当前位置: 仪器信息网 > 行业主题 > >

微纳米压痕仪

仪器信息网微纳米压痕仪专题为您提供2024年最新微纳米压痕仪价格报价、厂家品牌的相关信息, 包括微纳米压痕仪参数、型号等,不管是国产,还是进口品牌的微纳米压痕仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微纳米压痕仪相关的耗材配件、试剂标物,还有微纳米压痕仪相关的最新资讯、资料,以及微纳米压痕仪相关的解决方案。

微纳米压痕仪相关的仪器

  • 市场功能上最多且简单易用的纳米压痕测试仪NHT3 /UNHT3专为纳米级位移测量提供小载荷,可用于测试硬度、弹性模量和蠕变等。其范围涵盖小载荷 (0.1 mN) 至大载荷 (500 mN),可在载荷范围内提供最大的通用性。由于独特的表面参比技术,无需等待其达到热稳定状态,立即完成压痕测试。全新“快速点阵”压痕模式可以进行一系列快速的测量(每小时测试量高达 600 个压痕)。主要特点最简单易用的纳米压痕测试仪最直观易用的软件:用简单的参数(最大载荷)、统计数据分析和保存的测试方案模板轻松开始测试适用于表面的不同放大倍数的多物镜视频显微镜最坚固耐用的纳米压痕测试仪:参比环保护压痕针尖不受碰撞“快速点阵”压痕模式带“模板”快速且符合要求:按照仪器化压入测试 (IIT) 的 ISO14577 标准要求,“快速点阵”压痕模式每小时测试压痕数目高达 600个全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速的分析数据多样品台夹具用于自动测试,6 样品夹具最多可固定 6 个样品,自定义样品夹具可固定更多样品采用独特的表面参比设计,保证高精度的位移测量表面参比为材料压入位移提供恒定参考(相对于样品表面)高框架刚度 (107 N/m) 为纳米压痕测量提供高准确度和精确度测量的高稳定性采用表面参比技术来实现纳米压痕测量中的高热稳定性(原始热漂移率 0.05 nm/s)框架使用定制的人造花岗岩以提高稳定性采用低热膨胀系数 (10-6/°C) Macor材料的独特设计确保高热稳定性可用于多种分析模式的多种测试模式多种测试模式:正弦模式、连续周期 (CMC)、恒定应变速率、用户自定义、高级点阵和多样品方案、载荷和位移控制模式各种机械性能的多种分析模式:硬度 (HIT、HV、HM)、弹性模量、储能和损耗模量、蠕变、应力 - 应变曲线使用标准压痕针尖可在液体中进行测量技术指标载荷最大载荷100/500 mN分辨率0.003/0.02 μN载荷本底噪音0.05 [rms] [μN]*位移最大位移100/200 μm分辨率0.03/0.01 nm深度本底噪音0.03[rms] [nN]*载荷框架刚度 107 N/m国际标准ISO 14577, ASTM E2546
    留言咨询
  • Hit 300 是一款优质且价格非常实惠的纳米硬度测试仪,专为每位用户和各种类型的环境打造。直观、自动化的 Hit 300 可让您每小时进行 600 次测量,甚至在您走开的时候。主动阻尼减震可确保在所有环境中的准确性。独特的双激光瞄准系统在对准样品时可提供小于 1 mm 的精度。设计时考虑了功能性:安装只需 15 分钟,培训到获得第一个结果只需 1 小时。市场上最简单易用的纳米压痕测试仪市场上最简单易用的纳米压痕测试仪价格不到同类仪器的一半主动减震隔离3 年质保15 分钟内准备就绪,可开始测量
    留言咨询
  • 产品描述iNano采用InForce 50驱动器进行纳米压痕和通用纳米机械测试。 InForce 50的50mN力荷载和50μm位移范围使得该系统适合各种测试。 InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。 iNano是内置高速InQuest控制器和隔振门架的紧凑平台。 该系统可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能InForce 50驱动器,用于电容位移测量,并配有电磁启动的可互换探头独特的软件集成探头校准系统,可实现快速准确的探头校准InQuest高速控制器电子设备,具有100kHz数据采集速率和20μs时间常数XY移动系统以及易于安装的磁性样品架带数字变焦的集成显微镜,可实现精确的压痕定位ISO 14577和标准化测试方法InView软件包,包含RunTest、ReviewData、InFocus报告、InView大学在线培训和InView移动应用程序主要应用硬度和模量测量(Oliver Pharr)高速材料性质分布ISO 14577硬度测试聚合物tan delta,储存和损耗模量样品加热工业应用大学、研究实验室和研究所半导体和封装行业聚合物和塑料MEMS(微机电系统)/纳米级通用测试陶瓷和玻璃金属和合金制药涂料和油漆聚合物制造复合材料电池和储能应用硬度和模量测量 (Oliver-Pharr)机械表征在薄膜的加工和制造中至关重要,其中包括汽车工业中的涂层质量,以及半导体制造前段和后段的工艺控制。iNano纳米压痕仪能够测量从超软凝胶到硬涂层的各种材料的硬度和模量。 对这些特性的高速评估保证了在生产线上进行质量控制。高速材料性质分布对于包括复合材料在内的许多材料,其机械性能可能因部位而异。 iNano的样品平台可以在X轴和Y轴上移动100mm,并在Z轴方向移动25mm,这使得该系统适用于不同的样品高度并可以在很大的样品区域上进行测量。 可选的NanoBlitz形貌和层析成像软件可以快速绘制任何测得的机械属性的彩色分布图。ISO 14577硬度测试iNano纳米压痕仪包括预先编写的ISO 14577测试方法,可测量符合ISO 14577标准的材料硬度。 该测试方法对杨氏模量、仪器硬度、维氏硬度和标准化压痕进行自动测量和报告。聚合物Tan Delta、储存和损失模量iNano纳米压痕仪能够针对包括粘弹性聚合物的超软材料测量tan delta和储存与损耗模量。 储存与损耗模量以及tan delta是粘弹性聚合物的重要特性,其能量作为弹性能量存储并作为热量消耗。 这两个指标都用于测量给定材料的能量消耗。高温纳米压痕测试高温下的纳米压痕对于表征热应力下的材料性能至关重要,特别对热机械工艺中的失效机理进行量化。 在机械测试期间改变样品温度不仅能够测量热引起的行为变化,还能够量化在纳米级别上不易测试的材料过渡塑性。产品优势iNano纳米压痕仪可轻松测量薄膜、涂层和少量材料。 该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 该仪器的力荷载和位移测量动态范围很大,因而可以实现从软聚合物到金属材料的精确和可重复测试。 模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损以及高温测试。 iNano提供了一整套测试扩展选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D属性映射和远程视频选项。
    留言咨询
  • 产品描述iMicro采用InForce 1000驱动器进行纳米压痕和通用纳米机械测试,并可选择添加InForce 50驱动器来测试较软的材料。InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。iMicro是内置高速InQuest控制器和隔振门架的紧凑平台。 可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能InForce 1000驱动器,用于电容位移测量,并配有电磁启动的可互换探头可选的InForce 50驱动器提供最 大50mN的法向力来测量软性材料,并提供可选的Gemini 2D力荷载传感器用于双轴动态测量。独特的软件集成探头校准系统,可实现快速准确的探头校准InQuest高速控制器电子设备,具有100kHz数据采集速率和20μs时间常数XY移动系统以及易于安装的磁性样品架高刚度龙门架,集成隔振功能带数字变焦的集成显微镜,可实现精确的压痕定位ISO 14577和标准化测试方法InView软件包,包含RunTest、ReviewData、InFocus报告、InView大学在线培训和InView移动应用程序主要应用硬度和模量测量(Oliver Pharr)高速材料性质分布ISO 14577硬度测试聚合物tan delta,储存和损耗模量定量刮擦和磨损测试样品加热工业应用大学、研究实验室和研究所半导体行业PVD / CVD硬涂层(DLC,TiN)MEMS(微机电系统)/纳米级通用测试陶瓷和玻璃金属和合金制药涂料和油漆复合材料电池和储能汽车和航空航天应用硬度和模量测量(Oliver Pharr)机械表征在薄膜的加工和制造中至关重要,其中包括汽车工业中的涂层质量,以及半导体制造前段和后段的工艺控制。iMicro纳米压痕仪能够测量从超软凝胶到硬涂层的各种材料的硬度和模量。 对这些特性的高速评估保证了在生产线上进行质量控制。高速材料性质分布对于包括复合材料在内的许多材料,其机械性能可能因部位而异。 iMicro的样品平台可以在X轴和Y轴上移动100mm,并在Z轴方向移动25mm,这使得该系统适用于不同的样品高度并可以在很大的样品区域上进行测量。 可选的NanoBlitz形貌和层析成像软件可以快速绘制任何测得的机械属性的彩色分布图。ISO 14577硬度测试iMicro纳米压痕仪包括预先编写的ISO 14577测试方法,可测量符合ISO 14577标准的材料硬度。 该测试方法对杨氏模量、仪器硬度、维氏硬度和标准化压痕进行自动测量和报告。聚合物Tan Delta、储存和损失模量iMicro纳米压痕仪能够针对包括粘弹性聚合物的超软材料测量tan delta和储存与损耗模量。 储存与损耗模量以及tan delta是粘弹性聚合物的重要特性,其能量作为弹性能量存储并作为热量消耗。 这两个指标都用于测量给定材料的能量消耗。定量划痕和磨损测试iMicro可以对各种材料进行刮擦和磨损测试。 涂层和薄膜会经过化学机械抛光(CMP)和引线键合等多道工艺,考验薄膜的强度及其与基板的粘合性。 重要的是这些材料在这些工艺中抵制塑性变形,并且保持原样而不会基板起泡。 理想地,介电材料应具有高硬度和弹性模量,因为这些参数有助于确定材料在制造工艺下会如何反应。高温纳米压痕测试高温下的纳米压痕对于表征热应力下的材料性能至关重要,特别对热机械工艺中的失效机理进行量化。 在机械测试期间改变样品温度不仅能够测量热引起的行为变化,还能够量化在纳米级别上不易测试的材料过渡塑性。产品优势iMicro纳米压痕仪可轻松测量硬涂层,薄膜和少量材料。该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 可互换的驱动器能够提供大动态范围的力荷载和位移,使研究人员能够对软聚合物到硬质金属和陶瓷等材料做出精确及可重复的测试。模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损测试以及高温测试。 iMicro拥有一整套测试扩展的选项,包括样品加热、连续刚度测量、NanoBlitz3D / 4D性质分布,以及Gemini 2D力荷载传感器,可以提供摩擦和其他双轴测量。
