当前位置: 仪器信息网 > 行业主题 > >

显微定位系统

仪器信息网显微定位系统专题为您提供2024年最新显微定位系统价格报价、厂家品牌的相关信息, 包括显微定位系统参数、型号等,不管是国产,还是进口品牌的显微定位系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微定位系统相关的耗材配件、试剂标物,还有显微定位系统相关的最新资讯、资料,以及显微定位系统相关的解决方案。

显微定位系统相关的论坛

  • 立体定位显微操作系统的特色及规格说明

    [url=http://www.f-lab.cn/stereotaxis/sr-10r.html][b]大鼠慢性实验立体定位显微操作系统[/b]SR-10R[/url]集成立体定位仪器和立体定位显微操作器于一体,专业为大鼠慢性实验而设计,精确而可重复地固定大鼠,它开创了大鼠慢性实验精确立体定向显微操作的新纪元。 大鼠慢性实验立体定位显微操作系统SR-10R-HT是专门为对大鼠慢性实验而设计的。使用室框架固定,实现了在非麻醉状态下在相同位置的重复定位。从而慢性实验以及急性实验可以在不造成动物损害下顺利完成。[img=立体定位显微操作系统]http://www.f-lab.cn/Upload/sr-10r.jpg[/img]大鼠慢性实验立体定位显微操作系统SR-10R-HT可用于视觉或听觉实验。头部固定装置可以从基板移出,因此可以放置在显微镜下。该设备提供AP格线,可以连接许多不同类型的配件,比如显微操作器SM-15 L / R。把室框架连接到老鼠头部,使在非麻醉状态下的同一位置反复定位成为了可能。一旦把室框架固定在头上,不需要麻醉,不需要口、鼻夹或耳棒就可将大鼠立体定向固定,这样SR-10R就可用于视觉或听觉实验。[b]大鼠慢性实验立体定位显微操作系统特色[/b]立体定位显微操作器 SM-15被包括在内。需要没有显微操作器的版本的,请访问SR-10R-HT。 NARISHIGE的立体定位操作器根据新标准制造,该AP框架具有18.7mm的方形台。[b]大鼠慢性实验立体定位显微操作系统规格[/b][table=514][tr][td]配件[/td][td]EB-3B 大鼠耳棒(一对)EB-5N 大鼠辅助耳棒CF-10 室框架 x 5块.[/td][/tr][tr][td]尺寸大小/重量[/td][td]W400 x D300 x H110mm, 9.2kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

  • “光敏定位超高光学分辨率显微镜系统”通过验收

    http://www.cas.cn/ky/kyjz/201207/W020120712608069274506.jpg验收专家现场核查设备情况 7月11日,中国科学院计划财务局组织专家在生物物理研究所对徐涛研究员负责的“光敏定位超高光学分辨率显微镜系统”仪器研制项目进行了现场验收。 验收专家组听取了研制工作报告及经费决算报告、用户报告和技术测试报告,现场核查了设备的运行情况,审核了相关文件档案及财务账目。经过提问与讨论,验收专家组一致认为该项目实现了预期的研制目标,完成了实施方案规定的各项任务,同意通过验收。 2006年9月,美国科学家Eric首次在Science杂志上提出光敏定位显微镜(PALM)的概念,使得光学显微镜能够获得与电子显微镜相匹配的分辨率。PALM的基本原理是将荧光分子附著在目标蛋白上,利用全内反射显微镜(TIRFM)技术和单分子定位技术得到细胞内荧光蛋白纳米级分辨率的精确定位。“光敏定位超高光学分辨率显微镜系统”研制项目总体设计灵活高效,结合了TIRFM、EMCCD成像系统、闭环锁焦系统等技术,提出了新的单分子定位算法,实现了三维防漂移反馈校正、细胞内单分子的三维定位和超精细结构观察,完成了一套具有国际领先水平的超高分辨光学显微成像系统,具有较高的创新性。 目前,该系统已在细胞内单分子(如微管蛋白、离子通道等)成像方面发挥了关键作用。研究人员在Nature Methods、PNAS等杂志上发表了世界领先的研究成果,可应用于细胞生物学的超高分辨荧光成像,具有广泛的应用前景。 该项目研制的仪器符合目前蛋白质科学和系统生物学对创新仪器设备和技术的有关需求,有望产生一定的经济效益。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 微操作型狨猴立体定位仪规格说明

    [url=http://www.f-lab.cn/stereotaxis/sr-5c.html][b]狨猴立体定位仪[/b]SR-5C[/url]是带有[b]显微操作器[/b]的固定普通狨猴实验的[b]立体定位仪[/b]器,一套系统满足狨猴固定和定位以及显微操作实验。[b]狨猴立体定位仪[/b]SR-5C具有许多有用的功能可以安全地将动物固定到适当位置,进行立体定位步骤。为普通狨猴特别设计的辅助耳棒,可以只用一只抓牢,还可以固定到耳孔并使用指尖确认感觉。 眼孔的多孔面固定到固定器上,多孔面也是为尽量减少狨猴的损害而设计的。通过固定耳孔,眼孔和上颚,确保立体固定。提供一个18.7毫米AP框架,除了已连接的显微操作器SM-15外,这样许多不同类型的配件也可以连接到该[b]狨猴立体定位仪[/b]。[img=微操作型狨猴立体定位仪]http://www.f-lab.cn/Upload/sr-6c_.jpg[/img][b]狨猴立体定位仪[/b]SR-5C有一个AP框架,SR-6C有两个。不带显微操作器的版本可以在这里找到:[color=#0000ff]SR-5C-HT[/color][b][b]狨猴立体定位仪[/b]规格[/b][table=530][tr][td]配件[/td][td]SM-15 立体定位显微操作器EB-3A辅助耳棒六角扳手[/td][/tr][tr][td]尺寸大小/重量[/td][td]W400 × D300 × H110mm, 8.85kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

  • 电动显微镜载物台特点及参数

    [url=http://www.f-lab.cn/microscopestages/scanplus100.html][b]电动显微镜载物台Scanplus100[/b][/url]集成了测量系统,实现显微镜和样品的精确定位,提供75x50mm的行程范围,最小步进高达0.05微米,定位进度高达1微米,是全球领先的[b]自动显微镜载物台品牌[/b]。[b]电动显微镜载物台Scanplus100产品特点[/b]集成高精度测量系统实现全球最高定位精度和测量精度具有定位测量功能德国圆角的平面人体工程学设计显微镜载物台插入配件可更换设计,具有多种stage inserts 选配,满足显微镜应用电机/编码器电缆前右部连接,符合操作人员习惯集成电子位移台识别系统,自动识别扫描台及其控制器配备高精度特定型号控制,可享受全球5年超长质保[b]电动显微镜载物台Scanplus100参数[/b]行程范围:100x100mm行进速度:最大240mm/s重复定位精度:1um精度:+/-1um分辨率:0.05um (最小步进)正交性:10arcsec驱动电机:2两相步进电机位移台开口:160x116mm材质:高级铝表面处理:氧化涂层,黑漆自重:~2.6kg电动显微镜载物台Scanplus系列集成融入了测量系统,专业为显微镜自动样品定位和精密样品定位应用设计,专业为全球主流显微镜品牌配套,独具的测量系统功能是全球领先的超精密定位测量系统,极大提高测量精度。电动显微镜载物台Scanplus采用全球领先的德国长期润滑系统,确保长期使用而不需维护.更多载物台官网:[url]http://www.f-lab.cn/microscope-stages.html[/url]

  • 什么是系统显微镜?

