当前位置: 仪器信息网 > 行业主题 > >

显微影像系统

仪器信息网显微影像系统专题为您提供2024年最新显微影像系统价格报价、厂家品牌的相关信息, 包括显微影像系统参数、型号等,不管是国产,还是进口品牌的显微影像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微影像系统相关的耗材配件、试剂标物,还有显微影像系统相关的最新资讯、资料,以及显微影像系统相关的解决方案。

显微影像系统相关的仪器

  • 原理介绍:GaiaMicro-G系列显微高光谱系统是将推扫型高光谱相机与显微镜结合,构成显微高光谱系统的主体,再借助显微镜的光路系统、不同倍率的物镜(可见)、不同倍率的反射物镜(红外)以及二维电控扫描平台来实现的。 可见近红外显微系统采用透射式的光路结构,在不同放大倍率物镜下,可以清楚的观察、采集到相应的显微高光谱数据,系统采用的是二维平移机构,X轴为图像扫描轴,Y轴为调焦轴,实现自动曝光、自动对焦等流程。 近红外显微系统采用半透半反射式光路结构,大功率溴钨灯输出光源能满足光谱响应范围,系统采用的方案:高光谱相机静止不动,通过控制二维平移机构的扫描轴完成图像的采集,通过特殊设计的光路结构,可以实现全透、半透半反模式的光路调整,再通过目镜来观察和手动调整焦距完成整个系统的焦距调试。 优势描述:1、自动调焦、自动曝光、自动匹配扫描速度(显微-可见近红外系统)2、反射率校准、均匀性校准、区域校准等3、二维整体精密电控平移机构4、可见近红外显微系统,可实现反射和透射式的高光谱成像,可利用GaiaField内置扫描结构带动光谱成像系统来完成,也可以借助Image-λ-V10/V10E系列相机和电控二维扫描机构来实现5、近红外显微系统,反射式显微高光谱成像系统借助Image-λ-N17E系列相机和电控二维扫描机构来实现6、高空间分辨率和光谱分辨率 显微高光谱系统主要技术参数:型号GaiaMicro-G-V10-LUGaiaMicro-G-V10E-AZ4GaiaMicro-G-N17EGaiaMicro-G-N17E-HR光谱范围400-1000nm400-1000nm900-1700nm900-1700nm光谱分辨率3.5nm2.8nm5nm5nm数值孔径F/2.8F/2.4F/2.0F/2.0狭缝尺寸30um*9.6mm30um*14.2mm30um*14.2mm30um*14.2mm探测器CCDSCMOSInGaAsInGaAs像素数(空间维*光谱维)1392*10402048*2048320*256640*512光谱通道数256(有效通道240)512(有效通道360)数据输出14 bits16 bits14 bits14 bits连接方式USB 2.0USB3.0USB2.0/GigeUSB2.0/Gige物镜平场无限远长工作距消色差金相物镜(5x、10x、20x、50x)选配:100x反射式物镜10X、40X选配:20X、30X显微系统(标配金相显微系统,透反射测试光路)无限远色差校正光学系统10X目镜30°倾斜,无限远铰链三通观察筒,瞳距调节:54mm~75mm,单边视度调节:±5屈光度,两档分光比R:T=100:0或50:50物镜转换器:内定位五孔转换器注:其它品牌如奥林巴斯、蔡司的生物、荧光、金相显微镜均可进行高光谱相机搭载,具体可与我司销售人员联系。 反射物镜: 反射物镜参数:倍率10倍20倍30倍40倍适用波长350nm~7μm350nm~7μm350nm~7μm350nm~7μm焦距f19.9mm10mm6.7mm5mmNA(数值孔径NA)0.20.350.410.49视场φ1.0mmφ0.5mmφ0.34mmφ0.25mm工作距离 WD16mm7mm5mm3.5mm机械镜筒长80~∞(可変)mm遮光率约36%约36%约36%约36% GaiaMicro-F系列显微高光谱系统GaiaMicro-F系列显微高光谱系统采用液晶可调滤光片(LCTF)为分光元件,采用高灵敏度科研级制冷型SCMOS相机为成像器件,一体化设计或直接与各种商用显微镜的相机接口(F接口)结合,无需扫描机构,具有高灵敏度、高空间分辨率的特点。 主要技术参数:
    留言咨询
  • 1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂
    留言咨询
