当前位置: 仪器信息网 > 行业主题 > >

微观成像相机

仪器信息网微观成像相机专题为您提供2024年最新微观成像相机价格报价、厂家品牌的相关信息, 包括微观成像相机参数、型号等,不管是国产,还是进口品牌的微观成像相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微观成像相机相关的耗材配件、试剂标物,还有微观成像相机相关的最新资讯、资料,以及微观成像相机相关的解决方案。

微观成像相机相关的论坛

  • 如何用sCMOS相机优化显微成像

    [align=center][b][size=14.0pt]如何用sCMOS相机优化显微成像[/size][/b][/align][align=center][size=11.0pt]会议时间:2020年3月20日10:00[/size][/align][b][size=12.0pt]内容介绍:[/size][/b]本次报告从灵敏度、成像视野、成像速度、成像特性等参数方面全面解读来自牛津仪器Andor的全新背照式、高分辨sCMOS相机。首先,介绍相机的成像结构和数据读出原理;第二,重点介绍Andor背照式SCMOS相机,分析相机参数对显微成像的影响;第三,以单分子成像为例,比较背照式sCMOS相机和EMCCD相机,给出各自成像优势;最后,展示sCMOS相机在具体科研上的应用。[b][size=12.0pt]讲师介绍:[/size][size=11.0pt]王坤:[/size][/b][size=11.0pt]2009[/size][size=11.0pt]年中科院国家纳米科学中心获得凝聚态物理博士,目前在牛津仪器Andor公司担任应用科学家,近十年来一直从事高端显微成像系统的相关科研及应用工作,参与过科技部重大仪器专项、中科院仪器专项、中科院仪器功能开发项目、上海市自然科学基金等科研项目,熟悉各类高端显微成像系统的原理,在各类生物样本成像上具有丰富的经验。[/size][font=等线][size=10.5pt]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_12626.html[/url][/size][/font]

  • 长期供应显微镜各种数码相机、CCD接口

    一、相机接口:显微数码摄影的必备工具,采用平像场摄像目镜,成像清晰。数码接口使用方便、设计美观、成像清晰、性价比高、是连接微观世界的高性能摄影摄像装置。二、种类较全:数码相机接口、单反数码相机转接口、CCD接口等,适用于尼康、佳能、奥林巴斯、索尼、蔡司等品牌相机。三、显微镜数码相机接口特点:1、适用性广:适用任何品牌的显微镜。2、中心对焦技术:使用中心对焦工艺和光学技术,使更快,更容易地对焦。3、图像质量高:使系统摄像更加固定,不会产生振动而影响图像质量。4、外型设计小巧:外型小巧、美观

  • 生物显微镜:揭示生命微观世界的利器

    摘要:本文将对生物显微镜进行详细介绍,包括其原理、类型、应用领域以及未来发展趋势。生物显微镜是生命科学研究中不可或缺的工具,它让我们能够深入观察生命的微观世界,从而更好地理解生命的奥秘。一、生物显微镜的原理生物显微镜的工作原理基于光学成像技术,通过透镜组合将微小物体放大并呈现出清晰的图像。它主要由光源、物镜、目镜、载物台等部分组成。生物显微镜利用可见光或荧光等光源照射样品,通过物镜将样品放大,再经过目镜进一步放大,最后由观察者或相机捕捉到放大的图像。二、生物显微镜的类型[list=1][*]光学显微镜:利用可见光成像,适用于观察细胞结构、组织切片等样品。[*]荧光显微镜:利用荧光染料标记样品,通过激发荧光观察特定结构或分子。[*]共聚焦显微镜:通过激光扫描样品,实现三维层析成像,适用于观察厚样本。[*]超分辨显微镜:突破光学衍射极限,实现更高分辨率成像,如STED显微镜、PALM/STORM显微镜等。[/list]三、生物显微镜的应用领域[list=1][*]生命科学研究:观察细胞结构、分子定位、生物大分子互作等。[*]医学诊断:病理诊断、细胞学检查、病原微生物检测等。[*]环境科学:观察微生物、污染物等环境样品的形态和结构。[*]材料科学:观察纳米材料、复合材料等微观结构和性能。[/list]四、生物显微镜的未来发展趋势[list=1][*]高分辨率与高速成像:随着技术的不断进步,生物显微镜将实现更高的分辨率和更快的成像速度,为生命科学研究提供更多细节和动态信息。[*]多模态成像:将多种成像技术融合到一台显微镜中,如光学、荧光、拉曼等多种模态,以实现对样品的多角度、多层次观察。[*]智能化与自动化:AI和机器学习等技术的发展将推动生物显微镜的智能化和自动化进程,实现自动样品定位、图像分析等功能,提高研究效率和准确性。[*]非线性光学成像:利用非线性光学效应,如二次谐波生成、多光子激发等,实现无标记、无损伤的深层组织成像,为生物医学研究提供新的观察手段。[*]便携式与便携式显微镜:为了满足野外、临床等场景的实时观测需求,生物显微镜将朝着更小巧、便携的方向发展。[/list]总结:生物显微镜作为揭示生命微观世界的利器,在生命科学、医学、环境科学等领域发挥着重要作用。随着科技的不断进步和创新,生物显微镜的分辨率、成像速度和功能将不断提升,为探索生命奥秘提供更多可能性。在未来,我们有理由相信生物显微镜将继续为科学研究和应用领域带来更多的突破和成就。