    留言咨询
  • FISCHERSCOPE HM 2000是一款专业的纳米压痕测量仪器,适用于通过纳米压痕法分析材料的机械与弹性特性。其非常坚固且尺寸稳定的构造可减少振动与温度波动的影响。稳定的测量条件使其非常适用于要求严苛的研发与工业应用中的测量任务。此外,它的全自动测量程序使其成为连续测试的理想之选。 特性:众多塑性与弹性特性的测定,例如马氏硬度、压痕硬度(或维氏硬度)、压痕模量以及蠕变符合 DIN EN ISO 14577-1 与 ASTM E 2546 标准的材料参数测量与计算模块化构造使其能够灵活适应客户特定要求,可追溯性更强压头:维氏、柏氏或硬质合金球测量头,适用于在恒定温度下进行的长达数小时的蠕变测量具有三种倍率的显微镜,适用于测量点的准确定位通过快速行进实现自主、高度准确的零位测定适用于多测量点自动化测试的可编程 XY 工作台通过高性能 WIN-HCU 软件快速评估并清晰地呈现测量结果 典型的应用领域:研发中的表面表征,例如医用植入物的硬铬或陶瓷涂层复杂几何形状(如套管)上的硬度测试电镀行业中部件批量生产的连续测试电路板的质量保证,例如薄金镀层的电阻测试或绝缘层控制测试金属箔的韧性与强度针对决定磨损的性能测量,例如 PVD 或 CVD 涂层以及硬质材料(如氮化钛、氮化铬以及氮化铝钛涂层)的硬度与强度薄 DLC 涂层的机械性能、弹性以及塑性特性油漆涂层的硬度与弹性测量,例如汽车车漆测试阳极氧化层的机械性能(硬质阳极氧化层)验证涂层的耐刮擦性与耐磨性针对多个样品进行自动化测量可测量的材料特征参数测量的材料特征量遵循国际标准ISO 14577,一共可测量包括以下在内的30多种物理参量:马氏硬度HM压入硬度HIT维氏硬度HV压入模量EIT压痕蠕变CIT压入过程弹性功占总做功比例= Welast/Wtotal由增强型刚度测量模式ESP,通过部分加载和卸载测量,可获得如EIT、HIT等参数与压入深度或载荷间的相互关系 附件(可选):封闭的测量舱以避免外界干扰,如来自空调机组的气流主动阻尼工作台,以减少振动影响可加热的样品覆盖层,用于在温度不断升高的情况下进行材料测试原子力显微镜 (AFM):记录样品的三维表面并测量其他材料参数,如摩擦特性高精度定位台,可实现 500 nm 的定位精度更强大的显微镜,具有自动对焦与自动对象识别功能适用于不同样品的样品夹具
    留言咨询
  • 微纳米压痕 400-860-5168转2125
    美国K-T公司是全球微纳米力学测试设备技术的开创者,全球第一台纳米力学测试系统于上世纪80年代初在公司前身诞生,多种测量方法和物理模型来自该公司。经过近40年不断努力和改进,该公司微纳米力学测试不仅实现了静态到动态的测试,同时实现了与光学、电学等设备连用的原位材料力学、微结构学甚至成份学的多手段原位测试功能。当前国标已经引入该公司专利的CSM连续刚度技术,在该领域具有很高的权威性。K-T在连续刚度(CSM)、高分辨、扫描成像、快速测试方面拥有独特技术。K-T是该领域著名跨国公司,中国设有地区总部,拥有最专业的技术支持和售后服务人员。更多信息,请联系我们以探讨您的需求。
    留言咨询
  • 产品详情Nano Indenter G200X可提供纳米级的力学测试功能,简单易用,能够精确进行各种力学定量分析。G200X系统中配置了高精度纳米马达样品台、最 大的样品安装系统和高分辨率光学显微镜。InView软件、InQuest控制器和InForce驱动器让KLA全线压痕产品系列具有一致的卓 越性能。 G200X系统可选功能包括连续刚度测量(CSM)、扫描探针显微成像、划痕测试、动态力学分析频率扫描,、IV电压电流特性测试、超高速压痕测试和冲击测试等等。主要功能电磁驱动器可轻松实现载荷和位移的宽动态范围的控制高分辨率光学显微镜与精密XYZ 移动系统结合,实现高精度观察与定位测试样本。便捷的样本安装台与多样本定位设置功能实现高通量测试。高度模块化设计,设备提供扫描探针成像功能、划痕及磨损测试功能、高温纳米力学测试功能、连续刚度测试(CSM) 和高速3D及4D力学图谱等模块化升级选件。直观的用户操作界面便于快速的进行测试设置;仅需点击几下鼠标即可完成复杂测试的参数设置。实时高效的实验控制,简单易用的测试流程开发和测试参数设置。全新的InView软件,提供用于分析数据的Review软件和生成各种综合性测试报告的 InFocus软件。独 家发明并获得美国R&D奖的材料表面力学图谱功能和高速测试功能,极大的提高了定量数据的可靠性。InQuest高速数字控制器,数据采集速率最 高可达100kHz,时间响应常数最快为20µ s。主要应用高速硬度和模量测量 (基于Oliver-Pharr 模型)高速材料表面力学特性分布测量ISO 14577 标准化硬度测试薄膜及涂层测试界面附着力测量断裂韧性测量粘弹性测量,储能模量和损耗模量及损耗因子扫描探针显微成像(3D 成像)定量划痕和磨损测试高温纳米压痕测试IV电学测试行业分布高校、科研实验室和研究所半导体芯片行业PVD/CVD 硬质涂层(DLC、TiN)MEMS:微机电系统/纳米级通用测试陶瓷与玻璃金属与合金制药膜层材料与油漆复合材料电池与储能汽车与航空航天应用硬度与模量测试 (Oliver-Pharr模型)在薄膜的工艺控制和制造过程中,表征其力学性能至为重要,其中包括汽车行业的涂层质量,以及半导体制造中的前道和后道工艺控制等。G200X纳米压痕仪可在宽泛材料上测量硬度和模量,对从超软凝胶类样品到硬质涂层等各种材料提供解决方案。更快,更好和更具成本效益的解决方案为生产线提供可靠的品质控制及保障。高速材料力学性能图谱功能对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能会有很大差异。 G200X系统能够在X轴和Y轴方向上各提供 100 毫米的样品台移动,并在Z轴方向上提供25毫米的移动,在大面积样本区域下轻松表征不同厚度,宽度,长度的样本。可升级选件NanoBlitz 力学形貌图谱和断层谱图 软件能够快速输出力学性能的彩色分布图。ISO 14577 硬度测试Nano Indenter G200X 包括预先内置的ISO 14577测试方法,可根据ISO 14577 标准测量材料硬度。该测试方法可以自动测量并输出杨氏模量、仪表硬度、维氏硬度和归一化压痕功。界面附着力测试膜层材料的界面粘附性的测量对于帮助用户了解薄膜的失效模式至关重要。内应力的存在常常会导致镀层样品的薄膜分层现象,Nano Indenter G200X系统可以通过膜层界面的断裂及黏附特性和残余应力等性能的测试,实现对多层界面的性能评估。断裂韧性测试断裂韧性反映了结构阻止宏观裂纹失稳扩展能力,是结构抵抗裂纹脆性扩展的参数。低断裂韧性值意味着样品存在的缺陷。G200X特有的刚度成像功能可以轻松地对材料的断裂韧性进行评估。(刚度分布测量需要连续刚度测量和NanoVision选件)粘弹材性测试聚合物是结构异常复杂的材料,力学性能易受其化学特性、加工工艺和热力学历史的影响。力学性能取决于母链的类型和长度、支化、交联、应变、温度和频率等,而这些因素通常是相互关联的。G200X可在特定测试环境中对相关聚合物样本进行力学测试,为聚合物高分子材料设计参数决策提供了有价值的数据信息。/p纳米压痕测试所需样本尺寸小,样本制备要求简单,可高效简化这种特定环境的测量。Nano Indenter G200X 系统还可以通过与材料充分接触的同时激发高频振动来测量聚合物样品的复合模量和粘弹性。扫描探针显微成像 (3D 成像)Nano Indenter G200X 系统提供两种扫描探针显微成像方式,用户可利用三维成像来表征断裂韧性研究中产生的裂纹长度等。 Nano Indenter G200X 与NanoVision选件结合,可提供高达1nm步进的横向分辨率的高精度PZT样品台,实现高精度定位,100µ m x 100µ m的最 大横向扫描范围。Nano Indenter G200X测试平台标准的高精度X/Y 纳米马达台与Inview 软件及扫描测量选件结合,可提供500µ m x 500µ m的最 大横向扫描范围。定量划痕和磨损测试G200X 系统可以对多种材料进行划痕和磨损测试。在涂层和薄膜经过化学机械抛光 (CMP) 和引线键合等的多种工艺处理的时候,其强度及其对基材的附着力会备受考验。在加工工艺中,材料是否能抵抗塑性变形并保持完整而不从衬底上起泡非常重要。理想情况下,介电材料具有高硬度和高弹性模量,因为这些参数有助于了解材料在制造工艺中的性能变化。产品优势NanoIndenter G200X纳米级力学测试平台,简单易用,能够快速准确的提供各种定量的力学测试结果。G200X系统能够轻松表征广泛的材料力学性能,从硬质涂层到超软聚合物样品,并针对不同应用提供综合全面的纳米力学测试升级选件和解决方案。
    留言咨询
  • 此微纳米力学原位测试系统可以对各种微纳米薄膜、涂层材料或块体材料微纳米尺度上进行压痕、划痕、摩擦磨损和原位扫描探针成像测试功能,通过软件直接实现连续更换不同实验模式,具有高分辨率,高控制精度,高稳定性的特点。设备可直接测试出器件及各种微纳米薄膜、涂层材料或块体材料微纳米尺度上在不同温度下的硬度、表面粗糙度、薄膜厚度、杨氏模量、基底效应、断裂韧性、附着性能、抗磨损能力、储能模量、损耗模量及损耗因子等。设备可直接观测器件及各种纳米薄膜涂层材料在微/纳米尺度上的失效、断裂、蠕变、摩擦磨损等各种力学行为的发生,结合上述工作对材料的制备工艺和服役性能进行评价。应用领域涵盖了聚合物、复合材料、金属、陶瓷、MEMS、生物材料等几乎所有的材料领域。美国KLA-Tencor公司是全球微纳米力学(压痕)测试设备的开创者,全球第一台纳米力学测试系统于上世纪80年代初在此诞生,多种测量方法和物理模型都是来自该公司。经过近40年不断地努力和改进,目前该公司微纳米力学测试不仅实现了静态纳米压痕测试,同时实现了高水平的动态纳米压痕测试和原位纳米压痕测试,当前中华人民共和国纳米压痕测试标准GB/T 22458—2008和GB/T 25898-2010均包括了KLA-Tencor 的连续刚度测量专利技术,在该领域具有很高的权威性,KLA-Tencor在连续刚度测试(CSM)、高分辨率、扫描成像、快速测试方面拥有独有技术。KLA-Tencor是该领域知名的跨国公司,中国设立地区总部, 拥有高水平的专业技术支持和售后服务人员,国内用户得到很好的售后服务和技术支持,国内主要高校和中科院下属多个研究机构以及测试中心均采购该微纳米力学测试系统。更多应用,请联系我们探讨您的需求。
    留言咨询
