胚胎、幼体实现精密显微注射。(瑞沃德显微注射系统)为了更好地帮助客户快速开展实验,瑞沃德特推出限时组合购买优惠活动,四大超值福利等你拿,9月底活动结束,不要错过噢~👇活动详情👇① 购买任意3种产品:赠送3000元京东卡+3000元精密手术器械包+2000元玻璃管耗材+显微注射实验手册② 购买任意2种产品: 赠送2000元京东卡+ 2000元精密手术器械包+ 1000元玻璃管耗材+显微注射实验手册③ 购买1种产品:赠送1000元京东卡+1000元玻璃管耗材+显微注射实验手册(注射泵不参与此单项活动)四重好礼超优惠活动火热进行中,还在等什么抓紧时间来选购吧~如果想先行体验显微注射系统还可参与免费试用活动识别上方二维码可申请免费试用抓紧时间,别错过试用机会噢
  • 1500万元仪器采购大单结果公布,宝德、华谱科仪、普析等中标!
    近日,2023年广州市疾病预防控制体系实验室检验检测能力提升(三年行动计划仪器设备购置)项目中标结果公布。该项目预算1500万元,分为10个合同包,共采购99台/套仪器设备,涉及正置荧光显微镜、荧光定量PCR、测汞仪、高效液相色谱仪、低速普通离心机、超级微波、气相色谱串联质谱联用仪、隧道式笼盒清洗机、自动式吸入染毒柜、背负式蓄电池超低容量喷雾机、微电极拉制仪、环境模拟舱等仪器设备。最终,尼康、珠海黑马、Applied Biosystems、BAKER、北京宝德、华谱科仪、湘仪、赛多利斯、普析、莱伯泰科、安捷伦、施启乐、合普、奥豪斯等品牌分别中标,总中标金额为1470.4228万元。中标详情如下:一、项目编号:GZJK-2023HW-07二、采购单位:广州市疾病预防控制中心三、主要标的信息:合同包1:正置荧光显微镜等仪器设备中标供应商:广东省中科进出口有限公司中标金额:2,100,000.00元合同包2:荧光定量PCR等仪器设备中标供应商:广东源顺里生物科技有限公司中标金额:2,204,408.00元合同包3:测汞仪、高效液相色谱仪中标供应商:揭阳市泰进贸易有限公司中标金额:1,029,100.00元合同包4:低速普通离心机等仪器设备中标供应商:广州谱维仪器有限公司中标金额:478,680.00元合同包5:超级微波中标供应商:广州科贸进出口有限公司中标金额:1,588,800.00元合同包6:气相色谱串联质谱联用仪、隧道式笼盒清洗机中标供应商:广州广电国际商贸有限公司中标金额:2,314,500.00元合同包7:自动式吸入染毒柜等仪器设备中标供应商:揭阳市蕴美健康管理有限公司中标金额:798,690.00元合同包8:背负式蓄电池超低容量喷雾机等仪器设备中标供应商:揭阳市泰进贸易有限公司中标金额:393,650.00元合同包9:微电极拉制仪等仪器设备中标供应商:广州格卢瑞生命科学有限公司中标金额:1,588,400.00元合同包10:环境模拟舱中标供应商:北京云和健康人居科技有限公司中标金额:2,208,000.00元
  • 植树节献礼丨重大突破,朗石重金属监测仪电极终身免维护!
    时逢植树节,朗石来献礼!礼是什么?问就是,电极终身免维护的重金属监测仪!NanoTek 9000 多参数重金属在线分析仪是朗石创新研发的,专门用于水中痕量重金属自动监测的仪器。它采用阳极溶出伏安法原理,可稳定、准确监测水中镉、铅、铜、锌等重金属的含量,测定下限达μg/L级别。阳极溶出伏安法阳极溶出伏安法是指在一定的电位下,使待测金属离子部分还原成金属并溶入微电极或析出于电极的表面,然后向电极施加反向电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流一电压曲线进行分析的电化学分析法。阳极溶出伏安法的优势在于在合适的工作电极、合适的分析环境条件下,可以对水质中μg/L数量级的重金属进行精确的定量分析。基于聚合物修饰电极技术,朗石成功破局,创新研发了电极终身免维护的NanoTek 9000多参数重金属监测仪。电极终身免维护创新地解决了电极需打磨维护的问题,行业内首次实现了工作电极终身免维护。 测量周期短、废液量低独特的流程及反应体系,极大缩短多参数一次的测量周期同时节省了废液量,废液量低至40mL。定量下限低测量算法的优化,大大提升了仪器低浓度监测的准确性,定量下限得以突破,定量下限低至0.5ppb。朗石成立初期,自主研发的多参数重金属监测仪在云南省环境监测站的重大建设采购项目中,与来自美国、英国、澳大利亚的进口设备进行技术比对,凭借良好的准确性和稳定性成为了云南省环境监测站的最终选择,成就了“国产品牌击败洋品牌”的佳话。项目验收现场朗石人践行“绿水青山就是金山银山”,在实现多参数重金属准确监测的基础上不断突破创新,坚定地“守护水安全,创新水智慧”,为客户持续创造更大价值!
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 1500万!2023年广州市疾病预防控制体系实验室检验检测能力提升(三年行动计划仪器设备购置)项目
    一、项目基本情况项目编号:GZJK-2023HW-07项目名称:2023年广州市疾病预防控制体系实验室检验检测能力提升(三年行动计划仪器设备购置)项目采购方式:公开招标预算金额:15,000,000.00元采购需求:合同包1(正置荧光显微镜等仪器设备):合同包预算金额:2,204,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1显微镜正置荧光显微镜1(台)详见采购文件780,000.00-1-2其他分析仪器核酸提取仪1(台)详见采购文件150,000.00-1-3其他试验仪器及装置生物样品均质器1(台)详见采购文件80,000.00-1-4显微镜体视荧光显微镜1(台)详见采购文件550,000.00-1-5其他仪器仪表智能试剂安全柜1(台)详见采购文件250,000.00-1-6其他试验仪器及装置凝胶电泳及成像系统1(套)详见采购文件250,000.00-1-7其他分析仪器常规PCR仪1(台)详见采购文件128,000.00-1-8其他试验机掌上离心机2(台)详见采购文件16,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包2(荧光定量PCR等仪器设备):合同包预算金额:2,206,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他计量仪器荧光定量PCR1(台)详见采购文件888,000.00-2-2其他仪器仪表内循环生物安全柜1(台)详见采购文件160,000.00-2-3其他分析仪器纯水仪1(台)详见采购文件120,000.00-2-4其他分析仪器流式细胞仪1(台)详见采购文件800,000.00-2-5其他试验机高速冷冻大容量离心机1(台)详见采购文件200,000.00-2-6其他试验仪器及装置八连排加液器2(台)详见采购文件18,000.00-2-7其他试验仪器及装置微量加液器(套)4(套)详见采购文件20,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包3(测汞仪、高效液相色谱仪):合同包预算金额:1,030,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他计量仪器测汞仪1(台)详见采购文件380,000.00-3-2色谱仪高效液相色谱仪1(台)详见采购文件650,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包4(低速普通离心机等仪器设备):合同包预算金额:492,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他试验机低速普通离心机2(台)详见采购文件30,000.00-4-2分析天平及专用天平万分之一天平1(台)详见采购文件22,000.00-4-3其他试验仪器及装置冷冻干燥仪1(台)详见采购文件48,000.00-4-4其他试验仪器及装置土壤研磨器与筛分器1(台)详见采购文件180,000.00-4-5其他试验仪器及装置土壤风干柜2(台)详见采购文件70,000.00-4-6其他试验机超纯水机1(台)详见采购文件100,000.00-4-7其他光学仪器可见分光光度计2(台)详见采购文件17,000.00-4-8其他光学仪器紫外可见分光光度计1(台)详见采购文件18,000.00-4-9其他试验仪器及装置氟离子测定仪1(台)详见采购文件7,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包5(超级微波):合同包预算金额:1,590,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)5-1其他仪器仪表超级微波1(台)详见采购文件1,590,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包6(气相色谱串联质谱联用仪、隧道式笼盒清洗机):合同包预算金额:2,321,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)6-1色谱仪气相色谱串联质谱联用仪1(台)详见采购文件1,721,000.00-6-2其他试验机隧道式笼盒清洗机1(台)详见采购文件600,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包7(自动式吸入染毒柜等仪器设备):合同包预算金额:801,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)7-1其他试验仪器及装置自动式吸入染毒柜1(台)详见采购文件600,000.00-7-2其他试验仪器及装置培养箱1(台)详见采购文件40,000.00-7-3其他试验机洗板机1(台)详见采购文件30,000.00-7-4其他试验仪器及装置静脉可视小鼠尾注固定器1(台)详见采购文件6,000.00-7-5其他试验机扫频超声波清洗机1(台)详见采购文件43,000.00-7-6其他试验机96孔板瞬时离心机1(台)详见采购文件5,000.00-7-7其他试验机小型掌上离心机2(台)详见采购文件4,000.00-7-8分析天平及专用天平千分之一天平1(台)详见采购文件25,000.00-7-9其他试验仪器及装置振荡器2(台)详见采购文件6,000.00-7-10其他试验仪器及装置多样品涡旋混合器1(台)详见采购文件32,000.00-7-11其他试验仪器及装置64位浓缩灌支架1(台)详见采购文件10,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包8(背负式蓄电池超低容量喷雾机等仪器设备):合同包预算金额:394,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)8-1其他试验机背负式蓄电池超低容量喷雾机5(台)详见采购文件125,000.00-8-2其他试验机手提式电动超低容量喷雾器(插电)4(台)详见采购文件20,000.00-8-3其他试验机手压式常量喷雾器20(台)详见采购文件14,000.00-8-4其他试验机全域地形车杀虫喷雾系统1(台)详