  • 高速荧光成像CMOS相机特点

    [url=http://www.f-lab.cn/vivo-imaging/micam02-cmos.html][b]高速荧光成像CMOS相机[/b][/url]是专业为[b]瞬态荧光成像[/b]需求而研发的[b]高速CMOS相机[/b],它具有比CCD相机更高的成像速度采样频率的更宽的动态范围,能够为[b]高速活体荧光成像[/b]提供亚毫秒级的高分辨率的高速图像,并在高速成像应用方面创造了显著的优势。[b]高速荧光成像CMOS相机特点[/b]百分之百自我研发,具有更高的帧速率(最大0.6msec /帧)和超低噪声专业为高速弱光成像和高速荧光成像需要研发,实现更高的成像速度和更低的噪声信号读出,具有0.6msec/frame在92x80像素帧速率和188x160像素1.2msec/frame成像能力。宽动态范围68db高度定制的CMOS传感器具有450000e -井深和68db或更宽的动态范围。从生物样品发出的足够的光线,让比 MiCAM02-HR 和 MiCAM02-HS更高信噪比的图像也能读出。兼容的micam02目前micam02用户可以轻松地利用新的micam02 CMOS摄像头通过简单的方式就可以连接相机的处理器和更新的软件版本。双波长同步双摄像机成像系统两个CMOS摄像机可以连接到micam02处理器做同步记录。这种双摄像机系统可以同时用于图像电压敏感染料和钙离子指示剂,以及在生物样品上执行多个位置的三维映射。样本数据:大鼠离体心脏动作电位传播的成像动作电位在大鼠海马脑片中的传播。切片染色di-4-anepss,1.2毫秒/帧(833hz)、188x160像素CMOS摄像头图像记录使用micam02。[img=高速荧光成像CMOS相机]http://www.f-lab.cn/Upload/micam02-imaging.jpg[/img]高速荧光成像CMOS相机:[url]http://www.f-lab.cn/vivo-imaging/micam02-cmos.html[/url][b][/b]

  • 科学家完成人类脑白质微观结构图集

    利用新型核磁共振成像技术,历时三年科学家完成人类脑白质微观结构图集 中国科技网讯 最近,一由欧洲多个国家研究人员组成的联合研究小组宣称,他们利用其开发的新型核磁共振成像技术,历时三年,完成了人类大脑白质微观结构图集。该图集的完成,将大大推动科学家对人类大脑白质的研究,对于未来神经科学和医学的研究发展具有重要意义。 白质是神经系统的三个重要组成元素之一。过去由于缺乏有效的研究工具,神经科学领域中的研究主要集中在灰质和神经元的研究上,而对于白质的研究则相对较少。为了完成大脑白质图集,联合研究小组开发了新的核磁共振成像方法,这种方法提供了前所未有的细节和准确性,使得科学家们首次可以对整个大脑活体的微观结构进行可视化探查,重新理解大脑思维过程与细胞结构的关系。 此次联合研究小组发布的大脑白质图集涵盖了100名志愿者的脑部三维图像,详细描述了大脑白质的微观特征,如细胞大小、密度、纤维直径等。这些图像可作为未来医学和基础神经科学两个领域中大脑研究的参考标准,不仅有助于科学家对大脑的理解达到一个新的高度,同样使得那些非专业用户,如医生或医疗人员,可以利用它来了解有关大脑的知识。可以预见,籍此图集的诞生,未来学界对于大脑白质结构及功能的研究将会大大加强。(记者 刘海英) 《科技日报》(2012-10-22 二版)

  • 显微镜:探索微观世界的奇妙工具

    显微镜:探索微观世界的奇妙工具在人类探索自然的漫长历程中,显微镜无疑是一把开启微观世界大门的钥匙。它以其独特的放大能力,让我们得以窥见那些肉眼无法察觉的奇妙景象——细胞的结构、微生物的形态、甚至是分子与原子层面的奥秘。本文将深入介绍显微镜的发展历程、基本构造、工作原理以及它在科学研究、医学诊断、工业检测等多个领域中的广泛应用。https://ng1.17img.cn/bbsfiles/images/2024/09/202409190935059333_5216_6742570_3.jpeg一、显微镜的历史沿革显微镜的发明可以追溯到17世纪初,荷兰眼镜商汉斯利伯希是公认的现代显微镜之父。他通过组合两片凸透镜,制成了世界上第一台复合显微镜,虽然其放大倍数有限,但已足以让人们初窥微观世界的神秘面纱。随后,罗伯特胡克、安东尼范列文虎克等科学家对显微镜进行了不断改进,大大提高了其放大倍数和成像质量,为后来的微生物学、细胞学等学科的发展奠定了坚实基础。二、显微镜的基本构造现代显微镜的结构复杂而精密,主要由光学系统、机械系统和照明系统三大部分组成。 ? 光学系统:是显微镜的核心部分,包括物镜、目镜和镜筒等组件。物镜位于标本下方,负责将标本放大并成像;目镜则位于观察者眼睛上方,进一步放大物镜形成的图像供人眼观察。镜筒则连接物镜和目镜,确保光线能够准确传输。 ? 机械系统:用于调节显微镜的位置和角度,包括底座、支架、载物台、调节旋钮等部件。通过这些部件的精确调节,可以实现对标本的精确定位和观察。 ? 照明系统:为显微镜提供充足的光源,确保标本能够被清晰照亮。常见的照明方式有透射照明和反射照明两种,分别适用于透明和不透明标本的观察。 三、显微镜的工作原理显微镜的工作原理基于光的折射和放大原理。当光线通过物镜时,由于物镜的凸透镜特性,光线会发生折射并聚焦于一点形成实像。这个实像随后被目镜进一步放大并投射到观察者的视网膜上形成虚像。通过调节物镜和目镜的焦距以及载物台的位置,可以实现对标本不同深度和层次的观察。四、显微镜的应用领域显微镜在科学研究、医学诊断、工业检测等多个领域中发挥着不可替代的作用。 ? 科学研究:在生物学、医学、材料科学等领域中,显微镜是研究微观结构和功能的重要工具。例如,通过电子显微镜可以观察到细胞的超微结构;通过荧光显微镜可以研究生物分子的分布和相互作用。 ? 医学诊断:显微镜在病理学、微生物学等医学领域中具有广泛应用。医生可以通过显微镜观察患者的组织切片或体液涂片来诊断疾病;同时也可以通过显微镜检测细菌、病毒等微生物的存在和类型。 ? 工业检测:在半导体制造、精密机械加工等行业中,显微镜被用于检测产品的微观缺陷和表面质量。通过显微镜的高精度成像能力可以实现对产品质量的严格控制和优化生产流程。 五、结语显微镜作为探索微观世界的重要工具不仅揭示了自然界的无限奥秘也推动了科学技术的飞速发展。随着科学技术的不断进步和创新显微镜的性能和应用范围也在不断拓展和提升。未来我们有理由相信显微镜将继续在各个领域中发挥重要作用为我们揭示更多未知世界的秘密。