  • Global Leader in Process Control since 1976KLA-Tencor 是全球半导体在线检测设备市场最大的供应商;KLA-Tencor2018 年 3 月从 Keysight Technologies 公司收购了行业的龙头产品-高精度原位微纳米力学测试系统-Nano Indenter G200 和高精度微纳米拉伸系统-UTM T150;该力学设备的工厂是全球最大的高精度力学测试系统的供应商,1983 年成功制造了世界上第一台商用Nano Indenter。该力学设备的工厂是业内唯一拥有超过 35 年的 Nano Indenter 生产和研究经验的供应商,成熟的工艺保证了新一代 Nano Indenter G200 具有最好的稳定性和可靠性。该力学设备的工厂拥有最广泛的顾客群,在高端力学测试系统领域内拥有最高的的市场占有率。 1. 产品技术水平KLA-Tencor 公司拥有最多的 Nano Indenter 的核心专利技术,包括已成为业界标准的连续刚度测量功能、接触刚度成像功能以及快速纳米压入测试技术等等;KLA-Tencor 公司的连续刚度测量功能已经成为薄膜、涂层、多相材料等样品检测最常用的的测试技术,并已经录入各种力学领域的国际标准和中国国家标准内。KLA-Tencor 拥有世界上最快压痕测试技术的专利,最快可达到 1 压痕点/秒。 2. 售后服务和技术支持KLA-Tencor 公司在中国有超过 600 名员工,在国内配备本土 Nano Indenter 方面的技术专家,在业内拥有最好的口碑。KLA-Tencor 公司在中国拥有自己的纳米科学示范实验室,并有专职的应用专家在实验室工作,负责用户的应用技术支持工作;KLA-Tencor 公司还定期地举办高级用户培训班,由公司的应用科学家为不同学科的用户进行各个领域应用的深层次培训。 特点和优势– 广受赞誉的高速测试选项可以和所有G200 型纳米压痕仪配合使用, 包括DCMII 和 XP 模块以及样品台– 快速进行面积函数和框架刚度校对– 精确和可重复的结果, 完全符合ISO14577 标准– 通过电磁驱动, 可在无与伦比的范围内连续调整加载力和位移– 结构优化, 适合传统测试或全新应用– 模块化选项, 适合划痕测试, 高温测试– 和动态测试– 强大的软件功能, 包括对试验进行实时控制, 简化了的特殊测试方法的开发Nano Indenter G200在微/纳尺度范围内的加载和位移构成精确的力学测试 应用– 半导体器件, 薄膜– 硬质涂层, DLC薄膜– 复合材料, 光纤, 聚合物材料– 金属材料, 陶瓷材料– 无铅焊料– 生物材料, 生物及仿生组织等等先进的设计所有的纳米压痕试验都取决于精确的加载和位移数据,要求对加载到样品上的 载荷有精确的控制。KT最新的第五代 G200 型纳米压痕仪采用电磁驱动的载荷装置,从而保证测量的精确度,独特的设计避免了横向位移的影响。 KT最新的第五代 G200 型纳米压痕仪的杰出设计带来很多的便利性,包括方便的测试到整个样品台,精确的样品定位,方便的确定样品位置和测试区域,简 便的样品高度调整,以及快速的测试报告输出。模块化的控制器设计为今后的 升级带来极大的方便。 此外,最新的第五代 G200 型纳米压痕仪完全符合各种国际标准,保证了数据的完整性。客户可以通过每个力学传感器自主设计试验,在任何时候对其进行切换,同时整个设备占地面积小,适合各种实验室环境。KLA-Tencor技术顾问服务KT拥有一支经验丰富的技术支持和服务工程师团队,可针对客户的 特殊应用与测试需求提供定制化的技术顾问服务。 经过超过 35 年的发展,NanoSuite 已经成为业内公认的界面友好、操作简便、功能齐全的数据采集和处理软件包,NanoSuite 不仅可以自动测试,也可以使用户利用网络远程遥控进行实验控制,NanoSuite 不仅能够做到压入过程中硬度和弹性模量等力学性能的实时计算和显示,同时允许用户根据自 己的研究需求以及提出的新模型随时添加新的软件通道,此外,根据实验参 量的变化快慢能够自动调整数据的采集速率,实现了智能化的数据采集功 能,从而既获得您真正需要的数据,又可避免不必要的垃圾数据。增强的载荷加载系统新一代 Nano Indenter G200 系列纳米压痕仪是具有从纳牛到牛顿最为完整的加载力范围,并且不同的加载装置可自动软件切换,整个测试流程都是全 自动的,极大的提高了测试数据的可靠性和可重复性,避免了可能的人为因 素的影响,确保每个测试都是合理、一致、精确。标准的加载装置Nano Indenter G200 纳米压痕仪标准配置是 XP 加载系统 (最大为500mN), 位移分辨率 0.01纳米,最大压入深度 500 微米,该装置可应用到所有的测试功能。压头更换轻松完成,非常好的机架刚度极大的减少了系统对测试的影响。高精度加载装置DCM II 是高分辨的纳米纳牛力加载模块,它既可以单独工作,也可以作为一个附件与Nano Indenter G200 协同工作。由于其惯性质量很低,使得纳米压痕中的初始表面的选取更加灵敏、精确, DCM II 在超低载荷下的纳米压痕测试具有极高的精确度和可重复性,由于它自身的空载共振频率远高于一般建筑物的振动频率,这就使得一般的环境振动对它几乎没有影响,DCM II 具有很宽的动态频率范围 (0.1 Hz 到 300 Hz),所有这些特点使得 DCM II 可以提供同类设备不可比拟的高信噪比和高可靠性的试验数据,例如右图所示的蓝宝石上三个纳米深度的压痕测试,在几个纳米的压痕深度范围内获得了非常可靠的弹性模量。大载荷加载装置Nano Indenter G200的大载荷加载选件,大大强化了 G200 系列纳米压痕仪的应用范围。这个选件可以用于标准的 XP 加载模块,将 G200 型纳米压痕仪的加载能力扩展至 10N,可对陶瓷、金属块材和复合材料进行力学表征。大载荷选件的巧妙设计,使得 G200 既避免了在低载荷的情况下牺牲仪器的载荷和位移精度,同时又保证了用户在需要大加载力的测试时,通过鼠标操作就可以在测试实验中进行无缝加载装置切换。
    留言咨询
  • 生物组织纳米压痕仪介绍Piuma纳米压痕仪的核心部件是其安装在压痕移动平台上极其敏锐的压痕探头1.压痕移动平台,具备粗进以及精进两级移动精度,使得探针可以自动寻找到表面并且提供高精度压痕。除了压痕移动平台,Piuma纳米压痕仪还有一个手动样品移动平台2.方便样品的安放。你的样品可以放在X-Y移动台上piuma生物软组织纳米压痕仪3.进行杨氏模量的测试或者进行多点阵测试。一个内置式的显微镜4.可以直接观察实验过程!piuma生物软组织纳米压痕仪 生物组织纳米压痕仪是一个简单易用的产品,为软物质以及生物材料组织的微观以及纳观研究带来希望。依靠自身*的新型光学技术以及杰出的微加工工艺,Piuma纳米压痕仪可以测量杨氏模量软的样品,范围甚至是从5Pa到5GPa!Piuma同样非常适合在液体中测试样品。其操作非常简单易学,只需将探头插入仪器中,简单定标后,即可马上开始压痕实验。产品构件详细介绍:1.PROBE探头纳米压痕仪核心:一个微加工工艺制作的光学压痕探头如果您感兴趣的话,我们可以为您提供试样服务请联系2.SAMPLE样品从水凝胶到骨组织等,在大气中或者浸没在液体中3.SAMPLEXYSTAGEXY样品台在X-Y(12x12mm)范围内测试样品4.INDENTATIONSTAGE压痕移动台粗进以及精进移动台实现精确压痕以及自动寻找样品表面5.MANUALSTAGE手动平台为任何样品以及容器创造空间 纳米以及微米级别的生物机械性能Piuma是一个创新的,具有成本效益的工具,用来表征生物材料、组织、细胞器、细胞层、软骨、静电支架、力学性能,3D打印材料,水凝胶等的微纳米机械性能。The Piuma 纳米压痕仪专为迎合生物材料以及组织研究人员和工程师的需求,提供易用性和便携性,同时提供高精度、高通量和多样化的数据。Optics11小型化的玻璃探针式压头,特别适合在液体中测量水合样品。组织工程和再生医学的研究者,Piuma纳米压痕仪是衡量他们感兴趣材料刚度的一个解决方案。 软物质材料表征在生物材料、组织工程、再生医学和医学研究领域,Piuma可以在溶液里进行非破坏性测量测量某点或者某个区域的杨氏模量、蠕变和松弛实验,点阵测量粘附力,描述应变硬化行为,样品的粘度等。测试生物材料和组织样本的软硬度可以很容易地在Piuma纳米压痕仪上用其optics11 PIUMA探头和专用的Piuma软件来实现。 Piuma Nanoindenter是荷兰Optics11公司出品的新型生物纳米压痕仪。主要应用范围为生物组织、生物支架、水凝胶、聚合物、细胞等软物质以及生物材料的机械性能研究。采用了新型探头设计,弥补了传统其他纳米压痕仪无法测试软物质的问题也解决了原子力显微镜在软物质测试中的数据波动大,操作困难、制样严苛等常见问题。更开创性的在压痕仪中加入了动态力学测试模式DMA,可以获得材料与振动频率相关的储存模量、损失模量和损失因子,用于研究材料在交变力作用下的滞后现象和力学损耗。
    留言咨询
  • FISCHERSCOPE HM2000是一款遵循国际标准DIN EN ISO 14577,采用仪器化压入测试方法的高性价比纳米压痕仪。采用该仪器,可测量难以对位的被测位置,十分适用于研发、质量控制、来料检验和过程控制等领域。典型的应用领域:涂料、塑料或硬质合金涂层(PVD、CVD)电镀层(装饰性、功能性)硬质氧化层材料表征医用材料电子零部件、接插件、焊线等离子镀涂层橡胶等软性材料油漆层可测量的材料特征参数:测量的材料特征量遵循国际标准ISO 14577:马氏硬度HM压入硬度HIT(可转换成HV)压入模量EIT压痕蠕变CIT压入过程弹性功占总做功比例?IT= Welast/Wtotal由增强型刚度测量模式ESP,通过部分加载和卸载测量,可获得如EIT、HIT等参数与压入深度或载荷间的相互关系
    留言咨询
  • Bruker微纳压痕划痕测试仪CETR-Apex一、概述布鲁克的摩擦测试设备,居于世界领dao者地位,成为摩擦学和机械性能测试的标杆,能在各种环境条件下执行多重检测,获取纳米级、微米级以及宏观尺度上材料的摩擦和机械性能数据。目前,全球有上千台设备成功安装并投入使用,进行材料基本性能的测试,尤其在薄膜研究以及工业生产的质量监控方面。图1、CETR-Apex微纳压痕划痕测试仪 Bruker微纳压痕划痕测试仪CETR-Apex,是一款多功能微米、纳米机械性能测试平台。性能卓越,操作简易。CETR-APEX压痕和划痕测试仪,配备6种容易互换的机械头,高倍率显微镜和成像模块(AFM和三维光学轮廓仪)。纳米压头用来测量超薄涂层尤其是纳米级涂层以及块体材料的厚度、硬度、杨氏模量等。微米压头用于较厚涂层和块体材料的硬度、杨氏模量等机械性能测量。纳米、微米级摩擦学压头用于薄膜、涂层以及块体材料的摩擦磨损测量、静态/动态摩擦学测量、耐用度、附着力,粘滑性等机械性能测量。图2、CETR-Apex 微米摩擦学头 图3、CETR-Apex 纳米摩擦学头1. CETR-Apex三个测量探头l 左侧:机械性能测试,可以简便更换纳米、微米压头;l 中部:显微镜,多达4个不同放大倍数的物镜,随意切换;l 右侧:扫描成像,AFM和三维光学轮廓仪随意切换。 2. 六种机械压头l 奈米压痕压头用来测量超薄涂层尤其是奈米级涂层以及块体材料的硬度,杨氏模量等(样品表面需较为光滑,以确保数据可靠性) 。l 奈米划痕压头主要用于奈米级超薄涂层的厚度测量(DLC、ALD、太阳能薄膜、ITO薄膜和光学涂层等)。l 微米压痕压头仪器的微米压痕压头用于较厚涂层和块体材料的硬度和杨氏模数等机械性能测量。l 微米划痕压头主要用于较厚涂层的微米级划痕测量(PVD、CVD、油漆、装饰涂料等)。l 毫米划痕压头用于宏观尺度的划痕测量。l 纳米、微米级摩擦学压头用于薄膜、涂层以及块体材料的磨润测量、静态/动态摩擦学测量、耐用度、附着力、粘滑性等机械性能测量。 3. 