  • 显微热台广泛用于图象表征各种热转变过程,能够直接观察晶体或液晶样品在加热或冷却过程中的晶态变化以及结晶过程中形状、结构、颜色以及大小和数量的变化。FP82显微热台测量放置于玻璃片中的试样,通过显微镜系统观察并摄录试样的变化过程。FP84显微DSC热台测量放置于石英玻璃或蓝宝石坩埚中的试样,在通过显微镜观察并摄录试样变化过程的图像的同时,测量热流变化,图像信息与DSC曲线互为补充,可更全面准确地解析样品在升降温过程中的转变。技术参数:FP82HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2.5mm主要特点:成像技术 - 可以直观研究多晶态转变封闭的炉体设计 - 保证精确的温度控制高灵敏度 - 光学灵敏度不受加热或冷却速率的影响手持式交互控制 - 使用者可以控制温度程序同步显微成像与DSC测量 -提供了样品完整的热分析信息产品型号: FP84HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2mmDSC传感器:Au-Ni,5对热电偶量热灵敏度:13mV/mW应用领域:晶体、多晶体、液晶、半结晶聚合物等。主要型号: FP90/FP82+显微镜、FP90/FP84+显微镜查看更多信息咨询电话:
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2… 和三重态T1… ,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的第一个( 也是*一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合最终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。显微荧光寿命成像系统RTS2-FLIM应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像显微荧光寿命成像系统RTS2-FLIM应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的最高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。显微荧光寿命成像系统FLIM参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的选择。参数指标:系统性能指标光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),最小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,最高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中最多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:1.通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。2.对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):
    留言咨询
  • 显微光学影像系统 400-860-5168转2812
    仪器简介: SCI-302型显微光学影像系统将传统的测量方法与现代的图像技术相结合,是一种采用图像法进行颗粒形貌分析和粒度测量的颗粒分析系统,由光学显微镜、数字CCD摄像机和颗粒图像处理分析软件组成。该系统通过专用的数字摄像机将颗粒在显微镜下的图像拍摄下来传输给电脑,通过专用的颗粒图像处理分析软件对图像进行处理分析,具有直观、形象、准确和测试范围宽等特点。可以观察颗粒形貌,也可得到粒度分布等分析结果。SCI-302型显微光学影像系统融合了当今先进的图像处理和分析技术,产品设计符合国际标准ISO-13322-1,可完成几十项颗粒几何形态学的参数测量和图像几何形状的测量。软件同时配备专用的数据报表,可直接按颗粒的粒径面积、形状等多类参数,以线性或非线性统计方式绘出分布图。技术参数: 1.量程范围:1~3000μm;2.最大光学放大倍数:1600倍。3.显微镜:光学显微镜4.最大分辨率:0.1μm/像素;5.准确性及重复性误差:<3%;6.数字摄像机(CCD):500万像素;7.