    菜鸟求助,奥林巴斯BX51系统显微镜,为什么不叫生物显微镜?系统显微镜指的是什么?什么是系统显微镜?

  • 【资料】中国新北斗卫星定位系统让欧洲伽利略汗颜!

    中国新北斗卫星定位系统让欧洲伽利略汗颜!  ■欧盟发去“最后通牒” ■中国“北斗”发展神速   欧洲伽利略全球卫星导航计划曾雄心勃勃想超越美国的GPS,但在计划启动5年后,各企业却为利益分配问题陷入严重内斗,严重阻碍了系统的开发进度。2007年3月22日,欧盟委员会就伽利略计划举行新闻发布会  连日来,已经启动5年之久的欧洲伽利略全球卫星导航计划再次吸引了世人的眼球。由于参与该计划的欧洲空间企业巨头们围绕利益分配问题的内斗导致这一工程进度一再延迟,忍无可忍的欧盟理事会于3月22日发出了“最后通牒”,限期有关参与企业完成合同谈判,否则将可能失去游戏资格。   欧盟向“伽利略”发最后通牒   在22日举行的欧盟交通部长理事会会议上,举步维艰的伽利略计划成了焦点议题。会议认真研究了欧盟委员会负责交通事务的副主席雅克巴罗本月14日提交的有关伽利略计划开发阶段实施情况的报告,并发出“最后通牒”,责令参与伽利略计划开发阶段工程项目的各私营企业在5月10日前就组建单一联合母公司及公司总裁人选达成一致,以保证有关签订伽利略系统开发和运行许可权协议的谈判得以继续。   与会的欧盟委员会副主席雅克巴罗表示,欧委会不会中止伽利略计划的实施,但如果现有的中标企业不积极回应,欧委会将考虑所有可能性,包括对系统开发工程重新招标。不过他同时缓和了语气:“我们还没走到这一步,我想各家企业会充分重视我们设定的这个最后期限的。”   伽利略计划搞不清谁当头   然而,就像曲折的欧洲一体化进程本身一样,作为“欧洲工程”的伽利略计划在从政治雄心转化为实际行动的过程中不可避免地受到各种利益纷争的掣肘。早在计划启动之初,欧盟各国就围绕如何分摊启动费用龃龉不断。由于德国和意大利在“谁当领头人”的问题上互不相让,伽利略计划一度面临搁浅的危险。   这一问题解决后,伽利略计划很快又陷入新的危机。按照原计划,伽利略系统应由以欧洲航天局为代表的公共监督机构和由私营企业组成的一家联合母公司共同开发,后者享有为期20年的伽利略系统开发运营特许权。经过复杂而艰难的招投标程序,欧洲航天局选定了8家空间行业集团,包括欧洲最大的航空航天和军工企业、空中客车公司的母公司——欧洲宇航防务集团、法国泰雷兹公司和阿尔卡特-朗讯公司、总部设在英国的国际海事卫星组织、意大利机械工业投资公司、西班牙AENA公司和HISPASAT公司以及德国电信公司与德国航空航天中心组建的联合企业(TeleOp)。根据双方2005年12月签订的合同,各参与企业应在2006年底以前结束有关特许权分配协议的谈判,并组建一个单一的联合母公司并任命一位可代表各企业做出最高决定的公司总裁。但随后的进展却让人大跌眼镜。   由于各企业迟迟未能就伽利略系统开发阶段的利益分配达成内部妥协,欧盟委员会负责交通事务的委员雅克巴罗本月14日同时致信欧盟主席国德国、欧洲议会以及8家公司,警告各方务必认清伽利略计划所面临的危机并呼吁各方加紧行动。信中没有说明造成工程进度一再延误的具体责任者,但据有关人士透露,许可权分配协议谈判受阻的直接原因是西班牙HISPASAT公司对任务分配提出了更多要求,包括得到已经分配给法国、德国和英国公司的工程项目,在本国增建地面控制中心以及获得更多系统运营权。此外,一些参与方还对未来的伽利略系统能否给欧盟带来足够利润产生疑虑。巴罗的发言人承认,由于上述问题的存在,伽利略系统实现商业运行的时间已经被推迟到了2011年甚至更晚。    欧盟怕被中国甩在后面   作为一个大型战略性国际合作项目,伽利略计划的实施进展关乎多方利益。到目前为止,欧盟已经与中国、以色列、美国、乌克兰、印度、摩洛哥和韩国分别签署了合作开发协议,并正在与阿根廷、巴西、墨西哥、挪威、智利、马来西亚、加拿大以及澳大利亚等国进行合作谈判。中国是最早与欧盟签订伽利略计划合作协议的非欧盟国家,承诺的投资总额达2亿欧元。可以说,作为欧盟日益重要的全球合作伙伴之一,中国参与伽利略计划是中欧双方共同的经济和战略利益需要。 有中国特色的北斗卫星定位系统  不过,在大力参与伽利略计划的同时,中国始终没有放弃开发自己的卫星导航系统的努力。自2000年10月至今年2月,中国已成功将4颗“北斗”导航实验卫星送入太空,由其组成的“北斗”导航试验系统工作稳定、状态良好,已在测绘、电信、水利、交通运输、勘探和国家安全等诸多领域发挥重要作用。据有关部门负责人介绍,建成后的“北斗”卫星导航系统将主要用于国家经济建设,为中国的交通运输、气象等行业提供高效导航定位服务。按计划,该系统将于2008年前后满足中国及周边地区用户的卫星导航定位需求,此后逐步扩展为全球卫星导航系统。   国际舆论认为,“北斗”卫星导航系统的开发将形成美、俄、欧、中在该领域“四强争霸”的格局。欧洲某些人士担心,“北斗”系统的加速开发和伽利略计划的进展不力将使欧洲在全球卫星定位领域的竞争中大大落后,从而在21世纪高科技阵地争夺战中丧失有利位置。       新闻背景   “伽利略”帮你找到车库门   为打破美国十几年来在全球卫星导航定位市场一统天下的格局,欧洲自1994年就开始酝酿开发自己的全球卫星定位系统。经过数年探索和论证,2002年3月,当时的欧盟15国交通部长在西班牙巴塞罗纳会议上正式决定启动“伽利略”计划。按最初构想,该计划将投资32亿至36亿欧元,分评估、开发、部署、运行4个阶段实施,最终建成由分布在高度2.4万公里、倾角56度的3个轨道面上的30颗高轨道卫星组成的全球卫星导航定位系统,于2008年投入商业运营。   与美国的“全球定位系统”(GPS)相比,建成后的伽利略系统将具备至少3方面优势:首先,其覆盖面积将是GPS系统的两倍,可为更广泛的人群提供服务;其次,其地面定位误差不超过1米,精确度要比GPS高5倍以上,用专家的话说,“GPS只能找到街道,而伽利略系统则能找到车库门”;第三,伽利略系统使用多种频段工作,在民用领域比GPS更经济、更透明、更开放。伽利略计划一旦实现,不仅可以极大地方便欧洲人的生活,还将为欧洲的工业和商业带来可观的经济效益。据权威估计,该系统将为欧盟创造15万个高技术工作岗位,每年经济收益可达100亿欧元,仅出售航空和航海接收终端一项就可在2020年前实现150亿欧元的利润。更重要的是,欧洲将从此拥有自己的全球卫星定位系统,这不仅有助于打破美国GPS系统的垄断地位,在全球高科技竞争浪潮中夺取有利位置,更可以为建设梦想已久的欧洲独立防务创造条件。   当时的欧盟委员会主席普罗迪曾评价说,伽利略计划是欧盟的一场新技术革命。伽利略计划的成败关乎欧洲前途,“这是一场垄断和反垄断的斗争,是一场涉及政治、经济、军事和国家利益的外交斗争”。