可供选择的模块与软件l 原位成像模块可供选择的原位成像模块,无需移动样品的情况下,将样品测试的结果自动生成为高分辨图像(压痕、划痕、磨润等)。l 摩擦学测试&机械性能测试分析软件基于windows系统设计的软件包秉承布鲁克测试仪器的一贯标准,快速采集并且灵活处理资料,进行详细可靠的数据分析。图4、在线成像 4. ASTM/DIN/ISO的标准认证Apex适用于 多重认证标准:l ASTM E2546 纳米压痕检测标准l ISO 14577 仪器压痕硬度检测l ASTM C1624 陶瓷涂层的附着力和机械性能实效检测l ASTM G171 材料化划痕硬度检测l ASTM E384 材料微米尺度的压痕硬度检测 二、纳米模块NH随着纳米技术的进步和薄膜工艺的发展(太阳能电池,CVD,PVD,DLC,MEMS等),纳米尺度的机械性能测试趋向标准化。这种方法改进了传统硬度测试的不足,通过设计高深宽比的探针测试更深、更窄的沟槽,还实现了低载荷,高空间分辨率和原位载荷-位移数据的精确测量。纳米压痕--- 参照ISO14577标准,选取 单点/多点压痕来测量薄膜、涂层和块体材料的硬度、杨氏模量、张力、应力(von Mises应力)和接触强度/刚度等。纳米划痕--- 在接触模式下,可根据用户定义不断增加载荷,检测薄膜、涂层和块体材料的划痕硬度和划痕黏附力。动态压痕--- 通过探针动态测量方法,检测随深度变化的损失模量以及存储模量。NH特性l 电磁驱动传感器l 三板电容传感以超高精确度检测样品摩擦学性质变化l 针尖几何形状为Berkovich、球体、立方体角l 对多点压痕进行空间映射,压痕数目不受限制l 在线成像选件(推荐使用原子力显微镜)l 检测效率高,重复性好l 可选的先进的原位传感器l 配备隔热、隔音罩以及防震台l 符合ASTM、DIN和ISO的所有监测标准 三、微米模块MH微米机械性能测试已经被广泛应用于检测涂层和块体材料的各种机械性能。微米机械性能测试仪远胜于传统测试方法,可以提供原位载荷-位移数据、应用例如声学发射检测、ECR、摩擦检测等信号来获得综合机械性能信息。仪器化微米压痕检测--- 参照ISO14577标准,在毫米尺度(应用超过2N的载荷)以及微米尺度(低于2N的载荷)下检测涂层和体块材料的硬度、杨氏模量、张力、应力(von Mises应力)和接触强度/刚度等。传统维氏硬度和努普硬度--- 参照ASTM E384.99 认证标准,测量测量的显微硬度。微米划痕---在接触模式下,可根据用户定义不断增加载荷,检测薄膜、涂层和块体材料的划痕硬度和划痕黏附力。MH特性l 电磁驱动传感器l 三板电容传感以超高精确度检测位移l 针尖几何形状为Berkovich、球体、立方体角l 对微多点压痕进行空间映射,压痕数目不受限制l 在线成像选件(推荐3D轮廓仪)l 检测效率高,重复性好l 可选的先进的原位传感器l 用户自定义数据分析算法或分析模型,精确检测材料机械性能l 符合ASTM、DIN和ISO的所有监测标准设备咨询电话:
    留言咨询
  • CB500型纳米压痕仪 400-860-5168转3282
    产品简介: CB500是美国NANOVEA公司推出的一款低价格微纳米力学综合测试系统,该系统聚纳米压痕仪、纳米划痕仪、微米压痕仪、微米压痕仪四个功能模块于一身,这款仪器采用模块化设计,可在一款仪器下实现纳米与微米/大载荷三个尺度下的压痕,划痕与摩擦磨损测试,进而可得到硬度、弹性模量、蠕变信息、弹塑性、断裂韧度、应力-应变曲线、膜基结合力、划痕硬度、摩擦系数、磨损率等微观力学数据。产品特性: - 模块化设计:可在一台仪器集成纳米压痕仪、纳米划痕仪、微米压痕仪、微米划痕仪4款仪器。 - 压痕测试完全符合国际ISO14577与美国ASTM E2546标准,划痕测试完全符合ISO 20502、1518、ASTM D7027、D1624、D7187、C171标准。 - 载荷加载系统:采用闭环载荷加载垂直加载,准确性远远优于传统的开环载荷加载技术及悬臂加载技术,可保证施加载荷的精准性。 - 载荷驱动方式:高精度压电陶瓷驱动,精度远远优于电磁力驱动。 - NANOVEA专利技术(专利号:EP0663068 A1 1995)高精度电容式传感器来能够保证系统够实现高精度的测量可保证压入深度与划入深度实时测量。 - 采用encoder高精度光栅尺样品台,定位精度可达250nm以内。 - 独特的热飘逸控制技术:纳米压痕仪的热飘逸为0.05nm/s,同时通过专业的硬度测试软件,利用热飘逸补偿技术可将热飘逸总量控制在1nm以内;另外,仪器采用立式结构,电子单元在左右两边,热量往上漂不会对电子单元产生影响,从而得到非常小的热漂移。 - 划痕具有全景成像模式 - NANOVEA公司专利金刚石面积函数校准技术(专利号:No. 3076153)只需要压一次就可以对针尖面积函数进行校准实现精确测量!!!主要技术参数: 1)纳米压痕仪: — 静态加载模式最大加载载荷:80mN /400mN/1800mN/4800mN — 动态加载模式DMA:0.1-100Hz— 载荷分辨率:3nN— 可实现的最小载荷:0.1mN— 加载速率:0.04-12000mN/min— 最大压入深度(电容传感器): 250μm/1mm— 位移分辨率:0.0003nm— 快速压痕功能:做100个mapping点只需5分钟— 热飘逸0.05nm/s(室温条件下)2)纳米划痕仪:— 划痕正向力最大载荷:80mN /400mN/1800mN/4800mN— 载荷分辨率:3nN— 划痕正向力最小载荷:0.1mN— 最大划痕深度:250μm/1mm— 最大划痕长度:50mm— 划痕速度:0.05-600mm/min— 位移分辨率:0.0003nm— 最大深度:250μm/1mm— 深度分辨率:0.0003nm— 最大摩擦力:400mN/1800mN— 摩擦力分辨率:7μN3)微米压痕仪: — 最大加载载荷:40N/200N — 载荷分辨率:2.4μN /12μN — 载荷噪声水平(RMS):0.1mN/0.5mN — 可实现的最小载荷:2mN/10mN — 加载速率:0.01-500N/min / 0.05-1000N/min — 快速压痕功能:做100个mapping点只需12分钟 — 深度范围(电容式传感器):1mm — 深度分辨率:0.01nm — 深度分噪声水平(RMS): 0.5nm4)微米划痕仪: — 划痕正向力最大载荷:40N/200 N — 划痕正向力最小载荷:2mN/10mN — 最大划痕深度:1mm — 深度分辨率:0.01nm — 深度分噪声水平(RMS): 0.5nm — 最大划痕长度:50mm — 划痕速度:0.1-1200mm/min — 最大摩擦力:20N/200N — 摩擦力分辨率:1.3mN/13mN5)精密定位平台: — XY方向移动范围:100mm*50mm — Z方向允许的最大样品空间:150mm — 工作台XY方向定位分辨率:10nm — 工作台XY方向定位精度:250nm — Z方向可自动移动移动范围:50mm6)光学金相显微镜成像系统: — 物镜的放大倍率分别为:5X,10X,20X,50X,1000X — 总的放大倍率分别为:400X,800X,1600X,4000X,8000X,7)原子力显微镜AFM的技术参数(高分辨率): — XYZ方向最大扫描范围:100μm *100μm *12μm — XY方向移动分辨率:0.1nm — Z方向的测量分辨率:0.02nm
    留言咨询
  • 公司背景-Global Leader in Process Control since 1976KLA-Tencor 是全球半导体在线检测设备市场最大的供应商;KLA-Tencor2018 年 3 月从 Keysight Technologies 公司收购了行业的龙头产品-高精度原位微纳米力学测试系统-Nano Indenter G200 和高精度微纳米拉伸系统-UTM T150;该力学设备的工厂是全球最大的高精度力学测试系统的供应商,1983 年成功制造了世界上第一台商用Nano Indenter。该力学设备的工厂是业内唯一拥有超过 35 年的 Nano Indenter 生产和研究经验的供应商,成熟的工艺保证了新一代 Nano Indenter G200 具有最好的稳定性和可靠性。该力学设备的工厂拥有最广泛的顾客群,在高端力学测试系统领域内拥有最高的的市场占有率。 1. 产品技术水平KLA-Tencor 公司拥有最多的 Nano Indenter 的核心专利技术,包括已成为业界标准的连续刚度测量功能、接触刚度成像功能以及快速纳米压入测试技术等等;KLA-Tencor 公司的连续刚度测量功能已经成为薄膜、涂层、多相材料等样品检测最常用的的测试技术,并已经录入各种力学领域的国际标准和中国国家标准内。KLA-Tencor 拥有世界上最快压痕测试技术的专利,最快可达到 1 压痕点/秒。 2. 售后服务和技术支持KLA-Tencor 公司在中国有超过 600 名员工,在国内配备本土 Nano Indenter 方面的技术专家,在业内拥有最好的口碑。KLA-Tencor 公司在中国拥有自己的纳米科学示范实验室,并有专职的应用专家在实验室工作,负责用户的应用技术支持工作;KLA-Tencor 公司还定期地举办高级用户培训班,由公司的应用科学家为不同学科的用户进行各个领域应用的深层次培训。 特点和优势– 广受赞誉的高速测试选项可以和所有G200 型纳米压痕仪配合使用, 包括DCMII 和 XP 模块以及样品台– 快速进行面积函数和框架刚度校对– 精确和可重复的结果, 完全符合ISO14577 标准– 通过电磁驱动, 可在无与伦比的范围内连续调整加载力和位移– 结构优化, 适合传统测试或全新应用– 模块化选项, 适合划痕测试, 高温测试– 和动态测试– 强大的软件功能, 包括对试验进行实时控制, 简化了的特殊测试方法的开发 第五代原位纳米力学测试系统 Nano Indenter G200在微/纳尺度范围内的加载和位移构成精确的力学测试 应用– 半导体器件, 薄膜– 硬质涂层, DLC薄膜– 复合材料, 光纤, 聚合物材料– 金属材料, 陶瓷材料– 无铅焊料– 生物材料, 生物及仿生组织等等 先进的设计所有的纳米压痕试验都取决于精确的加载和位移数据,要求对加载到样品上的 载荷有精确的控制。KT最新的第五代 G200 型纳米压痕仪采用电磁驱动的载荷装置,从而保证测量的精确度,独特的设计避免了横向位移的影响。 KT最新的第五代 G200 型纳米压痕仪的杰出设计带来很多的便利性,包括方便的测试到整个样品台,精确的样品定位,方便的确定样品位置和测试区域,简 便的样品高度调整,以及快速的测试报告输出。模块化的控制器设计为今后的 升级带来极大的方便。 此外,最新的第五代 G200 型纳米压痕仪完全符合各种国际标准,保证了数据的完整性。客户可以通过每个力学传感器自主设计试验,在任何时候对其进行切换,同时整个设备占地面积小,适合各种实验室环境。