  • 【原创大赛】显微荧光成像制冷CCD

    为何荧光显微镜需要使用制冷CCD相机?众所周知,荧光显微镜是利用被观测物体发出荧光来进行观测的显微镜。在外部光源的激发下,被检测物体发出荧光,从而进行观察。与普通显微观察不同的是,荧光显微镜并不直接使用外部光源,而是使用被观测物体发出的荧光。相比普通光源,荧光光源的强度要小得多,反映到成像上面,即意味着相比普通显微拍摄的曝光时间,荧光拍摄的曝光时间要长得多。但是,单方面的延长曝光时间,并不能得到好的显微荧光图像,因为随着曝光时间的增强,噪声也大幅度的的增加,严重影响了成像质量。科学家研究发现,由于曝光时间延长而导致的噪声的增加主要来自于CCD产生的暗电流噪声,于是冷CCD应运而生。所谓冷CCD,就是利用一定的制冷技术对CCD芯片进行制冷,让它在较低的温度下进行工作,从而有效的降低暗电流噪声。所以荧光显微镜的图像采集需要配套制冷CCD才能得到满意的图片,因为荧光的强度不足可见光的万分之一,这就决定采集荧光图像的CCD必须具备很高的灵敏度,为了消除图像采集过程中,因亮度不足而出现的噪点,最好采用制冷CCD来完成。无锡超微光学的LC-140A/500A显微荧光成像制冷CCD,是一款研究级的显微荧光成像专用相机,最适用于极弱光和微光的应用及提供最佳颜色还原和灵敏度的显微荧光成像专业用CCD,图像传感器具有高动态范围,优秀的灵敏性,配合12位数据采样输出,并支持2 x 2,4 x 4硬件binning。,具有小型化、操作简单、性能稳定等特点,适用在Nikon,leica,Zeiss,Olympus等显微镜上。提供企业或研究单位在化学发光成像分析、多色荧光成像分析等之研究及应用领域。

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • 【原创大赛之】“聚焦微观世界、展现微观风采”显微镜照片征集活动开始啦!!!

    一滴水折射整个世界  显微玻片方寸之间更有无限缤纷  显微镜是我们工作的战友,生活的伙伴……  透过显微镜的世界究竟会多么绚烂多姿,赶快记录下来这份方寸之间的精彩吧~~  为了促进各版友间技术交流与合作,推动显微镜实验的发展,用艺术思想与科学方法展现微观世界,特在第三届原创大赛同期在显微镜板块举办以“聚焦微观世界、展现微观风采”为主题显微摄影大赛活动。希望从事显微学的工作者、爱好者及在校学生积极参加。  活动时间:2010年11月12日-12月31日  参赛方法   在相应版面中以主题帖形式发表,标题中注明:【第三届原创聚焦微观】即可参赛  参赛要求  1. 作品必须为显微镜(主要包括光学显微镜、透射电镜、扫描电镜、扫描探针显微镜、共聚焦显微镜)拍摄的图像,所用设备的品牌不限。  2. 参赛作品须为参赛选手本人亲自拍摄。不得使用他人作品参赛。  3. 如参赛作品为多名作者,须在提交作品时注明。  4. 参赛作品黑白、彩色不限,彩色尤佳。  5. 为了促进同行技术交流,提交作品时请注明参赛作品的制作描述,例如:样品类型,制作方法,仪器型号;拍摄参数,拍摄过程中的心得等,字数不少于500字。  7. 参赛作品图片大小允许最大为:,允许的格式为:。  评选标准  1. 科学性:样品有独特性、创新性,图片表露信息的丰富性。  2. 艺术性:图像的美观和视觉效果,构图和造型,尺度和比例等。  3. 技术性:样品制备的难度及获取图像的难度,成像质量和成像技术及后期处理方法等。  活动奖励:  1.参赛作品可与其他第三届原创大赛作品一同享受原创大赛所有奖励措施,可以每月参加原创评奖,同时只要参赛者均可参加原创大乐透抽奖,每篇原创作品可获得一次抽奖机会哦~~~  2.活动结束后将将评出【最佳艺术奖】、【创新科学奖】、【技术大亨】三项奖项各一名,更有神秘奖品奖励哦~~~快和自己的显微镜伙伴一同去探索、发现着美丽的微观世界吧~~

