当前位置: 仪器信息网 > 行业主题 > >

微观成像相机

仪器信息网微观成像相机专题为您提供2024年最新微观成像相机价格报价、厂家品牌的相关信息, 包括微观成像相机参数、型号等,不管是国产,还是进口品牌的微观成像相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微观成像相机相关的耗材配件、试剂标物,还有微观成像相机相关的最新资讯、资料,以及微观成像相机相关的解决方案。

微观成像相机相关的资讯

  • 微观世界显真容:质谱成像助力生物医学研究
    质谱成像(MSI)作为一种新兴的分子成像工具,凭借其高灵敏度、特异性及无需标记等优势,已经在生物医学研究领域展现了巨大潜力。其可以直接获取分子轮廓,并直观地显示每种离子化化合物在样品(尤其是生物组织)中的空间分布。作为探索空间多组学最有前途和最有发展前景的技术之一,MSI 不仅能定位药物和代谢物的分布,还能深入了解疾病进展和药物干预背后的表型变化。本文将结合多种质谱成像技术,包括常压透射式激光解吸/后光电离质谱成像、基质辅助激光解吸电离质谱成像、解吸电喷雾离子化质谱成像、飞秒激光电离成像质谱、离子迁移率分离、飞行时间二次离子质谱、激光剥蚀电感耦合等离子体质谱、成像质谱显微镜等技术,深入探讨了其在肿瘤研究、药物代谢分析和单细胞研究中的突破性成果。◆ 常压透射式激光解吸/后光电离质谱成像技术 由中国科学技术大学国家同步辐射实验室潘洋等的研究团队,共同发展的常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI)新方法,能够在无需复杂样品前处理的情况下,实现对生物组织中多种内源性化合物的原位可视化分析。该技术结合了透射式激光解吸电离和紧凑型后紫外光电离装置,显著提高了空间分辨率和灵敏度。在复杂临床样本分析中,t-AP-LDI/PI-MSI被用来分析肿瘤组织的代谢物分布,揭示了黑素瘤微环境的代谢异质性,这为深入了解肿瘤发生的复杂分子机制具有很大的参考价值。点击了解最新进展~◆ 基质辅助激光解吸电离质谱成像技术 (→点击查看相关仪器)基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种经典的技术,通过在样品表面添加基质,使得样品在激光照射下能够能够高效地解吸和电离组织样品中小分子代谢物、脂质和蛋白质。MALDI-MSI在肿瘤标志物发现、药物分布研究等方面应用广泛,为生物内源性化合物的直接鉴定和定位提供了强有力的支持。已有研究使用不同的纳米材料作为衬底,从而显著提高分析物的解吸电离效率和检测灵敏度。此外,MALDI-MSI还被成功应用于单细胞分析,通过优化样品制备和基质选择,能够在单细胞水平上检测代谢物和脂质,这对于细胞异质性研究具有重要意义。例如,杭纬等相继研发出的质谱仪器能够实现单细胞内药物分子的3D成像分析,揭示了抗癌药物诱导癌细胞凋亡的动态过程。蔡宗苇等研发出冰冻3D细胞微球方法用于MSI分析,并结合代谢组学揭示了环境污染物对细胞球增殖的影响。点击了解最新进展~◆ 解吸电喷雾离子化质谱成像技术 解吸电喷雾离子化质谱成像(DESI-MSI)是一种无需样品前处理的即时质谱成像技术,可在大气压下进行快速、直接的化学成分分析。近年来,DESI-MSI在临床诊断中的应用逐渐增多,能够在手术过程中实时识别癌组织边界,为外科医生提供重要的指导信息。此外,DESI-MSI在环境科学中也展现出潜力,尤其是在分析复杂环境基质中的污染物时,DESI-MSI能够快速、准确地检测和定位多种化学物质。贺玖明团队还开发出基于AFADESI-MSI技术的空间分辨代谢组学新方法,揭示肿瘤转移机制,建立了以空间分辨代谢组学技术为特色的代谢研究平台。点击了解最新进展~◆ 飞秒激光电离成像质谱技术 飞秒激光电离成像质谱(fs-Laser Ionization Imaging Mass Spectrometry)技术凭借其超快激光脉冲和精确的电离能力,在质谱成像领域独树一帜。该项技术可高效分析热敏性和易碎性样品,超越了传统光学显微镜的分辨率限制。通过微米级分辨率进行激光烧蚀和质谱仪的软电离源,其能够鉴别和分析生物分子和其他微观物质,在分子水平上揭示样品的化学组成和空间分布,推进了多个研究领域的进展。其已经能够在亚细胞水平上进行高分辨率质谱成像,为细胞生物学、神经科学等领域的研究提供了前所未有的视角。◆ 离子迁移率分离技术 (→点击查看相关仪器)离子迁移率分离技术(IMS)的引入,为质谱成像带来了革命性的变化。IMS通过分离气相中的离子,根据它们在电场中的迁移速度不同来实现分离,这取决于离子的碰撞截面积和电荷状态。离子迁移率质谱成像(IM-MSI)利用IMS的优势,提高了分子特异性和空间分辨率,尤其是在分析小分子异构体方面表现出色。这项技术在药物开发、疾病诊断和生物标志物的发现等领域展现出巨大的潜力,为生物医学研究提供了新的视角。李灵军团队利用离子迁移率分离和双极性电离质谱成像(MSI)技术实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。点击了解最新进展~◆ 飞行时间二次离子质谱技术 (→点击查看相关仪器)飞行时间二次离子质谱(TOF-SIMS)技术是一种仍然处于高速发展中的高分辨率表面分析技术,具有高空间分辨率、高化学专一性、高灵敏度的独特优势,广泛应用于生物组织和单细胞成像等生命科学研究领域。TOF-SIMS是迄今为止,能在亚细胞水平上对生物分子进行无标记2D和3D成像的、为数不多的分析技术之一,为研究细胞膜组成、药物分布和疾病标志物提供了宝贵的信息。汪福意课题组长期致力于TOF-SIMS方法与应用研究,发展了基于TOF-SIMS和荧光共聚焦显微镜联用的成像分析方法,并在单细胞水平上开展了金属抗肿瘤化合物、细胞内生物大分子蛋白质与DNA之间的相互作用等研究。点击了解最新进展~◆ 激光剥蚀电感耦合等离子体质谱技术 (→点击查看相关仪器)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术通过激光剥蚀样品并结合ICP-MS的高灵敏度检测,实现了对生物组织中金属元素和有机化合物的空间分布分析。该技术在金属组学和元素生物化学研究中,特别是对揭示元素在生物体内的分布和功能方面,提供了强有力的手段。LA-ICP-MS技术能够以高空间分辨率对生物样本进行元素成像,对于研究微量元素与疾病的关系以及药物代谢等领域具有重要价值。中科院高能物理研究所丰伟悦研究团队对LA-ICP-MS在单细胞分析和生物成像方面的研究,为理解生物样本中的元素分布和相互作用提出了新的见解,也为生物医学研究和纳米材料的安全性评估提供了重要的技术支持。◆ 成像质谱显微镜 (→点击查看相关仪器)成像质谱显微镜结合了光学显微镜和质谱成像技术的优势,能够在单细胞甚至亚细胞水平上提供高分辨率的化学信息,并对生物分子进行定量分析。该技术为研究细胞内的分子动态和相互作用提供了可能,对于理解疾病的发生和发展机制具有重要意义。成像质谱显微镜为揭示细胞内复杂的分子网络和相互作用提供了新的研究工具。点击了解最新进展~质谱成像技术的不断创新与发展,极大提升了生物样本化学信息的解析能力,并在细胞、组织及器官层面揭示了样品的复杂化学组成及空间分布。随着技术的发展,质谱成像将在未来生物医学研究中继续发挥重要作用,为疾病诊断、治疗方案优化以及生命科学研究带来新的突破与希望。更多精彩内容↓↓↓上述内容综合了当前质谱成像技术在生物医学研究中的最新研究进展和应用实例。有关更多信息和研究讨论,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有来自国内外的顶尖专家分享他们在质谱成像领域的最新研究成果和见解,赶紧点击下方的图片报名吧。
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 南昌航空大学预算488万元采购2套热加工构件微观结构显微成像系统
    近日,南昌航空大学2024年度航制学院热加工构件微观结构显微成像系统采购项目招标。要求潜在投标人在江西省公共资源交易平台获取招标文件,并于9月5日14点30分前递交投标文件。一、项目基本情况:项目编号:JXDY2024-HW-G0029项目名称:南昌航空大学2024年度航制学院热加工构件微观结构显微成像系统采购项目采购方式:公开招标预算金额:4880000.00元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)赣购2024B001241595热加工构件微观结构显微成像系统21套1892900.00元赣购2024B001241596热加工构件微观结构显微成像系统11套2987100.00元合同履行期限:合同签订后60日内。本项目不接受联合体投标。二、获取招标文件时间:2024年08月16日 至 2024年08月23日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )地点:江西省公共资源交易平台(网址:https://www.jxsggzy.cn)方式:网上确认和下载招标文件。(详见其他补充事宜)售价:0.00元三、提交投标文件截止时间、开标时间和地点2024年09月05日 14点30分 (北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:江西省公共资源交易中心(江西省南昌市青山湖区高新区紫阳大道3088号泰豪科技广场)2楼1号开标室。四、其他补充事宜1. 潜在投标人必须在江西省公共资源交易平台(网址:https://www.jxsggzy.cn)注册并办理江西省CA数字证书和电子签章。