2017年获得联合国教科文组织颁奖的纳米科技领域的创新技 NanoSuite的特点和优势 – 极其灵活、精确的数据采集和控制– 不断更新的测试方法– 最新的批处理测试功能– 新型的 2D 图形输出功能– 测试数据更有效的分析功能– PDF 测试数据的直接输出– 优越的自我定制测试模型的建立– 非常方便的个性化测试方法的建立– 功能齐全完善的图像处理功能– 用户可轻松的编辑自己的测试方法以满足特殊的应用与需求– 定制化的测试方法同样可满足 ISO14577 国际标准– 提供专业的建模和仿真软件, 帮助用户实现特殊的离线研究需要 KLA-Tencor技术顾问服务KT拥有一支经验丰富的技术支持和服务工程师团队,可针对客户的 特殊应用与测试需求提供定制化的技术顾问服务。 经过超过 35 年的发展,NanoSuite 已经成为业内公认的界面友好、操作简便、功能齐全的数据采集和处理软件包,NanoSuite 不仅可以自动测试,也可以使用户利用网络远程遥控进行实验控制,NanoSuite 不仅能够做到压入过程中硬度和弹性模量等力学性能的实时计算和显示,同时允许用户根据自 己的研究需求以及提出的新模型随时添加新的软件通道,此外,根据实验参 量的变化快慢能够自动调整数据的采集速率,实现了智能化的数据采集功 能,从而既获得您真正需要的数据,又可避免不必要的垃圾数据。 增强的载荷加载系统新一代 Nano Indenter G200 系列纳米压痕仪是具有从纳牛到牛顿最为完整的加载力范围,并且不同的加载装置可自动软件切换,整个测试流程都是全 自动的,极大的提高了测试数据的可靠性和可重复性,避免了可能的人为因 素的影响,确保每个测试都是合理、一致、精确。 标准的加载装置Nano Indenter G200 纳米压痕仪标准配置是 XP 加载系统 (最大为500mN), 位移分辨率 0.01纳米,最大压入深度 500 微米,该装置可应用到所有的测试功能。压头更换轻松完成,非常好的机架刚度极大的减少了系统对测试的 影响。高精度加载装置DCM II 是高分辨的纳米纳牛力加载模块,它既可以单独工作,也可以作为一个附件与Nano Indenter G200 协同工作。由于其惯性质量很低,使得纳米压痕中的初始表面的选取更加灵敏、精确, DCM II 在超低载荷下的纳米压痕测试具有极高的精确度和可重复性,由于它自身的空载共振频率远高于一般建筑物的振动频率,这就使得一般的环境振动对它几乎没有影响,DCM II 具有很宽的动态频率范围 (0.1 Hz 到 300 Hz),所有这些特点使得 DCM II 可以提供同类设备不可比拟的高信噪比和高可靠性的试验数据,例如右图所示的蓝宝石上三个纳米深度的压痕测试,在几个纳米的压痕深度范围内获得了非常可靠的弹性模量。大载荷加载装置Nano Indenter G200的大载荷加载选件,大大强化了 G200 系列纳米压痕仪的应用范围。这个选件可以用于标准的 XP 加载模块,将 G200 型纳米压痕仪的加载能力扩展至 10N,可对陶瓷、金属块材和复合材料进行力学表征。大载荷选件的巧妙设计,使得 G200 既避免了在低载荷的情况下牺牲仪器的载荷和位移精度,同时又保证了用户在需要大加载力的测试时,通过鼠标操作就可以在测试实验中进行无缝加载装置切换。
    留言咨询
  • 纳米压痕仪 400-860-5168转2459
    Hysitron TS 77 Select™ 自动化纳米力学和纳米摩擦学测试系统是一台具有最高的性能、功能和易用性的台式纳米压痕仪。这款新测试系统采用了布鲁克著名的 TriboScope 电容式传感器技术,能可信地测试从纳米到微米尺度上的机械和摩擦特性。TS Select 支持模式包括定量纳米压痕、动态纳米压痕、纳米划痕、纳米磨损和高分辨率机械性能成像等功能。 Ts Select特性:提供核心测试技术, 包括纳米压痕、动态纳米压痕、纳米划痕、纳米磨损和原位 SPM 成像通过电容式传感器技术,使用静电力驱动同时提供高灵敏度和低温漂具有高速纳米压痕功能,可快速对机械性能进行成像,获得具有统计性的结果使用直观且易于使用的控制软件,使操作人员能够进行可靠的测量系统预设了满足ISO 14577 和 ASTM E2546标准的测试脚本具有系统自动校正功能和多样品自动测试功能,更快地获得结果
    留言咨询
  • 纳米压痕仪 400-860-5168转6134
    FT-NMT04纳米力学测试系统是一种多功能的原位SEM/FIB纳米压痕仪,能够在微米和纳米尺度上准确量化材料的力学行为。 FT-NMT04原位纳米压痕仪针对金属、陶瓷、薄膜以及超材料和MEMS等微观结构的机械测试进行了优化。此外,通过使用各种附件,FT-NMT04的功能可以扩展到各个研究领域的各种要求。 典型应用包括通过微柱的压缩测试或狗骨试样、薄膜或纳米线的拉伸测试来量化塑性变形机制。典型应用包括通过微柱的压缩测试或狗骨试样、薄膜或纳米线的拉伸测试来量化塑性变形机制。此外,在压缩测试期间进行连续刚度测量,可以在微梁断裂测试期间量化裂纹扩展和断裂韧性。由于 FT-NMT04 分别具有 500 pN 和 50 pm 的无可比拟的低本底噪声,因此可实现具有无可比拟的可重复性的浅纳米压痕,以及纳米压痕与 EBSD 成像的前所未有的相关性。
    留言咨询
  • ・ 纳⽶ 压痕 超微小压痕测试仪 ELIONIX-5纳⽶ 压痕仪主要⽤ 于微纳⽶ 尺度薄膜材料的硬度与杨⽒ 模量测试,测试结果通过⼒ 与压⼊ 深度的曲线计算得 出,⽆ 需通过显微镜观察压痕⾯ 积[1]。 ・ 仪器介绍 纳⽶ 压痕仪主要⽤ 于测量纳⽶ 尺度的硬度与弹性模量,可以⽤ 于研究或测试薄膜等纳⽶ 材料的接触刚度、蠕 变、弹性功、塑性功、断裂韧性、应⼒ -应变曲线、疲劳、存储模量及损耗模量等特性。可适⽤ 于有机或⽆ 机、软质或 硬质材料的检测分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩绘釉漆,光学薄膜,微电⼦ 镀膜,保护性薄 膜,装饰性薄膜等等。基体可以为软质或硬质材料,包括⾦ 属、合⾦ 、半导体、玻璃、矿物和有机材料等[1]。 主要应⽤ 半导体技术(钝化层、镀⾦ 属、Bond Pads);存储材料(磁盘的保护层、磁盘基底上的磁性涂层、CD的保护层);光学 组件(接触镜头、光纤、光学刮擦保护层);⾦ 属蒸镀层;防磨损涂层(TiN, TiC, DLC, 切割⼯ 具);药理学(药⽚ 、植⼊ 材料、⽣ 物组织);⼯ 程学(油漆涂料、橡胶、触摸屏、MEMS)等⾏ 业。
    留言咨询
  • 美国K-T公司于2018年4月收购原安捷伦纳米测量部,其是全球微纳米力学(压痕/划痕/成像)测试设备的开创者,全球首台纳米力学测试系统于上世纪80年代初诞生于此,多种测量方法和物理模型都来自该公司。经过30多年不断努力和改进,目前该公司微纳米力学测试不仅实现了静态测试,同时实现了高水平的动态纳米压痕测试和原位纳米压痕测试,当前中国纳米压痕测试国家标准已包含了该公司的连续刚度(CSM)测试专利技术,在该领域具有很高的权威性。K-T公司纳米测量部在连续刚度测试(CSM)、高分辨率、扫描成像、快速测试方面拥有独有技术。K-T是该领域知名的跨国公司,中国设有地区总部,拥有高水平的专业技术支持和售后服务人员,国内用户得到很好的售后服务和支持。标准载荷500mN 标准位移精度优于0.02nm.
    留言咨询
  • 纳米压痕仪 400-860-5168转4058
    先进的Performech II控制模块和电子设计1.最高性能的高速闭环控制2.业界超过的噪音控制3.集成的带输入/输出信号的多参数控制4.五百倍于前代产品的力学测试速度 多维度测量耦合1.充分优化各个传感器的特质适用不同测量需要,通过多维传感器的选择实现不同测量间的无缝耦合2.多种有效的测试模块配置,包括纳米/微米压痕、纳米划痕、纳米摩擦磨损、高分辨原位扫描探针显微镜成像、动态纳米压痕和高速力学性能成像等 丰富的系统控制和数据分析软件1.TriboScan(TM) 10提供的控制功能,包括XPM超快纳米压痕,SPM+原位扫描探针显微镜成像,动态表面搜索,全自动系统校准和创新的测试2.Tribo iQ (TM)提供了强大的数据处理、分析和画图功能,并具有可编程数据分析模块和自动生成的定制测试报告功能 极大的灵活性和具有前瞻性的表征潜质1.多级别的防护罩提供了超强环境隔绝能力,并具有用于将来的升级可扩展接口2.万能样品台提供了机械、磁性和真空固定方式,适用于各种样品应用实例
    留言咨询
  • iMicro纳米压痕仪iMicro纳米压痕仪可轻松测量硬质涂层、薄膜和小尺寸材料等。其准确、灵活,并且用户友好,可以提供压痕、硬度测试、划痕和纳米级万能试验等多种纳米力学测试。作动器易于更换,能够提供大范围的动态载荷和位移,对于从软质聚合物到硬质金属/陶瓷等材料,均可以进行准确而可重复的测试。模块化的功能选项可以适配各种应用:材料力学特性图谱、频率相关特性测试、划痕和磨损测试以及高温测试。iMicro提供一整套的扩展功能选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D材料力学性能成像、Gemini 2D作动器用于摩擦学和其它双轴力学测量。 产品描述iMicro 纳米压痕仪标配InForce 1000作动器,用于进行纳米压痕和万能纳米力学试验,并可选配InForce 50作动器用于测试较软的材料。InView 软件包灵活、现代,让用户轻松进行纳米尺度测试。iMicro是一款紧凑型测试平台,其箱体中内置高速InQuest控制器和隔振框架。各种不同的材料和器件均可以进行测试,包括金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等。 产品特色InForce 1000作动器采用电容式位移传感和电磁力驱动,且压头易于更换InForce 50作动器选件,提供最大50mN的法向力,可用于测量较软的材料;Gemini 2D作动器选件,可实现两个方向的动态测量独特的压头校准系统,集成在软件中,可实现快速、准确的压头校准InQuest高速控制器电路,数据采集速率可达100kHz,时间常数最快为20µ sXY运动系统以及易于安装的磁性样品台高刚度框架,且集成隔振功能集成显微镜,数字变焦,可实现精确的压痕定位符合ISO 14577等标准的测试方法InView软件包,包含RunTest、ReviewData、InFocus、InView University在线培训和InView移动应用程序 产品应用硬度和模量测量(基于Oliver-Pharr模型)快速材料力学性能成像ISO 14577 硬度测试聚合物损耗因子、储存模量和损耗模量定量的划痕和磨损测试高温纳米压痕测试 适用行业大学、科研实验室和研究所半导体与封装产业PVD/CVD 硬质涂层(DLC、TiN)MEMS:微机电系统/万能纳米力学试验陶瓷与玻璃金属与合金制药涂层 涂料复合材料电池与储能汽车与航空航天主要应用硬度和模量测量(基于 Oliver-Pharr 模型)力学性能表征在薄膜的制造和工艺控制中至关重要,其中包括汽车工业中的涂层质量控制,以及半导体制造中前段和后段的工艺控制。iMicro纳米压痕仪能够测量从超软凝胶到硬质涂层的各种材料的硬度和模量。高效地评估材料性能,保证了在生产线上进行有效的质量管控。快速材料力学性能成像对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能存在很大差异。iMicro的样品台在X轴和Y轴方向上能够分别移动100mm,且其在Z轴方向上能够移动25mm,因此可以测试尺寸大且高度不同的样品。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。ISO 14577 硬度测试iMicro 纳米压痕仪内置预先编写的 ISO 14577 测试方法,其依据 ISO 14577 标准测量材料硬度。该测试方法可以自动测量并输出杨氏模量、纳米压痕硬度、维氏硬度和归一化压痕功。聚合物损耗因子、储存模量和损耗模量iMicro 纳米压痕仪能够测量超软材料(包括粘弹性聚合物)的损耗因子、储存模量和损耗模量。储存模量、损耗模量和损耗因子是粘弹性聚合物的重要性能,因为作用到此类材料上的能量以弹性能的形式储存或以热量的形式耗散。上述指标即用于衡量材料中的能量储存和耗散情况。定量的划痕和磨损测试iMicro 可以对多种材料进行划痕和磨损测试。涂层和薄膜要经受多种工艺流程,例如化学机械抛光(CMP)和引线键合,这会考验这些薄膜的强度及其与衬底的附着力。对这些材料来说,重要的是在这些流程中抵抗塑性形变,并保持完好而不从衬底上剥离。理想情况下,电介质材料应具有较高的硬度和弹性模量,这将有助于其在经历制造流程时有效抵抗外界影响。高温纳米压痕测试高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。