  • 显微微量注射系统优势特点

    科研级[url=http://www.f-lab.cn/microinjectors/minj-1000.html][b]显微微量注射系统[/b][/url]是全球首款使用倒置显微镜的[b]显微注射器系统[/b]和整套[b]微量注射系统[/b],广泛用于生命科学,分子生物学等领域[b]显微微量注射实验[/b]。[b]显微微量注射系统[/b]包含我公司著名的[b]显微注射器[/b],脉冲宽度控制模块(PCM),显微注射针,品牌倒置显微镜和显微操作器等。作为Narishige公司和奥林巴斯公司产品集成商,我们采用Narishige公司显微注射器和奥林巴斯显微镜或其它生产商(OEM)解决方案,以超级优惠价格为客户提供集成显微微量注射系统。[img=显微微量注射系统]http://www.f-lab.cn/Upload/MINJ-1000-L.JPG[/img][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img][b]显微微量注射系统特色和优势在于我们提供定制[/b]载玻片支架,提供更好手动显微控制功能和精度,为您配备电控显微操纵杆式显微操纵器,与其他系统相比可以节省数千美元。[b][url=http://www.f-lab.cn/microinjectors/minj-1000.html]显微微量注射系统[/url]特点:[/b][list][*]较小的尺寸节省安装空间。[*]卓越的光学品质。[*]为DIC类图像定制的霍夫曼调制对比度(HMC)光学系统[*]用于照片和视频文件提供三目头。[*]备有用于检测绿色荧光蛋白,DAPI,罗丹明等的荧光系统[/list][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img]

  • 微操作立体定位仪优势

    [url=http://www.f-lab.cn/stereotaxis/sr-9m.html]微操作[b]立体定位仪[/b]SR-9M[/url]是专门为小鼠慢性实验设计的[b]小鼠定位仪器[/b],它可以在小鼠非麻醉状态下在相同位置重复固定,使得小鼠慢性实验或急性实验可以在不造成动物损害情况下顺利地完成。微操作[b]立体定位仪[/b]SR-9M可用于视觉和听觉实验。头部固定器可以从基板移出,因此可以放置在显微镜下。提供一个AP框架槽,可以连接许多不同类型的配件比如显微SM-15 L / R。通过将室框架连接到小鼠头部,在非麻醉状态在同一位置重复定位成为了可能。一旦室框架被固定在头上,不需要麻醉,无需使用口、鼻夹或耳棒小鼠可以被立体定位固定而,使SR-9M可以用于视觉和听觉实验。 [img=微操作立体定位仪]http://www.f-lab.cn/Upload/sr-9m_.jpg[/img]微操作[b]立体定位仪[/b]SR-9M需要不带立体定位显微操作器SM-15的版本,请访问SR-9M-HT。自从NARISHIGE的立体定位操作器根据新标准制作后,AP框架具有18.7mm的方形形状。微操作[b]立体定位仪[/b]SR-9M[b]规格[/b][table=610][tr][td] [/td][td]SM-15 R/L 立体定位显微操作器EB-3B 小鼠耳柱(一对)EB-5N 小鼠辅助耳柱CF-10 室框架 x 5件.[/td][/tr][tr][td]尺寸大小,重量[/td][td]宽400 x 深300 x 高110mm, 9.2kg [/td][/tr][/table]微操作立体定位仪:[url]http://www.f-lab.cn/stereotaxis/sr-9m.html[/url]