见采购文件235,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包9(微电极拉制仪等仪器设备):合同包预算金额:1,662,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)9-1其他试验仪器及装置微电极拉制仪1(台)详见采购文件160,000.00-9-2其他试验仪器及装置磨针仪1(台)详见采购文件80,000.00-9-3显微镜显微操作仪1(台)详见采购文件290,000.00-9-4其他试验仪器及装置微量自动注射仪1(台)详见采购文件160,000.00-9-5显微镜通用显微镜适配器1(台)详见采购文件20,000.00-9-6其他试验仪器及装置常规PCR仪1(台)详见采购文件120,000.00-9-7其他光学仪器微量紫外可见分光光度计1(台)详见采购文件170,000.00-9-8其他试验机低温冷冻高速离心机1(台)详见采购文件250,000.00-9-9其他试验仪器及装置凝胶成像系统1(套)详见采购文件250,000.00-9-10其他试验机迷你型离心机1(台)详见采购文件5,000.00-9-11其他试验仪器及装置多功能电泳仪1(台)详见采购文件5,000.00-9-12其他分析仪器便携式比色计余氯检测仪2(台)详见采购文件12,000.00-9-13其他试验仪器及装置普通冰箱2(台)详见采购文件10,000.00-9-14其他试验仪器及装置超低温冰箱1(台)详见采购文件120,000.00-9-15其他光学仪器紫外线照度计2(台)详见采购文件10,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。合同包10(环境模拟舱):合同包预算金额:2,300,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)10-1其他试验仪器及装置环境模拟舱1(套)详见采购文件2,300,000.00-本合同包不接受联合体投标合同履行期限:合同签订后60天内交货。二、获取招标文件时间: 2023年04月28日 至 2023年05月08日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 18:00:00 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州市疾病预防控制中心地 址:广东省广州市白云区启德路1号联系方式: 36052333转52042.采购代理机构信息名 称:广东省华粤采购科技有限公司地 址:广州市天河区体育西路191号中石化大厦B塔603-611房联系方式:020-62313760-8053.项目联系方式项目联系人:黄小姐电 话:020-62313760-805
  • 河南农业大学采购236套仪器设备
    河南正大招标服务有限公司受河南农业大学委托,就河南农业大学2013年度(中地共建)设备采购项目进行招标采购,现欢迎符合相关条件的供应商参加投标。   一、 招标项目名称及编号:河南农业大学2013年度(中地共建)设备采购项目   豫财招标采购-2013-341   二、 招标项目简要说明: 包号 序号 采购项目名称 数量 是否可投进口 需要授权及售后服务承诺书 A 1 高效液相色谱仪 1 是 - 2 动态信号分析仪 1 是 - 3 恒温箱 8 否 - 4 燃烧效率测定仪 1 否 - 5 温度智能巡检仪 2 否 - 6 溶解氧测定仪 1 否 - 7 总辐射表 2 否 - 8 GPS数据采集系统 1 否 - 9 恒温箱 1 否 - 10 红外测水仪 1 否 - B 1 空压机 1 否 - 2 轮胎平衡机拆胎机 1 否 - 3 硫化机(内外胎) 1 否 - 4 快速检修举升机 1 否 - 5 气动抽油机 1 否 - 6 抛光打蜡机 1 否 - 7 燃油免拆清洗机 1 否 - 8 润滑油道免拆清洗机 1 否 - 9 吸水吸尘机 1 否 - 10 自动变速箱清洗机 1 否 - 11 发动机检测实验台 1 否 - 12 共轨柴油发动机检测实验台 1 否 - 13 电控汽油机拆装试验台 1 否 - 14 高压共轨电控柴油机拆装试验台 1 否 - 15 自动变速箱实物解剖演示试验台 1 否 - C 1 光合作用测定仪 1 是 是 2 根系分析系统 1 是 是 3 PCR仪 2 是 是 4 电泳仪 2 否 - D 1 傅立叶变换红外光谱仪 1 是 是 2 原子荧光光度计 1 否 - 3 超纯水系统 1 否 - 4 全自动土壤样品处理机 1 否 - E 1 PCR仪 3 是 是 2 冷冻离心机 2 是 是 3 激光/超声测高测距仪 1 是 4 植物根系分析仪系统 1 是 是 5 植物光合测定仪 3 否 - 6 电导率仪 4 否 - 7 叶面计测定仪 3 否 - 8 电子天平 2 否 - 9 电子天平 2 否 - 10 冰箱 3 否 - 11 微波炉 3 否 - 12 紫外可见分光光度计 2 否- 13 全自动灭菌锅 1 否 - 14 水浴锅 3 否 - 15 多通道生理系统 1 否 - 16 酶标仪 1 否 - 17 森林罗盘仪 4 否 - 18 一体机 7 否 19 台式电脑 1 否 - 20 超声波细胞破碎机 1 否 - 21 投影仪 1 否 - 22 光照培养箱 1 否 - F 1 生物显微镜 70 是 - 2 三目显微镜 2 是 - 3 三目显微镜 2 是 - G 1 高速冷冻离心机 1 是 是 2 梯度PCR仪 1 是 是 3 凝胶成像系统 1 是 是 4 移液器 11 是 - 5 天平 1 是 - 6 紫外可见分光光度计 1 是 是 7 微电极放大器 1 是 是 8 数模转换器 1 是 是 9 记录和分析软件 1 是 是 10 精密手动显微操作器 3 是 是 11 体式显微镜 2 是 是 12 微电极拉制仪 1 是 是 13 恒温卵母细胞记录槽 1 是 是 14 防震台和静电屏蔽网 2 是 是 15 显微注射系统 1 是 是 16 实体解剖镜讨论镜 1 否 是 17 镜头 1 否 - 18 膜片钳实验室恒温保持 1 否 - 19 空调 1 否 - 20 电泳仪 1 否 - 21 核酸电泳槽 1 否 - 22 迷你蛋白电泳槽 1 否 - 23 半干转印槽 1 否 - 24 水浴锅 1 否 - 25 生化培养箱 1 否 - 26灭菌锅 1 否 - 27 超净工作台 1 否 - 28 可降温摇床 1 否 - 29 磁力搅拌器 1 否 - 30 冰箱 1 否 - 31 水平脱色摇床 1 否 - 32 电脑(膜片钳配套) 3 否 - 33 枪头 1 否 - 34 枪架 2 否 - 35 掌中宝离心机 1 否 - 36 涡旋混匀器 1 否 - 37 烘箱 1 否 - 38 冰箱(样品保存) 2 否 - 39 工具包和仪器柜 1 否 - H 1 真空灌肠机 1 是 是 2 水分活度测定仪 1 是 是 3 微波杀菌设备 1 是 是 4 沃-布剪切仪 1 是 - 5 环境气体分析仪 1 是 - 6 紫外分光光度计 1 是 是 7 智能温度记录控制系统 1 否 - 8 温湿度记录仪(带打印机) 1 否 - 9 恒温光照培养摇床 1 否 - 10 电热鼓风干燥箱 2 否 -   三、 投标人资格要求:   1. 注册于中华人民共和国境内,具有独立承担民事责任能力的法人或其他组织。   2. 具有良好的商业信誉和健全的财务会计制度。   3. 具有履行合同所必需的设备和专业技术能力。   4. 有依法缴纳税收和社会保障资金的良好记录。   5. 参加政府采购活动前三年内,在经营活动中没有重大违法记录。   6. 遵守国家法律、法规和河南省财政厅及招标代理机构有关招标的规定。   7. 与采购人就本次招标的货物委托的咨询机构、招标代理机构、以及上述机构的附属机构没有行政或经济关联。   8. 注册资金不低于100万元人民币。   9. 法律、行政法规规定的其他条件。   四、 招标文件发售信息:   招标文件发售时间:2013年5月10日至2013年5月30日(法定节假日除外)   每天上午8:30-12:00 下午3:00-5:30   招标文件售价:300元(售后不退)   五、 投标文件接收及开标有关信息:   投标截止时间及开标时间:2013年5月31日上午9:30   投标文件接收及开标地点:黄河水利工程交易中心4楼大会议室   六、 本次招标联系事项:   联系人:冯文明、王墨   电话:0371-66028587 66619760 传真:66028583   联系地址:河南省郑州市金水路109号黄河勘测规划设计研究院院内西楼   黄河水利工程交易中心3楼302室   邮政编码:450003   开户行:中国建设银行郑州行政区支行   户名:河南正大招标服务有限公司   帐号: 41001531010050203901   七、 其他应说明事项:   购买招标文件时必须携带单位法人营业执照副本、授权委托书、代理人身份证等相关资质文件。(以上资料均要求出示原件,留存加盖单位公章的复印件)   河南正大招标服务有限公司   2013年5月10日
  • 中国农业科学院867万元购买离子阱质谱检测器等一批仪器
    6月28日,中国农业科学院蔬菜花卉研究所公开招标,购买离子阱质谱检测器、植物乙烯分析仪、体视荧光显微镜等多台/套仪器,预算867万元。  项目编号:HXJC2021HG/033  项目名称:蔬菜有害生物控制与绿色高效优质栽培平台仪器设备购置项目  预算金额:867.0000000 万元(人民币)  最高限价(如有):867.0000000 万元(人民币)  采购需求:  本次招标共分3包,各包拟择优选择1家合格的供应商为采购人提供仪器设备的供货服务。具体采购内容如下:序号名称数量可采购进口产品需要授权函(是/否)核心产品预算控制价(台/套)(是/否)(是/否)(万元)第一包1四旋翼无人机1否否否2382多光谱表型成像分析系统1是是否3蒸发光散射检测器1是是否4高通量单细胞转录组测序建库仪1是是否5超微量紫外分光光度计1是是否6荧光分光光度计1是是否7酶标仪1是是否8大气压气相电离源1是是是9显微镜图像采集系统1是是否第二包1卵母细胞放大器1是是否2682显微注射仪1是是否3微操纵器1是是否4微电极拉制仪1是是否5灌流给药仪1是是否6全能型成像系统1是是否7离子阱质谱检测器1是是是8全自动耗散型石英晶体微天平1是是否9梯度PCR仪1否否否10实时荧光定量PCR仪1是是否11昆虫触角电位测量系统1是是否第三包1真空冷冻干燥机1否否否3612调制叶绿素荧光成像系统1是是否3自动气象站1否否否4植物在线光合生理生态监测系统1是是否5多离子测定仪1否否否6植物乙烯分析仪1是是是7土壤养分速测仪(台式)1否否否8露点水势仪1是是否9植物微根管观测系统1是是否10原位植物根系生长监测系统1是是否11超低温冰箱1否否否12高通量组织研磨机1否否否13体视荧光显微镜1否否否  具体内容及要求详见招标文件第三部分“采购内容及要求”。符合条件的供应商可以投1包或多包并分包编制投标文件。  最高投标限价:第1包:人民币238万元   第2包:人民币268万元   第3包:人民币361万元  合同履行期限:合同签订后90天内。  本项目( 不接受 )联合体投标。  开标时间:2021年07月20日 09点30分(北京时间)