具体要求详见“江西省公共资源交易平台-服务指南-投标单位”(网址:https://www.jxsggzy.cn)。潜在投标人未使用本单位CA数字证书在江西省公共资源交易平台下载招标文件的,视为未获取招标文件,不得参加本项目的投标活动;2.本项目采用“不见面开标”系统开标,投标人无需到达开标现场。(具体操作详见《江西省公共资源交易中心不见面开标系统投标人操作手册(政府采购)》(网址:https://www.jxsggzy.cn)。注意事项详见招标文件第二章;投标人应仔细阅读有关不见面开标的内容,如有疑问请联系新点工作人员,联系电话:400-998-0000;3.产地类型为“国外”的,允许提供进口产品参与采购活动,有符合条件的国内产品也可以参与采购活动;产地类型为“国内”的,不允许提供进口产品参与采购活动,提供进口产品参与采购活动的,被视为投标无效;4.本项目是否采用远程异地评标:否五、对本次招标提出询问,请按以下方式联系1. 采购人信息名称:南昌航空大学地址:南昌市红谷滩区丰和南大道696号联系方式:0791-839531252. 采购代理机构信息名称:江西省鼎跃招标咨询有限公司地址:江西省南昌市红谷滩区嘉言路668号用友产业园二期1号科研楼BC区4楼联系方式:0791-879152863. 项目联系方式项目联系人:傅婷、刘霞、伍谢俊、龚文文、陈鸿、胡悦电话:0791-87915286
  • 欧奇奥(Occhio)首次提出卫星化粉末微观表征参数
    第九届全国颗粒测试学术会议成功举行, 卫星化粉末表征被首次提出 2013年5月30日 2013年5月25&mdash 27 日,由中国科协与贵州省人民政府共同主办的&ldquo 中国科协第十五届年会&rdquo 在贵州省贵阳市举行。作为第十五届中国科协年会第16 分会场,第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨会得到成功举办。会议期间,国产动态光散射技术的突破和颗粒形貌分析技术的发展成为令人瞩目的焦点。 在本届研讨会上,美国康塔仪器公司北京代表处杨正红先生根据欧奇奥颗粒形貌技术的发展,首次介绍了卫星化粉末(颗粒)及其微观形态表征参数。 理想的工业粉体应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起,从而对粉体的许多性质都产生重要影响。卫星化粉末就是在雾化过程中产生的非常微小的球,同较大的球粘在一起而产生的不规则颗粒(见图1)。粉末的卫星化将影响其流动性、附着力、填充性、增强性及研磨特性和化学活性(包括燃烧效率)等。任何非球形粒子对产品的流动性都可以产生不利影响,甚至可能引起非常有害的粉末堆积,最终将导致进程停止(焊接,等离子喷涂等)从而产生非常高的固定成本! 欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品。 Occhio FlowCell 200S+图像法粒度粒形分析仪仪器采用同等仪器中最高水平的 1000 万像素的照相机,拍摄分散在液体中的粉体颗粒的高分辨率照片,可拍摄到小于粒径为 200 nm 的颗粒,进行粒度分布和形状分布的分析,并可进行绝对和相对计数。由于焦距较深,它可以在全视野范围内利用光学系统控制摄影成像,粒子成像鲜明,没有像差,可测量普通图像法粒度分布仪器无法测量的粒子形状,可进行动态或静态的湿法测量,也可对异物进行有效的跟踪分析(趋势分析/动力学)。利用独自开发的CALLISTO(骄子)粒形分析软件,粒径可与激光粒度仪比较或衔接,可进行微观的形状分析,并且对粉体样品的特性进行评价。将粒子的各种形状数值化后,可进行相互比较,除了一般的ISO粒形参数外(如最大内切圆直径、最大长度、凹度、凸度、延伸度、圆形度等),还提供独有的微观粒形参数,包括钝度(Bluntness)、卫星化指数(Satelity Index)和赘生物指数(Outgrowth),共计超过43个参数的有关粒度粒形信息,为粉体颗粒的性能表征提供一种新的手段。
  • 中科院微观磁共振重点实验室成功实现高分辨电阻抗医学成像
    p   记者从中国科学技术大学获悉:该校杜江峰院士领导的中科院微观磁共振重点实验室在医学电阻抗成像方面取得重要进展,他们利用参数化水平集方法实现了高分辨的电阻抗图像重建。该成果发表在医学成像领域国际顶级期刊《医学影像》上。 /p p   电阻抗成像技术是根据生物体内不同组织在不同功能状态下具有不同电阻抗的原理,通过在生物体体表注入安全激励电流,测量体表响应电压,重建生物体内部的电阻抗分布,从而反映体内结构及功能的新型医学成像技术。由于电阻抗成像具有功能成像的特点,而且对人体无害、使用方便、设备价格相对低廉,成为近年来国内外研究的热点。但电阻抗重建图像通常分辨率较低且对模型误差极为敏感,因此开发高效、稳定且具有高分辨能力的成像算法是电阻抗技术的关键和难点。 /p p   杜江峰院士团队通过利用近年来发展起来的参数化水平集方法及临床医学上现有信息,设计了新的电阻抗成像算法,成功实现高分辨的电阻抗图像重建,并通过大量仿真实验验证了算法的有效性和可行性,结果表明该算法不仅具有高分辨图像重建能力,而且对医学电阻抗成像中普遍存在的模型误差、参数优化设置方式等具有很好的稳定性。 /p p   据介绍,该研究成果有望推动电阻抗成像技术向更为实用的应用方向发展,例如肺部临床电阻抗成像等。 /p
  • 东方德菲新品推荐---微观可视化驱油工作站
    化学驱油技术是一项比较大的系统工程,涉及高分子化学、油田化学、地质、油藏等多个学科,比注水开发研究要复杂的多, 针对微观可视化驱油机理研究问题,北京东方德菲仪器有限公司与中石油勘探开发研究院提高采收率国家重点实验室共同研发生产了系统集成型可视化驱油系统,即VMF100微观可视化驱油工作站。 VMF100微观可视化驱油工作站,通过可视化的微流控技术,记录和分析驱替液在微纳尺度通道芯片中的驱油过程。VMF100是定量描述不同化学驱油体系微观驱油机理的实验工作站,高效识别剩余油,并表征高含水期微观剩余油的渗流特征,VMF100工作站具有高集成化、高操控精度、芯片多样化、 分析可视化等特点,是微观驱油机理研究必不可少的设备之一。微观可视化驱油工作站由原油注入系统、驱替液压力注入系统、压力监测系统、芯片密封系统、微纳孔道芯片,微观视频系统、操作分析软件组成。该工作站可以完美记录和控制饱和油及驱替的动态过程,评价剩余油再启动能力,并分析剩余油的渗流特征。 微观可视化驱油工作站的功能 1、精密控制和记录饱和油的动态过程原油注入系统采用精密注射泵恒流控制模式,将原油注入微孔道芯片内形成饱和油。微观视频系统可以记录整个饱和油的动态过程。如下图2、精密控制和记录驱油的动态过程驱替液注入系统采用压力恒流模式,将驱替液注入饱和油芯片形成动态驱替。微观视频系统可以详细记录整个驱替的动态过程,如下图:3、剩余油分类识别统计剩余油识别分类统计软件可以定量处理石英芯片的驱替实验视频以及 数值模拟水驱油实验视频,分析整个实验过程中各种类型(膜状流、滴状流、柱状流、多孔状和簇状流)剩余油的数量、面积分布随含水饱和度的变化情况等,结果数据可做进一步处理。 VMF100的性能指标:1.原油注入系统驱动方式:微步进处理器驱动设置方式:彩色LED触屏设置注射范围:0.5ul-50ml直接推力:16kg流速范围:1.28pl/min-88.28ml/min稳定精度:0.05%最小推进速度:0.18um/min2.驱替液注入系统驱动方式:压力驱动方式压力流量设置方式:软件程序控制及本机独立控制压力流量显示方式:彩色LED显示屏通道数量:双通道或三通道zuida压力:200Bar流速范围:7.5nl/min-5ml/min流速精度:7.5nl/min3.压力监测系统压力传感器:全氟油压力传感器压力数据显示及输出:实时显示/输出压力数据压力测量范围:0-115PSI压力测量精度:0.0007PSI4.芯片密封系统密封方式:强磁性密封zuida耐压:500PSI密封尺寸:1/16 peek 管密封5.微纳孔道芯片芯片材质:石英玻璃刻蚀方式:湿法刻蚀模型类别:仿真均质模型、非均质裂缝模型、平行通道模型、环道模型模型尺寸:1.5cm×1.5cm ,可根据客户要求定制孔道尺寸:20um×7um ,可根据客户要求定制芯片尺寸:6cm ×6cm6.显微视频系统主机:体式显微镜采集系统:2000万像素彩色CMOS相机放大范围:3.75×-67.5×工作距离:71mm物镜:0.5平场复消色差物镜光源:LED光源实验平台:强磁实验台7.系统集成1)内置部件:流量剂专用支架流量池专用通孔压力监测系统安装板内置多孔电源2)外置部件:仪器箱体配有24寸触控电脑8.软件功能1)基础功能-剩余油分析:视频记录饱和油的动态过程视频记录驱油的动态过程实时记录驱油压力的动态变化分析不同类型剩余油的数量分布分析不同类型剩余油的面积分布2)拓展功能1-孔道参数:孔道配位数分布孔道孔喉比分布孔道等效半径分布孔道最窄半径分布3)拓展功能2-微观接触角:自动识别微观孔道接触角孔道微观接触角概率密度曲线
  • 20类微观表征技术云端碰撞!中科大牛津仪器微观分析论坛成功举办
