当前位置: 仪器信息网 > 行业主题 > >

硒化锌聚焦镜

仪器信息网硒化锌聚焦镜专题为您提供2024年最新硒化锌聚焦镜价格报价、厂家品牌的相关信息, 包括硒化锌聚焦镜参数、型号等,不管是国产,还是进口品牌的硒化锌聚焦镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硒化锌聚焦镜相关的耗材配件、试剂标物,还有硒化锌聚焦镜相关的最新资讯、资料,以及硒化锌聚焦镜相关的解决方案。

硒化锌聚焦镜相关的论坛

  • 【讨论】关于激光共聚焦显微镜版

    最近观察了一段时间激光共聚焦显微镜版,人气不是很旺。当初是我提出来要将激光共聚焦显微镜单独开版,主要是考虑到国内激光共聚焦显微镜的用户日益增多,而且激光共聚焦显微镜的应用领域与光学显微镜有一定差异,所以作为一个新的设备,应该有很多可以讨论和交流的。但是目前讨论交流确实存在一些问题。激光共聚焦显微镜的用户大头在生物医学研究所和大型医院,似乎这些用户群体不太愿意在论坛上交流,另一个应用领域在材料上,但是国内材料研究领域拥有激光共聚焦显微镜还是少数,所以真正活跃的用户不多。有感于此,建议将激光共聚焦显微镜版划到我的光学显微镜版作为一个子版,我来管理。

  • 安捷伦离子聚焦透镜和入口透镜如何清洗?

    前几天洗5975C离子源,发现离子聚焦透镜和入口透镜外层的那个土黄色绝缘体(透镜绝缘体)是一个整体,不能分成2半,离子聚焦拿不出来,最后不得不洗这玩意了而视频和说明书上都是可以分成2片的,可以洗离子聚焦问了安捷伦的工程师,最后说5975C的那个土黄色绝缘体本身就是一个整体,可我总感觉不对,一个整体的话离子聚焦就洗不了了啊大家的5975C的那玩意也是一个整体吗?大家怎么洗离子聚焦?

  • 新课发布!激光共聚焦显微镜技术应用!

    新课发布!激光共聚焦显微镜技术应用!

    [img=,550,310]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171819522461_4148_5659437_3.png!w550x310.jpg[/img][size=14px]课程兼顾理论与实践的结合,由吴老师[/size][size=14px][color=#3daad6][b]根据自己多年的教学及科研经验[/b][/color][/size][size=14px],组织和整理本次课程内容从共聚焦显微镜的背景、结构、基本操作及注意事项、各类扫描模式及应用等方面展开详细讲解,让我们拒绝做一名只会机械操作,不懂原理的实验工具人![/size][size=14px][img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[b]限时:39元[/b][/size][b][size=16px]讲师介绍[/size][/b][img=,690,812]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171821243917_661_5659437_3.png!w690x812.jpg[/img][color=#3daad6][b][size=14px]吴晶,北京大学医药卫生分析中心教师,助理研究员[/size][/b][/color][size=14px]2013-2015年北京大学神经科学研究所从事博士后研究工作,出站后加入北京大学医药卫生分析中心生物成像与分析实验室,致力于成像技术的研发和创新,掌握多种成像技术如双光子、超高分辨、单分子检测等,支持发表高水平文章如Cell Research, Advanced Materials等多篇。[/size][size=14px]参与多项基金,近5年以一作身份发表SCI文章6篇,专利2项。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖。撰写的“激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用”获第十五届科学仪器网络原创作品大赛三等奖,并收录于《科研仪器案例库》。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖,及第一届“信立方杯”高校分析测试技术培训微课大赛最受欢迎主讲老师。[/size][b][size=16px]课程预览[/size][/b] [size=14px]详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。[/size][b][size=16px]这门课,你将获得什么?[/size][/b][size=14px]激光共聚焦显微镜背景、结构、原理介绍[/size][size=14px]激光共聚焦显微镜基本操作及注意事项[/size][size=14px]激[/size][size=14px]光共聚焦显微镜的扫描模式[/size][color=#3daad6][b][size=14px][/size][/b][/color][size=14px]激[/size][size=14px]光共聚焦显微镜的实际应用[/size][size=16px][b]课程获取[img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img][/b][/size][size=14px]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[/size][size=14px][color=#ff4c00][b]限时:69元[/b][/color][/size][size=16px][b]报名须知[/b][/size]1、本课程为精品课程,无考试无证书,课程有效期内全部学习完可以在线申请培训证明。2、课程为虚拟产品,购买后不支持退换。3、购买时可申请增值税电子普通发票,如需专票请联系客服。4、课程有效期为购买后的360天内,课程有效期内可不限次数学习观看。