  • 719万!某部医院2021年第一批科研仪器设备采购
    项目概况某部医院2021年第一批科研仪器设备购置项目 招标项目的潜在投标人应在沈阳市皇姑区昆山中路2号万众商务大厦17-5。获取招标文件,并于2022年01月19日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:2021-JQ41-W1071项目名称:某部医院2021年第一批科研仪器设备购置项目预算金额:719.0000000 万元(人民币)最高限价(如有):719.0000000 万元(人民币)采购需求:某部医院2021年第一批科研仪器设备购置项目采购公告我部就以下项目进行国内公开招标,采购资金已全部落实,欢迎符合条件的供应商参加投标。项目名称:某部医院2021年第一批科研仪器设备购置项目项目编号:2021-JQ41-W1071项目概况:包号序号产品名称计量单位数量交货时间预算单价(万元)011低温低氧工作站台1签定合同后1个月25021大数据信息化系统台1签定合同后1个月60031酸度计台13个月2.002高速冷冻离心机台23个月10.003冷冻切片机台13个月48.004全自动酶标仪台13个月30.005生物安全柜台13个月30.00041高频电刀台23个月19.00051全自动蛋白质印迹杂交系统套13个月20.002DNA超声破碎仪台13个月36.003自动细胞计数器台13个月14.504微量核酸定量荧光计台13个月9.50061分选型流式细胞仪套13个月3702玻璃毛细管锻针仪台13个月8.003型程控水平微电极拉制仪台13个月8.00合计预算:719万元,其中:01包25万元;02包60万元;03包130万元;04包38万元;05包80万元;06包386万元。说明1.是否允许进口:是。2.投标人须对所投包内所有产品和数量进行投标报价,否则视为无效投标。3.投标报价不得超过以上预算,否则投标文件无效。 投标人资格条件:(一)符合《中华人民共和国政府采购法》第二十二条资格条件:1.具有独立承担民事责任的能力;2.具有良好的商业信誉和健全的财务会计制度;3.具有履行合同所必需的设备和专业技术能力;4.有依法缴纳税收和社会保障资金的良好记录;5.参加政府采购活动前3年内,在经营活动中没有重大违法记录;6.法律、行政法规规定的其他条件。(二)供应商成立时间不少于3年,且为非外资独资或外资控股企业。(供应商为非外资(含港澳台)独资或控股的企业,但经国务院国资委相关职能部门证实,最终控制人为国有企业的除外。)(三)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一包的采购活动。生产型企业生产场地为同一地址的,销售型企业之间股东有关联的,一律视为有直接控股、管理关系。供应商之间有上述关系的,应主动声明,否则将给予列入不良记录名单、3年内不得参加军队采购活动的处罚。(四)本项目不接受联合体投标。(五)注册资金200万(含)以上生产或销售型企业。(六)投标人是生产商,投标货物必须是其主营或主营范围产品(以投标人提供的营业执照、经营许可证(特许经营行业)、质量认证体系证明材料为准)。若投标人是销售商,则应具备本项目生产或者销售范围。(七)合格供应商还要满足的其他资格条件:(1)投标人提供所投产品的医疗器械注册证及附页(如产品不属于医疗器械范畴,需提供药监局证明文件,一类产品需提供生产企业备案凭证);(2)投标人为经销商的,须提供《医疗器械经营企业许可证》(投标产品为三类医疗器械需提供);(3)投标人为经销商的,须提供医疗器械经营备案凭证(投标产品为二类医疗器械需提供);(4)投标人提供《医疗器械生产企业许可证》(国产产品需提供);(5)投标人提供的货物不是投标人制造的,必须提供货物制造商或国内总代理针对本项目的专项唯一授权。授权书可以使用其他语言书写,但必须同时提供中文译文。2022年1月19日9时00分(北京时间)。投标截止时间:2022年1月19日9时30分(北京时间)。投标地点:沈阳市皇姑区昆山中路2号万众商务大厦501。投标方式:指定专人递交投标文件,不接受邮寄等其他方式。开标时间、地点
  • 深圳先进院开发出可普适于神经界面、水氧化及抗生物污染的电极材料
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所微纳中心研究员吴天准团队研发出一种普适于神经界面、水氧化及抗生物污染的功能化电极材料。相关研究成果以Platinum Nanocrystal Assisted by Low-Content Iridium for High-Performance Flexible Electrode: Applications on Neural Interface, Water Oxidation and Anti-Microbial Contamination为题在线发表于Advanced Materials Interfaces上,并被选为封面文章。  近年来,侵入式和植入式器件已广泛应用于人造耳蜗、人造视网膜、深脑刺激器等神经假体,以便治疗和诊断神经疾病。其中神经电极作为连接内部组织与外部设备之间的桥梁,正朝着微型化和集成化的方向发展,这将为临床提供更高的电刺激/记录效率。然而,电极尺寸的大幅度缩小会造成极大的界面阻抗,严重降低了其电荷存储和注入能力等性能,从而限制了其临床应用。基于上述考虑,研究人员在前期工作中已研发出铂、铱纳米修饰材料(Electrochim. Acta, 2017, 237, 152-159 Adv. Mater. Interfaces, 2019, 6, 1900356 ACS Appl. Mater. Interfaces, 2020, 12, 14495-14506 IEEE Sens. J. 2021, 21. 22868-22877),有效改善了神经电极的电学性能和刺激效率。  在前期基础上,研究人员进一步开发出了具有极大表面积的3D铂纳米枝晶,同时利用极慢速扫描沉积的方法将低含量的氧化铱纳米颗粒(<3 wt% Ir)较好地附着于铂纳米枝晶结构上。研究结果表明,在微电极表面(电极直径:200 mm)修饰铂纳米枝晶材料后,电化学阻抗相比未修饰电极降低了94%以上,阴极电荷存储能力增大了30倍。继续修饰低含量的氧化铱纳米颗粒,可使上述性能迅速翻倍,这是由于该复合材料表面通过可逆法拉第过程注入电荷时,有相应的氧化还原反应发生,此时电极/组织界面可以容纳更多的电荷。该复合材料修饰的电极在经过1亿多次的连续电脉冲刺激后,氧化铱薄层仍然牢固附着在铂枝晶结构上,电性能无显著下降,稳定性优异。  此外,铂和铱具有优异的催化性能,常作为析氢反应(HER)和析氧反应(OER)的电催化剂。该团队在前期已通过电沉积手段制备了一种铂纳米材料,在HER中表现出巨大潜力(Chin. Chem. Lett. 2020, 31, 2478)。然而,水的电解效率往往受限于OER的高过电位。基于此,团队将修饰有上述低含量氧化铱的铂纳米枝晶电极用于OER,发现在0.5M H2SO4中仅需150 mV的低过电位,即可达到10 mA×cm-2的电流密度;氧化铱的加入使铂纳米枝晶的Tafel斜率降低了75%(~41 mV×dec-1)。在该电流密度下经过12h的恒电流测试后,电极表面的微观结构和催化性能未发生明显变化,表现出优异的催化稳定性。此外,考虑到微生物粘附引起的生物污染会限制植入器件的服务周期,团队进一步探索了该电极的抗微生物污染能力。研究发现,经培养48h后,大肠杆菌在具有铂铱纳米复合枝晶结构的电极表面覆盖率远远低于平面铂电极,证实了其潜在的抗菌能力。  上述研究成果有效解决了现有的技术短板,可操作性强,能批量生产,可普适于神经界面、水氧化、抗生物污染等方面,有望广泛应用于神经假体、高效刺激/记录电极、生物传感等柔性生物电子,以及能量存储等实际应用领域。该研究得到了国家自然科学基金、广东省自然科学基金、深圳市科创委等项目的资助。  论文链接
  • 大连化物所研制高系统性能和高集成度的微型超级电容器模块
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与单细胞分析研究组(1820组)陆瑶研究员团队,以及中国科学院深圳理工大学、中国科学院金属研究所成会明院士等合作,开发了高精度的光刻、自动喷涂和3D打印技术,研制出具有高系统性能和高集成度的小型单片集成微型超级电容器。   为适应小型化、可穿戴、可植入微电子设备的快速发展,需要发展具有小体积、高集成度、高性能和高兼容度的微型储能器件。平面微型超级电容器由于无需隔膜和外部金属连接线的特殊结构,同时具有可靠的电化学性能和易于调控的连接方式,在微电子领域有着重要的发展潜力。然而,由于缺少可靠的高精度微电极阵列制备和高效的电解液精确沉积技术,大规模制备高集成度、高性能的微型超级电容器仍具挑战。因此,急需发展创新性的微加工技术,来实现规模化、稳定性地制备高度集成、高性能、可定制的微型超级电容器。本工作中,合作团队发展了一种结合高精度的光刻、自动喷涂和3D打印技术的通用可靠策略,实现了高精度微电极阵列的大规模制备和凝胶电解质精确快速添加,研制出具有高面积数密度、高输出电压、性能稳定的集成化微型超级电容器模块。团队首先采用高精度光刻加工技术和高稳定性自动喷涂技术,制备出超小型集成化微型超级电容器,单个器件的面积仅为0.018cm2,器件间距为600μm,实现了面积器件数密度为每平方厘米28个,即3.5×4.1cm2区域内包含400个器件。随后,团队设计并发展了具有优异流变特性的凝胶电解质墨水,采用精确可控的3D打印技术,实现了极小区域内电解质的精确均匀添加,使得相邻单元微器件之间形成良好的电化学隔离,所得集成化微型超级电容器可以稳定输出200V的高电压,单位面积工作电压达75.6V/cm2,是目前已有报到工作的最高值。此外,该微型超级电容器模块在162V的极端工作电压下,循环4000次后,仍然保持92%的初始容量。该工作为超小体积、高电压微型功率源的发展奠定了一定的科学基础。   相关研究成果以“Monolithic integrated micro-supercapacitors with ultrahigh systemic volumetric performance and areal output voltage”为题,于近日发表在《国家科学评论》(National Science Review)上。该工作的共同第一作者是我所508组博士后王森和1820组博士后李林梅。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、大连市高层次人才创新支持计划、中国博士后科学基金等项目的资助。
  • 规模化制备高度集成微型超级电容器研究获进展