  • OPTON的微观世界|第3期 揭开“财富”之谜 ——显微技术在钞票防伪中的应用

    OPTON的微观世界|第3期 揭开“财富”之谜 ——显微技术在钞票防伪中的应用

    前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_01_3001042_3.jpg新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。1. 2009版100元美刀的制样及观察范围http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_02_3001042_3.jpg2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。2. 微观形貌结构对比http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_03_3001042_3.jpg蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。3. 高倍形貌-元素分析http://ng1.17img.cn/bbsfiles/images/2017/02/201702211619_04_3001042_3.jpg有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:http://ng1.17img.cn/bbsfiles/images/2017/02/201702211620_01_3001042_3.jpg微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。三、后记http://ng1.17img.cn/bbsfiles/images/2017/02/201702211620_02_3001042_3.jpg蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等······极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。

  • 透射电镜(TEM):揭秘微观世界的奥秘

    今天我将为大家带来一篇关于透射电镜原理、行业应用以及一些令人惊叹的实例的详细探讨。透射电镜作为一种强大的微观成像工具,在科学研究、材料科学和生命科学领域发挥着不可替代的作用。[color=#ff0000][b]透射电镜原理解析[/b][/color]透射电镜是一种通过物质透过性样本的薄片进行观察的高分辨率显微镜。其原理基于电子的波动性,与传统光学显微镜不同,透射电镜使用电子束而非可见光线,因此具有更高的分辨率。[list=1][*][color=var(--tw-prose-bold)]电子源:[/color]透射电镜使用电子枪产生高速电子束。这个电子束的能量通常在几千至几百千伏之间,相比可见光波长更短,因此具有更高的分辨率。[*][color=var(--tw-prose-bold)]透射样本:[/color]样本需要被制备成极薄的切片,以确保电子能够透过样本,形成透射电镜图像。样本通常使用特殊的染色方法,以增强对比度。[*][color=var(--tw-prose-bold)]透射:[/color]电子束透过样本后,通过一系列的电磁透镜系统进行聚焦,最终形成高分辨率的影像。这些影像具有比传统光学显微镜更高的放大倍数。[*][color=var(--tw-prose-bold)]成像系统:[/color]透射电镜的成像系统可以捕捉电子束透过样本后的相互作用,生成高质量的二维或三维图像。[/list][b][color=#ff0000]透射电镜在科学研究中的应用[/color][/b][list=1][*][color=var(--tw-prose-bold)]材料科学:[/color]在材料科学领域,透射电镜被广泛用于研究纳米结构、晶体缺陷和材料的微观性质。通过高分辨率的图像,科学家们能够深入了解材料的原子结构和相互作用。[*][color=var(--tw-prose-bold)]细胞生物学:[/color]在细胞生物学研究中,透射电镜揭示了细胞内部结构的微观细节,如细胞器的形态、核糖体的排列等。这对于理解细胞功能和疾病机制至关重要。[*][color=var(--tw-prose-bold)]纳米技术:[/color]透射电镜在纳米技术研究中扮演着关键角色,帮助科学家们观察和操纵纳米尺度下的材料。这对于纳米电子学、纳米材料和纳米医学的发展具有深远影响。[/list][b][color=#ff0000]透射电镜的新领域探索[/color][/b][list=1][*][color=var(--tw-prose-bold)]生命科学的前沿:[/color]在生命科学领域,透射电镜正在探索单个生物分子的结构和相互作用。这为药物设计和生物医学研究提供了宝贵的信息。[*][color=var(--tw-prose-bold)]量子领域的启示:[/color]透射电镜在量子领域的研究中也展现了巨大潜力。科学家们正在利用透射电镜来观察和分析量子物质的行为,推动了量子信息和计算的发展。[/list][color=#ff0000][b]行业前景和挑战[/b][/color]透射电镜作为一项关键的实验室工具,其应用领域日益拓宽。然而,面临的挑战包括对样本制备的要求高、仪器昂贵以及操作技能的需求。未来,随着技术的不断创新,这些挑战有望逐渐得到解决,推动透射电镜在更多领域中的广泛应用。[b][color=#ff0000]结语[/color][/b]透射电镜的发展和应用为我们提供了一扇探索微观世界的窗户。从材料科学到生命科学,透射电镜的应用范围不断扩大,为科学研究、工程创新和医学进步提供了重要支持。通过深入了解透射电镜的原理和应用,我们有望揭开更多微观世界的奥秘,推动科学的边界不断拓展。如果你对透射电镜领域有更多疑问或想要分享相关经验,请在评论中留言,我们共同探索这个令人着迷的科学领域。

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

  • tg微观相容

    请教各位大虾,晶体和非晶体有没有可能微观相容麦芽糊精可算高聚物,有没有Tg,能否与果糖,葡萄糖微观相容?[em38]