  • 生物显微镜日常保养及问题的处理方法

    生物显微镜是生物教学实验中常用的一种精密光学仪器,由机械系统和光学系统两部分组成。机械系统包括:镜筒传动部分、物镜转动部分、载物台、压片夹和遮光器的转换部分、镜架和底座的转动部分等。光学系统包括:目镜、物镜、聚光镜和反光镜等。本文试图用简练的语言介绍一些生物显微镜日常的保养和常见问题的处理,以方便大家在日常中的使用和保养:一、 日常保养1.整体保养:生物显微镜要放置在干燥阴凉、无尘、无腐蚀的地方。使用后,要立即擦拭干净,用防尘透气罩罩好或放在箱子内。2.机械系统的维护保养:使用后,用干净细布擦净,定期在滑动部位涂些中性润滑脂。如有严重污染,可先用汽油洗净后再擦干。但切忌用酒精或C4H10O清洗,因为这些试剂会腐蚀机械和油漆,造成损坏。3.光学系统的维护保养:使用后,用干净柔软的绸布轻轻擦拭目镜和物镜的镜片。有擦不掉的污迹时,可用长纤维脱脂棉或干净的细棉布蘸少些二甲笨或镜头清洗液擦拭。然后用干净细软的绸布擦干或用吹风球吹干即可。要注意的是清洗液千万不能渗入到物镜镜片内部,否则会损坏物镜镜片。聚光镜(XSP-12A、16A型才有)和反光镜用后只要擦干净就可以了。二、常见问题的处理1.物镜转换器转动困难或定位失灵:转换器转动困难可能是固定螺丝太紧。使转动困难,并会损坏零件。太松,里面的轴承弹珠就会脱离轨道,挤在一起,同样使转动困难;另外弹珠很可能跑到外面来,弹珠的直径仅有一毫米,很容易遗失。固定螺丝的松紧程度以转换器在转动时轻松自如,垂直方向没有松动的间隙为准。调整好固定螺丝后,应随即把锁定螺丝锁紧。不然的话,转换器转动后,又会发生问题。转换器定位失灵有时可能是定位簧片断裂或弹性变形而造成。一般只要更换簧片就行了。2.遮光器定位失灵:这可能是遮光器固定螺丝太松,定位弹珠逃出定位孔造成。只要把弹珠放回定位孔内,旋紧固定螺丝就行了。如果旋紧后,遮光器转动困难,则需在遮光板与载物台间加一个垫圈。垫圈的厚薄以螺丝旋紧后,遮光器转动轻松,定位弹珠不外逃,遮光器定位正确为佳。3.镜架、镜臀在倾斜时固定不住:这是镜架和底座的连接螺丝松动所致。可用专用的双头板手或用尖咀钳卡住双眼螺母的两个孔眼用力旋紧即可。如旋紧后不解决问题,则需在螺母里加垫适当的垫片来解决。 综上所述,对于生物显微镜的维护保养,只要做到防尘、防潮、防热、防腐蚀。用后及时清洗擦拭干净,并定期在有关部位加注中性润滑油脂即可。对于一些结构复杂,装配精密的零部件,如果没有—定的专业知识,一定的技能和专用工具,就不能擅自拆装,以免损坏零部件。文章转载于:http://www.microimaging.com.cn/

  • 生物显微镜的使用与维护

    目的要求    熟悉生物显微镜的结构,熟练掌握显微镜的使用方法,尤其是油镜头的使用与维护方法。    实验内容    1.生物显微镜的结构光学显微镜由机械支持及调节系统和光学放大系统组成(图3)。    (1)机械系统部件,生物显微镜的机械部件是整个显微镜的骨架,它是安装光学放大系统的基座。显微镜的机械部件包括镜座、镜劈、镜筒、旋转盘、调节器、载物台、推进器、聚光器、光圈、电源调节等。    (2)光学放大系统部件生物显微镜的光学系统包括目镜、物镜、聚光器、电光源等。    2.显微镜的使用方法及注意事项显微镜结构精密,使用时必须细心,要按下列步骤进行。    (1)准备用右手紧握镜臀,左手托着镜座,乎稳地将生物显微镜放到实验台上,在身体前方偏左的位置,距桌绦10cm左右,右侧可放记录本或绘图纸。    (2)调节光源先将电流调节器族至最小,插上电源,打开电源开关,旋转调节器使亮度由弱到强.至适合观察。    (3)低倍镜观察定位低倍镜视野较大,易于发现目标和确定检查的位置。将标本放置在裁物台上,移动推进器,使披观察的标本处在物镜正下方,转动粗调节螺旋,使物镜至标本o5mm处,调节聚光器使光线变弱,目镜观察并同时用粗调节螺旋慢慢升起载物台.直至视野出现*再用细调节螺旋使视野清晰为止。将其移到视野中央。 http://www.ceiea.com/UserFiles/201204/20120417091630p4ks.jpg    (4)高倍镜观察,在低倍镜观察定位的基础上转换高倍物镜,在转换物镜时要避免镜头与玻片相撞。然后从目镜观察,调整光亮适应,缓慢调节粗调节螺旋使载物台上升,直至物像出现,再用纫调节螺旋调至物像清晰,移动至视野中心进行观察或准备用袖镜观察。    (5)油镜观察,油镜的放大倍数为删倍,只有在此状态下,才能较好地观察细菌。使用泊镜需要加香柏油,这是由于油镜的透镜很小,光线自标本片透过进入空气中时,因介质密度不同,部分光线因折射不能进入透镜,视野亮度不够、物像不清。在标本片和泊镜之间加与玻璃折光串(n=1.52)相近的香柏油(n=1.535),避免了光线的折射与反射,视野的亮度增强,提高了分辨率。油浸物镜的工作距离(指物镜前透镜的表面到被检物体之间的距离)在o.2㎜以内,故而使用油镜时要特别细心,避免调焦不慎压碎标本片.也使物镜受损。必须按下列步骤操作。    ①在标本片上镜检部位滴上香柏油1滴,置载物台中央。    ②调节粗螺旋,位载物台上升,使油镜头浸入香柏油中.此时镜头几乎与标本接触。    ③从目镜观察,放大光圈或调节电流,使亮度合适。慢慢调节粗螺旋使裁物台上升,出现物像运用细螺旋(只允许在180°范围内调节)调至物像最清晰为止。若袖镜头己离开油面而仍束见到物像,须重复上述操作直至物像最清晰。    ④观察完毕,降下载物台,转动旋转盘,使袖镜偏位,先用撩镜纸擦去镜    头上的香柏油,再用探镜纸蘸少许二甲苯,擦去镜头上残留的油迹,最后再用    擦镜纸拭去二甲苯。    ⑤将各部件还原,关闭电源。    镜头。将生物显微镜放回拒内或箱内

  • 实时超分辨率显微成像系统特点介绍

    [url=http://www.f-lab.cn/microscopes-system/storm.html][b]实时超分辨率显微成像系统[/b][/url]突破了光学显微镜的半波长分辨率极限,提供了比宽视场,共聚焦显微镜更好分辨率。实时超分辨率显微成像系统采用尼康或奥林巴斯显微镜,Chroma 滤波片,Andor公司EMCCD相机以及独特的照明系统,为客户提供全球同步的超分辨率成像系统。[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-2.JPG[/img][b]实时超分辨率显微成像系统特点[/b]横向分辨率可达20nm,轴向分辨率可达40nm实时和线下图像重建GPU加速处理图像先进的自动聚焦硬件高分辨率X-Y-Z工作台灵活的配置[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-1.JPG[/img]实时超分辨率显微成像系统:[url]http://www.f-lab.cn/microscopes-system/storm.html[/url]