    仪器信息网讯 4月20日,由牛津仪器科技(上海)有限公司和中国科学技术大学共同主办的“中科大牛津仪器微观分析论坛”线上成功举办,中科大多位微观分析专家及牛津仪器的应用工程师们依次分享了近扫描电镜、透射电镜、EDS、EBSD、原子力显微镜等近20类主流微观表征技术及在材料、半导体、生命科学等热点领域的应用进展。作为同期重要内容,论坛也进行了明日之星奖学金颁奖仪式,仪器信息网网络讲堂栏目实时转播了本次论坛。牛津仪器中国区总裁 何峻 致辞开幕致辞中,牛津仪器中国区总裁何峻首先对中国科技大学的各位领导、老师、同学,以及在线各位同仁的参加及对牛津仪器的支持表示感谢。接着,分享了牛津仪器的发展历程,从六十余年前的马丁伍德爵士在英国创建,到发展成为一家销售服务网络遍布全球的跨国公司;从二十多年前正式进入中国市场,再到业务的飞速发展等。同时,牛津仪器也在不断履行对中国客户的承诺,不断加大在中国的投入,在过去一年里,通过加强应用、服务团队,成立专业的维修服务团队等措施大幅提升了对中国用户的支持能力。最后向获得本次“明日之星奖学金”的各位同学表示祝贺,希望籍此为各位同学的学业成功略尽绵薄之力,预祝各位同学在未来的学习和工作中可以取得佳绩。据中科大公共实验中心办公室主任周宏敏介绍,牛津仪器和中科大已有近八年的紧密合作,在合作过程中,帮助中科大在科研取得了丰硕的成果。从牛津仪器2014年在中科大设立“牛津仪器明日之星奖学金”至今,已有四十多位同学获得奖学金,获奖者涵盖了理化中心、工程与材料中心和微纳中心,去年也覆盖到了生命中心。本年度“明日之星奖学金”,经过评委的严格评审,最终颁发给8位同学,活动现场,中科大公共实验中心主任侯中怀教授为获奖者进行了颁奖。中科大校公共实验中心主任侯中怀教授为获奖学生颁发牛津仪器明日之星奖学金证书颁奖仪式后,围绕材料/半导体微观分析技术、生命科学微观分析技术两大主题,10位中科大微观分析专家、牛津仪器应用专家分别分享了精彩报告,近20类主流微观表征技术与材料、半导体、生命科学等热点领域应用在云端展开思维碰撞。以下为报告内容摘要,详细精彩内容,点击查看报告回放视频(回放视频即将上传)。材料/半导体微观分析技术系列报告中国科学技术大学理化科学实验中心工程师孙梅概要分享了原位液体透射电镜技术。技术概要方面主要列举了不同液体池构造基及其优缺点,组装方法。电子束的影响方面,主要介绍了化学成分变化及温度变化的影响。基于原位液体电镜刻蚀研究方面,主要介绍了采用非原位手段来证明原位结果有效性的相关案例。牛津仪器应用科学家马岚介绍了牛津仪器材料制备与材料表征技术。材料微纳加工制备方面,针对大尺寸样品,牛津仪器相关技术包括晶圆级别刻蚀、气体沉积等设备;针对小尺寸样品,则包括OmniProbe系列纳米操纵手等技术。材料表征方面,则主要分享了成分分析的EDS技术、结构表征的Raman、EBSD、物理性能的AFM等。中国科学技术大学微纳研究与制造中心工程师王秀霞分享了等离子体刻蚀技术及在微纳米加工中的应用。通过化学或物理方法在目标功能材料的表面进行选择性去除,最终形成所需的特定结构,是微纳加工技术中微纳米图形结构转移的主要方法。报告依次分享了等离子体刻蚀的基本原理、NRFC等离子体刻蚀设备与工艺,最后详细展示了等离子体刻蚀相关加工案例。中国科学技术大学 工程与材料科学实验中心高级工程师田杰详细分享了扫描电镜的结构、原理及应用。电子波长远小于可见光波长,用电子束作为照明源,可极大提高显微镜的分辨率,这成为电镜的理论基础。报告从光学显微镜分辨率极限讲起,通过对比光镜与电镜的比较,讲解了电镜的原理及结构。接着依次介绍了扫描电镜的形貌分析、扫描电镜的能谱应用、扫描电镜的EBSD应用等。生命科学微观分析技术系列报告中国科学技术大学生命科学实验中心晶体学平台主管朱中良分享了基于X-射线单晶衍射仪的薄膜样品自动测试平台的研制进展。薄膜样品自动测试平台的研制目的主要是基于现有X-射线单晶衍射仪实现生物结构组织晶体种类和晶体取向的分析。报告主要分享了该研制平台的空间匹配、精度、适应性控制程序等技术难点与对应解决方案、研制成果,以及研制测试平台的实际应用案例。牛津仪器应用科学家潘茗茗介绍了牛津仪器弱光检测及三维成像解决方案。牛津仪器旗下Andor拥有全球弱光探测、解析及成像系统制造技术,报告首先介绍了Andor弱光成像与光谱技术、Dragonfly高速显微成像系统、BC43台式共聚焦等产品技术的发展历程及在生命科学领域的应用进展。接着介绍了WITec生物拉曼快速成像系统在生物医学领域的优势与应用情况。中国科学技术大学生命科学实验中心显微成像平台主管刘振邦介绍了激光共聚焦显微镜成像技术及应用。激光共聚焦显微镜在生物及医学等领域的应用越来越广泛,已经成为生物医学实验研究的必备工具。报告依次分享了激光共聚焦显微镜的原理、结构,接着分别介绍了单光子激光共聚焦显微镜、双光子共聚焦显微镜的各自优势及应用进展。中国科学技术大学技术工程师唐培萍介绍了前沿透射电子显微成像技术在生命科学中的应用。经典生物电子显微成像技术方面,报告主要分享了负染色体制样技术、常温超薄切片技术的技术进展及对应技术流程。现代前沿电子显微成像技术方面,主要分享了时下应用火热的高分辨冷冻电镜技术和冷冻电镜断层成像与关联显微成像技术,并分享了两种技术优势、成像实验流程,以及系列典型应用案例。中国科学技术大学生命科学实验中心分子互作分析平台主管欧惠超分享了基于SPR技术的传感芯片的研制及其应用。SPR技术几乎可以检测多有的生物分子,而芯片则是SPR分子互相分析的关键载体。报告从rBSA羧基芯片制备与测试、高亲和力NTA芯片研究、高载量CN5芯片研究等方面详细介绍了团队基于SPR技术的传感芯片的研制及应用进展。中国科学技术大学生命科学实验中心质谱平台主管吴高分享了纳升液相色谱质谱联用仪常见故障分析及排除。纳升液相色谱质谱联用仪适用微量甚至痕量样品的分析。而仪器的日程维护保养对仪器的灵敏度、稳定性和使用寿命至关重要。报告分别针对色谱和质谱常见故障分别进行了解读,并逐一给出解决方案。相关经验包括样品前处理、使用的试剂纯度可以减少仪器发生堵塞几率;时刻观察仪器状态,对故障进行预排,可以极大降低故障率等。
  • 鑫图sCMOS相机 | 基于高光谱成像建立多维胆管癌数据库的方法
    组织病理学分析通常被认为是肿瘤诊断和临床治疗的“黄金标准”。近年来,人工智能(AI)在病理诊断中的应用取得了显著进展。然而,目前大多数AI方法使用的数据源是由传统光学显微镜捕获的彩色图像,这种图像所包含的病理信息有限,影响了诊断的准确性。随着二维图像处理算法的逐步成熟,研究人员开始转向三维算法,以期获得更准确的结果和更丰富的信息。本文提出了一种新的多维胆汁数据库,该数据库包含在同一视场下捕获的显微镜高光谱图像和RGB彩色图像,专门用于深度学习研究。该数据库中的所有图像均经过经验丰富的病理学家评估和标记,适用于训练神经网络。由于该数据库包含了样本的形态、光谱和生化变化信息,对研究人员开发新型多维深度学习算法用于病理诊断具有重要意义。图1 数据集的多维图像场景(a) RGB图像 (b) 显微镜高光谱数据立方体 (c) 从高光谱数据立方体中提取的16个单波段图像本实验旨在建立一个多维胆汁数据库,为此开发了一种显微镜高光谱成像系统,用于采集胆汁组织的高光谱图像。胆总管组织切片的透射光通过显微镜被收集,并在sCMOS相机上成像,最终合成高光谱数据立方体。该成像系统使用的鑫图sCMOS相机Dhyana 400D,具有6.5 μm的像素尺寸,适用于高倍显微镜。此外,其低读出噪声和在制冷条件下的低暗电流,使其在弱光成像时仍能获得高信噪比的图像。同时,USB 3.0的接口能够提供高达35 fps的帧率,满足了高光谱成像所需的高速采集性能指标。参考文献Zhang Q, Li Q, Yu G, et al. A multidimensional choledoch database and benchmarks for cholangiocarcinoma diagnosis[J]. IEEE Access, 2019, 7: 149414-149421.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
  • 微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用 前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。 新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。 二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • OPTON的微观世界|第3期 揭开“财富”之谜