    留言咨询
  • 纳米压痕仪 400-831-3325
    Nano IndenterG200Nano Indenter G200系统专为各种材料的表征和开发过程中进行纳米级测量而设计。 该系统是一个完全可升级,可扩展且经过生产验证的平台,全自动硬度测量可应用于质量控制和实验室环境。 产品描述Nano Indenter G200系统是一种准确,灵活,使用方便的纳米级机械测试仪器。 G200测量杨氏模量和硬度,包括从纳米到毫米的六个数量级的形变测量。 该系统还可以测量聚合物,凝胶和生物组织的复数模量以及薄金属膜的蠕变响应(应变率灵敏度)。 模块化选项可适用于各种应用:频率特定测试,定量刮擦和磨损测试,集成的基于探头的成像,高温纳米压痕测试,扩展负载容量高达10N和自定义测试。主要功能 电磁驱动可实现高动态范围下力和位移测量 用于成像划痕,高温纳米压痕测量和动态测试的模块化选项 直观的界面,用于快速测试设置 只需几个鼠标点击即可更改测试参数 实时实验控制,简便的测试协议开发和精确的热漂移补偿 屡获殊荣的高速“快速测试”选项,用于测量硬度和模量 多功能成像功能,测量扫描和流程化测试方法,帮助快速得到结果 简单快捷地确定压头面积函数和载荷框架刚度主要应用 高速硬度和模量测量 界面附着力测量 断裂韧性测量 粘弹性测量 扫描探针显微镜(3D成像) 耐磨损和耐刮擦 高温纳米压痕工业应用 大学,研究实验室和研究所 半导体和电子工业制造业 轮胎行业 涂层和涂料工业 生物医药行业 医疗仪器 更多应用:请根据您的要求与我们联系
    留言咨询
  • 纳米压痕仪 400-860-5168转1329
    功能全面:拥有超高的精度,可用于测量薄膜、涂层或基体材料的机械性能。可测量几乎所有类型材料的硬度、弹性模量、蠕变、疲劳等特性。采用压电陶瓷驱动和电容式传感技术,SMT可从纳米到微米范围内定量测量表面性能。 主要特点:1、可更换模块2、具有电容传感器技术玻氏压头、维氏压头、球形压头、立方体晶棱压头、努氏压头等处理大型和重型负载样品(50厘米 10公斤)3、自动检测三维形貌4、小型纳米压痕仪5、主动式隔震平台6、纳米压痕单一应用符合国际测试标准:ASTM E2546, ASTM B93З, ASTMD785,ASTM E140IS0 14577,IS0 6508,IS0 6507,1S04516DIN 50359,DIN 55676 JIS B7734等适用领域:航空航天、汽车、半导体、生物医学、光学材料、硬质涂层等
    留言咨询
  • 产品描述Nano Indenter G200系统是一种准确,灵活,使用方便的纳米级机械测试仪器。 G200测量杨氏模量和硬度,包括从纳米到毫米的六个数量级的形变测量。 该系统还可以测量聚合物,凝胶和生物组织的复数模量以及薄金属膜的蠕变响应(应变率灵敏度)。 模块化选项可适用于各种应用:频率特定测试,定量刮擦和磨损测试,集成的基于探头的成像,高温纳米压痕测试,扩展负载容量高达10N和自定义测试。主要功能电磁驱动可实现高动态范围下力和位移测量用于成像划痕,高温纳米压痕测量和动态测试的模块化选项直观的界面,用于快速测试设置 只需几个鼠标点击即可更改测试参数实时实验控制,简便的测试协议开发和精确的热漂移补偿屡获殊荣的高速“快速测试”选项,用于测量硬度和模量多功能成像功能,测量扫描和流程化测试方法,帮助快速得到结果简单快捷地确定压头面积函数和载荷框架刚度主要应用高速硬度和模量测量界面附着力测量断裂韧性测量粘弹性测量扫描探针显微镜(3D成像)耐磨损和耐刮擦高温纳米压痕工业应用大学,研究实验室和研究所半导体和电子工业制造业轮胎行业涂层和涂料工业生物医药行业医疗仪器更多应用:请根据您的要求与我们联系应用高速硬度和模量测量材料的机械特性表征在新材料的研究与开发中具有重要意义。 Nano Indenter G200能够以每秒一个数据点的速率测量硬度和模量。 对机械性能的高速评估使半导体和薄膜材料制造商能够将先进技术应用于生产线上的质量控制与保证。界面粘附力测量通常通过沉积能够存储弹性能量的高压缩层来诱导薄膜分层。 界面粘附力测量对于帮助用户理解薄膜的失效模式是至关重要的。Nano Indenter G200系统可以触发界面断裂并测量多层薄膜的粘附性和残余应力性质。断裂韧性断裂韧性是在平面应变条件下发生灾难性破坏的应力 – 强度因子的临界值。 较低的断裂韧性值表明存在预先存在的缺陷。 通过使用刚度映射法容易地通过纳米压痕评估断裂韧性。 (刚度映射需要连续刚度测量和NanoVision选项)粘弹特性聚合物是非常复杂的材料 它们的机械性能取决于化学,加工和热机械历史。 具体来讲,机械性能取决于材料分子母链的类型和长度,支化,交联,应变,温度和频率,并且这些依赖性通常是相互关联的。 为了采用聚合物进行研究时获得有用的信息进行决策,应在相关背景下对相关样品进行机械性能测量。 纳米压痕测试使得这种特定的测量更容易完成,对样品制备要求不高,可以很小且少量。 Nano Indenter G200系统还可用于通过在与材料接触时振荡压头来测量聚合物的复数模量和粘弹性。扫描探针显微镜(3D成像)Nano Indenter G200系统提供两种扫描探针显微镜方法,用于表征压痕印痕的裂缝长度,以测量设计应用中的断裂韧性。 断裂韧性定义为含有裂缝的缺陷材料抵抗断裂的能力。Nano Indenter G200的压电平台具有高定位精度和NanoVision选项,可提供高达1nm的步长编码器分辨率,最 大扫描尺寸为100μm×100μm。 测试扫描软件选项将X / Y运动系统与NanoSuite软件相结合,可提供500μm×500μm的最 大扫描尺寸。 NanoVision阶段和测试扫描选项都需要精确定位在样品区域来完成纳米压痕测试和断裂韧性计算。耐磨性和耐刮擦性Nano Indenter G200系统可以对各种材料进行划痕和磨损测试。 涂层和薄膜将经受许多工艺,测试这些薄膜的强度及其与基板的粘合性,例如化学和机械抛光(CMP)和引线键合。 重要的是这些材料在这些工艺过程中抵抗塑性形变并保持完整,也不会在基板上起泡。 对于介电材料,通常需要高硬度和弹性模量来支持这些制造工艺。高温机械测试高温下的纳米压痕提供了在达到塑性转变之前、之中与之上的精确测量能力,得到材料的纳米力学响应。 了解材料行为,例如形变机制和相变,可以预测材料失效并改善热机械加工过程中的控制。 在主要机械测试方法过程中改变温度是对材料进行纳米尺度测量塑形转变的一种方式。产品优势Nano Indenter G200系统专为各种材料的表征和开发过程中进行纳米级测量而设计。 该系统是一个完全可升级,可扩展且经过生产验证的平台,全自动硬度测量可应用于质量控制和实验室环境。
    留言咨询
  • 选型指南:PB1000型微纳米力学综合测试系统是美国NANOVEA公司销量最高的一款微纳米力学测试系统测量系统,这款仪器采用模块化设计,可在一款仪器下实现纳米与微米/大载荷三个尺度下的压痕,划痕与摩擦磨损测试,进而可得到硬度、弹性模量、蠕变信息、弹塑性、断裂韧度、应力-应变曲线、膜基结合力、划痕硬度、摩擦系数、磨损率等微观力学数据。产品特性:◎可在一台仪器上实现纳米尺度、微米尺度及大载荷尺度下的压痕、划痕与摩擦测试 ◎压痕、划痕与摩擦磨损完全符合ASTM及ISO的国际标准◎模块化设计:可根据客户需求任意选择纳米/微米/大载荷模块的压痕/划痕/磨损功能◎专利的设计可保证系统具有高稳定性与高的精度◎可拓展性强:可随意升级已有设备到多种测试功能技术参数:◎工作台自动控制范围:150 mm×150mm ◎Z方向自动移动范围:50mm◎工作台定位精度:1μm◎光学显微物镜:5X,10X,20X,50X,100X可选◎总放大倍数:200X, 400X, 800X,2000X200X, 4000X可选◎纳米压痕仪/纳米划痕仪/纳米摩擦磨损仪◎微米压痕仪/微米划痕仪/微米摩擦磨损仪◎大载荷压痕仪/大载荷划痕仪/大载荷摩擦磨损仪可选件: ◎ 测量模块:客户需要自己选择纳米模块、微米模块与大载荷模块其中之一 ◎ 光学镜头:客户需要自己选择光学镜头的个数与倍率 ◎ 原子力显微镜产品应用: ◎薄膜及超薄膜(金属膜、陶瓷膜、Low k 膜、多层复合膜等) ◎复合材料(树脂基、陶瓷基、金属基、纤维增强材料表面及界面等) ◎聚合物 (共混物、共聚物等) ◎生物及仿生材料(细胞、骨组织、血管、牙齿、支架等) ◎金属及合金(晶面/晶界/组织相、金属玻璃、稀土等) ◎MEMS (微悬臂、微镜、微泵等) ◎陶瓷材料 ◎电子及半导体(硅片、蓝宝、硬脆及软脆材料等)
    留言咨询
  • CB500型微纳米力学综合测试系统是美国NANOVEA公司推出的一款性价比高的微纳米力学测试系统测量系统,这款仪器采用模块化设计,可实现纳米/微米/大载荷三个尺度下的压痕,划痕与摩擦磨损测试,进而可得到硬度、弹性模量、蠕变信息、弹塑性、断裂韧度、膜基结合力,划痕硬度,摩擦系数等微观力学数据,用户可根据需要选择适合相应应用的功能模块。产品特性:◎可在一台仪器上实现纳米尺度、微米尺度及大载荷尺度下的压痕、划痕与摩擦测试 ◎压痕、划痕与摩擦磨损完全符合ASTM及ISO的国际标准◎模块化设计:可根据客户需求任意选择纳米/微米/大载荷模块的压痕/划痕/磨损功能◎专利的设计可保证系统具有高稳定性与高的精度◎可拓展性强:可随意升级已有设备到多种测试功能技术参数:◎工作台自动控制范围:100 mm×50mm ◎Z方向自动移动范围:25mm◎工作台定位精度:1μm◎光学显微物镜:5X,10X,20X,50X,100X可选◎总放大倍数:200X, 400X, 800X,2000X200X, 4000X可选◎纳米压痕仪/纳米划痕仪/纳米摩擦磨损仪◎微米压痕仪/微米划痕仪/微米摩擦磨损仪◎大载荷压痕仪/大载荷划痕仪/大载荷摩擦磨损仪可选件: ◎ 测量模块:客户需要自己选择纳米模块、微米模块与大载荷模块其中之一 ◎ 光学镜头:客户需要自己选择光学镜头的个数与倍率产品应用: ◎薄膜及超薄膜(金属膜、陶瓷膜、Low k 膜、多层复合膜等) ◎复合材料(树脂基、陶瓷基、金属基、纤维增强材料表面及界面等) ◎聚合物 (共混物、共聚物等) ◎生物及仿生材料(细胞、骨组织、血管、牙齿、支架等) ◎金属及合金(晶面/晶界/组织相、金属玻璃、稀土等) ◎MEMS (微悬臂、微镜、微泵等) ◎陶瓷材料 ◎电子及半导体(硅片、蓝宝、硬脆及软脆材料等)