  • 北化院成立基础研究所,聚焦化工新材料领域

    [color=#000000]3月20日,中国石化北京化工研究院基础研究所正式成立。[b]该研究所将聚焦化工材料领域前沿基础科学和优势领域基础研究,发展模拟计算和AI机器学习技术方法[/b],加快解决催化科学和高分子材料共性问题,着力提升原创技术源头供给能力,助力化工新材料领域关键核心技术攻关。[/color][color=#000000]化工新材料领域基础研究所的成立,是落实中石化集团公司党组书记、董事长马永生提出的“直属研究院要发挥好基础研究主力军作用,切实履行主体责任,探索设立基础研究中心”要求的具体行动,是北化院承担起提升基础研究效能,集聚力量进行原创性引领性科技攻关,推动集团公司化工新材料领域高质量发展重任的重要一步。[/color][color=#000000]据了解,北化院作为中石化集团化工新材料领域基础研究的主力军,持续[b]关注培育新领域、发展新技术、开发新材料的关键科学问题[/b],近年来开展了多项基础研究课题攻关,培养相关领域基础研究人员上百人。[/color][color=#000000]北化院表示,将积极加快关键核心技术攻关,加强科研领域布局和学科建设,加速高质量科研平台建设,加大高水平科技领军人才、专家人才、青年科技人才、基础研究人才引进和科研团队建设,打造化工新材料领域重要人才集聚中心和创新高地;锚定把基础研究所打造成为全国化工材料领域“排头兵”的总目标,充分发挥基础研究科技创新基石作用,为中国石化高质量发展提供强有力的技术支撑。[/color][来源:中国化工报][align=right][/align]

  • 等电聚焦(最后))