    ——显微技术在钞票防伪中的应用前期回顾前两期内容我们通过显微分析技术,探索了防雾霾口罩的微观结构和显微镜下雾霾颗粒的形貌,并且通过SEM扫描电子显微镜与能谱EDS联用分析了被口罩所拦下的颗粒的化学组成。本期我们将继续通过显微分析来探索:【为何2009版的美元被称为最难仿制的货币】。序 言如下图所示,【2009版】100美元中新加了一条垂直的蓝色3D防伪条,上面印有深蓝色“100”字样和费城“自由钟”图案,变换钞票角度时,钟形图案会变成数字“100”。将钞票前后倾斜,钟形图案和数字“100”会左右移动。如果左右倾斜,它们将上下移动。新/旧版100美元差别示意图 这种MOTION安全线采用了目前最新的微透镜阵列成像技术,几乎没有办法进行伪造。本期我们将通过显微镜来对100元美刀的MOTION进行观察,揭开这种微透镜成像技术之谜。 一、神奇的变色蓝条——MOTION安全线本期专题笔者带着好奇心,把100美刀的钞票放进了我们的ZEISS电镜下面,来观察100美刀上神奇的蓝条结构是否有什么不同。 1. 2009版100元美刀的制样及观察范围2009版100元美刀的简单制样及观察部位废了不少力气笔者终于收集到了一张2009版的100元美刀,如上图所示,经过简单的折叠将它固定在Zeiss电镜的19孔样品台座上(可以同时放置19个小的样品台),之后将它放进电镜中对右下角图片中画红框的部位进行观察,看这条蓝色的变色条带在微观形貌上有什么特别的地方。 2. 微观形貌结构对比蓝条部位(左)与旁边部位(右)显微结构差别在显微镜下我们可以看到蓝条部位(上图左半边)由很多个直径20μm的小球致密有序的排列而组成的,上面还印刷了菱形的有序栅格。而右边部分在显微镜下可以看到是由印刷的特别致密平整的纸浆纤维组成的,肉眼下可见的有序的条纹在电镜观察是由很多几十个μm的小片组成的。 3. 高倍形貌-元素分析有蓝条部分(左)和无蓝条部分(右)形貌及元素差异的对比 从图中形貌分析中可以看出蓝条部位与周围形貌最大的差别就是有了一个个规则排列的圆形小球,这些小球尺寸均一,排列整齐,同时通过元素分析我们可以发现这些小球都是有碳氧有机物组成的高分子小球,因此可以想象要制作这样的材料对工艺的要求非常的高,同时除了这些小球外,上层还印刷了一层含有“氟、镁、铝、铁、络”的金属印刷条纹,这一条小小的蓝色条带集成了目前很多的高精端技术。右边的印刷条纹放大了之后可以看到是由一片片片状的物质组成的,这些片状物质的元素也是含“氟、镁、铝、铁、络”的金属物质,但是与蓝条上的金属物质形貌差别很大,可以明显看出这两种材料是由不同种牌号的原料和工艺制作而成的。二、微阵列透镜成像技术美国2009版100美元采用了6毫米宽的双通道MOTION技术,动感强烈,既简单又明了的大众防伪技术,下图为我们直观的介绍了微透镜成像技术的原理结构图:微透镜成像技术示意图该技术在透明薄膜的两面分别制作微透镜阵列和与之匹配的微图文阵列,通过微透镜阵列对微图文阵列的莫尔放大作用成像,形成强烈的动感、体视、变换等多种效果,包括上浮、下沉、平行运动(动感效果与移动方向一致)、正交运动(动感效果与移动方向垂直)、双通道等。通常透明薄膜要求很薄,一般要求小于50μm, 这就必须要求微透镜阵列与微图文阵列的加工精度非常高,常规的制版和生产工艺无法满足要求,只有依靠现代的精密微纳加工、UV压印等特殊的工艺,而且,两者之间还需要严格的结构匹配关系、工艺要求非常高,极难伪造,只有通过显微结构分析,对工艺及条件摸索的很成熟才可以做出来。 三、后记蛋白石呈现多种颜色与微观结构的关系材料的微观结构对宏观的光学性能巨大的改变,一直以来在自然界中就有存在,从蝴蝶翅膀到阳光下五彩缤纷的蛋白石(上图左),这都是由于这些材料本身的特殊结构所引起的。我们人类通过对周围微观世界的观察和思考,模仿自然界的原理,一步步的发展出了很多先进的光学技术,如光纤传导、数码成像、光子晶体等等。。。极大的改变了人类生活的品质。通过运用显微技术对微观世界进行观察,我们的生活发生了翻天覆地的变化,而随着显微技术的不断成熟和先进,我们在微观世界可以观察到的信息越来越多,可以预见我们的人类今后的生活会更加的便捷和美好。 下期主题(食品)三选一: A、不同种类淀粉在显微镜下的形貌特征。B、1元/斤的大米和10元/斤的大米在显微镜下有何区别。C、转基因大豆与非转基因大豆的微观形貌观察。
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • OPTON的微观世界|第18期 量子阱
    前期回顾在上期里,小编带大家见识了一下弹壳的神奇,借助Gemini300场发射扫描电子显微镜对弹壳表面材料进行了细微结构的表征和成分分析,以及对收口处裂纹的研究,顿时觉得自己也高大上起来,有木有,这期呢,小编带领大家进军光电材料,再小小透露一点,量子阱材料,一起来见证一下扫描电子显微镜技术在量子阱研究中的厉害吧!概 述那么量子阱是什么呢,小编就小小解释一下,量子阱就是指由2种不同的半导体材料相间排列形成的、具有明显量子限域效应的电子或空穴的势阱。量子阱器件,即指采用量子阱材料作为有源区的光电子器件。一、量子阱的构造 如下图,量子阱器件的基本结构是两块N型GaAs附于两端,而中间有一个薄层,这个薄层的结构由AlGaAs-GaAs-AlGaAs的复合形式组成。在未加偏压时,各个区域的势能与中间的GaAs对应的区域形成了一个势阱,故称为量子阱。电子的运动路径是从左边的N型区(发射极)进入右边的N型区(集电极),中间必须通过AlGaAs层进入量子阱,然后再穿透另一层AlGaAs。量子阱器件虽然是新近研制成功的器件,但已在很多领域获得了应用,如量子阱红外探测器、GaA s、InP基超晶格、量子阱材料、量子光通讯和量子结构LED等,而且随着制作水平的提高,它将获得更加广泛的应用。量子阱的基本结构二、量子阱的微观世界量子阱材料一般使用分子束外延(molecular beam epitaxy ,简称 MBE)或金属有机氧化物化学气相沉积法(MOCVD)技术制备,对于量子阱材料界面结构的观察,晶体生长过程中出现的诸如层错,位错等缺陷的形成、特性及其分布等,我们一般利用高分辨透射扫描电镜(TEM)来观察,从而确定材料微观结构参数与器件宏观性能参数间的关系。众所周知,透射样品制备要求严格,制样困难,首先要将样品膜面利用进行对粘,再继续线切割为3mm×1mm;其次采用砂纸将样品打磨抛光使其厚度为60μm 左右,再抛光至 20μm;最后使用离子减薄仪将样品轰击为10nm以下。这个过程技术要求高,每一步都需要经验,不是一般人都可以做的,而且成本较高;而扫描电镜相比较而言,样品制备简单,导电样品直接用导电胶固定在样品台上,放入腔室内进行观察,对于不导电样品,我们也有自己的解决方案,一配备离子溅射仪,即喷金,二采用低电压模式,低电压成像是现代场发射扫描电镜的技术发展趋势,低电压成像可以呈现样品极表面细节、可以减少不导电样品的荷电(放电)现象、可以减少电子束对样品的损伤。对于薄膜材料更是如此,下面就是我们来看看采用蔡司sigma 500所测的量子阱材料,我们得到了10万和15万倍下的量子阱的背散射图片,可以看出样品界面出现了亮暗程度不同的衬度带,各层分界清楚,界面平整,层分布精度高,周期性好,厚度为 68.11nm,阱和势垒交替出现,从而确定周期厚度。后 记随着分子束外延和金属有机化学汽相淀积技术的迅速发展,人们已能够生长出原子尺度的、界面平滑的优质超薄层半导体材料,可以在生长方向上精确地控制薄层的组分和厚度,从而实现超晶格量子阱结构,所以晶格量子阱结构材料及应用的研究已迅速发展成当今半导体物理和固体物理学中最重要的前沿课题之一,而扫描电子显微镜一定可以大展身手,那就跟紧小编的步伐,我们一起跟随蔡司扫描电镜去见证光电材料史的辉煌吧!下期有什么精彩内容呢?敬请期待吧!
  • 2020进博会|岛津邀您探索微观世界
    11月5日-11月10日,上海国家会展中心,第三届中国国际进口博览会又将在此拉开序幕,全球各界的创新产品与顶尖技术将再度汇聚一堂,为广大企业和观众带来新的机遇和体验。 作为质谱色谱仪器领域的领军者,诊断X射线成像领域的先驱,岛津制作所将此两大技术强强融合,亮相第三届进博会8.1馆医疗器械及医药保健展区。这也是岛津集团首次将分析计测技术和医疗图像诊断技术同台联袂,为全球各界呈现一个更全面更有深度的岛津! “探索未知,行无界”Explore the Unknown Without Boundaries 岛津展位将以“探索未知,行无界”为主题,展示岛津人坚信科技的力量,在未知领域这片浩瀚星际中无所畏惧,打破思维禁锢,不断探索前行的决心和实力。 此次进博会,岛津集团将展示分析计测和医疗X射线成像两个领域的最新领军仪器,带来岛津仪器在先端健康医疗,临床研究,新药开发研究,生命科学研究,低侵袭性诊疗研究的创新成果,以及开拓创新医疗可能性的解决方案。 此外,还在展台设置了大型全息摄影互动装置,带领观众一同潜入肉眼不可见的微观世界,来一场微观自我的发现之旅的同时,用深入浅出的互动方式,呈现岛津通过分析技术与医疗影像摄影技术两者的融合,提供减轻患者负担的早期诊断解决方案。 进博会岛津展台效果图 微观世界,可视化 本次岛津展台的最大亮点是展台中央的全息摄影互动装置,将人体的骨骼、细胞、血液与人体构成组织可视化,从科学视点讲述岛津在健康医疗领域所做出的科技创新和研究成果。 进博会岛津品牌体验区效果图 技术创新,共创新价值 通过分析技术与医疗影像摄影技术的融合,创新解决医疗健康领域课题,提供减轻患者负担的早期诊断解决方案,同时,还将介绍在公共卫生防疫领域的一系列对策及技术支持。 分析与医疗,联袂绽放 岛津企业管理(中国)有限公司的马瀬嘉昭社长为此次进博会致辞 镌刻在DNA里的岛津精神 “以科学技术为社会做贡献。” 自1875年在京都创业以来,岛津制作所的理念,从未改变。 岛津人在分析测试仪器、医疗仪器、航空产业机械等领域,以光技术、X 射线技术、图像处理技术这三大核心技术为基础不断推陈出新,满足日新月异的市场需求,如今,更在生命科学、健康医疗等领域里不断钻研新技术,开发新产品,为世界范围内的广大用户不断提供更多的具有划时代意义的产品。 地球环境问题、经济问题、老年化社会问题,世界性信息网络发展等愈加复杂多样的课题有待人类解决。本着实现“为了人类和地球的健康”这一愿望,和客户一起支持产业和健康,我们骄傲地以此为重任,不断前行。
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。   以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。   以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。   鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • 将超分辨显微能力推进了7纳米,Dhyana 400BSI sCMOS科学相机应用优势解析!