    留言咨询
  • KLA 纳米压痕仪 iNano 400-860-5168转1185
    iNano纳米压痕仪可轻松测量薄膜、涂层和少量材料。 该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 该仪器的力荷载和位移测量动态范围很大,因而可以实现从软聚合物到金属材料的精确和可重复测试。 模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损以及高温测试。 iNano提供了一整套测试扩展选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D属性映射和远程视频选项。
    留言咨询
  • Optics11成立于2011年,是阿姆斯特丹自由大学(VU)的衍生组织。从那时起,这家初创公司的收入和员工持续增长,成为荷兰发展最快的公司之一,并具有国际影响力。Optics11 Life提供功能强大的新型纳米压痕仪,与传统的同类产品相比,使用方便、功能多样、坚固耐用。主要用于测量复杂、不规则的生物材料,如单细胞、组织、水凝胶和涂层的机械性能。Piuma Nanoindenter生物组织、软物质材料力学性能测试的新方法Piuma是功能强大的台式仪器,可探索水凝胶、生理组织和生物工程材料的微观机械特性。表征尺度从宏观直至细胞。专为分析测试软材料而设计,测量复杂和不规则材料在生理条件下的力学性能。杭州轩辕科技有限公司主要优势● 内置摄像镜头,方便实时观察样品台● 实时分析计算测量结果,原始数据并将以文本文件存储,方便任何时候导入Dataviewer软件进行复杂处理● 探针经过预先校准,即插即用。对于时间敏感的样品确保了快速测量● 光纤干涉MEMS技术能够以无损的方式测量即使是最软的材料,并保证分辨率。同时探针可以重复使用Piuma轩辕纳米压痕仪Piuma轩辕纳米压痕仪 技术参数模量测试范围5 Pa - 1 GPa探头悬臂刚度0.025 - 200 N/m探头尺寸(半径)3 - 250 μm最大压痕深度100 μm传感器最大容量200测试环境air, liquid (buffer/medium)粗调行程X*Y:12×12 mm Z:12 mm加载模式Displacement / Load* / Indentation*测试类型准静态(单点,矩阵)蠕变,应力松弛DMA动态扫描 (E', E'', tanδ)动态扫描频率*0.1 - 10 Hz内置拟合模型Young's Modulus (Hertz / Oliver-Pharr / JKR)*为可选升级配置Fiber-On-Top 探头新型光纤干涉式悬臂梁探头,利用干涉仪来监测悬臂梁形变。相较于原子力显微镜或传统纳米压痕仪创新型光纤探头,弥补了传统纳米压痕仪无法测试软物质的问题,也解决了AFM在力学测试中的波动大,操作困难、制样严苛等常见缺陷。● 背景噪音低:激光干涉仪抗干扰强于AFM反射光路● 制样更简单:对样品的粗糙度宽容度高于AFM● 刚度选择更准确:平行悬臂梁结构有利于准确判别压痕深度与压电陶瓷位移比例关系,便于选择合适刚度探头来保证弹性形变关系的稳定性,进而获得重复率更高、准确性更好的数据内置分析软件● 借助功能强大而易于操作的软件,用户可以自由控制压痕程序(载荷、位移等)。自动处理曲线的流程,可以获得数据和结果的快速分析● 原始参数完整txt导出,便于后续复杂处理的需要● 利用Hertz接触模型从加载部分计算弹性模量,与常用的Oliver&Pharr方法相比,更为适合生物组织和软物质材料特性视频介绍如果您感兴趣的话,我们可以为您提供试样服务,请联系:近期文献年 份期 刊题 目2022Advanced Functional MaterialsEngineering Vascular Self-Assembly by Controlled 3D-Printed Cell Placement2022BiomaterialsHydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids2021Biofabrication3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink2021nature communicationsJanus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration2020Environmental Science & TechnologyEffect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties2020Acta BiomaterialiaA multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas
    留言咨询
  • 美国KLA InSEM HT原位高温纳米力学测试系统,纳米压痕仪
    留言咨询
  • 产品信息Micro Materials 产品纳米力学综合性能测试系统NanoTest Xtreme可以实现真空环境下的纳米力学测试! 为了更加准确、可靠地预测材料的性质,研究学者们对测试条件模拟真实环境程度的要求越来越高。Micro Materials 公司的NanoTest Vantage 产品可以提供最全面的纳米力学测试功能。现在Micro Materials 公司的最新产品NanoTest Xtreme 可以实现真空环境下-40℃至1000℃这一温度范围内的纳米级力学测试, 并且没有氧化和结霜的影响。自1988年以来,我们一直处于纳米力学创新的前沿: ► 第一个商用高温纳米压痕平台 ► 第一台商用纳米冲击测试仪器 ► 第一个商用液体池 ► 第一台用于高真空、高温纳米力学的商用仪器更适合以下极端环境条件的研究:1、 航空发动机部件的高温 2、 用于高速加工的工具涂层 3、 电站蒸汽管的高温4、核反应堆覆层中的辐射效应 5、低温对油气管道焊缝修复的影响 NanoTest Xtreme 特点:a、500 mN加载头在真空下最高测试温度:1000°Cb、30 N加载头在真空下的最高测试温度:800°C c、真空下的最低测试温度:-40°C d、极限真空度:10-7 mbar e、与真空下所有标准纳米测试技术兼容(纳米压痕、纳米划痕、纳米磨损、纳米冲击、纳米微动) f、可选配第二个加载头,最大负载从500mN增加到30 N g、填充功能可在非空气环境中进行测试 h、高分辨率光学显微镜 i、可选配在整个温度范围内均可使用的SPM 成像/纳米定位平台 NanoTest Xtreme 优点:1、 将高温能力扩展到1000°C,超出NanoTest Vantage提供的850°C 2、 将低温能力提高至-40°C,且无样品结霜 3、超低的热漂移归因于与NanoTestVantage相同的仪器设计原理 4、 完整的纳米力学测试(例如压痕、划痕、磨损、摩擦、冲击) 5、能够填充气体以匹配材料操作环境参数指标1、加载框架 高度抛光的铝,用于快速脱气 加载应用:电磁 标准压头最大负载 500 mN 最大负载,可选高负载头 30 N 位移传感器 :电容式 负载分辩率 3 nN 位移分辨率 0.002 nm 重新定位精度 0.4 µ m 样品处理 :手动控制,网格压痕,特定位置选择,多个同时安装的样本 热漂移 0.005 nm/s 符合标准 :符合ISO 14577和ASTM 2546标准 2、高温平台 最高温度 1000 º C 压头尖端加热 :是 可测试样本区 16 mm x 16 mm 温度控制 :反馈和恒定功率 温度精度 0.1 º C 3、低温平台 最低温度 -40 º C 4、SPM纳米定位平台 扫描范围 100 µ m x 100 µ m X Y定位精度 2 nm 5、真空 工作模式 :真空或气体吹扫 真空度 :极限10-7 (标准10-6 )mbar 6、选件 纳米划痕,纳米磨损,纳米冲击,动态硬度 应用NanoTest&trade Xtreme可以广泛应用于:航空航天、汽车工业、半导体、生物医学、MEMS、高分子、薄膜和涂层,以及太阳能/燃料电池等。
    留言咨询
  • 英国MML(微)纳米材料力学性能综合测试系统 NanoTest Vantage 设备用途NanoTest Vantage(微)纳米材料力学性能综合测试系统可以完成微纳米尺度上材料力学性能测试和表征,用于产品的研究和开发。可以用于混凝土、金属材料和生物材料的纳米压痕、纳米划痕、纳米冲击和疲劳等纳米特性测试,获得与服役相关条件下的硬度、模量、蠕变、屈服、塑性功和弹性功、纳米磨损性能、粘结失效、断裂韧性、冲击性能、接触疲劳强度、以及温度、湿度、液体等环境因数对材料性能的影响。 标准配置模块及技术指标 1. NanoTest Vantage 测试平台 1.1. 高刚度花岗岩测试平台,采用线性编码器的自动样品驱动 1.1.1. 精密移动样品、实现样品在显微镜和载荷压头之间的自动切换 1.1.2. X 方向分辨率和移动范围:0.02?m/50mm 1.1.3. Y 方向分辨率和移动范围:0.02?m/400mm 1.1.4. Z 方向分辨率和移动范围:0.02?m/50mm 1.1.5. 最大样品厚度:150mm 1.1.6. 用户能够同时放置多个样品,样品之间的高度差可达 40mm 1.2. 振动隔离系统[防震台] 1.2.1. 共振频率:0.5 Hz 1.2.2. 全机械式的、无源系统 passive system 1.2.3. 无需压缩空气,免维护 1.3. 环境控制柜,带有主动温度控制系统 1.4. 不间断电源 1.5. 多物镜光学显微镜] 1.5.1. 高分辨率的金相显微镜,配备 4 个物镜: 1.5.2. 自动转塔实现远程的放大倍数之间的切换 1.5.3. 3MP 彩色数字照相机 1.5.4. 压头-显微镜之间自动切换 1.5.5. 显微镜-压头之间的回位精度:0.4?m 1.6. NanoTest NTX4 系统控制器,配备必要的连线和接头 1.7. Dell 计算机: 1.7.1. 2.93 GHz 双核处理器、2GB RAM、160GB 硬盘或者更好 1.7.2. 两个 17 英寸 LCD 平板显示器 1.7.3. 256mB ATI 双视频输入(DVI/VGA)图形卡 1.7.4. Dell 金牌技术支持:3 年隔天现场保修服务 1.8. Platform 4 软件包:用于仪器控制、试验设计和数据分析: 1.8.1. 密码管理、两级进入: 1.8.1.1.标准级别:常规工作、允许受限制的试验定义 1.8.1.2.管理员级别:可以定义特殊的试验、仪器校准和设置 1.8.2. 