    等电聚焦电泳法测定蛋白质的等电点 一、实验目的 了解等电聚焦的原理。通过蛋白质等电点的测定,掌握聚丙烯酰胺凝胶垂直管式等电聚焦电泳技术。二、实验原理 等电聚焦(Isoelectric focusing,简称IEF)是六十年代中期出现的新技术。近年来等电聚焦技术有了新的进展,已迅速发展成为一门成熟的近代生化实验技术。目前等电聚焦技术已可以分辨等电点(pI)只差0.001pH单位的生物分子。由于其分辨力高,重复性好,样品容量大,操作简便迅速,在生物化学、分子生物学及临床医学研究中得到广泛的应用。 蛋白质分子是典型的两性电解质分子。它在大于其等电点的pH环境中解离成带负电荷的阴离子,向电场的正极泳动,在小于其等电点的pH环境中解离成带正由荷的阳离子,向电场的负极泳动。这种泳动只有在等于其等电点的pH环境中,即蛋白质所带的净电荷为零时才能停止。如果在一个有pH梯度的环境中,对各种不同等电点的蛋白质混合样品进行电泳,则在电场作用下,不管这些蛋白质分子的原始分布如何,各种蛋白质分子将按照它们各自的等电点大小在pH梯度中相对应的位置处进行聚焦,经过一定时间的电泳以后,不同等电点的蛋白质分子便分别聚焦于不同的位置 。这种按等电点的大小,生物分子在pH梯度的某一相应位置上进行聚焦的行为就称为“等电聚焦”。等电聚焦的特点就在于它利用了一种称为两性电解质载体的物质在电场中构成连续的pH梯度,使蛋白质或其他具有两性电解质性质的样品进行聚焦,从而达到分离、测定和鉴定的目的。 两性电解质载体,实际上是许多异构和同系物的混合物,它们是一系列多羧基多氨基脂肪族化合物,分子量在300~1000之间。常用的进口两性电解质为瑞典Pharmacia-LKB公司生产的Ampholine 和Pharmalyte,价格昂贵。国产的有中国军事医学科学院放射医学研究所和上海生化所生产的两性电解质,价格便宜,质量尚佳。两性电解质在直流电场的作用下,能形成一个从正极到负极的pH值逐渐升高的平滑连续的pH梯度。若不同的pH值的两性电解质的含量与pI值的分布越均匀,则pH梯度的线性就越好。对Ampholine两性电解质的要求是缓冲能力强,有良好的导电性,分子量要小,不干扰被分析的样品等。 在聚焦过程中和聚焦结束取消了外加电场后,如保持pH梯度的稳定是极为重要的。为了防止扩散,稳定pH梯度,就必须加入一种抗对流和扩散的支持介质,最常用的这种支持介质就是聚丙烯酰胺凝胶。当进行聚丙烯酰胺凝胶等电聚焦电泳时,凝胶柱内即产生pH梯度,当蛋白质样品电泳到凝胶柱内某一部位,而此部位的pH值正好等于该蛋白质的等电点时,该蛋白质即聚焦形成一条区带,只要测出此区带所处部位的pH值,即为其等电点。电泳时间越长,蛋白质聚焦的区带就越集中,越狭窄,因而提高了分辨率。这是等电聚焦的一大优点,不像一般的其他电泳,电泳时间过长则区带扩散。所以等电聚焦电泳法不仅可以测定等电点,而且能将不同等电点的混合的生物大分子进行分离和鉴定。 早期的等电聚焦电泳是垂直管式的,其特点是体系是封闭的,不与空气接触,可防止样品氧化。近年来,又发展了超薄层水平板式等电聚焦电泳。此法的优点是加样数量多,节省两性电解质,电泳后固定、染色、干燥都十分迅速简便,其最大优点是防止了电极液的电渗作用而引起正负两极pH梯度的漂变。 测定pH梯度的方法有四种: 1. 将胶条切成小块,用水浸泡后,用精密pH试纸或进口的细长pH复合电极测定pH值,然后作图。 2. 用表面pH微电极直接测定胶条各部分的pH值,然后作图。3. 用一套已知不同的pI值的蛋白质作为

  • 谈谈扫描电镜聚焦[zt]

    谈谈扫描电镜聚焦[zt]

    驰奔扫描电镜操作,最简单,但最重要的操作就是聚焦-Focus. 正确聚焦是调节其他相关参数的基础。很多情况下,不能正确的聚焦,造成图像不清。自动聚焦可以解决不能正确聚焦问题,实际上是错误的理解,有时也被某些人用来引导暗示客户,这往往成为忽悠人的一种策略。扫描电镜自动聚焦很多情况下是粗聚焦。总之手动聚焦不清楚,自动一定不会清楚。下面主要介绍手动聚焦, 当然也是最精细的聚焦。首先,扫描电镜是齐焦系统,即高倍正确聚焦,降低放大倍数,焦点不会改变。因此使用尽可能可识别的高倍聚焦操作是快速的正确聚焦方法。因为,高倍情况下焦深变小,对聚焦的正确与否,反应更灵敏。其次,要消除象散。象散的存在,往往会干扰正确聚焦。判断象散,需要较为丰富的图像细节,而象散现象又不被图像干扰,才是好的聚焦点。如果把象散在拉伸时的位置看做正确聚焦点,再进行象散矫正,图像会更模糊。再次,高倍高分辨成像,往往受限于信噪比差。反差小的细节,将被噪音覆盖,这时候要找到小反差基本等高的大反差部位作为聚焦点。也可以加大束斑尺寸,使用较高的SPOT值,获得比较良好的信噪比,在低分辨条件下对小反差样品进行聚焦消除象散操作,最后获得正确聚焦,然后再把SPOT值降低,获得高分辨的正确聚焦。改变SPOT值,如果无WD补偿机制,图像将不再正确聚焦,最后,在高倍正确聚焦情况下,将放大倍数降低到想要的放大倍数,自然可以看清同一个高斯焦面上下一定景深的所有的形貌。如下图低倍图像。需要说明,扫描电镜成像有多重缺陷,其中荷电严重部位,有边缘效应严重部位,不适合作为正确聚焦调节点。