  • 金相显微镜在材料研究中的应用

    显微切割技术是在显微状态下通过显微操作系统对欲选取的材料(组织,细胞群,细胞,细胞内组分或染色体区带等)进行切割分离并收集用于后续研究的技术。该技术特点如下:1、细微 切割对象可为微米级,切割精度可以达到亚微米级;2、原位 在组织细胞或染色体的原位取材,因此所取材料的定位清楚,所研究对象的历史背景明确;3、同质 可以保证所取材料一定层次上的同质性;4、结合 可以与多种分子生物学、免疫学及病理学技术结合使用。

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 【原创】Zigbee定位系统开发套件

    Zigbee定位系统开发套件 无线ZigBee定位开发系统经济性型是采用ZigBee 2006网状网络技术的经济型ZigBee定位开发系统,采用TI公司的CC2430和CC2431片上系统结合TI公司的ZigBee兼容协议栈Z-Stack。 达泰公司经济型无线ZigBee定位开发系统可实现最高精度0.35米的精确无线定位分辨率。可用来开发煤矿井下人员定位系统、监狱人员管理系统、集装箱运输跟踪系统、车辆管理系统、人员管理系统、运动会运动员的计时计圈系统、城市公交智能站台、车辆调度的智能管理系统、列车/车厢自动抄号、调度管理系统、小区门禁系统等。:例1 是一个点对点及串口通信的实验程序,可以了解 CC2430的串口工作过程及编程方法;例2 一个是基于Zigbee2004协议栈DS18B20温度采集实验,对于精简协议可以深入了解;另一个是基于Zigbee2006协议栈DS18B20温度采集实验,是ZStack-1.4.2使用例程,它是Zigbee2006协议的一个成熟版本。例3是一个实用的 CC2430芯片测试程序,可以直接用于测试DTD243 C模块,有说明您看一下吧。例4 无线定位系统,可以了解定位原理和开发过程。有上位机软件支持,所有程序均提供测试通过的源代码。★ 实用方案DTD243A_Demo-10配置清单:配备10个Zigbee开发模块,不仅可以学习、了解、测试Zigbeede开发过程及基本功能,还可以熟悉测试zigbee的组网功能及其各种拓扑结构,快速开发产品。更精确的了解工程中定位系统的应用,适合于Zigbee产品开发单位及电子工程师。1、DTD243 B无线zigbee 模块8块,(其中一块作为协调器用,其他作为固定节点)。 2、DTD2431B无线Zigbee模块2块,(作为移动节点)3、DTD243 A_Demo开发、调试、编程模板2块4、USB电缆,串口线5、产品光盘一张(含说明书、编程实例,一些学习资料、协议栈软件等)6、[font=Times