    p   近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中科院院士包信和团队,以及中科院金属研究所成会明、任文才团队合作,采用丝网印刷方法规模化制备出高度集成化、柔性化、高电压输出的石墨烯基平面微型超级电容器,相关成果发表在《能源与环境科学》(Energy Environ. Sci.)上。 /p p   微型化、柔性化电子器件的快速发展,让人们对与之匹配的微型储能器件的需求越来越大。然而,单个微型储能器件的输出电压和电流有限,难以满足需要高电压、大电流驱动的电子器件的应用需求,在实际中通常需要将多个储能器件进行串联和(或)并联集成来提高电压和(或)电流。目前集成化储能器件一般需要借助金属连接体,导致器件一体性、机械柔韧性差,加工过程复杂,以及性能难以定制。因此,急需发展新的规模化技术来批量化制备高度集成、性能可定制的微型储能器件。 /p p   在该工作中,研究人员首先发展了一种具有优异流变学和电化学性能的石墨烯导电油墨,然后采用丝网印刷的方法,利用一步法实现了平面型及集成化微型超级电容器的集流体、图案化微电极和器件间导电连接体的制备,大大简化了制作流程,显著提高了集成器件的整体性和机械柔韧性。根据不同的实际应用需求,科研人员不仅可以对集成化微型超级电容器的形状和大小进行有效调控,而且能够实现任意数量平面微型超级电容器的串并联集成,进而有效定制输出电压(几伏至几百伏)和电流(纳安至毫安)。例如,由130个单器件串联得到的微型超级电容器模块,其输出电压可达到100V以上。该工作证明了石墨烯导电油墨可以同时作为集流体、导电连接体,以及高容量电极材料,丝网印刷技术可以高效、规模化地制备出高度集成化、一体化、高电压输出的平面微型超级电容器,获得的模块化器件具有出色的良品率、性能一致性、高电压输出等特征,具有广阔的应用前景。 /p p   上述工作得到国家自然科学基金、国家重点研发计划、大连化物所科研创新基金等的资助。) /p p style=" text-align: center " img title=" W020181210353843556910.jpg" alt=" W020181210353843556910.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/01dbcb67-90ca-4395-a863-2e1d7866840e.jpg" / /p p style=" text-align: center " 规模化制备高度集成微型超级电容器研究获进展 /p
  • 低压直流细胞电穿孔微流芯片系统
    成果名称 低压直流细胞电穿孔微流芯片系统 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 电穿孔(电转染)是一种利用外加电场击穿细胞膜,使平时不能穿透细胞膜的大分子(核酸、蛋白质、药物等)进入细胞的技术。电穿孔技术已在细胞实验、基因治疗等领域广泛应用。但目前的技术均需要金属电极,金属电极产生的金属离子渗出、气泡等对细胞有不利影响,降低了转染效率。此外,高压脉冲电源的使用使得目前此类仪器操作复杂、价格居高不下。这些都大大限制了电穿孔技术的广泛应用。针对上述问题,北京大学工学院熊春阳课题组采用微流芯片技术,实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。 2009年,熊春阳副教授申请的&ldquo 低压直流细胞电穿孔微流芯片系统&rdquo 项目得到了第二期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用微流体中因尺度效应而产生的层流,用高电导率的液体来代替电极,将细胞悬浮液通过流动聚焦技术夹在高电导率溶液之间,形成三个平行流动的稳定流层。通过将电极与两侧的高电导率溶液相连,再与直流电源相连,电压会大部分施加在中间电阻较大的细胞流层。由于微流尺度较小,即使很低的电压都可产生较大的场强,从而可以实现细胞电穿孔。 这项工作在基金的支持下得以顺利的推进,通过相关设备的购置和实验测试,课题组完成了微流控芯片的设计和加工、液体导电层的引入、不同类型细胞电转染参数的优化等工作。该项目目前已经顺利结题,相关成果已经申请中国专利,正在申请国际专利。 应用前景:该项目实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。由于课题组具有完全的自主知识产权,这一工作可以打破目前国外同类仪器建立的技术壁垒,具备较强的市场推广前景。
  • 500万!福建农林大学福建农林大学原子力显微镜等一批采购项目
    项目编号:[3500]FJTH[GK]2022164 项目名称:福建农林大学福建农林大学原子力显微镜等一批采购项目 采购方式:公开招标 预算金额:5000000元 包1: 采购包预算金额:5000000元 采购包最高限价:5000000元 投标保证金:50000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A021099-其他仪器仪表原子力显微镜1(台)是详见招标文件1500000工业1-2A021099-其他仪器仪表流式细胞分选仪1(台)是详见招标文件2000000工业1-3A021099-其他仪器仪表微电极自控平台1(台)是详见招标文件500000工业1-4A021099-其他仪器仪表倒置荧光显微镜1(台)是详见招标文件1000000工业 合同履行期限: 自合同生效之日起至合同约定的合同义务履行完毕。 本采购包:不接受联合体投标
  • 美成功将大脑信号翻译成口语单词
    北京时间9月8日消息,据国外媒体报道,美国犹他大学科学家近日利用两组植入癫痫患者大脑中的微电极阵列成功实现将大脑信号转化为口语单词。这一重大研究成果将能够帮助因患严重麻痹症而失去语言能力的患者轻松地表达自己的思想。   据科学家介绍,这种微电极阵列每组包括16个微电极,通常植入到头骨之下,大脑之上。美国犹他大学生物工程学助理教授布拉德利-格雷格尔介绍说,“通过这种设备我们可以获得大脑信号。只需这些大脑信号,我们就可以将其解码为人类口语单词。这种设备将可以长期帮助因患严重麻痹症而失去语言能力的患者。” 一位癫痫症患者大脑的核磁共振成像图,图片显示两种电极的位置分布情况。一种电极是传统的脑皮层电图电极(黄色),用于定位癫痫发作的源头,从而帮助医生进行手术。红色的则是两组实验用微脑皮层电图电极,每组阵列包括16个微电极,用于读取来自大脑的语言信号。 本图显示了置于癫痫症患者大脑顶部的两种电极。较大的标有数字的电极就是脑皮层电图电极。此外,志愿者大脑的两个语言区顶部还被置放两组更小的微电极阵列。 微电极阵列,也被称为微脑皮层电图电极网格。一组微电极阵列排列成4*4的模式,被展示于一枚25美分硬币上。   由于这种方法还需进一步完善,此外还涉及到植入大脑这一复杂的过程,因此格雷格尔表示该方法要投入到用于治疗“闭锁综合症”等疾病的临床实验还需数年时间。科学家的研究成果论文发表于九月版的《神经工程学期刊》(Journal of Neural Engineering)之上,论文论证了将大脑信号解码为计算机发音的口语单词的可行性。   犹他大学的科研团队将两组微电极阵列植入到一位志愿者的大脑语言中枢上方。这位志愿者患有严重的癫痫症,已经经历过一次开颅手术。因此,医生很容易将更大的传统电极放置于导致他癫痫发作的源头,从而从手术上可以阻止癫痫的发作。   患者被要求阅读如下十个英语单词,即“是、不、热、冷、饥饿、口渴、哈罗、再见、更多和更少”。通常认为,这十个英语单词对于麻痹症患者的康复很有帮助。随着患者不断重复这十个英语单词,科学家们也记录下他的大脑信号。接下来,他们在尝试解码这些大脑信号分别代表十个单词中的哪一个。当患者说 “是”或“不”时,科学家们再分别对比这两个单词所产生的大脑信号。   目前,他们已能够较好地区分清每一个单词的大脑信号,每一次的准确率达76%到90%。不过,当他们一次性检测所有10个大脑信号时,准确率只有28%到48%。这一准确率比随机检测的准确率(应该是10%)要高。但是,对于一个将患者思想翻译为计算机发音的口语语言的设备来说,这种准确率还不够高。   格雷格尔表示,“这是一种概念的实验。我们已经证明这些信号能够告诉你患者在说什么,而且准确率比随机性要高。但是,我们需要进一步完善,争取能够识别出更多的单词,准确率更高。这样,患者将能够真正地发现它的用处。”格雷格尔希望,患者最终将受益于这项研究成果。将来,通过一个无线设备,就可以将患者的思想转化为计算机发音的口语语言。这些患者包括由于脑中风、葛雷克氏症以及外伤导致的麻痹症患者。“闭锁综合症”患者通常通过自己尽可能做出的动作与他人进行交流,如眨眼睛或轻轻地移动手部。   与格雷格尔一起共事的犹他大学研究团队的其他成员还包括电子工程师斯宾塞-科利斯、工程学院院长理查德-布朗以及神经外科学助理教授保罗-豪斯等人。论文的另一联合作者凯-米勒是来自美国华盛顿大学的一位神经学科学家。这项研究由美国国立卫生研究院、美国国防部高级研究计划署、犹他大学研究基金会以及美国国家自然科学基金会等单位联合赞助。   这项研究采用了一种新型的非穿透性微电极,这种电极置于大脑之上,但没有穿透大脑。它们通常也被称为“微电极阵列”,因为它们是用于脑皮层电图中的体积更大的电极的微缩版,即微脑皮层电图电极。   对于某些通过药物治疗病情仍未得到控制的癫痫症患者来说,可以通过开颅手术,将一个包含有脑皮层电图电极的硅树脂垫置于大脑之上数日或数周时间。这种钮扣大小的脑皮层电图电极不会穿透大脑,但可以检测到反常的电行为,从而帮助外科医生定位并移除大脑中导致癫痫发作的一小部分。   去年,格雷格尔和同事们已经发表过一篇论文,该论文证明,更小的微电极能够“读取”用于控制手臂动作的大脑信号。去年参与研究的一位癫痫症患者志愿参与今年的新研究计划。   由于微电极不需要穿透大脑物质,因此它们放置到大脑的语言控制区被认为是安全的。而利用穿透性电极也是无法做到这一点的。在一些实验中,通常利用穿透性电极来帮助麻痹症患者控制电脑鼠标或操纵义肢。   脑电图电极通常用于放在头颅之上来记录脑电波,但是这种电极太大,而且记录太多的大脑信号,以致于很难将这些信号解码为口语语言。   在新研究中,微电极被用于检测来自大脑的微弱信号,这些信号由数千个神经元产生。两组微电极阵列分别由16个微电极组成,每个微电极相隔一毫米。两组微电极阵列分别置放于大脑的两个语言区上方。第一个区域是面部运动皮层,它控制面部、嘴唇、舌头等部位的运动,主要涉及说话的肌肉。第二个区域是威尼克区,这是人类大脑中关于语言理解功能的区域。   研究实验共持续四天,每天一个阶段,每阶段一个小时。研究人员告诉癫痫症患者,当他们每一次指向患者时,患者必须要不断重复十个单词中的一个。通过两组微电极阵列,研究人员将大脑信号记录下来。每个单词共重复了31次到96次不等。   格雷格尔介绍说,研究人员接下来通过分析每一个神经信号的不同频率的强度变化,区别出不同单词的大脑信号。研究人员发现,每一个口语单词产生不同的大脑信号。他们认为,这有力地支持了如下理论,即置于大脑上的微电极可以捕捉到大脑的语言信号。   此外,科学家们还在研究中取得了一个意外的发现。当患者重复单词时,大脑面部运动皮层最活跃,而威尼克区则不够活跃。但是,当患者完成上述动作受到研究人员感谢时,威尼克区则开始活跃起来。格雷格尔解释说,这表明威尼克区与更高层的语言理解功能的关系更密切,而面部运动皮层功能则是控制面部帮助发声的肌肉。通过利用录自面部运动皮层的大脑信号,研究人员一个一个地区分这些单词时,准确率最高,达到85%。而利用录自威尼克区的大脑信号进行区分时,准确率则相当较低,为76%。   科学家们又分别选取了每组阵列16个微电极中的五个,这十个微电极在解码来自面部运动皮层的信号时准确率是32个微电极中最高的。它们在对单词进行二选一辨别时,准确率几乎可以达到90%。在从十个单词中识别一个单词这样更复杂、更困难的实验中,最初每一次取得的准确率仅为28%。这一准确率尽管不够高,但是比10%的随机率要高。然而,当研究人员利用每一组中五个最准确的微电极进行识别时,他们发现准确率几乎可以达到48%。   格雷格尔表示,“这并不意味着问题已完全解决,我们可以回家了。它表明,这种技术具有可行性,但我们还需要继续完善,直到闭锁综合症等疾病患者能够真正地交流。很明显,我们下一步计划是,使用更大的微电极阵列,比如11*11微电极阵列,共121个微电极。我们可以做更多的阵列,可以使用更多的微电极,可以从大脑中获取更多的数据。这意味着可以读出更多的单词,准确率更高。”