  • 【第5季仪器心得】洞察微观世界:扫描电镜的精准与震撼

    置身于实验室的一角,我有幸体验到了一场微观世界的壮丽航行——通过上海仪电的扫描电镜。这款设备不仅在精密制造和材料分析中占有一席之地,也为我打开了一个全新的视角来观察那些肉眼无法直接看到的微小结构。首先映入眼帘的是其现代化的设计和紧凑的机身。扫描电镜的外观给人以简洁高效之感,无论是放置在实验室还是工业环境中,都显得协调而专业。设备的启动过程异常平稳,噪音控制得当,即便是在长时间运行状态下,也不会对工作环境造成干扰。操作上,它同样直观易用。大屏幕显示器配合智能用户界面,即使是初次接触的操作者也能迅速熟悉流程。我特别印象深刻的是其自动化的样品台,可以轻松地定位到感兴趣的区域,并且在高倍率下进行精确的微调,这对于获取高质量的图像至关重要。图像质量方面,扫描电镜的表现令人赞叹。在高分辨率下,每一个细节都清晰可见,从微观颗粒到复杂结构,无所遁形。这得益于其先进的电子光学系统和精细的成像技术,使得图像具有极高的信噪比和对比度。尤其是对于需要观察微妙差异和精确测量的应用,如材料科学、半导体检测等,它都能提供可靠的数据支持。

  • 【分享】金属和合金的微观分析

    【分享】金属和合金的微观分析

    金属和合金的微观分析 microanalysis of metals and alloys   金属与合金的各种相的形貌(形状、大小和分布等)、晶体结构、化学组成等微观的研究,统称微观分析。金属与合金的性能与其显微组织密切相关。随着微束分析仪器的不断发展,对金属与合金的分析也逐渐深入,由过去的毫米、微米尺度正在进入到纳米(1nm=10-9m=10┱)尺度。在某些特殊情况下,甚至可以直接观察单个原子,并确定其原子序数。根据微束源不同,微观分析仪器可分光子、电子和离子束三大类(图1)。此外中子衍射也有所应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34034_1634962_3.jpg[/img]光束微观分析 人们最早是使用光学显微镜观察钢的相变及各种相的形貌,在此基础上形成了金相学这门学科(见光学金相显微术)。后来又用 X射线衍射研究晶体结构(见X射线衍射),曾以此证明 β-Fe与铁素体相同,不是一种新相。到了30年代,这种晶体结构研究阐明了电子化合物的晶体结构类型与电子浓度间的关系,发现了固溶体在预沉淀阶段中溶质原子偏聚成的GP区,确定了金属晶体在范性形变中的滑移面与滑移方向,并在此基础上发展出位错概念和其几何模型(见晶体缺陷)等等。这种X射线金相研究的建立为金属学奠定了基础。   过去,合金中的第二相颗粒的化学成分,主要是用化学或电化学方法,先将它们从基体中分离出来,再用常规化学分析方法测定,如过渡族金属在铝合金中与铝形成的化合物和在合金钢中与碳形成的合金碳化物等(见合金相)。应用激光技术,在光学显微镜中安装激光源,使激光通过透镜中心孔射到金相试样上选好的第二相颗粒上,测定所含各元素的发射光谱,可以测定微区成分,但是激光束的直径在10μm以上,因此这种激光探针只适用于分析如钢中夹杂物、矿物及炉渣中较粗大的颗粒。   电子束微观分析 电子显微镜的问世把放大倍率由光学显微镜的一千多倍提高到扫描电子显微镜(SEM)的几万倍或透射电子显微镜(TEM)的几十万倍(见电子显微学)。不仅如此,电子显微镜还发展成为一个全面的微束分析仪器,既能观察几个埃(┱)的微观细节,还能进行几十埃范围的晶体结构分析(选区或微束电子衍射)和成分分析(X射线谱或电子能量损失谱)。   X射线波谱和电子探针 聚焦的电子束照射到试样上,使其中的原子失掉核外电子而处于激发的电离态(图2a),这是不稳定的,外层电子会迅速填补内层电子空位而使能量降低(图2b)。4释放出来的能量(在图中是EK-EL2)可以产生该元素的具有特征波长或能量的标识X射线谱。根据这些X射线的波长不同,经分析晶体展谱(X射线波谱,wave dispersive spectroscopy,简写为 WDS)或根据X射线光子能量不同由半导体探测器等展谱(X射线能谱,energy dispersive spectroscopy,简写为EDS)。X射线波谱仪的构造原理与X射线荧光谱仪基本相同,只不过是用电子而不是用X射线作为激发源。X射线波谱仪的特点是分辨率高,因此分析的精度高而检测极限低,此外,根据布喇格定理2dsinθ=λ,采用晶面间距d 大的分光晶体,可以分析标识X射线波长为λ的硼、碳、氮、氧等轻元素。它的缺点是分光晶体接受X射线的立体角小,X射线的利用率低;此外,试样要求象金相试样那样表面平正光洁,不能分析凸凹不平的试样。电子探针(electron microprobe,简写为EMP)就是由几个电磁透镜组成的照明系统与 X射线波谱仪结合在一起的微束分析仪器,电子束焦斑直径一般是0.1~1μm。将金相试样置于电子探针仪中,用静止的电子束可以得到定点的分析结果,也可以用扫描电子束得到一些元素在一条直线上的一维分布或一个面上的二维分布。电子探针在分析合金中第二相的成分、偏析、晶界与表层成分方面用途很广。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34035_1634962_3.jpg[/img]X射线能谱仪 主要由半导体探测器及多道分析器或微处理机组成(图3),用以将在电子束作用下产生的待测元素的标识 X射线按能量展谱(图4)。X射线光子由硅渗锂 Si(Li)探测器接收后给出电脉冲信号。由于X射线光子能量不同,产生脉冲的高度也不同,经放大整形后送入多道脉冲高度分析器,在这里,按脉冲高度也就是按能量大小分别入不同的记数道,然后在X-Y记录仪或显像管上把脉冲数-脉冲高度(即能量)的曲线显示出来。图4就是一个含钒、镁的硅酸铁矿物的 X射线能谱图,纵坐标是脉冲数,横坐标的道数表示脉冲高度或X射线光子的能量。X射线能谱仪的分辨率及分析的精度不如根据波长经晶体分析的波谱仪,但是它没有运动部件,适于装配到电子显微镜中,而且探测器可以直接插到试样附近,接受X射线的效率很高,适于很弱的X射线的检测。此外,它可以在一、二分钟内将所有元素的 X射线谱同时记录或显示出来。X射线能谱仪配到扫描电子显微镜上,可以分析表面凸凹不平的断口上的第二相的成分;配到透射电子显微镜上可以分析薄膜试样里几十埃范围内的化学成分,如相界、晶界或微小的第二相粒子。因此X射线能谱仪目前已在电子显微学中得到广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34036_1634962_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34037_1634962_3.jpg[/img]X 射线能谱分析的一个较大弱点是目前尚不能分析原子序数为11(Na)以下的轻元素,因为这些元素的标识X射线波长较长,容易为半导体探测器上的铍窗所吸收。目前正在试制无铍窗及薄铍窗的探测器,目的是检测碳、氮、氧等轻元素。   电子能量损失谱(electron energy loss spectro- scopy,简写为EELS) 能量为E的入射电子与试样中原子的非弹性碰撞使后者电离而处于较高能量的激发态(图2a中是K激发态、能量为EK),入射电子损失的能量为EK+ΔE,ΔE为二次电子的逸出功。由此可见,对于不同元素,电子能量损失有不同的特征值。使透射电子显微镜中的成像电子经过一个静电或电磁能量分析器,按电子能量不同分散开来。除了有一个很强的无能量损失的弹性电子能量峰外,还会出现一些与试样中各元素相对应的较弱的具有特征能量损失的峰。尽管这些峰不很明锐(较好的水平是2~3eV),定量分析还存在一定困难,但是由于它有下列两个显著优点而在透射电子显微术中逐渐得到广泛应用:一是可以分析B、C、N、O等轻元素;二是将电子束聚焦到几十埃就可以测出微小区域的组成。显然,入射电子由于产生标识X射线而损失一定能量(图2a、b),可见电子能量损失谱和X射线能谱有着密切关系。