  • 光学显微镜明细解释——之无限远光学系统

    光学显微镜明细解释——之无限远光学系统

    [color=#666666]在过去的10年里,基本上所有的主要的显微镜制造商迁移到研究级生物医学和工业显微镜无限远校正光学系统的利用率。在这些系统中,图像的距离被设置为无穷大,并策略性地放置在物镜和目镜(目镜),以产生中间图像之间的管体的管(或奥特兰克)透镜。[/color][color=#666666][img=,433,255]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932346812_4874_2206495_3.jpg!w433x255.jpg[/img][/color][color=#666666][color=#666666]无限远光学系统允许引入的辅助成分,如微分干涉相差(DIC)的棱镜,偏振器和落射荧光光源,成平行的焦点和像差校正效果,只需要很少的目标和管透镜之间的光路。较早的有限,或固定管长度,显微镜有一个指定距离鼻甲开幕,客观桶固定,眼座中的目镜管。这个距离被称为机械管长度的显微镜。该设计假定,当样品被放置在焦点,它是在几微米远于目标的前焦面。在19世纪时由皇家显微学会(RMS)有限管长度在160毫米标准化,并享有广泛的接受了100多年。用显微镜具有160毫米的管长度的设计是用于目标题使用该值在枪管上。[/color][color=#666666]添加到一个固定的管长度显微镜的光路中的光学配件增加了有效的管的长度更大的值超过160毫米。出于这个原因,一个垂直的另外的反射光照明器,偏振的中间阶段,或类似的附件可以引入到出一个理想的校正光学系统的球面像差。大多数显微镜管长度固定期内,制造商被迫将这些配件额外的光学元件,重新建立有效的160毫米管长度显微镜系统。这一行动的成本常常是一个增倍镜和光照强度降低由此产生的图像。[/color][color=#666666]一些反射光系统也阻碍了“鬼影”,出现的结果会聚光线通过分光镜。在试图规避所带来的另外的辅助光学组件的构件中,德国显微镜制造商赖克特原来先驱的无限远光学系统的概念。该公司开始无限远校正光学系统试验早在20世纪30年代由莱卡和蔡司紧随其后,但这些光学大多数厂家没有成为标准设备,直到20世纪80年代。[/color][color=#666666]管子的长度在无限远校正的显微镜被称为基准焦距和范围在160至200毫米之间,取决于制造商(见表1)。通过管镜头或目标(次),实现无穷大系统中的光学像差校正。残余的横向色差在无穷大目标可以很容易地补偿小心管镜头设计,但一些制造商,包括尼康,选择正确的球形和色差物镜本身。这可能是由于开发的专有新的玻璃配方,具有极低的分散体。还有一些制造商(尤其是蔡司ICS系统)利用组合更正管镜头和目标。[/color][color=#666666]无限远光学系统参数[/color][/color][table][tr][td]生产厂家[/td][td]管镜头焦距(毫米)[/td][td]齐焦距离(毫米)[/td][td]螺纹类型[/td][/tr][tr][td]徕卡[/td][td]200[/td][td]45[/td][td]M25[/td][/tr][tr][td]尼康[/td][td]200[/td][td]60[/td][td]M25[/td][/tr][tr][td]奥林巴斯[/td][td]180[/td][td]45[/td][td]RMS[/td][/tr][tr][td]蔡司[/td][td]165[/td][td]45[/td][td]RMS[/td][/tr][/table][color=#666666]表1[/color][color=#666666]表1给出的规格,包括管镜头焦段,齐焦距离,和客观螺纹型,各大厂商所提供的无限远校正显微镜。虽然徕卡和尼康都用一根管子长度为200毫米和25毫米螺纹尺寸的客观,客观齐焦距离是与尼康CFI 60系统明显更大。奥林巴斯,蔡司使用更短的管镜头焦距(分别为180和165毫米),但两家公司有标准化的客观螺纹尺寸和坚持的齐焦长45毫米。[/color][color=#666666]固定管长度在有限的光学系统,通过物镜的光通过朝向中间图像平面(位于目镜的前焦面)和在该点的收敛,发生和相消干涉,以产生图像(图图2(a))。这种情况很不同的无限远校正光学系统中产生的磁通的目标成像在无穷远(通常简称为无穷大的空间,如图2(b)),正被聚焦在中间像平面的平行光的波列管镜头。应该指出的是,为无限远校正的显微镜设计的目标通常是不可互换的与用于有限的(160或170毫米)光管长度显微镜,反之亦然。上使用时,由于缺乏管透镜的有限的显微镜系统,无限远透镜遭受增强的球面像差。然而,在某些情况下这是可能的,利用有限的目标在无限远校正的显微镜,但具有一些缺点。的数值孔径的有限目标受到损害,当它们被用来与无穷大系统,从而导致分辨率降低。此外,齐焦之间的有限和无限远的目标,在同一系统中使用时,丢失。有限目标的距离和放大倍率的工作也将下降,当它们被用来用显微镜具有管透镜。[/color][color=#666666]正如上面所提到的,基本是无穷大系统的光学元件的目的,管透镜和目镜。如在图2(b)所示,试样的目标的前焦面,收集从试样的中央部透过或者反射的光,并产生一个平行光束沿着光轴的投影位于向管透镜显微镜。的光的一部分到达目标源于试件的外周,并进入在斜角度,斜地前进的(但仍然在平行束)向管透镜的光学系统。管透镜收集的光,然后集中在中间像平面中,并随后由目镜放大。[/color][color=#666666][color=#666666][img=,349,331]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932406995_913_2206495_3.jpg!w349x331.jpg[/img][/color][/color][color=#666666][color=#666666][color=#666666]物镜与镜筒透镜一起形成的化合物的物镜系统,在一个有限的距离内的显微镜镜筒中生成的中间图像。管透镜的位置相对于目标的首要关心的问题是设计时无限远校正的显微镜。物镜与镜筒透镜(无穷大的空间)之间的区域中提供了一个路径到复杂的光学元件,可放置的引入的物镜焦距的球面像差或修改的情况下,平行光线。实际上,齐焦匹配的集合中的不同的目标之间可以保持与无限远校正的显微镜,即使当被添加到一个或两个辅助元件的光路。另一个主要的好处是配件的设计可以产生精确的倍值,而不改变物镜与镜筒镜头之间的对齐。此功能允许比较样品,使用的组合的几种光学技术,如荧光(单独或同时)相衬或DIC。这是可能的,因为成一组平行的光波下的光学配件的位置(横向或轴向),也没有图像的焦点不会移动。[/color][color=#666666]如果管透镜位于非常接近的目标,可用于辅助光学组件的空间量是有限的。然而,有一个上限,可以位于在现代显微镜设计的约束内管透镜和物镜之间的光学元件的数量。太多的目标配管透镜周收集的光波通过透镜的数量减少,从而导致中变黑或边缘模糊的图像,并减少显微镜的性能。应当强调的是,术语的无限远光学系统是指生产的磁通平行的右射线通过物镜后,没有一个是无限空间内的显微镜。为了最大限度地提高显微镜的配置的灵活性,同时保持高的性能,这是必需的优化的目标和管透镜之间的距离。[/color][color=#666666]放大倍率的计算方法是将基准焦距(管长)由物镜的焦距无限远校正目标。管透镜的焦距增加,到中间像平面的距离也增加,这将导致在一个延长了的管的长度。管长度200毫米和250毫米之间被认为是最优的,因为更长的焦段会产生较小的离轴角对角的光线,降低了系统的文物。管的长度越长,也增加了系统的灵活性方面设计配套部件。[/color][color=#666666]比较具有160毫米和200毫米的管透镜的焦距(图3)的系统时,一个较长的管透镜的焦距的优点变得明显。减少离轴对角线波磁通角接近长焦距光学系统的一个显着比例。减少的倾斜角的光线产生相对较小的附件组件(DIC棱镜,相位环,二向色镜等),从而提高了效率,在显微镜通过在这两个轴上和离轴光线的变化。戏剧性的提升归因于在无限远校正系统观察到与外延荧光照明的对比度水平光管较长的镜头焦段优势。的改善,与无限远光学显微镜观察到的图像的一个例子是在图4中示出了鼠小肠三个荧光染料标记的薄截面。显微照片记录尼康的Eclipse E600利用CFI 60石油20倍油浸物镜数值孔径0.75微分干涉对比和落射荧光模式同时运行。[/color][/color][/color][color=#666666][color=#666666][color=#666666][img=,308,283]https://ng1.17img.cn/bbsfiles/images/2019/05/201905300932401782_6880_2206495_3.jpg!w308x283.jpg[/img][/color][/color][/color][color=#666666][color=#666666][color=#666666]与无限远系统的物镜的焦距必须增加,以保持相同的放大倍数时,较旧的固定管长度系统。使用共焦距为45毫米,是多年的显微镜制造商所使用的所有与有限的管长度系统,但高性能无限远校正光学系统,这可能是不够的。例如,可以有计划复消色差的油浸物镜60X(表现最好的有限目标之一)超过10个单独的透镜元素和组,在一个非常紧张的适合目标约束的齐焦距离为45毫米。当管透镜的焦距变得无穷大系统所取代,它被细分成一个单独的目标(与一个更大的一些光学元件)和管透镜,相当于约150毫米。为了满足全光的潜力无穷大系统,客观的齐焦距离必须管镜头焦距相匹配。因此,对于一个200毫米的焦距,最佳的齐焦距离为60毫米,超过旧的标准化了15毫米的长度。[/color][color=#666666]无限远光学系统中使用的焦段更长的客观要求来匹配相应的更大的工作距离。增加物镜齐焦距离是最重要的工作距离实现了显着的增加,特别是对于较低倍物镜。比如,用1X的物镜中,所用的公式来计算倍率为无限远校正系统支配管透镜,物镜焦距应该是相同的。在一个系统中与管200毫米镜头焦距,这将需要一个较长的齐焦距离,才能使用这种低倍率的目标。计算表明,低至0.5倍的倍率,可以得到与200毫米的管透镜的焦距,但较短的焦距限制稍高于1倍的范围内的值的最小的物镜放大倍率。[/color][color=#666666]另一个要考虑的是,这也必须增加,为获得最佳性能,在具有长管透镜的焦距的光学系统的低倍率的目标的客观的瞳孔直径。RMS标准客观螺纹尺寸,20.32毫米,限制了有效的瞳孔直径可达到的最大数值孔径配备目标。为了产生更高的数值孔径长管镜头焦段正在利用时,客观上螺纹尺寸必须增加。要达到所需的数值孔径的实际出射光瞳直径(D)由下式表示:[/color][color=#666666]D = 2NA×F[/color][color=#666666]其中NA是数值孔径和 f 是物镜的焦距。因此,对于具有100毫米(利用一个200毫米焦距管透镜)的数值孔径为0.10的焦距的2倍复消色差物镜,必要的出射光瞳直径(D)为20毫米。显然,一个较小的目标的螺纹大小限制在低于10倍的无限远光学系统设计时的放大倍率物镜的数值孔径。高于200毫米的管长度增加,需要更大的目标,出射光瞳的大小,这样的无限远校正的显微镜的式样的一个限制因素。[/color][color=#666666] [/color][/color][/color]