自动分割速度:≤1秒;8.分割成功率:≥97%;配置参数: 三目生物显微镜:平场目镜:10X、16X 消色差物镜:4X、10X、40X、100X (油) 总放大倍数:40X-1600X应用范围: 适用于磨料、涂料、非金属矿、化学试剂、粉尘、填料等各种粉末颗粒的粒度测量、形貌观察和分析软件功能及报告格式:1、 可以对图像进行多种处理。如:影像增强、图像叠加、局部提取、定倍放大、对比度、亮度调节等几十种功能2、 具有圆度、曲线、周长、面积、直径等几十种几何参数的基本测量3、 可直接按颗粒粒径的粒径面积、形状等多类参数,以线性或非线性方式绘出分布图数据输出: 周长分布、面积分布、长径分布、短径分布、周长相当径分布、面积相当径分布、Feret径分布、中间径(D50)、有效粒径(D10)、限定粒径(D60)、D30、D97、个数长度平均径、个数面积平均径、个数体积平均径、长度面积平均径、长度体积平均径、面积体积平均径、不均匀系数、曲率系数。
    留言咨询
  • 显微光学影像系统 400-860-5168转2438
    仪器简介: SCI-302型显微光学影像系统将传统的测量方法与现代的图像技术相结合,是一种采用图像法进行颗粒形貌分析和粒度测量的颗粒分析系统,由光学显微镜、数字CCD摄像机和颗粒图像处理分析软件组成。该系统通过专用的数字摄像机将颗粒在显微镜下的图像拍摄下来传输给电脑,通过专用的颗粒图像处理分析软件对图像进行处理分析,具有直观、形象、准确和测试范围宽等特点。可以观察颗粒形貌,也可得到粒度分布等分析结果。SCI-302型显微光学影像系统融合了当今先进的图像处理和分析技术,产品设计符合国际标准ISO-13322-1,可完成几十项颗粒几何形态学的参数测量和图像几何形状的测量。软件同时配备专用的数据报表,可直接按颗粒的粒径面积、形状等多类参数,以线性或非线性统计方式绘出分布图。技术参数: 1.量程范围:1~3000μm;2.最大光学放大倍数:1600倍。3.显微镜:光学显微镜4.最大分辨率:0.1μm/像素;5.准确性及重复性误差:<3%;6.数字摄像机(CCD):500万像素;7.自动分割速度:≤1秒;8.分割成功率:≥97%;配置参数: 三目生物显微镜:平场目镜:10X、16X 消色差物镜:4X、10X、40X、100X (油) 总放大倍数:40X-1600X应用范围: 适用于磨料、涂料、非金属矿、化学试剂、粉尘、填料等各种粉末颗粒的粒度测量、形貌观察和分析软件功能及报告格式:1、 可以对图像进行多种处理。如:影像增强、图像叠加、局部提取、定倍放大、对比度、亮度调节等几十种功能2、 具有圆度、曲线、周长、面积、直径等几十种几何参数的基本测量3、 可直接按颗粒粒径的粒径面积、形状等多类参数,以线性或非线性方式绘出分布图数据输出: 周长分布、面积分布、长径分布、短径分布、周长相当径分布、面积相当径分布、Feret径分布、中间径(D50)、有效粒径(D10)、限定粒径(D60)、D30、D97、个数长度平均径、个数面积平均径、个数体积平均径、长度面积平均径、长度体积平均径、面积体积平均径、不均匀系数、曲率系数。
    留言咨询
  • 显微光学影像系统 400-860-5168转2812
    JZ95MS显微光学影像系统显微光学影像系统JZ95MS我公司光学显微系统系列,主要用于观察细小物体的形状, 测量细小物体的大小, 由于配备了各种可变长焦距的镜头, 可以观察并记录细小物体的变化情况, 放大倍数可达准纳米级,比如结晶过程, 高分子在电场下的链结, 细胞的变化等。显微测量系统对半导体、液晶、石油,印染,医药,喷涂,选矿等行业的科研生产有非常重要的作用。另外根据客户的需求可将光学系装于流水线及机器中,用于生产监控。显微光学系统的特点:日产WDK的显微光学系统可以外接照相机(将图像拍成照片)和CCD摄像头(将数码影像转换到电脑屏幕)。光学系统配有专业图像处理软件,该软件功能强大,参数多,可以处理各种图像,满足各种需求。瘦型的连续变倍镜筒、最适合装在流水线及狭小的机器中,它有较长的工作距离(物距)和优良的解像力,能够配用圆形照明、斜光照明、透光照明。较长的物距更有利于观察液体中微小的物体。配合机器的要求可选择使用、在连续变倍镜筒上附有固定机能防止机器的震动及引起光学芯的偏动。