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 脑切片共聚焦显微镜

    [url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]脑切片共聚焦显微镜[/b][/url]是专业为大脑研究设计的[b]脑切片共聚焦成像显微镜[/b],非常适合大面积[b]脑切片共聚焦成像[/b],具有[b]共聚焦反射成像[/b]CRM和[b]共聚焦荧光成像[/b]CFM模式,[color=#333333][color=#333333]方便获得活体组织共聚焦图像.[/color][/color]脑切片共聚焦显微镜采用全球领先的图像缝合技术和条带图像镶嵌技术,快速创建亚像素精度的细胞尺度图像,并能够快速从脑切片图像中定位某个区域.脑切片共聚焦显微镜还可以用于动物研究,得益于其较大的成像视场,能够快速获得动物各个生长阶段的共聚焦图像和荧光细胞突出的图像,成像面积覆盖微米分辨率到30x30mm,实现微观成像和宏观成像.脑切片共聚焦显微镜还提供785nm和830nm激光,用于动物活体成像,成像传统深度高达250微米.脑切片共聚焦显微镜可广泛用于病理学研究,提供共聚焦反射成像CRM和共聚焦荧光成像CFM,有效获得活体组织图像.[img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/RS-G4.jpg[/img][img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/rsg4brain-section-.JPG[/img]脑切片共聚焦显微镜:[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]http://www.f-lab.cn/microscopes-system/rs-g4.html[/b][/url]

  • 关于气质中聚焦电极透镜的作用

    之前有帖子问到气质EI源的透镜组的作用,解释的不是很明白,现在小弟对其中的聚焦电极透镜不是很明白,还请各位明白的回答一下,感激不尽! 带正电的离子碎片在聚焦电极中运动的时候不会被吸引到极体上面的吗?

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 激光扫描共聚焦显微镜应用技术

    激光共聚焦扫描显微镜是近代最先进的细胞生物医学分析手段之一。与传统荧光显微镜相比,共聚焦显微镜能得到更清晰的样品图像。它不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察

  • 固定相聚焦、溶剂聚焦这段怎么理解?如何利用?

    固定相聚焦、溶剂聚焦这段怎么理解?如何利用?

    [img=,660,349]https://ng1.17img.cn/bbsfiles/images/2020/03/202003032129567332_1486_2561261_3.jpg!w660x349.jpg[/img]我看很多方法的温度条件,温箱初始温度都比进样口温度低,是否就是在利用这个聚焦?固定相聚焦,我的理解是样品在衬管里汽化后进入毛细柱,由于柱子初始温度略低,汽化的样品移动速度就慢,方便固定相不停的吸附-释放汽化的样品。如此,前头的样品就好像被“阻拦”了速度变更慢,后边的样品“撞”入前边的样品里,相当于被“浓缩"了,最后到达检测器就成为一个尖锐的峰。不知道我的理解是否正确。溶剂聚焦,看不太懂。怎么还冷凝?那不就成液体了吗?