    当人类利用CCD、EMCCD、sCMOS等多种高灵敏光电成像技术向微观、弱光科学成像发起挑战的时候,模拟世界里的不安分因素----"噪声"渐渐成为人们前进的巨大障碍。如何将光子信号从噪声中提取出来,开发出具有卓越信号噪声比的科学相机一直是整个科学界津津乐道的话题。 2017年11月9日,鑫图光电正式对外宣布,已成功创造出一款超级信噪比科学相机Dhyana 400BSI。 实验数据解析超级信噪比的现实意义在目前火热的超高分辨率显微成像研究中,打破分辨率极限是核心问题。我们采用分光比为1:1的STORM超高分辨率成像系统做了一组生物样品的比较试验,曝光时间为10毫秒,分别采集10000张图像重建,进行半峰宽(分辨率极限)的统计分析。图(a)和(b)为采用Dhyana400BSI得到的超分辨结果;图(c)和(d)为典型的82%QE的第三代sCMOS相机得到的超分辨结果; 半高全宽(FWHM)越小,表示分辨率越高。从图中可以看出,在STORM超分辨成像中,Dhyana400BSI分辨率达到了40纳米,而第三代sCMOS相机只能达到47纳米分辨率。Dhyana400BSI将STORM超高分辨率显微镜的分辨能力推进了7纳米!因此,400BSI更优的信噪比就能大幅提升弱光信号的定位精度和分辨力水平。 超级信噪比是如何实现的?就Dhyana400BSI相机为何能实现超级信噪比的问题,鑫图科学相机事业部产品经理赵泽宇博士透露:&ldquo 我们采用三种创新的核心技术。首先,由鑫图率先引入的背照式sCMOS技术创造了95%量子效率,使光子到电子的效率转较前一代产品提升了15%;其次,我们找到了sCMOS芯片内源性的噪声的相关双采样办法,将读出噪声水平下降了30%;更重要的是,对严谨的科学成像,我们并未采用会引入量化噪声的2D降噪算法,而是创新地通过一系列信号增强算法将信号强度提升了75%。三种创新技术的结合,就诞生了具有超级信噪比的Dhyana 400BSI(简称400BSI)。 下图为微球荧光成像的实验和数据结果,显示了通过创新的信号增强算法,在不引入量化噪声情况下,信噪比就获得了75%的提升。 福州鑫图光电有限公司是中国最早从事sCMOS相机开发的公司,Dhyana系列是中国开发的为数不多的世界领先科技之一, 在生命科学、化学实验室、空间物理、天文观测等领域都有广泛应用。此次发布的 400BSI,集合了鑫图近年来在sCMOS技术开发上的众多优秀成果,在灵敏度、分辨率和速度等三个核心指标上均实现了对现有背照式sCMOS科学相机的全面超越,将全面助力中国前沿科学研究不断发展进步!
  • 鑫图sCMOS相机 | 全自动推扫式高光谱显微成像系统设计与研究
    为了将光谱成像技术更方便地引入显微成像领域,本文介绍了高光谱成像技术与显微成像技术相结合,搭建出一套全自动推扫式高光谱显微成像系统。该系统以倒置显微镜为主体进行设计,采用棱镜-光栅元件进行光谱分光,利用高精度二维电动运动平台进行推扫,同时结合电动对焦组件完成对焦,最终成像在高灵敏sCMOS科学相机上。根据大多数生物样本光谱检测需求,系统的光谱范围选择为420~800 nm,并引入激光自动对焦系统作为主动对焦模块,以HE染色的乳腺癌病理切片为研究对象。通过对全自动推扫式高光谱显微成像系统的设计与研究,解决了高光谱显微成像中无法实时对焦的难题,实现了在40倍显微物镜下3.25 mm × 3.25 mm范围内的全自动成像。这有助于促进光谱技术在生物医学等领域中的应用,特别是对需要高分辨率和高灵敏度的场景中,提供了有效的解决方案。图1 整机图片图2 基于主动对焦的大视场推扫成像推扫式高光谱显微成像系统的光谱探测器采用了鑫图背照式sCMOS科学相机Dhyana 400BSI。该相机像元大小为6.5 μm,非常适配于40x~60x的成像系统。相机的宽光谱响应范围涵盖了190 nm~1100 nm,可以适用于生物样本的光谱检测需求,峰值量子效率高达95%,读出噪声仅为1.1e-。这些性能在高分辨率成像和灵敏度之间实现了平衡,并能大幅提高信号检测能力,非常适合部分光谱应用的需求。参考文献唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. 中国光学, 2021, 14(6): 1486.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 滨松中国首届显微成像大赛开始啦!
    2014年4月1日起,滨松中国首届显微成像大赛将拉开序幕,本次比赛应广大用户提议,旨在推动中国显微成像科研人员显微成像技术的不断提高,并促进广大用户之间的交流与合作。畅享在微观世界里的您,还不快来给大家秀秀您的美图,带着我们一起走进常人无法触摸的微观领域,享受一场微观世界的视觉盛宴。 滨松(hamamatsu)相机的主要应用领域有高速离子成像、比例成像、荧光共振能量转移(FRET)、全内反射荧光(TIRF)显微术,活细胞成像、实时共聚焦显微术、荧光原位杂交(FISH)、光片显微术(Lightsheet)等等。以Flash 4.0为代表的滨松sCMOS尤其在高速荧光成像方面有着独到的优势。而本次大赛除了所有作品都能角逐的奖项外,特以“荧光高速”为主题设置了主题大奖,旨在提供一个平台对“荧光高速”的显微成像进行交流。所有的参赛作品均需是采用滨松(Hamamatsu)相机(如可见光、红外相机等)拍摄获的图片或视频,并对样品进行简单介绍。 大赛奖项的获得采用网络公开投票、参赛者投票等方式,按得票的票数角逐大奖,对于体现“荧光高速”主题的视频,将额外评选出“荧光高速”主题大奖和“荧光高速”主题入围奖。奖项设置为: 最佳成像奖1名,现金现金人民币6000圆; 人气奖1名:现金人民币3500圆; “荧光高速”主题大奖1名:现金人民币3000圆; “荧光高速”主题入围奖5名:现金人民币500圆。 本活动将于2014年9月14日截止,拿起您手中的相机快来参与吧。目前没有使用滨松相机的用户可以申请免费使用样机哦,我们的技术工程师将全程指导操作。如您需要申请免费使用样机或者对本赛事有任何疑问请您拨打电话010-65866006-628 郑先生。 有关活动细则,请参考点击链接: http://www.hamamatsu.com.cn/activity/10001/rules/10001/index.html
  • 金属材料的微观结构分析——用合适的样品制备获得最佳结果
    微结构用于描述金属材料的主要特征,它在很大程度上决定了产品的性质和性能。 微观方法分析是材料科学的基本技术,以研究其状态和对材料特性的影响。 为了通过金相技术对微观结构进行最佳的描述,合适的样品制备起到了核心作用。微观结构的重要性及其分析无论是悬索桥的钢缆、涡轮机的叶片还是人体的人工髋关节,所有产品都有一个共同点:它们的特性不仅仅来自材料及其化学成分,而是来自内部结构的特殊排列[1]。这是指材料的微观结构,微观结构可以由不同的成分组成,如晶粒、晶界、沉淀或杂质。许多材料性能取决于这种微观结构,例如钢缆的强度或涡轮叶片在极端操作条件下的长期稳定性[2]。金相学是研究微观结构的最重要方法之一,它允许通过定性和定量分析方法对整个微观结构以及单个成分进行微观可视化。金相学的一个重要组成部分和中心作用是样品制备,这取决于材料的类型、条件以及检验方法。如果准备不足或执行不当,后续检查可能会导致错误的结果和对材料性能的错误评估。因此,了解具有特定材料要求的合适试样制备标准并正确实施尤为重要。以下将解释金相制备的基本程序,并以钛为例阐明具体材料要求的明确细节。适当的样品制备及其挑战图1显示了样品制备过程,包括以下步骤:样品切片和切割、样品安装、研磨和抛光,最后对样品进行蚀刻。每个单独的步骤都是相关的,并且会影响制备的金相截面的后续质量。图1 金相制备方法的示意图第一步是确定从整个零件上移除一个截面,有计划的调查研究将在该截面上进行,因为在许多情况下,关注的不是整个零件及其微观结构,而是特定区域。对于通过机械切割方法进行的拆卸,建议使用湿磨料切割机,包括工件的主动冷却。这减少了输入工件的热量,防止了不必要的微观结构变化,并冲洗掉了磨损的颗粒。切割钛时,通常使用碳化硅和合成树脂粘结制成的切割轮。第一步是确定从整个部分的整个部分的去除,在其上,这些部分将在许多情况下进行,而不是整个部分,并且其微观结构是感兴趣的,而是只有一个特定的区域。为了通过机械切割方法去除,推荐使用包括工件的主动冷却的湿磨削切割机。这将输入的热量减少到工件中,防止不希望的微观结构改变并冲洗擦除磨损的颗粒。对于切割钛,通常使用碳化硅与合成树脂键合的截止轮。在样品切片和切割后,将零件以正配合嵌入合成树脂基体中。这种嵌入简化了进一步的试样处理,便于制备机械上特别敏感的试样,允许将多个试样组合在一个金相截面中,并能够使用自动研磨和抛光设备。根据工艺温度,区分冷安装和热安装。温热嵌入期间产生的温度非常低,对试样的任何影响和可能的微观结构变化通常可以忽略不计。如果还要通过扫描电子显微镜检查试样,则必须注意嵌入介质中是否含有导电成分(例如石墨)。在下一步中,可以开始通过研磨和抛光进行准备。由于嵌入试样的表面质量通常较差,研磨过程首先以粗粒度开始,以提高质量并使试样平整。随后,以越来越细的粒度重复研磨过程,以去除粗研磨过程中产生的加工痕迹和划痕。重要的是确保足够的水供应,以消除金属磨损,并防止试样过热。对于钛,当使用碳化硅砂纸时,从P120的砂砾开始,继续使用P240、P320、P600、P800、P1200和P2400。在随后的抛光过程之前,试样应没有深划痕和大的机加工痕迹。如果计划对试样进行机械抛光(例如,电解或振动抛光工艺),则在第一步中使用细绒布和抛光剂。抛光可以手动或自动完成。自动设备的优点是节省时间和使用规定的接触力,因为过大的力会快速导致变形或划痕,尤其是在敏感材料上。在同步条件下,钛用金刚石悬浮液(3µm)在15-25 N的接触力下抛光约10分钟。如果金相断面质量足够且无划痕,则可继续进行最终抛光。为了控制目的,可通过使用暗场过滤器的光学显微镜进行目视检查。在这种情况下,质量良好的表面呈深色,而划痕和凹痕呈浅色。对于钛的精细抛光,使用由粒径为0.06µm(2 x 10 min)的胶体二氧化硅组成的悬浮液,并逐滴添加水。由于钛的高氧亲和力,建议使用30%的过氧化氢溶液作为润滑剂,以避免在制备的部分表面上形成氧化层。