  • 科学级单色显微镜CCD相机及规格参数

    [url=http://www.f-lab.cn/microscope-cameras/moticam-pro285c.html][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b][/url]是一款采用专业单色CCD图像传感器的科研单色显微镜相机,有4帧缓存器,内置Schott BG 40的带通滤波器确保高品质的成像图像处理,可用于科学研究用途。[b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]具有一个外部硬件触发端口(TTL)可以用来触发相机或摄像机触发外部设备。[b][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]特点[/b]• 4帧图像帧缓冲区使得图像传输和处理更快。• 该相机性价比高,灵活性强,高质量图像的广泛各种应用。• 提供的软件将普通显微镜转变为多媒体演示、分析和文档平台• 相机在选定的时间间隔记录温度来创建温度记录[img=专业单色显微镜CCD相机]http://www.f-lab.cn/Upload/MOTICAM-Pro205C.jpg[/img][b][b]科学级单色显微镜CCD相机MOTICAM-Pro285C[/b]规格[/b]传感器类型:单色CCD分辨率:1360x1024像素满幅速度:15fps图像传感器规格:ICX285AL图像传感器尺寸:2/3单个像素大小:6.45x6.45微米数模转换器:12bit图像缓存:4帧缓存时间设置:125ms~60s图像传输:USB2.0[color=#666666][color=#000000]显微镜相机官网:[url]http://www.f-lab.cn/microscope-cameras.html[/url][/color][/color][color=#666666][/color]

  • 目前唯一将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术,精彩回放!

    目前唯一将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术,精彩回放!

    [size=24px]报告:高速大视场彩色三维显微成像技术及应用 [url=https://www.instrument.com.cn/webinar/meetings/swxw2021][b]精彩回放[/b][/url][/size]【摘要】 生物体表面色彩的不同色相、饱和度和明度在很大程度上反映了其微观结构和光学性质的不同。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,然点扫描显微成像技术的颜色通道十分有限,通常仅有三至四个,不能反映样品的全部色彩信息。研究团队开发了三维多视场成像技术,该技术是目前唯一的将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术。最大三维光切片速度100fps@1024×1024pixels。[size=18px][color=#ff0000][b][url=https://www.instrument.com.cn/webinar/meetings/swxw2021/]精彩回放:https://www.instrument.com.cn/webinar/meetings/swxw2021/[/url][/b][/color][/size][size=18px][color=#ff0000][/color][/size][size=18px][color=#ff0000][b]====[/b][/color][/size][img=,690,1227]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061826440679_4529_2507958_3.jpg!w690x1227.jpg[/img]