  • 【讨论】spectro MS 10年PITTCON上的新双聚焦ICPMS

    今天检索一下spectro MS ,想找其相关的资料,很遗憾,好像很少。不像PE 的NexION 300spectro MS 是德国斯派克公司10年三月(和PE的一个时期)在匹兹堡PITTCON展会上推出的质谱仪,它是双聚焦的ICPMS,但是它的关注度好像少很多,这是为什么?看了下它创新点:现有ICP-MS仪器都是基于时序测量的技术,每一瞬间仅能检测一种离子,不能实现实时内标,也难于对脉冲信号作全谱测量。最新推出的SPECTRO MS是目前市场上唯一的从6Li到238U质量范围同时测量的ICP质谱仪,它实现了从时序扫描测量到全谱同时测量的新飞跃。其革命性技术的核心是双聚焦扇形场质谱仪与全新的能同时俘获全部离子的检测器及其创新设计的离子透镜系统。离子透镜采用一个127°扇形静电场,使离子按圆形路径飞行。质量分析器由静电场分析器和900扇形磁场双聚焦,其静电场电压与磁场强度固定,把所有的离子按质量分离并分别聚焦到同一个焦平面上。新型的长120mm有4800个通道的DCD检测器安装在磁场的焦平面上,同时复盖全部无机质谱范围,实现全谱同时检测。它分析速度快,节省分析时间和样品,实现实时内标,可对脉冲信号作全谱测量。我的问题是您认为它主要会应用在哪个方面?

  • FIB 聚焦离子束分析

    [b]FIB介绍[/b][font=inherit]聚焦离子束技术[/font](Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的[font=inherit]聚焦离子束技术[/font](FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。、[b]应用领域[/b](1)线路修改-在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。[align=center][img=FEI V400,227,227]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8711.png[/img]FEI V400[/align]使用设备:FEI V400可以针对14nm,16nm,28nm, 40nm, 45nm, 65nm, .13um, .18um, .25um, .35um 制程进行线路改造。适用的封装形式BGA, QFN, CSP, WLBGA, Die and board Level, 8” wafer, packaged “flip-chip”[table][tr][td=2,1,568]FIB典型照片[/td][/tr][tr][td=1,1,279]观测[/td][td=1,1,288]线路修改[/td][/tr][tr][td=1,1,279][img=,227,209]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8712.png[/img][/td][td=1,1,288][img=,240,218]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8713.png[/img][/td][/tr][tr][td=2,1,568]FIB配合TEM进行复杂操作[/td][/tr][tr][td=2,1,568] [img=,554,254]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8714.png[/img][/td][/tr][/table]文章引用自正衡检测官网欢迎各位莅临正衡检测网站讨论咨询[url]http://www.zenh.com/[/url]

  • 【讨论】有用共聚焦显微镜的吗?

    有没有使用共聚焦显微镜? 我现在用两台,一个是真彩共聚焦的,一个是激光高温共聚焦的,厂家是lasertec,有没有同行的,我们相互学一下啊~

  • 【求助】关于透镜和离子聚焦的区别

    [size=5]质谱仪的调谐参数[u]透镜[/u]和[u]离子聚焦[/u]的定义和作用的区别一直不太明白,只知道都能够使离子聚集成一束,把离子送入分析室。 请大家帮忙解释一下。[/size]

  • FEI扫描电镜的HR聚焦问题

    各位好,我们这里有一台FEI nova650的扫描电镜,前一阵冷水机的水泵突然出现了问题,换了一个水泵后冷水机工作正常了,但是电镜HR模式不能聚焦,厂家工程师过来检测了一下,说控制HR聚焦的电路板子被烧掉了。换一块板子很贵(买了电镜1年半),请问各位大侠有碰到过类似问题的吗?我们第一次遇到这种问题,本来以为电镜的寿命很长很长,应该怎么办呢?谢谢!