根据计划的检查,可能必须重复进行最终抛光。对于光学和大多数扫描电子显微镜检查,一个过程通常就足够了。例如,如果计划通过电子背散射衍射(EBSD)进行分析,则最终抛光应重复数次(最多六次)。图2 用克罗尔(Kroll)试剂蚀刻Ti-6al-4V的EBSD分析,显示相位分布(左)和彩色代码(b)[3]在每次研磨和抛光步骤后,应对制备部分进行彻底清洁,以防止可能遗留的磨损颗粒和污染物。在研磨和抛光步骤之间,至少应用水冲洗。在从研磨过程过渡到抛光过程之前以及最终抛光之后,应在超声波浴中额外清洁准备好的部分几分钟,然后在自来水下冲洗,最后用酒精冲洗。金相切片的干燥是在热气流中进行的,结果应该是镜像和无污染的表面。通过显微方法进行微观结构分析的最终准备步骤是通过蚀刻对比微观结构。这应在最终抛光后立即进行,因为表面上很快就会形成一层氧化物,尤其是钛,这会对蚀刻过程产生负面影响。例如,制备部分的蚀刻可通过化学或物理方式进行。如果钛基材料通过浸渍进行湿化学对比,则可使用克罗尔(Kroll)试剂进行蚀刻。蚀刻时间的持续时间因钛合金而异。纯钛的腐蚀时间为30-45秒,而Ti-6Al-4V合金的腐蚀时间可达60秒。另一种蚀刻剂是由氢氧化钾(KOH)制成的碱溶液。这导致微观结构的不同对比度,从中可以获得更多信息。对于Ti-6Al-4V,此处的蚀刻时间为15-30s。微观结构的显微镜调查制备完成后,可使用各种成像和分析技术对微观结构进行显微镜检查。图2显示了使用EBSD的扫描电子显微镜的分析结果,该分析是在Ti-6Al-4V样品上进行的,该样品如前所述制备并用克罗尔试剂蚀刻。图3显示了使用替代KOH蚀刻试剂成功制备两个Ti-6Al-4V样品,其中可以看到具有篮织结构(左)和马氏体结构(右)的微观结构。当在光学显微镜下观察时,该蚀刻试剂允许微观结构的彩色可视化,并且特别适合于具有马氏体微观结构成分的钛合金,因为如图3(右图)所示,这些成分被清楚地突出显示[3]。图3 用KOH试剂蚀刻Ti-6Al-4V的光学显微镜照片,显示篮织结构(左)和马氏体微观结构组分(右)参考文献[1] Hornbogen, E. et al.: Metalle: Struktur und Eigenschaften der Metalle und Legierungen. 7th ed., Berlin, Springer Vieweg, (2019) ISBN 978-3-662-57763-9.[2] Gottstein, G.: Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen. 4th ed., Berlin, Springer Vieweg, (2014) ISBN 978-3-642-36602-4.[3] Pede, D. et al.: Additive manufacturing: metallographic analysis of microstructure. In Advances in metallography: proceedings of the 53rd Metallography Conference September 18-20, 2019 in Dresden, (2019), ISBN 978-3-88355-417-4.作者简介Dennis Pede(丹尼斯佩德):Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, Germany丹尼斯佩德在汉诺威莱布尼茨大学获得医学工程硕士学位。他目前是福特旺根大学材料科学与工程图特林根研究所(IWAT)的研究助理和博士生,由Mozaffari Jovein教授指导。他的研究活动集中于添加剂制造工艺、金属材料以及材料测试和分析。Lidija Virovac:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyLidija Virovac在富特旺根大学攻读学士学位时学习了医学工程,在硕士学位时学习了应用材料科学,并在学习期间获得了实用金相学的第一次经验。随后,她在Mozaffari Jovein教授的指导下,在Tuttlingen材料科学与工程研究所(IWAT)担任研究助理,加深了自己的知识。进一步的研究领域是添加剂制造和功能涂层的制备。Tobias Poleske:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyTobias Poleske在富特旺根大学攻读材料工程学士学位。自2017年以来,他一直是Tuttlingen材料科学与工程研究所(IWAT)的研究助理,在Mozaffari Jovein教授的指导下从事各种材料科学课题。他的工作重点是使用光学和扫描电子显微镜进行实用材料成像,以及对常规和附加制造部件进行材料分析。Hadi Mozaffari-Jovein:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyHadi Mozaffari Jovein在斯图加特大学攻读冶金学,并从斯图加特大学(马克斯普朗克金属研究所)获得博士学位。自2009年以来,他一直担任富特旺根大学材料科学教授和图特林根材料科学与工程研究所所长。他的研究涵盖各种材料科学主题,包括损伤分析、材料测试和分析、传统和添加剂制造工艺,以及材料开发和优化。原文;Microstructural analysis of metallic materialsMicroscopyLight Microscopy,15 November 2021(符斌 供稿)
  • 《景德镇元明瓷微观特征初探》古陶瓷微观采集专用仪器
    p style=" text-indent: 2em " 近年来,古陶瓷微观鉴定成为陶瓷鉴定新思路,其科学、实用、便捷、廉价的优势,在广大收藏爱好者中得到了普遍运用,并且在陶瓷鉴定上,已经发挥出不可代替的作用。但由于古陶瓷微观鉴定方法刚刚起步,理论研究和样本系统尚未跟上,致使不少应用者不得其法,走入误区 文物界和目鉴行家也往往对之持怀疑态度。 /p p style=" text-indent: 2em " 因此,严肃、认真、系统地对古陶瓷微观鉴定进行理论研究、经验总结和样本数据库的创建就十分迫切了。5月30日,中国收藏家协会“华源上手”培训部、景德镇陶瓷考古研究所与3R北京深入合作出版发行的古陶瓷微观鉴定学术专著——《景德镇元明瓷微观特征初探》一书出版上市,为陶瓷微观鉴定提供有效资料参考。 /p p style=" text-indent: 2em " 该书介绍了古陶瓷微观鉴定的发展现状和基本方法,报告了景德镇元明瓷的微观现象和特征 集纳了景德镇考古研究所出土的约200件元明瓷标本的宏、微观图录,书中对权威标本微观特征的客观展示最具价值,是未来微观数据库的一块基石。 /p p style=" text-indent: 2em " 有了古陶瓷微观鉴定权威书籍参考,最重要的环节就是要有古陶瓷微观采集专用仪器。《景德镇元明瓷微观特征初探》一书所采用的微观拍摄仪器为国内数码显微镜的领军品牌3R Anyty(艾尼提),运用无线200倍便携式显微镜深入到古陶瓷的釉、胎微观层面,按朝代、种类系统排列,并做了深入的比对、统计、研究,成为陶瓷微观鉴定标准仪器。 /p p style=" text-indent: 2em " Anyty(艾尼提)便携式无线显微镜是自带WiFi热点,可随时随地的与手机、平板等移动设备进行连接,突破传统显微镜的使用环境的局限性 另外Anyty(艾尼提)无线显微镜画面清晰、无色差,可使陶瓷微观数据更加精准 无线传输速度快,画面无延迟,以优质体验收到陶瓷研究领域用户的充分认可和好评,是陶瓷微观鉴定标准仪器。 /p p style=" text-indent: 2em " Anyty(艾尼提)便携式无线显微镜是陶瓷微观鉴定标准仪器,由3R国际集团北京爱迪泰克科技有限公司隆重出品,欢迎广大文博单位、拍卖公司、考古所以及个人收藏家咨询合作,为古陶瓷等微观鉴定、备案提供强有力支持。 /p
  • OPTON微观世界 | 扫描电镜助力彩妆事业-散粉的世界
    夏天的脚步越来越近,各位小仙女们终于可以冲出家门,穿上时髦的裙子、短裤放飞自我。要想有高贵优雅的气质,除了时髦的服装外,大家特别关注的就是精致的妆容了,而底妆的精致、持久和完美,一直是彩妆达人最极致的追求。但是夏季,太阳暴晒、温度骤升,脸部特别容易出油,对于要求极致完美的各位仙女们,是绝对不允许的,所以,定妆粉便在此刻发挥了作用。定妆粉又称散粉或者蜜粉,其主要作用是吸收面部多余油脂、减少面部油光,同时可以全面调整肤色,使妆容柔滑细致,防止脱妆。相信在小仙女们的梳妆台、化妆包里,散粉总是占得很重要的一席之地,今天小编就带大家走进散粉的世界。本文选取4种目前非常流行的散粉品牌做测试,分别是:Innis*free,戴C林,纪F希和花X子,散粉型号如图1所示。该测试采用蔡司Sigma500扫描电子显微镜和牛津能谱仪分别进行微观形貌和成分的分析,结果如图2、3所示。 图1. 4种散粉的型号:(a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子从结果中可以看到,Innis*free散粉主要由块状、片状和球状颗粒组成,且以球状颗粒为主,戴C林主要由块状和片状颗粒组成,纪F希和花X子从形貌上看非常相似,主要是由球状和片状颗粒组成,且片状颗粒占主要成分。图2. 4种散粉微观形貌像 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子结合图3的能谱结果,可以看到Innis*free中块状颗粒以C元素为主,球状颗粒以Si和O元素为主,片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母;戴C林散粉中片状颗粒以Mg、Si、O元素为主,分析为滑石,块状以Mg、Ca、C、O为主,分析为白云石;纪F希片状颗粒成分主要为Mg、Si、O,分析为滑石,球状颗粒以Si和O元素为主;花X子片状颗粒以Al、Mg、K、Si、O元素为主,分析为白云母,球状颗粒以Si和O元素为主。 图3. 4种散粉能谱谱图 (a) Innis*free (b) 戴C林 (c) 纪F希 (d) 花X子由此可以得出,Innis*free主要由SiO小球、块状碳和少量白云母组成,戴C林主要由滑石和白云石组成,纪F希主要由SiO小球和滑石组成,花X子虽然和纪F希形貌非常类似,但是其组成是不同的,其主要由SiO小球和白云母组成。其中化妆级滑石粉非常软,具有珍珠光泽和滑腻的手感,主要用于美容粉或者润肤粉中,同时硅元素具有散光、阻隔红外线的作用;妆品级云母具有丝绢光泽和柔滑质感,使化妆品粉质轻盈细腻,且具有珠光效果。我们的皮肤很娇贵,选择化妆品的时候要谨慎,适合自己的才是最好的,夏天来啦,爱出油的小仙女们记得用散粉哦!Zeiss Sigma系列场发射扫描电镜基于Zeiss经典的Gemini系统平台设计,成像效果、分析能力、应用拓展并举,是进行材料科学研究、工业生产检测的有力工具。√ 纳米材料高质量成像√ 非导电性材料直接观察√ 高灵感度检测器还原材料表面最真实形态√ 大尺寸容纳空间√ 高效率元素检测√ 高通量分析能力,兼具大视场和高分辨率属性√ 磁性物质高分辨率成像√ 多维应用拓展,精确且高效关联光学显微镜