  • Nano Energy | 工程热物理所在微纳材料热电性能测量研究方面取得进展
    近日,中国科学院工程热物理研究所储能研发中心在微纳材料的热电性能表征方法方面取得重要进展,为微纳材料热电参数的精确测量和一体化原位表征提供了研究思路。 提高材料的热电性能是学者们一直追求的目标,将材料进行微纳结构化是提高热电性能的重要且有效的方法之一。热电参数(热电优值ZT、热导率k、赛贝克系数S和电导率σ)是评价材料热电性能的关键指标,热电参数的精确表征是高性能材料研发及应用的基础。然而目前商用仪器只能通过热导仪表征材料热导率、赛贝克系数仪测量赛贝克系数及电导率后,通过公式ZT=S2σT/k计算获得热电优值,误差较大。更重要的是商用仪器不适用于微纳材料,而随着微纳结构化处理,由于样品尺度减小带来的测量困难越来越突出。实验室里通过悬浮器件、扫描探针、预置电路等方法分别制样,分开表征微纳材料热导率、赛贝克系数及电导率计算获得ZT,不仅误差大,而且会因为多次制样的微纳结构不同导致错误的ZT计算结果。因此迫切需要开发更准确和精确的原位综合测量方法。 对此,储能研发中心综述了现有的微纳材料热参数和电参数测量方法的适用范围、优缺点以及升级改造为原位综合测量面临的挑战。同时总结了现有微纳材料热电性能综合测量方法的难点及发展趋势,并提出适用于一维纳米管和二维薄膜材料热电性能原位直接一体表征方法的策略: 1)对于传统3ω-T型方法,需在原有的基础上增加测量电极,使用四探针法测量电导率,结合3ω法测量热导率,从而实现热电参数的高精度综合测量。2)对于悬浮式微器件,通过优化电极结构和悬浮处理,可以综合测量纳米线和薄膜的热电参数。值得注意的是,在测量微/纳米结构时需要考虑样品转移的困难。3)结合光学和微电极方法也可以对热电参数进行综合测量。用光学法测量薄膜的面内热导率,用微电极测量薄膜的电导率,通过在薄膜表面形成温差可以测量塞贝克电压,进而实现薄膜面内热电参数的测量。4)热探头与电探针相结合也可以实现一体化测量。通过热探针和电探针同时测量样品的热导率和塞贝克系数,结合外部电路测量电导率。该方法可实现样品法向热电参数的测量。 相关内容以Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials: A critical review为题在Nano Energy (IF=19.069)在线发表。上述工作得到了国家自然科学基金(NO.51976215 & NO.52172249)、中国科学院科学仪器研制项目(YJKYYQ20200017)和中科院轻型动力创新研究院(CXYJJ21-ZD-02)项目的支持。原文链接:https://doi.org/10.1016/j.nanoen.2022.107553 图1 现有微纳材料热电性能测量方法图2 未来可行的微纳材料热电参数原位直接一体表征技术a、b改进的悬浮器件法,c光学与四探针结合法,d改进的扫描显微镜法
  • 3D打印制芯片 西湖大学实现国内最高精度三维精密制造
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp 一根细细的金属探针正在一块名片大小的电路板上循环画圈,探针内流下的液体逐渐围成一个圆环。“这是我们通过3D打印而成的微电极阵列,再用硅胶进行二次加工后,可用于药物机理检测等领域,检测效率将大大提升。”日前,在西湖大学精密智造实验室,正在显示屏前监测情况的西湖大学工学院周南嘉实验室博士生朱沛然对记者说。 /p p style=" margin-top: 10px line-height: 1.5em "   西湖大学工学院特聘研究员周南嘉团队自主研发的这项微米级精度三维精密制造技术,是目前国内最高精度的电子3D打印技术,以新材料作为突破3D打印精度极限的核心,设计全新的3D打印功能材料,实现了百纳米至微米级别电子3D打印。 /p p style=" margin-top: 10px line-height: 1.5em "  “我们开展的最小尺度的3D打印,就是直接在芯片上用3D打印进行加工。”周南嘉说。周南嘉团队将3D多材料打印技术引入芯片级高端制造领域,利用3D打印技术进行三维高精度光电封装、制造高频无源器件,例如可将天线尺寸缩小到十微米至百微米级别。周南嘉介绍,这一做法较现有的加工方式,在精度上提升了1个到2个数量级,从而让3D打印技术得以应用到毫米波技术、光通讯、微型机器人、柔性电子等领域,为未来小型化、集成化、个性化电子设备提供新的制造方案。 /p p style=" margin-top: 10px line-height: 1.5em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8b30d035-636c-4309-892f-b615fbb5a600.jpg" title=" t011b1664dd6ab99891.webp.jpg" alt=" t011b1664dd6ab99891.webp.jpg" / /p p style=" margin-top: 10px line-height: 1.5em text-align: center " span style=" font-family: 宋体, SimSun " strong span style=" color: rgb(63, 63, 63) " 西湖大学工学院特聘研究员& nbsp 周南嘉 /span /strong /span /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 当下,电子与光学领域核心功能器件与系统加工对技术精度的要求越来越高,传统工艺难以满足产品需求;同时,目前市场上为人所熟知的3D打印主要以激光烧结、光固化等工艺为主,其产品主要为金属、航空件以及塑料等聚合物,但这些3D打印产品往往仅具备结构而无法功能化。这些都成为当下相关行业领域的痛点。 /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 在周南嘉看来,3D 打印并不只是能够实现具体的结构,更重要的是实现特定的功能。依托西湖大学精密制造实验室及浙江省3D微纳加工与表征重点实验室,周南嘉以精密增材制造技术为核心,基于先进功能材料和三维集成技术方面的优势,开发了多材料、多尺度的灵活加工工艺。 /p p style=" margin-top: 10px line-height: 1.5em " & nbsp & nbsp “在超高精度 3D 打印方面,工艺本身并不复杂,要实现超高精度以及多样化功能,真正在实际应用上取得突破,从源头出发,实现材料方面的突破才是关键。”周南嘉说。通过材料和技术两方面的努力,突破目前的打印精度之后,其团队自主研发的微米、亚微米级3D打印技术与材料体系成功解决了这些难题。“其实,今后生活中常见的显示屏、手机、可穿戴设备、无人机、汽车导航、医疗健康仪器等许多电子产品的‘内脏’里,就能找到我们产品的身影。”周南嘉说。 /p
  • 岩相样品切片、减薄的制备技术交流之二 ——岩相样品制备SOP
    岩相样品切片、减薄的制备技术交流之二——岩相样品制备SOP 一、岩相样品的粘结 ● 用MetLab的中型METCUT-10或大型METCUT-12A,甚至20A的砂轮切割机,将大尺寸的岩相样品统一切割至适合载玻片的长、宽、厚度。 ● 或者,用MetLab的岩相精密切割&研磨一体机METCUT-10GEO,将真空卡盘换装机械夹具(工作台的T型槽是8mm,所以夹具的T型一定要配8mm的),固定好岩相样品后,摇动切割手轮,沿Y轴(纵向)进行切割,切割出想要的薄片。 ● 在合适材质(如,氧化铝,碳化硅,金刚石等)的平面研磨磨石、或磨盘、或薄膜、或砂纸上,将切好的岩相样品的非研究面预磨出一个哑光表面,以此创建一个与载玻片粘合的表面。 ● 在工作台上铺一张油脂薄膜或纸。取出载玻片。如果同时制备多个样品,则将长、宽、厚度相同的载玻片排列开来。载玻片的尺寸较多,常用尺寸为27x46mm,这个尺寸是和岩相精密切割&研磨一体机的真空卡盘尺寸相匹配的。 ● 建议使用QMAXIS(可脉)的环氧树脂和固化剂作为粘结剂——其中,无孔隙的岩相样品,用EpoQuick系列;而有孔隙样品,则选用EpoFlow系列——按标签提示的比例混合,倒入混合蜡纸杯中,用搅拌棒缓慢地搅拌约2分钟。 ● 首例描述无孔隙的岩相样品。将混合好的EpoQuick环氧树脂和固化剂均匀地涂抹在岩相样品的非研究面,反过来放在载玻片上,轻轻地前后移动压挤,去除所有气泡。用搅拌棒刮掉载玻片上挤压出的环氧树脂。 ● 将粘结好的岩相样品放在薄片样品粘结台METBOND GEO上,利用压簧压实后静置约2小时。METBOND GEO是带加热板的薄片样品粘结台,为了加快树脂固化的速度,可以打开加热开关,在控制面板上设定温度即可。如果没有配置MetLab的METBOND GEO——也就是没有加热板的薄片粘结台——可以将薄片样品粘结台放置在60°C左右的热板上加热,或者在室温条件下自然固化。 ● 当然,粘结剂也可以选用QMAXIS(可脉)的Mounting Adhesive热熔胶。将载玻片和岩相样品(非研究面朝上)放在加热台上,加热到100-120℃时,用热熔胶棒均匀地涂抹岩相样品的非研究面和载玻片,观察热熔胶完全熔化后,将岩相样品的非研究面粘到载玻片上,移至薄片样品粘结台,压实后静置至完全冷却。 ● 注意,薄片粘结台是选配件,需要单独购买。它不仅可以压实样品,而且可以精确地控制样品与载玻片之间粘结剂的厚度,这为消除样品和载玻片的公差,使多片样品制备一致提供了基础。 ● 第二例描述的是更普遍存在的多孔隙的岩相样品,这时必须调整粘结技术。选择合适尺寸的橡胶注模杯,将岩相样品研究面朝下放入橡胶注模杯中,将EpoFlow环氧树脂和固化剂按标签所示比例倒入混合蜡纸杯中,用搅拌棒缓慢搅拌约2分钟后,把蜡纸杯放入QMAXIS(可脉)的Air-Out真空系统,抽真空——放气——抽真空,循环操作3-4次。最后一次放气后,打开Air-Out穹顶盖,将蜡纸杯中的混合液倒入橡胶注模杯中。再把橡胶注模杯放入Air-Out腔体内,同样地抽真空——放气——抽真空,循环操作3-4次,最后一次抽完真空后,关闭真空泵,保持真空静置8-10小时。上述两轮操作,使树脂液和样品中的空气被彻底排除。树脂液浸渗至岩相样品的孔隙中,支撑样品结构,使下一步切片和研磨减薄操作不会损伤样品的结构。 ● 当环氧树脂完全固化后,从橡胶注模杯中取出镶嵌块,对镶嵌块的非研究面进行研磨找平。然后按EpoQuick的同样步骤,将镶嵌块的非研究面粘到载玻片上。 ● 如果镶嵌块的长、宽、厚度超出载玻片,可以对镶嵌块进行切割、研磨整理。 二、岩相样品的切片 MetLab的岩相精密切割&研磨一体机METCUT-10GEO的切割和研磨分列于设备的两侧,一个电机,两侧同轴,保持切割、研磨的平行性高度一致。 ● 未开机前,先安装金刚石切割片。将METCUT-10GEO左侧切割室的透明防护罩向上开启——这种开启方式的设计节省了空间,方便使用者进行操作。取出10in(254mm)的金刚石切割片,其轴心孔径1.25in(31.75mm)。用随机工具卸下切割侧主轴上的法兰,按切割片顺时针的旋转方向(QMAXIS的Logo朝外即可),套入切割片。扣上法兰,锁紧螺母。 ● 打开METCUT-10GEO主开关。触摸屏首页出现MetLab的Logo时,触摸屏幕任意位置,进入操作主菜单页面。 ● 装上样品。点击主菜单上切割侧的真空开关(2),将粘结好岩相样品的载玻片的一面贴到真空卡盘表面,真空卡盘吸住载玻片。小尺寸的真空卡盘,有三个突出螺钉辅助将较小尺寸的载玻片进行位置确认。 ● 定位切割位置。切割侧的真空卡盘安装在工作台上的卡盘座上,利用测微计旋钮驱动工作台沿X轴(横向)左右移动。测微计旋钮一个刻度是0.005mm,旋转一圈移动1mm。X轴总行程是20mm,满足任何薄片样品的厚度调节。通过测微计旋钮,使样品与切割片保持正确的左右距离,即找准想要的切割位置。 ● 关闭切割室防护罩。防护罩的磁性安全开关锁闭防护罩。 ● 在触摸屏控制面板设置切割片转速(4)。转速100-3000rpm/min,增量1rpm/min。既可以点击箭头调升、调降,也可以用数字键盘输入转数值。点击切割侧的冷却水开关(5),冷却水流出,按下切割/研磨开关键(1),电机驱动金刚石切割片旋转。 ● 手动控制切割。匀速地顺时针摇动切割手轮,整个工作台沿Y轴(纵向)方向逐渐靠近切割片,开始切割。Y轴的总行程224mm,满足所有标准载玻片尺寸的长度方向通过。手动控制的优势是使用者操控的自由度大,不同材料、不同制备要求的薄片切割都可以自主调节。 ● 样品切割的保留厚度最薄约0.5mm。 ● 切割完成后,再次点击切割/研磨开关(1)、切割侧冷却水开关(5),切割电机停止旋转,冷却水关闭。逆时针摇动手轮,将样品离开金刚石切割片。 ● 开启切割室仓门,点击切割侧的真空开关(2),真空泵被关闭,从真空卡盘处取下载玻片,并从切割室工作台上取出被切割掉的样品。 ● 用水清洗载玻片及样品,准备研磨。 三、岩相样品的研磨 ● 同样地,开机前先安装金刚石杯形砂轮。金刚石杯形砂轮直径10in(250mm),轴心孔径1.25in(31.75mm)。标准配置的金刚石杯形砂轮是70μm的和30μm的。通常由粗到细研磨,先安装去除量较大的70μm的。将METCUT-10GEO右侧研磨室的防护罩向上开启。用随机工具卸下主轴的法兰,套入金刚石杯形砂轮(金刚石研磨面朝外),重新扣上法兰,锁紧螺母。 ● 打开METCUT-10GEO的主开关。同样地,触摸Logo页面的任意位置进入操作主菜单页面。 ● 装上样品。研磨侧的真空卡盘固定在研磨操作手柄同轴的研磨臂上。研磨手柄在研磨室的外面,研磨臂在研磨室内。点击研磨侧真空开关(3),将已经切割好的样品载玻片的一面贴到研磨侧真空卡盘表面。真空卡盘吸附住载玻片。 ● 定位研磨起始位置。调整研磨操作手柄的位置,使样品与金刚石杯形砂轮的金刚石表面相对应。逆时针旋转研磨手柄末端的测微计(数字千分尺),当样品表面接触到金刚石杯形砂轮的表面时,按下千分尺的清零键。向后拉下研磨操作手柄,使样品离开金刚石砂轮的表面。 ● 关闭研磨室防护罩。该防护罩也有磁性安全开关装置,锁闭防护罩。 ● 在触摸屏面板设置金刚石杯形砂轮的转速(4)。转速的设定同切割侧。点击研磨侧冷却水开关(6),冷却水流出。点击切割/研磨开关键(1),电机驱动金刚石杯形砂轮旋转。 ● 握住研磨操作手柄前后韵律地移动,使样品的表面均匀地摩擦旋转的金刚石杯形砂轮,随着样品被磨削减薄,用手逆时针旋转千分尺,使样品持续贴近金刚石杯形砂轮。在千分尺数显200μm之前,千分尺的每次进给10-20μm即可;在千分尺数显200μm后,进给调整为5-10μm,直至千分尺数显为70μm。 ● 当达到70μm厚度时(扣除粘结的树脂厚度,样品实际厚度约60μm),停止手柄的研磨操作。点击切割/研磨开关(1)、研磨侧冷却水开关(6),金刚石杯形砂轮停止旋转,研磨侧冷水停止流出。将研磨手柄向身体侧拉,是样品离开金刚石杯形砂轮。 ● 打开研磨室防护罩,点击研磨侧真空开关(3),关闭真空泵,取下样品。 ● 从上述第一步开始,重复实施30μm的金刚石杯形砂轮研磨减薄动作。有时,观察需要更好的表面性,则停止了70μm的研磨后,转至磨抛机进行研磨、抛光。 ● 样品研磨减薄的保留厚度取决于研究目的,最薄约0.03mm。
  • 上海三信LabSen pH电极 为不同行业提供定制化解决方案
    pH电极是pH测试的核心技术、精确之源。拥有30年电化学传感器研发制造经验的上海三信仪表厂打造出的LabSen®pH电极与常规电极相比具有显著特点:耐碰撞玻璃膜强度是传统球泡的十倍以上,凝胶化内溶液避免产生气泡影响测试稳定性,全品种电极满足各种应用场合和测试要求。  据介绍,LabSen®pH电极凝聚了先进的电极技术,通过5种玻璃敏感膜配方、8种玻璃膜形状、4种液络部类型、4种参比系统和5种参比电解液的结构组合,精心打造30余种pH电极,为各行业应用定制专业可靠的测量方案。  LabSen®的产品技术和电极选型可归纳为六大类应用方案:低阻抗玻璃膜和专利三合一电极温度快速感应结构,帮助实验室常规测试得到快速准确的结果;超纯水pH电极的精细复杂结构保证了低离子pH测量的稳定性;特殊配方的玻璃膜满足了强酸、强碱、高温样品和含氢氟酸样品的测量要求;微量样品体积极小,需要细微型坚固玻璃完成pH测试;固体半固体和平面介质的直接pH测量需要各种类型的穿刺和平面电极;粘稠和乳制品测量液络部容易堵塞,预加压参比系统和Protelyte电解液是完美的解决方案……更多产品展示请看视频:
  • 干法电极车间除湿机,干法电极车间湿度控制设备
    干法电极车间除湿机,干法电极车间湿度控制设备【新闻导读】对于任何一家工厂或企业来说,一个优质的生产环境可以优化加工工艺,对其生产与品质都起到了至关重要的作用。尤其是在锂电池干法电极车间,不管是机器设备的运行还是产品质量都跟环境的灰尘含量、温度、湿度息息相关。以湿度为例,一般来说,锂电池干法电极车间对空气湿度的要求是在40%RH以下,超过这个范围,那么空气湿度就超标了   锂电材料与空气的反应会在原材料保存、电极制备、极片存储等整个过程进行,因此,对于锂电材料,从原材料到整个电池生产过程都需要严格的环境控制,特别是水分控制。如果水分与材料已经发生了反应,通过常规的干燥过程根本无法再次去除水分的影响,电极浆料的制备、极片制造等环节都需要在干燥环境内进行,一般地,锂电正极电池的生产过程都需要露点-30℃环境。  如果锂电正极材料颗粒表面吸收空气中的水分,反应产生了LiOH,这就会对极片制造工艺过程产生严重的影响。在锂电正极浆料制备过程中,PVDF溶解于NMP中,材料表面的碱性基团会攻击相邻的C-F、C-H键,PVDF很容易发生双分子消去反应,会在分子链上形成一部分的碳碳双键。  锂电材料吸收水分反应产物Li2CO3在充电状态的高电位下容易分解产生CO2气体,造成电池鼓包漏液问题。当材料吸收的水分足够多时,产生的气体多,电池内部的压力就会变大,从而引起电池受力变形,出现电池鼓涨,漏液等危险。  因此,对于锂电正极材料,在原材料保存和电池制备过程中,环境湿度都需要严格控制,才能生产高性能的锂离子电池。为此,这就需要通过专业的湿度控制设备--正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机来对其生产、储存等环境的湿度进行科学合理的控制环境。  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机是严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现高效的除湿效果,降低整机运行成本。欢迎您查询干法电极车间除湿机,干法电极车间湿度控制设备的详细信息!  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机技术参数与选型参考:  产品型号-------除湿量----适用面积-----功率-------电源----循环风量  正岛ZD-228LB--28(L/D)---30-80(㎡)----420(W)---220V/50Hz--190m3/h  正岛ZD-558LB--58(L/D)---50-100(㎡)---670(W)---220V/50Hz--850m3/h  正岛ZD-880LB--80(L/D)---100-160(㎡)--710(W)---220V/50Hz--980m3/h  【除湿机租赁业务要求】提供灵活的租赁方案,满足客户短期和长期的租赁要求。  【除湿机租赁收费标准】具体可根据租用机型、租用数量以及租用天数等来定价。  正岛ZD-890C---90(L/D)---90-150(㎡)---1700(W)--220V/50Hz--1125m3/h  正岛ZD-8138C--138(L/D)--150-250(㎡)--2000(W)--220V/50Hz--1725m3/h  正岛ZD-8168C--168(L/D)--180-280(㎡)--2800(W)--380V/50Hz--2100m3/h  正岛ZD-8240C--240(L/D)--280-380(㎡)--4900(W)--380V/50Hz--3000m3/h  正岛ZD-8360C--360(L/D)--380-580(㎡)--7000(W)--380V/50Hz--4500m3/h  正岛ZD-8480C--480(L/D)--500-880(㎡)--9900(W)--380V/50Hz--6000m3/h  ◎选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到最为适合你的除湿机!  核心提示:在锂电池的生产加工过程中,采用干法电极工艺提高电极的压实密度,提高极片厚度扩大活性材料可用空间,由于大幅减少了杂质的导入,使得电化学副反应降低,以此也可以提高电化学体系电压,相比湿法电极工艺能量密度大幅提升,成本也大幅下降,可靠性也大幅提升,再加上先天的优势,可谓意在深远!  而锂电正极面对很多问题,其中原材料的保存、电池生产环境要求高是巨大的挑战。本文简单总结下环境因素,特别是湿度对锂电正极材料特性的影响 不过,现在只要在其各个生产车间内配置相应的正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机,就可以对环境空气湿度进行科学合理的控制,从而满足其生产工艺的湿度控制要求!以上关于干法电极车间除湿机,干法电极车间湿度控制设备的全部内容是正 岛 电 器提供的,仅供大家参考!