  • 【资料】-聚焦微波消解

    [b]聚焦微波消解[/b]密封增压微波消解的优点是明.显的。但是,高压消解带来的是复杂的防爆安全装置和可能存在的安全隐患。高压消解的另一个缺点就是取样量不能太大,一般在0.5g以内。针对这些同题,产生了聚焦微波消解技术。该技术将微波聚焦直接瞄准样品进行高效辐射.在常压下对样品进行消解,对安全没有后顾之忧,而且可以一次消解处理多达l0g的有机质样品。专业聚焦微波消解在设计上是通过回流系统来解决在消解过程中元素的挥发损失的。可以选用高沸点的酸来提高消解能力。 从应用上比较,聚焦微波稍解系统相对于密封式微波消解系统有如下优点: ①安全。聚焦微波消解系统在整个操作过程中都不涉及密封式微波消解系统中的压力问题,因此避免了由于压力造成的许多安全隐患。 ⑧非脉冲聚焦微波。各个样品槽通过闭环阀门或门式控制微波的输出,避免了密封式微波消解系统中为解决微波场不均匀的各种措施。非脉冲聚焦。其特征是微波输出功率变化均为持续输出,无脉冲刺激。这更易于控制微波辅助反应,提高消解反应的稳定性和安全性,且有机萃取反应回收率和稳定性也得到改善。 ③白动化操作。密封微波消解中,手工操作试剂较多,当处理不同样品时,同一批次中密封消解只能采用一种方法,会造成样品条件的不一致。而聚焦微波技术实现自动化操作,可以同时实现多达六个样品四种试剂的白动计量添加、自动冷凝回收、自动蒸发浓缩,还可以实现,一机同时多种样品独立程序控制,同时使用六个不同的程序,处理六个不同的样品。 ④石英材料反应容器。密封式微波消解系统中由于采用受温度限制的聚合物材料容器,对不同的溶剂有不间的限制温度,一般不能高于300℃,而聚焦微彼系统采用无高温限制的石英材料反应容器,温度可达450℃ 。因此可根据传统方法选用各种试剂。 ⑤时间。密封式微波消解系统的消解时间略短于聚焦微波系统,但考虑到人工的酸试剂操作时间等因素,加上密封式微波消解系统中的冷却时间,聚焦微波系统整个工作效率并不亚于密封式微波消解系统。另外,聚焦微波系统还有能够随时观察反应情况、冷却快等一系列优点。 聚焦微波消解系统完全自动化的操作,免去了反应前的试剂添加和反应后的蒸发、浓缩、定容步骤。从整体上提高了反应效率,降低了劳动量。聚焦微波消解系统在使用上更安全、灵活,具有广泛的应用前景。当然:在消解极难溶物质时,密封微波系统比聚焦微波系统更胜一筹,其作用是不可能完全被聚焦微波系统所取代的。