  • 【原创大赛】OPTON的微观世界之量子阱

    [b]概 述[/b]那么量子阱是什么呢,小编就小小解释一下,量子阱就是指由2种不同的半导体材料相间排列形成的、具有明显量子限域效应的电子或空穴的势阱。量子阱器件,即指采用量子阱材料作为有源区的光电子器件。[b]一、量子阱的构造 [/b]如下图,量子阱器件的基本结构是两块N型GaAs附于两端,而中间有一个薄层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成。在未加偏压时,各个区域的势能与中间的GaAs对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的N型区(发射极)进入右边的N型区(集电极),中间必须通过AlGaAs层进入量子阱,然后再穿透另一层AlGaAs。量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,如量子阱红外探测器、GaA s、InP基超晶格、量子阱材料、量子光通讯和量子结构LED等,而且随着制作水平的提高,它将获得更加广泛的应用。[align=center][img]http://img1.17img.cn/17img/images/201708/uepic/7619d5a4-5212-41d1-95b8-22fa2b5257b1.jpg[/img][/align][align=center]量子阱的基本结构[/align][b]二、量子阱的微观世界[color=#0080ff][/color][/b]量子阱材料一般使用分子束外延(molecular beam epitaxy ,简称 MBE)或金属有机氧化物化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法(MOCVD)技术制备,对于量子阱材料界面结构的观察,晶体生长过程中出现的诸如层错,位错等缺陷的形成、特性及其分布等,我们一般利用高分辨透射扫描电镜(TEM)来观察,从而确定材料微观结构参数与器件宏观性能参数间的关系。众所周知,透射样品制备要求严格,制样困难,首先要将样品膜面利用进行对粘,再继续线切割为3mm×1mm;其次采用砂纸将样品打磨抛光使其厚度为60μm 左右,再抛光至 20μm;最后使用离子减薄仪将样品轰击为10nm以下。这个过程技术要求高,每一步都需要经验,不是一般人都可以做的,而且成本较高;而扫描电镜相比较而言,样品制备简单,导电样品直接用导电胶固定在样品台上,放入腔室内进行观察,对于不导电样品,我们也有自己的解决方案,一配备离子溅射仪,即喷金,二采用低电压模式,低电压成像是现代场发射扫描电镜的技术发展趋势,低电压成像可以呈现样品极表面细节、可以减少不导电样品的荷电(放电)现象、可以减少电子束对样品的损伤。对于薄膜材料更是如此,下面就是我们来看看采用蔡司sigma 500所测的量子阱材料,我们得到了10万和15万倍下的量子阱的背散射图片,可以看出样品界面出现了亮暗程度不同的衬度带,各层分界清楚,界面平整,层分布精度高,周期性好,厚度为 68.11nm,阱和势垒交替出现,从而确定周期厚度。[align=center][img]http://img1.17img.cn/17img/images/201708/uepic/901137de-31b1-4b78-8c0e-6ac036ce6687.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201708/uepic/8be28f2f-c1d1-447a-a5bd-6121db979911.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201708/uepic/2262e497-7347-4137-9f66-c0fdd579632e.jpg[/img][/align][align=center][/align][b]后 记[/b]随着分子束外延和金属有机化学汽相淀积技术的迅速发展,人们已能够生长出原子尺度的、界面平滑的优质超薄层半导体材料,可以在生长方向上精确地控制薄层的组分和厚度,从而实现超晶格量子阱结构,所以晶格量子阱结构材料及应用的研究已迅速发展成当今半导体物理和固体物理学中最重要的前沿课题之一,而扫描电子显微镜一定可以大展身手,那就跟紧小编的步伐,我们一起跟随蔡司扫描电镜去见证光电材料史的辉煌吧!

  • 【资料】金纳米颗粒微观结构首次得到揭示

    [B]“这是一项应该被写入教科书的重要发现” [/B]纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金纳米颗粒作为示踪剂,比如探测样本中是否存在某种DNA或者蛋白质。为了防止不同金纳米颗粒的原子之间形成化学键,科学家经常在金纳米颗粒表面覆盖一层保护性分子层,最常用的是含硫的分子团。如果改造这些含硫分子团,使其具有特殊的绑定位点或者荧光标记,观察和区分金纳米颗粒将更加容易。 尽管如此,科学家对金纳米颗粒的结构却没有清晰的认识,有认为金纳米颗粒是胶质的,形状杂乱,大小不一,还有认为它们是具有同一尺寸和结构的离散分子。 在最新的研究中,美国斯坦福大学Roger Kornberg领导的小组成功制备出了有单层硫醇保护的金纳米颗粒晶体,并利用X射线结晶学技术,首次对它们的精确结构进行了成像。值得注意的是,制备晶体和确定结构一样,都是突破性的进展。