  • 马耀光研究员团队提出一种具有皮米量级分辨率的微纳光纤锥光谱仪
    近日,浙江大学光电学院的马耀光研究员在微型高性能光谱仪研究中取得了新进展。研究团队提出了一种具有皮米量级分辨率的微纳光纤锥光谱仪。在这种光纤锥光谱仪中,精心设计的光纤锥几何参数使得输入光激发的少数传播模,可以随着光纤锥的非绝热形变发生耦合、演化过程,进而快速形成大量的高阶模式。这些新形成的高阶模式同时也会随着光纤锥的渐变直径被截止而转化为泄漏模,从而在探测面形成复杂的光学散斑。光谱信息也在这个过程里被编码进散斑图案之中。可以利用基于Transformer的MobileViT模型,快速、高效、准确的对输入光谱进行还原。经测试,光谱仪可以工作在450-1100nm的波段范围内,对输入光的分辨率可达1 pm 数量级。该光谱仪以相对较低的制造难度与成本,在毫米级的空间尺度下实现了皮米级的波长分辨能力。自牛顿利用棱镜观察到色散现象以来,针对光谱技术的研究就在人类发展历程中占据了重要地位。随着光谱分辨率的提高与光谱理论的完善,光谱技术逐步从科学实验领域扩展到了分析应用上,在生物传感、环境监测、天文、医疗等领域都发挥着重要的作用。但是传统光谱仪体积庞大、价格昂贵,因而在实际应用中较难推广。对光谱的测量往往需要使用非常专业的设备或者在专业的检测机构才能进行。近年来,随着微纳技术的发展,微型光谱仪凭借其体积小、重量轻、操作便捷、结构简单、价格低廉等特点,逐渐被人们所重视。但是,针对光谱仪的低成本、小体积、高性能等要求存在内在的制约关系:减小分光和探测元器件的尺寸将导致光谱仪的分辨率、灵敏度及动态检测范围显著下降,同时有可能增加器件的制造难度与成本。如何利用计算光谱技术进行光谱编码与解码是打破这一内在限制的重要前提。微纳光纤(MNFs)是研究纳米尺度光与物质相互作用的优秀平台之一。利用其简洁的几何形貌、强光场约束等优点,研究人员利用自制的光纤拉锥机精确控制光纤锥尺寸,对其内部的传导模式产生有效调控,如图1a所示。a) 基于微光纤锥的光谱编码结构利用非绝热近似下的陡变光纤锥,将输入的少量低阶模式快速转变为大量高阶模式。产生的高阶模式的数量和权重均为输入光场频率的函数。因而,随着高阶模式被光纤锥的渐变直径逐步截止,光谱信息就会随着泄漏的光场被编码进探测到的复杂散斑图案之中。多模光纤拉制的光纤锥内支持的传导模式众多,再加上锥区模式耦合带来的自由度,散斑结构非常复杂,波长的微小改变也会使得散斑有非常明显的变化,从而可以在较小的尺寸内实现高分辨的光谱识别如图1b、c所示。图1光谱仪结构。(a)微型光谱仪图片(b,c)微纳光纤锥区泄漏模图案映射在衬底上的侧视图和俯视图1. 光纤纤芯直径、光纤锥度、锥区长度、拉伸长度等结构参数对光线锥泄漏散斑具有重要的影响。输入光在芯径更大的光纤中,可以激发更多的模式,因此在后续的模式演化过程中可以产生更复杂的散斑,包含更多的光谱特征。图2的仿真结果也验证了这一点。图2 不同纤芯直径拉制得到的光纤锥的散斑仿真。纤芯直径分别为(a)8.2 μm(b)62.5μm(c)105μm2. 在微纳光纤束腰直径一致的情形下,锥区长度越短,锥区角度越大。如图3所示。随着锥区变短,散斑尺寸缩小,由Nyquist采样定理可知,对于一定大小的探测器单元尺寸,系统可以采集的散斑精细结构的质量会随之变低。例如当锥长为750 μm时,散斑尺寸仅为~2 μm。图3 不同锥区长度的光纤锥散斑仿真。锥区长度分别为(a)6000 μm(b)3000μm(c)1500μm(d)750μm3. 通过优化拉制光纤的纤芯直径,拉制过程中的拉伸长度与锥区长度等参数,研究人员在300*600 μm的小尺寸内,得到信息足够丰富的散斑。散斑图样由互补金属氧化物半导体(CMOS)传感器(CIS)直接获取,如图2a所示。利用自制的微纳光纤拉锥平台和转移平台,研究团队可以高效率、高精度地制备所需要的微纳光纤,并且将其与CIS探测器进行一体化集成。使得最终的样品在保证高集成度的同时,具有良好的稳定性与重复性。并且,制备的光谱仪核心元件的成本不到15美元。b) 基于深度学习的高精确度光谱复原研究人员发现重构型光谱仪的算法选择对重构结果也有较大影响,为了可以实现快速、低功耗的光谱重构,我们采用基于Transformer架构的MobileViT模型进行了训练,用于最终的图像分类与光谱重构。最终,光谱仪准确地恢复了450-1100 nm光谱范围内(受限于实验中采用的CMOS的工作带宽300-1100 nm 与神经网络训练过程中可用的输入光谱范围450-1200nm的交集)被测光谱信息,平均峰值信噪比(PSNR)为46.7 dB。重建的窄带光(彩色实线)和商用光栅光谱仪的地真光谱(图4(a)黑色虚线,Ocean Optics, LEDPRO-50)显示出很高的一致性。单色光的中心波长误差约为0.0223%。线宽误差约为7.37%。并且,光谱仪在图4b、c所示的性能极限测试中也展示出很好的表现:在工作带宽的测试中,可以准确恢复半高全宽为90 nm的光谱。在对于分辨极限的测试中,可以准确还原间隔1.53 pm的双峰信号。图4 光谱仪性能表征。(a)450-1100 nm波长范围内光谱恢复(b)连续光谱的恢复(c)窄双峰的恢复c) 高精度的高光谱探测能力因为微纳光纤尺寸小、光束缚能力强的特点,可以在一个传感器上集成多个微纳光纤锥,实现高光谱成像功能。图5a展示了在CIS上集成20个光纤锥的样品。结合机械扫描的采样方式,可以对例如图5b中的图像,进行高光谱采集。如图5c、d所示,采得的光谱信息具有很好的准确度和色彩还原度。图5 光谱仪高光谱表征。(a)20通道高光谱成像仪(b)彩色贴片图及高光谱复原结果(c)b中各个色块的光谱还原图(d)b中不同色块的CIE 1931色彩空间坐标研究团队利用轻量级Transformer架构的神经网络模型,对微纳光纤锥区泄漏模的干涉散斑进行优化与采集,简洁地实现了基于微纳光纤锥的光谱信息编解码架构,进而构建出一种尺寸在亚毫米量级,分辨率在皮米量级的低成本、高性能微型光纤锥光谱仪。此外通过在CIS上集成多个微纳光纤锥,可以实现高光谱成像的功能。未来,如果在标定过程中进一步考虑偏振态的影响,我们可以同时获得未知光的光谱和偏振态。论文所提出的光谱仪可应用于食品检验、药物鉴定、个性化健康诊断等领域,成本低廉。 本研究得到了国家自然科学基金和浙江省自然科学基金的资助。论文通讯作者为马耀光研究员,共同第一作者为硕士生岑青青和博士生片思杰。硕士生刘鑫航、唐雨薇、何欣莹也为论文工作做出了重要贡献。本论文的完成单位为浙江大学光电科学与工程学院、极端光学技术与仪器全国重点实验室、杭州国际科创中心、浙江大学嘉兴研究院智能光电创新中心。
  • 铂电极与参比电极测得的电位不是ORP值
    通常用铂电极作为指示为电极,银-氯化银或饱和甘汞电极作为参比电极测得的电位为平衡电位,这个电位往往被人误认为ORP电位(氧化还原电位)。平衡电位加上该温度下参比电极的电位值,才是氧化还原电位(ORP)值,这个电位是铂电极相对于氢电极的电位值。 FJA系列ORP去极化自动测定仪中在测得平衡电位后自动加上当前温度下的饱和甘汞电极或银-氯化银电极的电位值,结果是氧化还原电位(ORP)值。 有些用户购了我们ORP去极化法自动测定仪测定样品的ORP值与传统的方法测得的平衡电位相比较,就得出结论,两种方法结果对不上,相差甚大。 后来 我们要用户把样品寄过来用两种方法测定,结果如下: ORP去极化法自动测定仪测定结果为 -422.9mV -423.4mV 传统的方法测得的平衡电位为 -632mV, 如果加上银-氯化银电极的电位204mV,则样品的氧化还原电位(ORP)值为-428mV。 这说明两种方法完全对得上。 www.kew.cn
  • 微创颅脑手术用可展开电极问世
    据最新一期《科学机器人》杂志报道,瑞士洛桑联邦理工学院研究团队设计出一种能插入人类头骨的微创电极。这种新颖的电极可通过头骨上的一个小孔,插入一个较大的皮质电极阵列,将其部署在头骨和大脑表面之间约1毫米的空间内,而不会损害大脑。这种电极有螺旋状的“手臂”,每只“手臂”可在高度敏感的脑组织上展开。这是结合软生物电子学和软机器人技术概念后的工程设计。这个电极阵列能穿过一个直径2厘米的孔,但当展开时,会延伸成直径4厘米的表面。它有6个螺旋形“手臂”,以最大限度地扩大电极阵列的表面积,从而增加与皮质接触的电极数量。研究人员表示,该装置有点像一只螺旋蝴蝶,在变形之前复杂地挤在它的茧里,电极阵列连同它的螺旋臂被整齐地折叠在一个圆柱形的管子里,即装载器,能在通过头骨上的小孔后展开。受软机器人启发,根据外翻驱动机制,每个螺旋“手臂”都轻轻地依次在敏感的脑组织上展开。研究人员表示,外翻机制的美妙之处在于,他们可以部署任意大小的电极,同时对大脑施加持续且最小的压力。电极阵列看起来像一种橡胶手套,每个螺旋形“手指”的一侧都有柔性电极图案。“手套”是倒置的,或是从里到外翻转的,并在圆柱形装载器内折叠。在展开时,液体被注入每个倒置的“手指”中,一次一个,将倒置的“手指”向外旋转。到目前为止,可展开电极阵列已经在小型猪身上测试成功。未来,该技术可能为癫痫患者提供微创解决方案。
  • 中科院武汉植物园千万元仪器采购结果揭晓