显微光学系统采用了大倍数长型号变倍方式照明物镜图像放大操作物 距MS-01连续变倍系统反射式0.75X-4.5X600象素/毫米手动旋转光圈90mmMS-02连续变倍系统同轴落射式0.75X-4.5X600象素/毫米手动旋转光圈90mmMS-40连续变倍系统反射式6.5X-40X6象素/微米手动旋转光圈8.5mmMS-60连续变倍系统反射式10X-60X8象素/微米手动旋转光圈7.5mmMS-80连续变倍系统反射式13X-80X12象素/微米手动旋转光圈7.5mmMS-160连续变倍系统反射式26X-160X24象素/微米手动旋转光圈7.5mm可选配件: CCD调芯接筒、红外线切断滤色片、偏光滤色片、CCD变倍镜、附加物镜、专用滤色片(同轴用)、标准滤色片、镜筒防尘罩我公司可根据客户的要求配置各种显微光学测量系统专业图像处理软件介绍:该软件提供的图像处理与分析功能,覆盖图像定量分析的几乎所有应用领域,包括材料、冶金、医药、生物、化工、摩擦学等各种需要利用图像手段进行统计学和形态学自动分析、测定的领域。凡是与图像形态学有关的各种检测与分析都可以利用该软件来完成。该软件主要特点如下:(1)新的程序设计手段,全汉化图文界面,可泊位图形工具条,使用简洁、直观、方便、快捷,只需点击鼠标,便可完成分析;提供多种功能强大的区域选取工具,可对任意形状的区域进行处理与分析;可完成包括色度调整、图像变形、数学形态学处理、图像增强、图像匹配、纹理分析、特征识别等一百多种专业图像处理与分析操作;(2)支持24位真彩色图像采集、支持RGB、CMY、HSV、Lab、YUV等彩色模型的处理与分析;分析数据的可视化处理使分析结果与图像之间构成直接映射关系,便于观察分析;先进的颗粒自动识别、粘连颗粒自动切分功能,保证了复杂图像的准确分析;自动分析处理步骤编辑功能,能够完成全自动分析过程的设置;几何参数测量功能,细长体、块状体、颗粒体、线状体等各种特征体的自动定量分析功能;(3)彩色图文报告编辑制作功能,可完成各种形式的彩色图文报告,图像、分析数据及统计分布直方图可直接插入报告,打印输出。用户还可根据需要制作各种形式的报告模板,加快报告制作过程 ;分析结果可存入数据库,进行各种统计分析,或调用Excel制作电子图表;图像输出功能,可以照片质量输出图像,输出图像的大小和位置可任意调整,并能按严格的标尺输出图像。焦距系统,可达到更好的光学效果。
    留言咨询
  • 显微光学影像系统 400-860-5168转2461
    我公司光学显微系统系列,主要用于观察细小物体的形状, 测量细小物体的大小, 由于配备了各种可变长焦距的镜头, 可以观察并记录细小物体的变化情况, 放大倍数可达准纳米级,比如结晶过程, 高分子在电场下的链结, 细胞的变化等。显微测量系统对半导体、液晶、石油,印染,医药,喷涂,选矿等行业的科研生产有非常重要的作用。另外根据客户的需求可将光学系装于流水线及机器中,用于生产监控。显微光学系统的特点:日产WDK的显微光学系统可以外接照相机(将图像拍成照片)和CCD摄像头(将数码影像转换到电脑屏幕)。光学系统配有专业图像处理软件,该软件功能强大,参数多,可以处理各种图像,满足各种需求。瘦型的连续变倍镜筒、最适合装在流水线及狭小的机器中,它有较长的工作距离(物距)和优良的解像力,能够配用圆形照明、斜光照明、透光照明。较长的物距更有利于观察液体中微小的物体。配合机器的要求可选择使用、在连续变倍镜筒上附有固定机能防止机器的震动及引起光学芯的偏动。显微光学系统采用了大倍数长焦距系统,可达到更好的光学效果。主要型号和规格:型号变倍方式照明物镜图像放大操作物 距MS-01连续变倍系统反射式0.75X-4.5X600象素/毫米手动旋转光圈90mmMS-02连续变倍系统同轴落射式0.75X-4.5X600象素/毫米手动旋转光圈90mmMS-40连续变倍系统反射式6.5X-40X6象素/微米手动旋转光圈8.5mmMS-60连续变倍系统反射式10X-60X8象素/微米手动旋转光圈7.5mmMS-80连续变倍系统反射式13X-80X12象素/微米手动旋转光圈7.5mmMS-160连续变倍系统反射式26X-160X24象素/微米手动旋转光圈7.5mm可选配件:CCD调芯接筒、红外线切断滤色片、偏光滤色片、CCD变倍镜、附加物镜、专用滤色片(同轴用)、标准滤色片、镜筒防尘罩我公司可根据客户的要求配置各种显微光学测量系统专业图像处理软件介绍:该软件提供的图像处理与分析功能,覆盖图像定量分析的几乎所有应用领域,包括材料、冶金、医药、生物、化工、摩擦学等各种需要利用图像手段进行统计学和形态学自动分析、测定的领域。