存盘或者调出以前的试验设置用于快速的重复试验 1.8.3. 可以定义多达 100 个试验 (每个试验包含 400 点阵)、试验按序自动测试 1.8.4. 所有数据是以原始数据的格式存盘并用于随后的试验分析 1.8.5. 记录试验参数,并可用于随后的检查和编辑 1.8.6. 试验数据允许多种文件格式输出、用于第三方的应用 1.8.7. 通过 Micro Materials Ltd (MML)网站实现免费的软件升级 1.8.8. 允许免费从 Micro Materials Ltd (MML)网站下载额外的分析软件用于远程的数据分析 2.纳米力学测试锤 2.1. 采用线圈/永磁体的高精度电磁驱动加载系统 2.2. 载荷指标: 2.2.1. 最大载荷:500mN 2.2.2. 载荷分辨率:3nN 2.2.3. 典型的噪音水平:50nN 2.2.4. 最小接触力:?1 ?N, 用户根据不同的样品通过软件来设置为 0 2.3. 位移测量采用校准的电容位移传感器 2.4. 位移指标:2.4.1. 最大位移:20μm 或者 100μm (客户任选)2.4.2. 位移分辨率:0.001nm2.4.3. 典型的位移噪音水平:0.2nm 2.5. 位移热漂移速度: 0.004nm/s 或者更好2.6. 仪器框架刚度:?5x106 N/m2.7. 熔融 SiO2 标准样品用于仪器性能监测2.8. 符合 ISO 14577-1,2,3,4 国际标准; 用户自己可以对仪器进行载荷、深度、金刚石探头面积函数和框架柔性等 4 项 ISO 14577 规定的基础指标进行标定 3. 微米力学测试锤 [可以将一台仪器扩展两台仪器:可以完成纳米力学和微米力学测试]3.1. 采用线圈/永磁体的高精度电磁驱动加载系统3.2. 微米力学测试锤/加载头永久性安装在纳米力学测试锤/加载头旁边、随时可用3.3. 载荷指标:3.3.1. 最大载荷:20N3.3.2. 载荷分辨率:50nN 或 更好3.3.3. 典型的噪音水平:100nN3.4. 位移测量采用可追踪、校准的平行板电容器3.5. 位移指标:3.5.1. 最大位移:100μm3.5.2. 位移分辨率: 0.005nm3.6. 热漂移速率: 0.004nm/s 或更好3.7. 钢标准样品用于仪器的性能监测 4. 纳米压痕测试模块4.1. MML 软件自动分析程序用于测量:4.1.1. 硬度4.1.2. 模量4.1.3. 硬度和模量 vs(压入)深度曲线4.1.4. 长期蠕变4.1.5. 塑性功和弹性功、塑性指数4.1.6. 应力/ 应变信息4.1.7. 推出力4.1.8. 微米柱压缩力4.2. 可以获得并显示:4.2.1. 未经修正的原始数据4.2.2. 统计数据和归一化的数据4.2.3. 硬度和模量 2D 和 3D 图 4.3. Berkovich 金刚石压头 (更换时间 1 分钟)4.4. 提供完整的可编译的加载和卸载速率以及接触速度4.5. 控制载荷和深度的试验,可以设定深度、载荷或者第一次测试结束条件等选项。4.6. 程序加载/卸载软件模块允许在同一个压入位置执行多次的加载/卸载循环,获得硬度/模量随深度的变化信息。4.7. 压痕试验采用线性加载速率,可以获得恒定应变速率的压痕试验。4.8. 程序可以在一个或者多个样品的指定位置,定义多达 100 个试验,每个试验包含 400 压入点阵,试验会在设定的时间点自动启动、执行,因此保证仪器能够 24 小时/7 天基础上的连续运行,获得最大的测试能力。4.9. 完全兼容低载荷(纳米力学测量)和高载荷(微米力学测量),实现二者满载荷量程的测量。低载荷(纳米力学测量)和高载荷(微米力学测量)各配备一个专用的 Berkovich 金刚石压头。 四:选件模块及其技术指标以下部件可以在初次采购设备时一并购买,也可将来升级5. 纳米划痕和磨损(纳米摩擦学)模块5.1. 完全兼容低载荷(纳米力学测量)和高载荷(微米力学测量),实现二者满载荷量程的测量。5.2. (纳米力学测量)最大加载力:500mN。5.3. 顶端半径为 5μm 的球形金刚石划头(或者其他类型的测试探头)。5.4. 划擦速率范围:0.1 to 100μm/s。5.5. 可设定的载荷变化速率。5.6. 磨损测试模式允许 “加载”或“卸载”深度 vs 划擦距离曲线。5.7. 程序可以在一个或者多个样品的指定位置,设定的时间点自动启动、执行多次形貌和划痕试验。5.8. 预览按钮(preview button)可以在试验设置时,调节并优化扫描速度、扫描长度、加载速率和划擦载荷。5.9. 可以获得并显示的划痕数据:5.9.1. 未经处理的原始数据。5.9.2. 临界划擦载荷。5.9.3. 载荷/深度 vs 距离曲线。5.10.摩擦力测量单元:5.10.1.最大加载力:200mN。5.10.2.典型摩擦载荷分辨率:10μN.5.10.3.扫描长度:10mm.5.10.4.配有温度补偿传感器的摩擦力传感器。5.10.5.超稳定摩擦力测量5.10.6.可以获得并显示的摩擦力摩擦力数据:5.10.6.1.表面粗糙度统计数据5.10.6.2.摩擦系数 vs 时间曲线。 6. 纳米冲击和疲劳测试模块6.1. 包括如下两种纳米冲击标准测试方法:6.1.1. 高周疲劳纳米冲击测试6.1.2. 摆锤脉冲模式 6.2. 高周疲劳纳米冲击测试可在一点或多点进行冲击测试;包括压电驱动样品台振动、信号发生器、信号扩大器和数据分析,完成冲击和接触疲劳测试。 6.2.1. 压电驱动样品振动。与压头施加的静载荷的大小,疲劳或冲击研究有关6.2.2. 频率范围 500Hz6.2.3. 最大振幅 5μm 6.3. 摆锤脉冲模式可定量测量在粘结失效前的总能量;可用于低周疲劳以获取材料的韧性。另外,也可完成加速疲劳磨损和动态硬度测试。6.3.1. 系统用 A/C 螺线管控制摆锤运动的频率、振幅和加速度。6.3.2. 动态硬度测试和纳米冲击的最大频率:0.5Hz6.3.3. 最大静态加载:100mN6.3.4. 最大加速距离:36μm [纳米冲击]、90μm [微米冲击]。6.4. 可以在单次试验进程中预设定获取 100 次试验(每次试验至少包括 100 个数据分析点)。6.5. 这一测试模块可用于获取金属材料、陶瓷材料、刀具涂层和聚合物的疲劳性能。6.6. 包括一个方形金刚石压头。 7. 微震磨损模块7.1. 往复的纳米抗磨,适用于横向振荡,同时保持恒定的法向力7.2. 测量参数:7.2.1. 传统的微震磨损7.2.2. 由微震磨损过渡到小范围划动摩擦7.2.3. 单层或多层涂层的连续磨损机制7.3 频率范围:5-20Hz7.4 微震磨损轨迹:5?m7.5 最大划痕轨迹:20 ?m7.6 载荷范围:1-500mN(纳米力学测试)7.7 压头为大曲率半径的球形压头(200μm 直径) 8. DMA 动态力学性能测量8.1. 对于存储模量和损耗模量的测试,压痕测试会使得弹性系数和弹性模量的获取变得复杂,而弹性系数和弹性模量是聚合物样品表面/近表面的能量阻尼性能指示参数8.2. 固定在放大器和样品振动系统上以在样品表面进行震动,并允许在连续的基底上进行测试8.3. 振荡频率范围:0.1Hz~250Hz8.4. 振幅:亚 nm~50nm8.5. 只与纳米力学测试模块兼容 9. 500℃高温样品控制系统9.1. 最高加热温度:500?C9.2. 压头和样品独立控温,压头和样品是等温接触,测试过程中没有热流9.3. 温度控制系统,确保压头和样品接触前处于热平衡状态9.4. 配有加热挡板,以减少对仪器其余部位的热辐射9.5. 带有尖端加热器的 Berkovich 压头9.6. 测量区域范围:16mm x 16mm9.7. 500 ?C 下位移热漂移速度:? 0.01 nm/sec.9.8. 兼容压痕测试、划痕测试和冲击测试模块. 10. 高温扩展模块(第二根摆锤)10.1.针对第二根摆锤的热辐射挡板10.2.高温压头一个 11. 高温扩展模块(750?C)11.1.温控区间:500°C ~ 750°C11.2.氮化硼压头,独立的压头加热器11.3.水循环冷却系统11.4.只适用于纳米力学测试模块11.5.推荐同时配备气氛保护模块 12. 气氛保护12.1.通入保护气体以减少测试环境中氧或水分的含量12.2.专门的气体管路,可以使用 N2 或 Ar12.3.一套氧检测器,监控测试环境中的氧含量 13. 液体样品池13.1.硼硅酸盐玻璃液体池和压头适配器,保证样品和压头完全浸入液体中进行测试13.2.系统自动切换进行预存储的液体校准13.3.包括 Berkovich 压头。 14. 低温样品控制系统14.1.控温方式:3 段 Peltier14.2.温度范围:室温(或者 20) ~ -20?C14.3.控温精度:0.15 degC (与温度有关)14.4.Peltier 冷却压头,压头和样品是等温接触,测试过程中没有热流14.5.低温样品台兼容压痕、划痕、磨损、冲击(样品振动)等。 15. 高温显微镜15.1.物镜沿着测试摆锤固定15.2.标准物镜配置(6x, 20x),可扩展至 5 个物镜配置(4x,6x,10x,20x,40x) 15.3.3MP 彩色数字照相机15.4.压头-显微镜之间自动切换15.5.显微镜-压头之间的回位精度:0.4?m 16. 单模式原子力显微镜(AFM)16.1.接触模式:恒力模式,恒高模式,力调制模式,扩展电阻模式。16.2.扫描模式:前进扫描&后退扫描 模式/ 帧向上、向下或连续模式 / 恒高模式,这些扫描模式同时存在于接触模式和非接触模式中。16.3.旋转和倾斜角度:0~360°,硬件 X 和 Y 的斜率补偿功能。16.4.数据显示:用户可定义的所有通道的轮廓图和色彩图16.5.扫描范围: 16.6.通过自动的自我调整,使悬臂排成直线。16.7.自动驱近距离:4.5mm。16.8.通过双透镜系统观察样品(顶部和侧面进行观察) 17. 双模式原子力显微镜(AFM)17.1.接触模式:恒力模式,恒高模式,力调制模式,扩展电阻模式。17.2.非接触模式:恒力模式,恒高模式,相位模式,电磁力模式,静电力模式17.3.扫描模式:前进扫描&后退扫描 模式/ 帧向上、向下或连续模式 / 恒高模式,这些扫描模式同时存在于接触模式和非接触模式中。17.4.谱图:力-距离,力-电压,振幅-距离,相位-距离,电流-电压,电流-距离。17.5.旋转和倾斜角度:0~360°,硬件 X 和 Y 的斜率补偿功能。17.6.数据显示:用户可定义的所有通道的轮廓图和色彩图17.7.扫描范围: 17.8.通过自动的自我调整,使悬臂排成直线17.9.自动驱近距离:4.5mm。17.10.通过双透镜系统观察样品(顶部和侧面进行观察)17.11.包括弹性系数测量单元 18. 3D 原位成像18.1.提供原位 3D 表面成像。18.2.与高温样品台兼容。18.3.高精度 X,Y 台分辨率:2nm。18.4.分析软件提供 2D 和 3D 图、平滑、体积分析、粗糙度分析、表面积分析和很多其他的功能。18.5.X,Y 扫描范围:100μm x 100μm。18.6.X, Y 样台分辨率: 2 nm18.7.闭环线性:0.03%18.8.可以 ASCII 文件的方式输出到第三方图像分析软件包。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制