  • 【资料】显微镜分析系统在炭黑检测中的应用

    用显微图像分析法测定聚烯烃管材、管件和混配料中颜料或炭黑分散度(符合GB/T 18251-2000国家标准)·········l 显微分析系统及试验方法介绍:一.实验方法1.从管材、管件或粒料上取少量样品压在载玻片之间并加热制备试样,也可以使用切片机切片制备试样。2.依次将六个试样放在显微镜下,经过摄像采集设备在计算机上显示图像,通过软件的操作计算机自动给出测定粒子和粒团的尺寸及试样等级确定表(国家标准)。注:分散的尺寸等级由六个试样等级的平均值来确定。二.配置介绍:1. 三目显微镜2. 高清晰JVC摄像头3. 高性能图像采集卡4. 显微分析软件显微分析系统BM19A-UV实物图片 实验主要仪器:a) 显微镜: 三目XSP-BM19A显微镜,带有校准的正交移动标尺,能够测量出粒子和粒团的尺寸;b) 软件系统:计算机硬件设备一套,观测粒子或粒团的尺寸分布及外观分布的显微分析软件UV一套;c) 载玻片:厚度约1mm的载玻片,小刀,弹簧夹;d) 切片机:能够切出规定厚度的薄片;e) 加热设备:烘箱、热板等,可在150℃~210℃之间的控制温度下操作;f) 图像采集设备:JVC摄像头TK-C1021EC、三目显微镜摄像接口MCL 、显微镜图像采集卡SLG-V110。试样制备:本标准规定了两种试样制备方法:压片法和切片法。制备好的试样应厚度均匀,用于测定颜料分散的试样厚度至少为60μm,用于测定炭黑分散的试样厚度为25μm±10μm。压片方法:用小刀沿产品的不同轴线在不同部位切取六个试样。测定颜料分散时,每个试样质量大于0.6mg;测定炭黑分散时,每个试样质量为0.25mg±0.05mg。把六个样品放在一个或几个干净的载玻片上,使每一试样与相邻的试样或载玻片边缘近似等距排放,用另一干净的载玻片盖住。可以使用金属材料或其他材料制成

  • 立体定位微操作器特点规格

    [url=http://www.f-lab.cn/micromanipulators/sm-25b.html][b]立体定位微操作器SM-25B[/b][/url]是NARISHIGE公司专业为[b]微电极操作[/b]而设计的一款具有立体定位功能的薄型[b]显微操作器[/b],可以把数个微电极紧密地放在一起,是理想的[b]微电极操作器[/b]。[b][url=http://www.f-lab.cn/micromanipulators/sm-25b.html]立体定位微操作器SM-25B[/url]特点[/b]用于立体定位仪器的多通道记录,在不损害其稳定性下设计得尽可能薄。配备了一个固定夹持器,用来固定微电极,薄板以同样的方式固定微电极。[img=立体定位微操作器]http://www.f-lab.cn/Upload/SM-25A-L_.jpg[/img]三个平面都配备了旋转机械,水平平面可以用操作手柄转动。使用这种机械可以设置微电极角度,并且容易把微电极紧密地放置在一起。此系列有三种类型(A,B和C),通过Z轴移动单元的排列进行区分。 B型提供了一种简单粗动单元。[b][b]立体定位微操作器[/b]规格[/b][table=491][tr][td=1,2]移动范围[/td][td]粗调[/td][td]X轴40mm, Z轴40mm[/td][/tr][tr][td=2,1]透视角度调整[/td][/tr][tr][td=2,1]尺寸大小/重量[/td][td]W125 x D28 x H157mm, 330g[/td][/tr][/table]