    采购人名称 :中国科学院武汉植物园   委托招标单位:东方国际招标有限责任公司   采购项目名称:中国科学院武汉植物园科研仪器设备采购项目   采购项目编号:OITC-G13033160   结果确定日期:2013年5月22日   招标公告日期:2013年4月27日   第1包 多通道固相萃取系统   中标商:上海华运分析仪器有限公司   中标商地址:上海市斜土路2601号嘉汇广场T2-20D   中标金额:美元61500.00   第2包 全自动快速溶剂萃取仪   成交供应商:湖北中电进出口有限公司   成交供应商地址:湖北省武汉市武珞路586号江天大厦23层   成交金额:美元60000.00   第3包 激光捕获显微分离系统   成交供应商:武汉和万生物环保科技有限公司   成交供应商地址:武汉市洪山区杨园街铁机路27栋(下马庙20栋)5单元6楼1号   成交金额:美元188000.00   第4包 紫外可见光分光光度计   成交供应商:武汉垣隆逸国际贸易有限公司   成交供应商地址:武汉市江岸区江汉北路34号赏荷居2201室   成交金额:美元49000.00   第5包 高通量溶剂蒸发工作站   中标商:德隆泰国际贸易(香港)有限公司   中标商地址:武汉市武昌区首义路首义新村36-3-901室   中标金额:美元53000.00   第6包 氨基酸分析仪   成交供应商:湖北中电进出口有限公司   成交供应商地址:湖北省武汉市武珞路586号江天大厦23层   成交金额:美元111000.00   第7包 全自动连续流动分析仪   中标商:上海星门国际贸易有限公司   中标商地址:上海市闽行区申南路59号7号楼509室   中标金额:欧元35000.00   第8包 全自动化学分析仪   中标商:上海星门国际贸易有限公司   中标商地址:上海市闽行区申南路59号7号楼509室   中标金额:欧元34000.00   第9包 流式细胞仪   成交供应商:武汉垣隆逸国际贸易有限公司   成交供应商地址:武汉市江岸区江汉北路34号赏荷居2201室   成交金额:美元86000.00   第10包 激光粒度粒形分析仪   中标商:武汉海装信息技术有限公司   中标商地址:武汉市洪山区鲁磨路6号华中科技大学紫崧教师公寓C-1112号   中标金额:美元64500.00   第11包 全波长酶标仪   中标商:北京东胜创新生物科技有限公司   中标商地址:北京市海淀区上地信息路12号中关村发展大厦B201-206室   中标金额:美元52000.00   第12包 微电极系统   中标商:上海谓载商贸发展有限公司   中标商地址:上海市大宁路701号歌林商务大厦805室   中标金额:美元96300.00   第13包 森林自动气象观测站   中标商:北京普瑞亿科科技有限公司   中标商地址:北京市海淀区瀚河园路自在香山159号楼2单元202室   中标金额:美元16833.00   第14包 质谱仪   中标商:AB Sciex (Distribution)   中标商地址:上海市田林路888号1号楼102室   中标金额:美元483000.00   评审小组专家名单:汤宁、沈佐锐、李亚凤、严苏黎、刘海林、赵晓光、陈方方(1、2、3、4、5、6包)、刘帆(7、8、10、11、12包)、陈建军(9包)、程中平(13包)、王坤(14包)   本项目联系人:于峰 联系电话:68729912
  • 阿美特克微区扫描电化学技术讲座在京举办
    (摘自仪器信息网 2011-9-23新闻) 仪器信息网讯 2011年9月22日上午9:00,美国阿美特克(Ametek)公司微区扫描电化学技术讲座在北京科技大学腐蚀中心成功举办,80余位从事扫描电化学研究领域的专家学者出席了会议;仪器信息网作为特邀媒体亦参加了会议。 会议现场 美国阿美特克公司科学仪器部中国区经理杨琦女士主持会议 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究、酶稳定性研究、生物大分子的电化学反应特性、化学传感器、点蚀孔蚀、涂层完整性和均匀性、涂层下或逾金属界面间的局部腐蚀、缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。因此,阿美特克公司特别邀请了美国阿美特克公司普林斯顿应用研究(PAR)部门Rob Sides博士、厦门大学林昌健教授作相关的技术讲座。 美国阿美特克公司普林斯顿应用研究部门Rob Sides博士 报告题目:Applications of Different Localized, Scanning Electrochemical Measurements   Rob Sides博士在报告中简要介绍了微区电化学测试系统的各项技术设备原理及进展,并对阿美特克公司扫描振动探针/扫描振动电极(SVP/SVET)、局部电化学阻抗 (LEIS)、扫描电化学显微镜(SECM)、扫描开尔文探针(SKP)等微区电化学测试设备的技术特点和重要参数;同时,Rob Sides博士用大量数据和图片说明了上述微区电化学仪器在金属材料腐蚀等多个领域拥有着广泛的应用。据了解,Rob Sides博士长期从事微区扫描技术应用和开发,迄今已在全球提供了超过30套微区电化学仪器的应用方案设计与技术支持。 厦门大学林昌健教授 报告题目:扫描电化学微探针技术及在局部腐蚀研究中的应用   林昌健教授简要概述了当前国内外具有空间分辨能力的扫描微探针技术及其在腐蚀研究中的应用,包括扫描微电极技术(SMET)、SECM、SKP等 同时,林昌健教授在报告中还重点介绍了其近年来先后建立的具有微米空间分辨度的电化学微探针技术,并利用各种扫描探针技术研究金属/溶液界面电化学不均一性及其局部腐蚀过程。该研究表明,空间分辨电化学方法的发展及应用,加深了人们对金属表面和金属/溶液界面电化学不均一性,特别是金属局部腐蚀发生、发展及过程机理的认识。 Rob Sides博士对M370扫描电化学工作站作现场演示 用户参观阿美特克公司M370扫描电化学工作站 讲座结束后,阿美特克公司特别组织了参会人员参观了北京科技大学腐蚀与防护中心的阿美特克公司M370扫描电化学工作站(SVP,SKP,SECM,LEIS技术四合一),并由Rob Sides博士对设备作了现场演示,使到场用户获益匪浅。
  • 宋延林课题组利用打印技术制备高性能无铅柔性压电声敏传感器
    根据世界卫生组织的数据,全球约4.3亿人因耳蜗受损而遭受听力损失,改善听力主要靠人工耳蜗。然而,传统的人工耳蜗语音识别能力较低,而且刚性电极与软组织间的不匹配可能导致神经损伤和耳鸣等问题。随着物联网和人工智能的发展,柔性自供电人工耳蜗的研究引起了广泛关注。在国家自然科学基金委、科技部、中国科学院和北京市的大力支持下,化学研究所绿色印刷院重点实验室宋延林课题组近期在各向异性材料合成和图案化器件制备方面取得了系列进展,如二维MXene与纳米晶复合材料研究(J. Mater. Chem. A, 2022, 10, 14674-14691 Nano Res. 2022, DOI:10.1007/s12274-022-4667-x),直写高性能原子级厚二维半导体薄膜和器件(Adv. Mater. 2022, DOI:10.1002/adma.202207392),制备基于交替堆叠微电极的湿度传感超级电容器(Energy Environ. Mater. 2022, DOI:10.1002/eem2.12546)等。压电材料可以作为未来人工耳蜗的有利候选材料,然而,主流含铅压电材料与生物不相容,对环境不友好,其他压电材料的电输出功率由于声电转换性能低,不足以直接刺激听觉神经。因此,制造高性能无铅柔性压电声学传感器意义重大。最近,他们受人类耳蜗外耳毛细胞的启发,报道了一种基于准同型相边界的多组分无铅钙钛矿棒的直写微锥阵列策略,该策略一方面利用取向工程和在两个不同正交相(Amm2和Pmmm)之间形成的准同型相边界,显著提高应力对压电材料性能影响,实现压电响应增强;另一方面在压电薄膜表面引入微锥阵列,增加与声波的接触面积,增强对声波的吸收,从而制备高性能柔性压电声学传感器(FPAS)。该传感器显示出高灵敏度、宽频率响应的特点,覆盖常用的语音频率,同时具有角度灵敏度,可用于记录声音信号,并实现语音识别和人机交互。FPAS还具备防水和耐酸碱等特点,满足自然环境对可穿戴声学传感器的要求。研究成果近日发表于Matter期刊上(https://doi.org/10.1016/j.matt.2022.11.023),论文第一作者是硕士生向钟元,通讯作者是宋延林研究员和李立宏副研究员。 图1. 微锥阵列柔性压电声敏器件应用演示图图2. 声音数据采集、人机交互应用和FPAS的防水性能
  • 一种重金属检测电极的制备方法获国家发明专利
    一种化学修饰碳糊铋膜电极的制备方法获国家发明专利授权   近日,中科院长春应用化学研究所郏建波等科研人员发明的一项专利“一种化学修饰碳糊铋膜电极的制备方法”获得了国家知识产权局的授权。   重金属是一种很危险的污染物,往往长期积累在生物体内不可降解,在极其微量的情况下也会产生不良后果,因此痕量重金属的定量分析在药物、食品、临床和环境检测等方面都是非常重要的。   该发明将碳粉、修饰剂和疏水性有机溶剂按一定的质量比混合、研磨成均匀的化学修饰碳糊,然后将化学修饰碳糊装入电极管壳内,即得到化学修饰碳糊电极,进一步采用预镀法或者原位镀膜法制得化学修饰碳糊铋膜电极。该发明制备的电极可以方便地实现对自来水、湖水、雪水等样品中重金属铅的电化学测定。该发明制备的电极的电位窗较宽、操作简单,有利于进行铋膜电极上多种重金属的同时测定。该发明制备的化学修饰碳糊铋膜电极的稳定性好、灵敏度很高,对于重金属离子的检测可达0.10 ppb 另外,该电极对样品的预处理要求很低、表面更新容易、制作工艺简单、价格低廉,易于重复和普及使用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制