  • BCEIA2017 | 欧波同享您所想,让微观触手可及
    【欧波同讯】2017年10月9日,由中国分析测试协会主办的北京分析测试学术报告会暨展览会(简称“BCEIA”)在北京国家会议中心盛大开幕,本届会议围绕“生命 生活 生态——面向绿色未来”为主题吸引大批业内人士到会观展。欧波同(中国)有限公司(以下简称“欧波同”)携旗下韩国COXEM台式电镜、蔡司光学显微镜、赛默飞世尔尼通手持光谱仪亮相此次展会。传递分享理念 领略微观魅力BCEIA秉持“分析科学 创造未来”的发展动力,坚持国家战略需求和科学探索目标相结合,现已成为国内分析测试领域专业化程度和知名度最高的盛会,作为实验室系统解决方案服务商,欧波同以“开放 分享 合作 共赢”为主题参会,携系列产品给观众提供了从材料微米级分析到纳米级研究的显微设备体验平台,并以最新的材料实验室分析解决方案向观众展示了最尖端的分析测试应用技术。主办方领导莅临展位 业内媒体相继采访 11日上午,BCEIA2017主办方中国分析测试协会副理事长刘成雁先生一行9人莅临欧波同展台,对欧波同的此次参展给予肯定并与欧波同公司领导合影留念。应行业内知名媒体邀约,10日—11日期间,教育装备网及分析测试百科网相继来到欧波同展位对公司领导及展会现场情况进行专访。欧波同市场部总监韩鹏接受教育装备网的访谈欧波同大客户部总监费明非接受分析测试百科网的访谈AMICS矿物分析系统斩获BCEIA2017新产品奖中国分析测试协会从2015年10月27日开始设立“BCEIA新产品荣誉证书”,集中向观众推荐国外厂商研发的最好的新仪器和新技术,并在本届展会上颁发给了22家企业,欧波同作为自动矿物分析系统解决方案的投资研发方,榜上有名!AMICS自动矿物分析系统斩获BCEIA新产品奖。欧波同市场总监韩鹏上台领奖【AMICS自动矿物分析系统简介】AMICS 由国际工艺矿物学家团队主持开发的第三代矿物参数自动定量分析系统。该系统与高分辨率扫描电子显微镜完美结合, 广泛适用于矿业、煤炭、地质科研等领域,是科学家及工程技术人员对样品进行工艺矿物学定量分析的有力帮手。AMICS可以对样品进行精准的矿物定量分析,可提供直观的样品矿物分布特征图,样品岩石力学特征图,矿物的颗粒尺寸分布、矿物间的相关关系、面孔率及孔隙与矿物间的相关关系。对石油地质研究的岩石分类和命名、沉积条件的研究、成岩作用的研究、岩石力学特征研究储集空间特征研究有重大意义。多种活动形式 为您展现多样欧波同12日上午的展商秀讲台上,欧波同产品部经理赵颉为观众们介绍了欧波同旗下的全系产品及相关行业应用解决方案,从光学显微镜到电子显微镜之间的显微实验,我们将为您找到最方便、快捷、可靠的方案。展会同期,欧波同展台还参加了仪器信息网“一带一路,逛展寻宝”活动,吸引了大量观众到展位进行“盖章寻宝”,与此同时,欧波同针对到访观众还推出了“扫码抽奖得VR眼镜”的活动,让观众在关注展品的同时获得一份大礼。“开放 分享 合作 共赢”不仅是欧波同在本届BCEIA2017的主题,更是我们秉承的理念。欧波同正是希望通过不断的与用户互通分享进而促成客户的成功与自我的不断飞跃。在此,感谢本次大会到访参观的朋友,距离13日展会活动截止还有1天时间,我们在12041-12044,欧波同展位等您!
  • OPTON的微观世界|第14期 蔡司电镜下的硒化锡
    概 述硒化锡是一种非常稳定和简单的化合物,并且地球表面有丰富的Sn和Se元素。硒化锡作为一个大家比较熟悉的半导体,主要研究方向是在太阳能电池以及箱变记忆合金材料方面。现今作为热电能源材料硒化锡应用方面有重大突破性研究成果。然而硒化锡可形成多种化学计量的硒锡化合物,如SnSe,SnSe2和SnSe3,其中SnSe和SnSe2有广泛的应用前景。此时就要借助SEM确定产物形貌成分,借此更好的完成制备过程的优化,指导大规模生产。现在就让我们用蔡司热场发射电镜sigma500来看一看硒化锡的结构。一、样品准备和SEM图像获取 首先让我们看一看样品。此样品邮寄之前已经分散在铝箔表面,而铝箔则固定在一角硬币之上。所以我们制备样品只需用碳导电胶把样品固定好即可。并且因为蔡司场发射电镜优秀的低电压成像性能能有效的抑制放电,所以样品无需喷金。下面就轮到我们的主角登场了。看看它超大的样品仓,样品多大都不成问题。现在我们只要把样品放入即可。最后我们应用蔡司电镜低电压成像技术,即使在1kv的条件下,也可得到清晰的SEM图片。以下4张图为前2张为样品1的SEM图片,后2张为样品2的SEM图片。二、SEM分析首先看样品1,在低倍放大像种,可以看出产物的主要形貌为花瓣状薄片结构。在较高倍率放大像中可以看出花瓣状纳米片边缘较规整,叶片厚度不到30nm。此时对其做能谱分析可知Se和Sn所占原子分数之比大致为2:1,说明花瓣状纳米片成分可能是SnSe2。再看样品2,在SEM图像上可以看出产物为多层片状结构,其产生原因可能为较长的反应时间使花瓣状结构生长。后 记胡克曾在《显微图谱》中说过,关于感官,接下来需要关注的是通过工具弥补感官的不足。我们现在所做的就是通过电子扫描显微镜了解物质的微观结构,因为微观结构决定了物质的性质。对于硒化锡来说,由于具有低热传导、储量丰富、环境友好等特质,是一种颇具潜力的热电能源材料,但其硬伤在于导电性能较弱。经试验发现其层状晶体结构在其层面内具有不错的导电性能。所以为了更佳的导电性能,在制备的过程中我们需要更长的时间以形成更多的片状结构。只有这样我们才能使其有更好的导电性能,使其作为热电能源材料有更好的应用前景。下期有什么精彩内容呢?敬请期待吧!
  • 探索微观新世界,质谱成像技术研讨会火热报名中
    质谱成像(MSI)作为推动生命科学、材料科学等前沿领域的“秘密武器”,正在掀起新的研究浪潮。为此,我们将于2024年9月19日举办的“第四届质谱成像技术与进展”主题网络研讨会!此次会议将汇聚全球顶尖的质谱成像专家,共同探讨多种质谱成像技术的最新突破及应用创新。立即报名,抢占席位!报名链接:https://www.instrument.com.cn/webinar/meetings/msi240919/~~~会议亮点不容错过~~~1. 前沿专家齐聚:本次会议汇聚多位来自国内外的知名专家,有全球最具影响力科学家李灵军教授、空间组学质谱成像技术领军团队贺玖明研究员、中国科学技术大学潘洋教授、香港浸会大学王佳宁研究助理教授、中国科学院化学研究所汪福意研究员、中国药科大学李彬教授和中国科学院深圳先进技术研究院赵超副研究员。将从技术创新到实际应用,共同探讨质谱成像的最新技术和发展趋势;2. 多种技术展示:涵盖常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI),基质辅助激光解吸电离质谱成像技术(MALDI-MSI),离子迁移率分离和双极性电离质谱成像技术,飞行时间二次离子质谱技术(TOF-SIMS),成像质谱显微镜等多种质谱成像技术,前沿技术一站尽览!3. 全方位应用探讨:会议将深入探讨质谱成像在肿瘤研究、药物代谢、单细胞分析等领域的突破性应用,带您探索未来医学研究的无限可能。(点击图片,快捷报名)~~~会议日程正式公布~~~~~~会议嘉宾 重磅来袭~~~威斯康星大学麦迪逊分校李灵军 教授《Probing Cellular Heterogeneity via Spatially Resolved Omics and Mass Spectrometry Imaging》(《通过空间组学和质谱成像探究细胞异质性》)李灵军,美国威斯康星大学麦迪逊分校药学院和化学系Charles Melbourne Johnson杰出讲座教授,并获该校Vilas 杰出成就教授称号。致力于生物分析科学以及质谱相关技术的研究, 主要涉及的领域有神经肽组学、蛋白质组学、代谢组学等。主要研究方向包括质谱与微尺度分离技术的联用,神经肽与蛋白质的高通量定量表征,生物分子质谱成像,离子淌度质谱对分子结构与构型的解析等。先后被授予分析化学个人成就奖(匹兹堡会议)、美国国家科学基金委生涯奖、 2019,2021,和 2024年度分析科学家Power List-全球最有影响力的分析化学家等多个奖项及称号。现任美国质谱学会杂志(Journal of The American Society for Mass Spectrometry)杂志副主编和质谱综述(Mass Spectrometry Reviews)分析与生物分析化学(Analytical and Bioanalytical Chemistry)国际编委会成员, 以及北美华人质谱学会董事会主席。【摘要】越来越多的证据表明,在单细胞水平上探测组织内生物大分子的空间分布可为破译分子异质性和揭示单个细胞动态提供关键信息。在这里,我们利用俘获离子迁移率分离和双极性电离质谱成像(MSI)技术实现了高通量的原位 SC 脂质体分析。多模式 SC 成像,即使用双极性模式 MSI 对单个细胞进行串行数据采集运行,大大提高了 SC 脂质体的覆盖率。还描述了硬脂酰-CoA 去饱和酶 1 (SCD1) 抑制作用下 SC 脂质体的变化特征,并揭示了药物干预诱导的 SC 脂质体重塑。此外,这种集成的多模态 SC-MSI 技术还能识别小鼠小脑皮层中新的特定层脂质分布模式,促进了对阿尔茨海默病小鼠模型脑区的脂质组剖析。