  • 常见动物毛皮在宏观微观形态下的辨别

    常见动物毛皮在宏观微观形态下的辨别

    毛皮羊毛皮种类较多,毛一般较粗糙,手感较涩;微观结构下,毛一般有较明显的鳞片呈覆瓦状排列。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_668045_2974654_3.png狐狸毛皮狐狸毛皮毛较长,饱满,手感较好,针毛一般无成簇现象;微观结构下可见绒毛有明显的饱满髓腔。http://ng1.17img.cn/bbsfiles/images/2016/02/201602190912_584645_2974654_3.png兔毛皮兔毛皮毛较短,手感较细腻;微观结构下可见明显规则的髓腔,呈单列或多列梯形状。http://ng1.17img.cn/bbsfiles/images/2016/02/201602190916_584647_2974654_3.png貉子毛皮貉子毛皮毛较长,针毛较硬,针毛毛尖具有明显的黑色,成簇分布;显微结构下绒毛鳞片具有较明显的翘角,有少数毛具有不饱满髓腔。http://ng1.17img.cn/bbsfiles/images/2016/02/201602190912_584646_2974654_3.png水貂毛皮水貂毛皮毛较短,较密,光泽较好,针毛和绒毛有分层现象,针毛较硬;微观结构下可见绒毛有对称分布的鳞片,翘角明显。http://ng1.17img.cn/bbsfiles/images/2016/02/201602190912_584642_2974654_3.png

  • 计算自适应光学技术可实现高清医学成像

    科技日报 2012年04月25日 星期三 本报讯 实时3D微观组织成像技术的出现不啻为癌症诊断、微创手术和眼科等医疗领域的一场革命。据物理学家组织网4月23日报道,美国伊利诺伊大学的研究人员开发出用计算自适应光学系统校正光学层析成像的畸变技术,给未来医疗的“高清”成像带来前景。相关技术成果刊登在最新一期美国《国家科学院学报》在线版上。 美国贝克曼研究所高级科学和技术博士后研究员史蒂芬说:“该技术能够超越现在的光学系统,最终获得最佳品质的图像和三维数据。这将是非常有用的实时成像技术。” 畸变如散光或扭曲困扰着高分辨率成像。其会使对象细点的地方看上去如斑点或条纹。分辨率越高,问题会变得更糟糕。这是在组织成像中特别棘手的问题,而精度对于正确诊断至关重要。 自适应光学可以校正成像的畸变,被广泛应用于天文学来校正当星光过滤器通过大气层的变形。医学科学家已经开始将这种自适应光学系统的硬件应用于显微镜,希望能改善细胞和组织成像。 但伊利诺伊大学生物工程内科医学的电子和计算机工程教授斯蒂芬指出,这同样富有挑战,将其应用于组织、细胞成像,而不是通过大气对星星成像,存在很多光学上的问题。基于硬件的自适应光学系统复杂而昂贵,调整繁琐,故不太适用于医疗扫描。 由此,该团队采用计算机软件来发现并纠正图像畸变,替代硬件的自适应光学,称为计算自适应光学技术。研究人员用此技术演示了大鼠肺组织含有微观粒子凝胶的幻影。用光学成像设备干涉显微镜的两束光扫描组织样本,计算机收集所有数据后,纠正所有的深度图像,使模糊的条纹变成尖锐的点而特征显现,用户可用鼠标点击改变参数。研究人员说:“我们能够纠正整个研究体积的畸变,在其任何地方呈现高清晰度图像。由此,现在可以看到以前不是很清楚的所有组织结构。” 该技术可以应用于许多医院和诊所的台式电脑,可对任何类型进行干涉成像,如光学相干断层扫描。(华凌)

  • 油炸方式对油炸藕片吸油率与微观结构的影响

    跟小伙伴儿们分享一下油炸方式对油炸藕片吸油率与微观结构的影响,。在油炸藕片微观结构方面发现, 常压油炸, 藕片表面有 2 / 3的区域被油覆盖, 且内部破碎细胞较多充满了油脂。真空低温油炸可以很好地保存细胞的完整性, 在内部细胞仅在间隙有油脂分布, 从而吸油率较低。研究表明, 运用所筛选的最佳油炸工艺条件, 将真空技术应用于藕片的加工是可行的,产品感官品质明显优于常压油炸。综上所述, 本研究为下一步从微观方面改善样品来降低吸油率, 并改善油炸藕片的质量及口感奠定了基础, 同时也为油炸食品行业提供了有效的理论数据和手段。感兴趣的小伙伴儿们可以下载附件哦

  • 扩散系数微观研究

    [font=&]【题名】:[b]扩散系数微观研究[/b][/font][font=&]【全文链接】: https://cdmd.cnki.com.cn/Article/CDMD-10056-2008181842.htm[/font]

  • 【求助】断裂的微观机理

    【求助】断裂的微观机理

    [img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701241845_39978_1854957_3.jpg[/img]这是一张断口上拍到的微观形貌,上面有一些韧窝,但主要特征是什么?怎么形成这种花样?请高手指教。。

  • ★ ★ ★请各位老师帮忙!想用TEM作镍钛合金的微观损伤实验★ ★ ★

    我现在想用TEM作镍钛合金的微观损伤实验(样品的参数:厚度为300µ m的多晶结构、冷扎薄片,其中镍钛合金中Ni占56.4%,Ti占43.6% (质量百分比)),微观损伤其实就是预先在NiTi片上作直径大约5微米的深度大约在600纳米的压痕。请教各位高手,TEM都能观测什么微观和亚微观的结构和损伤?第二个想请教大家的是,关于我这样品、针对可能出现的损伤,TEM的制样方法?我想看一下压痕的抛面。在请教一下老师们我怎么实现“并将20分悬赏积分分配给帮助过自己的VIP用户”,谢谢!非常期待各位的援助!万分感谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制