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 等电聚焦电泳法测定蛋白质的等电点

    一、实验目的了解等电聚焦的原理。通过蛋白质等电点的测定,掌握聚丙烯酰胺凝胶垂直管式等电聚焦电泳技术。二、实验原理等电聚焦(Isoelectric focusing,简称IEF)是六十年代中期出现的新技术。近年来等电聚焦技术有了新的进展,已迅速发展成为一门成熟的近代生化实验技术。目前等电聚焦技术已可以分辨等电点(pI)只差0.001pH单位的生物分子。由于其分辨力高,重复性好,样品容量大,操作简便迅速,在生物化学、分子生物学及临床医学研究中得到广泛的应用。蛋白质分子是典型的两性电解质分子。它在大于其等电点的pH环境中解离成带负电荷的阴离子,向电场的正极泳动,在小于其等电点的pH环境中解离成带正由荷的阳离子,向电场的负极泳动。这种泳动只有在等于其等电点的pH环境中,即蛋白质所带的净电荷为零时才能停止。如果在一个有pH梯度的环境中,对各种不同等电点的蛋白质混合样品进行电泳,则在电场作用下,不管这些蛋白质分子的原始分布如何,各种蛋白质分子将按照它们各自的等电点大小在pH梯度中相对应的位置处进行聚焦,经过一定时间的电泳以后,不同等电点的蛋白质分子便分别聚焦于不同的位置 。这种按等电点的大小,生物分子在pH梯度的某一相应位置上进行聚焦的行为就称为“等电聚焦”。等电聚焦的特点就在于它利用了一种称为两性电解质载体的物质在电场中构成连续的pH梯度,使蛋白质或其他具有两性电解质性质的样品进行聚焦,从而达到分离、测定和鉴定的目的。两性电解质载体,实际上是许多异构和同系物的混合物,它们是一系列多羧基多氨基脂肪族化合物,分子量在300~1000之间。常用的进口两性电解质为瑞典Pharmacia-LKB公司生产的Ampholine 和Pharmalyte,价格昂贵。国产的有中国军事医学科学院放射医学研究所和上海生化所生产的两性电解质,价格便宜,质量尚佳。两性电解质在直流电场的作用下,能形成一个从正极到负极的pH值逐渐升高的平滑连续的pH梯度。若不同的pH值的两性电解质的含量与pI值的分布越均匀,则pH梯度的线性就越好。对Ampholine两性电解质的要求是缓冲能力强,有良好的导电性,分子量要小,不干扰被分析的样品等。在聚焦过程中和聚焦结束取消了外加电场后,如保持pH梯度的稳定是极为重要的。为了防止扩散,稳定pH梯度,就必须加入一种抗对流和扩散的支持介质,最常用的这种支持介质就是聚丙烯酰胺凝胶。当进行聚丙烯酰胺凝胶等电聚焦电泳时,凝胶柱内即产生pH梯度,当蛋白质样品电泳到凝胶柱内某一部位,而此部位的pH值正好等于该蛋白质的等电点时,该蛋白质即聚焦形成一条区带,只要测出此区带所处部位的pH值,即为其等电点。电泳时间越长,蛋白质聚焦的区带就越集中,越狭窄,因而提高了分辨率。这是等电聚焦的一大优点,不像一般的其他电泳,电泳时间过长则区带扩散。所以等电聚焦电泳法不仅可以测定等电点,而且能将不同等电点的混合的生物大分子进行分离和鉴定。早期的等电聚焦电泳是垂直管式的,其特点是体系是封闭的,不与空气接触,可防止样品氧化。近年来,又发展了超薄层水平板式等电聚焦电泳。此法的优点是加样数量多,节省两性电解质,电泳后固定、染色、干燥都十分迅速简便,其最大优点是防止了电极液的电渗作用而引起正负两极pH梯度的漂变。测定pH梯度的方法有四种:1.将胶条切成小块,用水浸泡后,用精密pH试纸或进口的细长pH复合电极测定pH值,然后作图。2.用表面pH微电极直接测定胶条各部分的pH值,然后作图。3.用一套已知不同的pI值的蛋白质作为标准,测定pH梯度的标准曲线。4.将胶条于-70℃冰冻后切成1mm的薄片,加入0.5ml 0.01M KCl,用微电极测其pH。三、仪器和用具1.电泳仪2.垂直管式园盘电泳槽一套3.注射器与针头4.移液管:10ml、5ml、2ml、1ml、0.1ml5.小烧杯若干6.培养皿一套7.直尺8.小刀9.精密pH试纸和带细长复合pH电极的pH计10.塑料薄膜和橡皮筋

  • 【分享】真实色共聚焦显微镜(new!)

    [size=3]1台真实色共聚焦扫描显微镜综合了以下6种设备的功能:[U]高分辨率光学显微镜SEM扫描电镜ROUGHNESS TESTER表面粗糙度仪3-D PROFILER 三维表面形貌轮廓仪STEP TESTER 台阶仪R.G.B不同波长单色激光共聚焦显微镜[/U]特点:1.真实颜色、形状同时准确的立体观察成像,避免同色异像,同像异色现象的产生;2.根据样品选择最合适R.G.B三原色进行单波长测定;3.高精度彩色图像输出1280*1024;4.图像拼接实现高放大、高分辨、大视场;5.每秒85桢的高速图像读取;6.高度差、粗糙度、三维尺寸等的直接测量。产品应用:MEMS、半导体、液晶相关产品、金属材料、化学材料、其他各种应用领域。[/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64576]真实色共聚焦显微镜材料观测图片[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制