最后,研究人员探索了组织扩展与 MSI 的新型组合,通过大尺寸激光束光栅扫描,在保持高横向空间分辨率的同时,高通量绘制各种生物组织中的小分子代谢物图谱。点击报名》》中国医学科学院药物研究所贺玖明 研究员《质谱成像空间代谢组学技术创新与进展》贺玖明,博士生导师,药物分析专业;中国医学科学院北京协和医学院药物研究所天然药物活性物质与功能国家重点实验室 研究员,主要研究方向:质谱成像空间分辨代谢组学新技术新方法及其生物医药应用研究。开发出空气动力辅助离子化及质谱成像新技术和空间分辨代谢组学新方法,建立了以空间分辨代谢组学技术为特色的新药代谢研究平台。近5年,发表了包括Nat. Commun., Adv. Sci., PNAS,APSB,JPA,Theranostics,CCL,Anal. Chem.等Q1区论文10余篇。曾获 2010 年北京市科学技术奖二等奖(2)、CAIA2019 特等奖(2)。国家药品监督管理局创新药物安全与评价重点实验室学委委员;担任《药学学报》、Acta Pharm Sin B、J Pharm Anal青年编委,Molecules、TMR Modern Herbal Medicine和《药学研究》编委;中国医药生物技术协会药物分析技术分会常务委员,中国质谱学会常务委员。点击报名》》布鲁克道尔顿李鹏飞 应用主管《多分子维度MALDI成像助力空间生物学表征》李鹏飞,现任入布鲁克(北京)科技有限公司质谱成像应用主管,负责MALDI成像和MRMS质谱技术在代谢物分析、临床科研、石油组学以及溶解性有机质分析方面的应用。李鹏飞2012年毕业于吉林大学化学学院获硕士学位,2017年于美国西弗吉尼亚大学获得分析化学博士学位。毕业后任职于美国伊利诺伊大学-香槟分校(UIUC),负责离子阱质谱、MALDI-TOF质谱和轨道阱质谱的技术支持和应用开发。共发表SCI论文20余篇,在生物分子表征方面积累了丰富的经验。【摘要】多分子维度MALDI成像的分析策略以及多分子维度MALDI成像的应用案例。点击报名》》中国科学技术大学潘洋 教授《光电离质谱成像技术》潘洋,中国科学技术大学教授,博导,国家同步辐射实验室质谱线站科学家,中国质谱学会理事,Discover Catalysis(Springer Nature)编委,中科院关键技术人才。研究方向为质谱仪器与方法学。已在 Science、Angew. Chem. Int. Ed. 等期刊发表论文 180 余篇,获授权发明专利 12 项,【摘要】质谱成像( mass spectrometry imaging, MSI)是在质谱技术基础上发展起来的一种新技术。质谱成像技术通过直接扫描待测样品,利用专门的成像处理软件与质谱的离子扫描技术相结合,即可获得探测区域各个组分的二维离子分布图,组分在每个点上的相对含量以亮度强度或不同颜色体现出来。该技术具有免荧光标记、不需要复杂样品前处理,即可提供丰富的被分析物空间分布信息的优点,已经发展成为基础医学、药学、微生物学等研究领域的关键技术之一。光电离是软电离技术,没有极性歧视,可显著提升离子化效率尤其是非极性分子的离子化效率。本报告主要介绍基于光电离的解析电喷雾电离解吸以及激光解吸结合二次光电离的质谱成像平台的构建,以及应用进展。点击报名》》香港浸会大学王佳宁 研究助理教授《亚细胞分辨MALDI质谱成像》王佳宁博士拥有丰富的质谱成像和生物质谱研究经验,现任香港浸会大学环境与生物分析国家重点实验室研究助理教授。长期致力于质谱成像的开发与应用,特别是亚细胞分辨和异构体分辨质谱成像领域,已发表48篇同行评议论文,授权发明专利8件。他开发了多种MALDI质谱成像方法,显著提高了脂质和代谢物成像的覆盖率和灵敏度,为MALDI-TOF MS成像和小分子检测做出了重要贡献。【摘要】MALDI成像在实现高分辨率下的高质量基质沉积和保持系统稳定性方面,仍面临着艰巨挑战。本课题组开发了相应的优化方法和数据分析策略,极大提升了5微米分辨率下单细胞成像的灵敏度和覆盖度。通过降维与数据挖掘分析,呈现了亚细胞分辨的与细胞周期和环境胁迫相关联的脂质表达空间区位变化。更进一步,开发了一种十倍(10x)扩展的MS成像技术,使得未经修改的商用质谱仪的成像分辨率得以十倍提升至亚微米级别,实现了500纳米的成像分辨率,显著超越了现有仪器5微米的限制。这种增强的分辨率使得组织结构的可视化与光学显微镜观察到的非常相似,使结构与功能之间的关联分析能够更加精确。综上,我们的研究实现了前所未有的亚细胞脂质质谱成像细节成像,极大地增强了我们研究复杂生物系统以及利用质谱成像开展细胞生物学层面研究的手段。点击报名》》中国科学院化学研究所汪福意 研究员《ToF-SIMS单细胞成像及其在药学研究中的应用》汪福意,博士生导师,北京国家质谱中心主任。1999年于武汉大学化学系获得理学博士学位。同年,获英国皇家学会皇家奖学金,赴英国爱丁堡大学化学系从事化学生物学和分析化学研究。2007年入选中科院“海外杰出优秀人才”计划,现任职中国科学院化学研究所活体分析化学院重点实验室、中国科学院大学化学科学学院和北京国家质谱中心。长期从事化学生物学和分析化学的教学和研究工作,致力于发展和建立基于质谱和质谱成像的新方法和新技术,从细胞和分子水平上研究抗肿瘤药物的分子作用机制及药代动力学特性。自2007年起,先后主持承担了国家自然科学基金重大研究计划项目、重点项目、国际重大合作项目、国家重大科研仪器研制专项和面上项目,以及科技部973 项目课题等国家科技项目,在PNAS、JACS、Angew Chem和Anal Chem等国际刊物上发表SCI学术论文150余篇,授权中国发明专利4项,国际发明专利5项。【摘要】飞行时间二次离子质谱(ToF-SIMS)是一种仍然处于高速发展中的表界面分析技术。ToF-SIMS成像分析具有优异的空间分辨率和检测灵敏度,在生物组织和单细胞成像等生命科学研究领域得到越来越广泛的应用。本报告将分享本课题组近年来在应用ToF-SIMS单细胞成像技术研究药物分子作用机理方面的研究成果。点击报名》》岛津企业管理(中国)有限公司顿俊玲 应用工程师《镜质合璧,还原真实:成像质谱显微镜技术介绍》顿俊玲,岛津应用工程师,毕业于中科院上海生命科学研究院,毕业后从事蛋白质组学及代谢组学分析工作。2017年加入岛津公司,负责MALDI-TOF、成像质谱显微镜的应用开发、项目支持工作,在代谢组学、质谱成像分析方面拥有丰富经验。【摘要】成像质谱显微镜技术及其应用介绍。点击报名》》中国药科大学李彬 教授《中药空间代谢组学研究与应用》李彬,中国药科大学教授,博士生导师;入选国家高层次青年人才计划、江苏特聘教授。主要从事质谱成像新技术与新方法研究;主持多项国家级科研项目;在Angew Chem Int Ed, J Am Chem Soc, Acta Pharm Sin B, Anal Chem等期刊上发表多篇研究论文。点击报名》》中国科学院深圳先进技术研究院赵超 副研究员《基于质谱流式和空间多组学的肿瘤演进分析》赵超,中国科学院深圳先进技术研究院副研究员,中国科学院大学博士生导师。研究方向为质谱多组学和质谱成像方法开发、环境污染物的生物体暴露和健康危害机制研究、肿瘤代谢机制等。以一作/通讯作者在国际期刊(Nucleic Acids Res., Sci. Bull., Mass Spectrom. Rev., The Innovation 等)发表论文 30 余篇。主持国自然面上、青年基金、广东省面上基金、深圳市基础研究重点项目等。入选广东省引进高层次人才计划(珠江人才)、深圳市海外高层次人才计划、香江学者计划。担任Journal of Analysis and Testing(IF 4.7)、Journal of Pharmaceutical Analysis (IF 8.8),Phenomics 青年编委。【摘要】 采用质谱流式、质谱为基础的多组学和成像技术,阐明乳腺肿瘤细胞代谢、免疫细胞种类及其微环境之间的相互作用,解析原发灶和转移灶的分子基础差异,为理解乳腺癌发生发展提供新思路。点击报名》》“第四届质谱成像技术与进展”主题网络研讨会,更多精彩内容,我们直播当日(9月19日)见!点击链接,抢占席位!https://www.instrument.com.cn/webinar/meetings/msi240919/
  • 如何使用Phasics SID4相位成像相机进行表面测量?
    使用Phasics SID4相位成像相机进行表面测量Phasics SID4相位成像相机,可以集成在商业或者自制的光学显微镜装置上。为了提高样品的整体性能,测量物体表面特性是一种有效的方法。对于此类应用,Phasics的软件可以分析光程差,并且实时转化为物体表面的形貌。硬件方面,Phasics相机体积小、结构紧凑,并且易于使用。事实上,Phasics的波前分析仪能够与实验室常用的相机一样易于集成。整个相机可以轻松集成到生产线或者实验室中。表面测量结构Phasic SID4相位相机利用的是一种四波横向剪切技术,将入射光分成剪切的4束,然后再互相干涉形成干涉图,通过傅立叶逆变换可以得到入射光的相位谱和强度信息,这是一种消色差的技术,因此白光和LED光源非常适合。此外,可以使用任何显微镜进行测量,并且不依赖于偏振。如上图光路所示,SID4相机位于被测物体的成像面进行探测,使用简单。SID4相位成像相机可以集成在商业反射显微镜或专用光学系统上。SID 和 AFM 测量比较图中红线部分是Phasics测量结果,黑线位AFM测量结果。使用AFM测量表面缺陷,和使用SID4相位成像相机一次测量成型的结果对比。SID4 与 光学轮廓测量仪 对比使用SID4 HR定量测量,以及白光光学轮廓仪测量结果的对比。两个报告中,第yi个侧重于轮廓,第二个侧重于深度测量。测量结果Phasics是一家专门从事相位测量的法国公司。Phasics向其客户提供全系列的产品,所有这些都是基于独特的技术,即四波侧向剪切干涉技术。Phasics公司的专长在于对这项技术的深刻理解,以及将其应用于从激光和光学计量到生物样品成像等多个领域的能力。对于每一个领域,Phasics都提供了专门的硬件和软件的解决方案。在生物学方面,Phasics提供了SID4Bio,这是一种独特的用于活细胞成像的设备,依赖于定量相位成像。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制