  • 生物显微镜的使用和日常维护

    1.镜筒的自行下滑:这是生物显微镜经常发生的故障之一。对于轴套式结构的显微镜解决的办法可分两步进行。 第一步:用双手分别握住两个粗调手轮,相对用力旋紧。看能否解决问题,若还不能解决问题,则要用专用的双柱板手把一个粗调手轮旋下,加一片摩擦片,手轮拧紧后,如果转动很费劲,则加的摩擦片太厚了,可调换一片薄的。以手轮转动不费力,镜筒上下移动轻松,而又不自行下滑为准。摩擦片可用废照相底片和小于1毫米厚的软塑料片用打孔器冲制。 第二步:检查粗调手轮轴上的齿轮与镜筒身上的齿条啮合状态。生物显微镜镜筒的上下移动是由齿轮带动齿条来完成的。齿轮与齿条的最佳啮合状态在理论上讲是齿条的分度线与齿轮的分度圆相切。在这种状态下,齿轮转动轻松,并且对齿条的磨损最些现在有一种错误的做法,就是在齿条后加垫片,使齿条紧紧地压住齿轮来阻止镜筒的下滑。这时齿条的分度线与齿轮的分度圆相交,齿轮和齿条的齿尖都紧紧地顶住对方的齿根。当齿轮转动时,相互间会产生严重的磨削。由于齿条是铜质材料的,齿轮是钢质材料的。所以相互间的磨削,会把齿条上的牙齿磨损坏,齿轮和齿条上会产生许多铜屑。最后齿条会严重磨损而无法使用。因此千万不能用垫高齿条来阻止镜筒下滑。解决镜筒自行下滑的问题,只能用加大粗调手轮和偏心轴套间的摩擦力来实现。但有一种情况例外,那就是齿条的分度线与齿轮的分度圆相离。这时转动粗调手轮时,同样会产生空转打滑的现象,影响镜筒的上下移动。如果这通过调整粗调手轮的偏心轴套,无法调整齿轮与齿条的啮合距离。则只能在齿条后加垫适当的薄片来解决。加垫片调整好齿轮与齿条啮合距离的标准是:转动粗调手轮不费劲,但也不空转。 调整好距离后,在齿轮与齿条间加一些中性润滑脂。让镜筒上下移动几下即可以了。最后还须把偏心轴套上的两只压紧螺丝旋紧。不然的话,转动粗调手轮时,偏心轴套可能会跟着转动,而把齿条卡死,使镜简无法上下移动。这时如果转动粗调手轮力量过大的话,可能会损坏齿条和偏心轴套。在旋紧压紧螺丝后,如果发现偏心轴套还是跟着转的话。这是由于压紧螺丝的螺丝孔螺纹没有改好所造成的。因为厂家改螺纹是用机器改丝的,往往会有一到二牙螺纹没改到位。这时即使压紧螺丝也旋不到位,偏心轴套也就压不紧了。发现这种故障,只要用M3的丝攻把螺丝孔的螺纹攻穿就能解决问题。我用此方法彻底解决了我校30台生物显微镜偏心轴套跟转的问题。 把以上这些步骤都一一做好后,镜筒自行下滑问题基本上是彻底解决了。2.遮光器定位失灵:这可能是遮光器固定螺丝太松,定位弹珠逃出定位孔造成。只要把弹珠放回定位孔内,旋紧固定螺丝就行了。如果旋紧后,遮光器转动困难,则需在遮光板与载物台间加一个垫圈。垫圈的厚薄以螺丝旋紧后,遮光器转动轻松,定位弹珠不外逃,遮光器定位正确为佳。3、物镜转换器转动困难或定位失灵:转换器转动困难可能是固定螺丝太紧。使转动困难,并会损坏零件。太松,里面的轴承弹珠就会脱离轨道,挤在一起,同样使转动困难;另外弹珠很可能跑到外面来,弹珠的直径仅有一毫米,很容易遗失。固定螺丝的松紧程度以转换器在转动时轻松自如,垂直方向没有松动的间隙为准。调整好固定螺丝后,应随即把锁定螺丝锁紧。不然的话,转换器转动后,又会发生问题。 转换器定位失灵有时可能是定位簧片断裂或弹性变形而造成。一般只要更换簧片就行了。 二、 维护和保养(1)机械系统的维护保养:使用后,用干净细布擦净,定期在滑动部位涂些中性润滑脂。如有严重污染,可先用汽油洗净后再擦干。但切忌用酒精或乙醚清洗,因为这些试剂会腐蚀机械和油漆,造成损坏。(2)整体保养:生物显微镜要放置在干燥阴凉、无尘、无腐蚀的地方。使用后,要立即擦拭干净,用防尘透气罩罩好或放在箱子内。(3)光学系统的维护保养:使用后,用干净柔软的绸布轻轻擦拭目镜和物镜的镜片。有擦不掉的污迹时,可用长纤维脱脂棉或干净的细棉布蘸少些二甲笨或镜头清洗液(3份酒精∶1份乙醚)擦拭。然后用干净细软的绸布擦干或用吹风球吹干即可。要注意的是清洗液千万不能渗入到物镜镜片内部,否则会损坏物镜镜片。聚光镜(XSP-13A、16A型才有)和反光镜用后只要擦干净就可以了。 综上所述,对于生物显微镜的维护保养,只要做到防尘、防潮、防热、防腐蚀。用后及时清洗擦拭干净,并定期在有关部位加注中性润滑油脂即可。对于一些结构复杂,装配精密的零部件,如果没有—定的专业知识,一定的技能和专用工具,就不能擅自拆装,以免损坏零部件。 生物显微镜是生物教学实验中常用的一种精密光学仪器,由机械系统和光学系统两部分组成。 机械系统包括:镜筒传动部分、物镜转动部分、载物台、压片夹和遮光器的转换部分、镜架和底座的转动部分等。

  • 显微镜的使用方法,你造吗?

    传统显微镜的使用方法传统显微镜可用于生物学、细菌学、组织学、药物化学等研究工作以及临床度验之用。具有粗微动同轴的调焦机构,滚珠内定位转换器,亮度可调的照明装置,并带有摄影、摄像接口。传统显微镜具有以下特点:1、无限远光学系统,提供了卓越的光学性能2、创新的物体机构、清晰的标本观察,便捷的操作方式,专为细胞培养观察而量身设计,是常规检查的革新方案。3、无限远平场长工作距离物镜,使得观察标本视野更平坦、亮度更高、反差更强,且更容易观察活细胞的状态。4、配备标准相衬环板,中心可调 ,可观察低反差或透明标本的鲜明图像。使用传统显微镜要注意如何正确对光,正确对光方法如下:⑴转动粗准焦螺旋,使镜筒上升。⑵转动转换器,使低倍物镜对准通光孔⑶转动遮光器,使遮光器上最大的光圈对准通光孔。⑷左眼注视目镜(右眼睁开),转动反光镜,直到看到一个明亮的视野。文章转载于网络更多文章资讯:上海全耀仪器设备有限公司http://www.microimaging.com.cn/

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

  • 【求助】GY-P显微图像管理系统

    请问哪位懂得GY-P显微图像管理系统,我用这个系统时出了一些问题,请高人指点。无论我拍的是黑白的照片还是彩色的照片,打印出来的都带彩色的,黑白的偏绿,请问如何得到黑白的照片(打印后)。

  • 【原创大赛】我与荧光显微镜

    【原创大赛】我与荧光显微镜

    显微镜,大家上中学实验的时候可能都用过,但是荧光显微镜我可是读了研究生才有接触。一开始,我只知道实验室有这个东西,但是这与我的实验无关,所以也从来不关注。后来,要做定位的实验,开始使用荧光显微镜。 最初,我是利用酵母系统对我关注的蛋白进行定位,把绿色荧光蛋白转入酵母,诱导表达后,在荧光显微镜下观察,每一个酵母都是绿绿的椭圆球,倒真是好看。把我关注的蛋白融合绿色荧光蛋白在酵母中表达,则是每个酵母中有几个圆点,很好玩呢,后来鉴定这些圆点原来是线粒体。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412427_1306303_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412428_1306303_3.jpg 再后来,要把关注的蛋白在植物中定位,这种普通的荧光显微镜就不好用了,因为植物的叶片太厚,在普通的荧光显微镜中只能模糊观察,难以得到清晰漂亮的图片。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412430_1306303_3.jpg 这个时候,我知道了激光共聚焦荧光显微镜(confocal)。激光共聚焦荧光显微镜可以对所要观察的目标进行逐层扫描,因为是单层,所以得到的照片非常清楚漂亮。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412431_1306303_3.jpg 再后来,我知道了用激光共聚焦荧光显微镜还可以对观察的目标进行三维重建。科研人员对关注的目标进行三维重建的,这样可以得到立体的效果,再制作成动画,已经成为很多最新发表的科研论文的重要实验结果,生动活泼,一改以前科研论文的枯燥。我的同事就有对染色体原位杂交结果进行三维重建的,这样可以得到立体的染色体的效果,让大家看到实际上染色体的真正形态和原位杂交效果,更加生动活泼。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制