凡是与图像形态学有关的各种检测与分析都可以利用该软件来完成。该软件主要特点如下:(1)新的程序设计手段,全汉化图文界面,可泊位图形工具条,使用简洁、直观、方便、快捷,只需点击鼠标,便可完成分析;提供多种功能强大的区域选取工具,可对任意形状的区域进行处理与分析;可完成包括色度调整、图像变形、数学形态学处理、图像增强、图像匹配、纹理分析、特征识别等一百多种专业图像处理与分析操作;(2)支持24位真彩色图像采集、支持RGB、CMY、HSV、Lab、YUV等彩色模型的处理与分析;分析数据的可视化处理使分析结果与图像之间构成直接映射关系,便于观察分析;先进的颗粒自动识别、粘连颗粒自动切分功能,保证了复杂图像的准确分析;自动分析处理步骤编辑功能,能够完成全自动分析过程的设置;几何参数测量功能,细长体、块状体、颗粒体、线状体等各种特征体的自动定量分析功能;(3)彩色图文报告编辑制作功能,可完成各种形式的彩色图文报告,图像、分析数据及统计分布直方图可直接插入报告,打印输出。用户还可根据需要制作各种形式的报告模板,加快报告制作过程 ;分析结果可存入数据库,进行各种统计分析,或调用Excel制作电子图表;图像输出功能,可以照片质量输出图像,输出图像的大小和位置可任意调整,并能按严格的标尺输出图像。
    留言咨询
  • 碳纤维影像测量系统 400-860-5168转0730
    APODIUS 2D 影像测量系统是市场领先的独立式光学测量解决方案,专为局部纤维方向的二维测量而开发。通过高分辨率的光学传感器,可以捕捉到零件表面的纹理信息,通过对原始图像数据的纹理进行评估分析,系统最多可以可靠的获取三个纤维方向,其测量分辨率可达0.1度。定制的APODIUS Explore 2D软件平台,可将传感器采集的高清图像即使处理,并可进行完整的测量输出处理以及自动报告生成。测量可以在程序内实时进行可视化显示,用以指导客户操作,而多样的报告输出到和导出格式,则便于用户进一步分析或在测量完成后进行归档。APODIUS 2D影像测量系统,还可以根据行业标准MSA和VDA 5的要求,为产品释放提供有效的纤维取向测量结果。另外,它还可以为零部件的批准生产,提供必要的统计过程控制,包括生产过程能力的评估。APODIUS 2D 既可以进行全自动的在线测量,也可以对离线测量提供品质保证,它能对各种材料(包括编织物、非卷曲织物、定制的碳纤维材料、预浸料和经过固化处理的零部件)进行单层表面实测值与目标值的对比。
    留言咨询
  • 仪器简介:显微测量我公司光学显微系统系列,主要用于观察细小物体的形状, 测量细小物体的大小, 由于配备了各种可变长焦距的镜头, 可以观察并记录细小物体的变化情况, 放大倍数可达准纳米级,比如结晶过程, 高分子在电场下的链结, 细胞的变化等。显微测量系统对半导体、液晶、石油,印染,医药,喷涂,选矿等行业的科研生产有非常重要的作用。另外根据客户的需求可将光学系装于流水线及机器中,用于生产监控。上述产品系我公司开发生产,我公司拥有其软、硬件的完全知识产权,能够保障用户的售后维护、升级、服务的权利,并负责送货上门安装调试培训。技术参数:1、型号:MS-01变倍方式:连续变倍系统照明:反射式物镜:0.75X-4.5X图像放大:600象素/毫米操作:手动旋转光圈物距:90mm2、型号:MS-02变倍方式:连续变倍系统照明:同轴落射式物镜:0.75X-4.5X图像放大:600象素/毫米操作:手动旋转光圈物距:90mm3、型号:MS-40变倍方式:连续变倍系统照明:反射式物镜:6.5X-40X图像放大:6象素/微米操作:手动旋转光圈物距:8.5mm4、型号:MS-60变倍方式:连续变倍系统照明:反射式物镜:10X-60X图像放大:8象素/微米操作:手动旋转光圈物距:7.5mm5、型号:MS-80变倍方式:连续变倍系统照明:反射式物镜:13X-80X图像放大:12象素/微米操作:手动旋转光圈物距:7.5mm6、型号:MS-160变倍方式:连续变倍系统照明:反射式物镜:26X-160X图像放大:24象素/微米操作:手动旋转光圈物距:7.5mm主要特点:显微光学系统的特点:1. 日产的显微光学系统可以外接照相机(将图像拍成照片)和CCD摄像头(将数码影像转换到电脑屏幕)2. 光学系统配有专业图像处理软件,该软件功能强大,参数多,可以处理各种图像,满足各种需求3. 瘦型的连续变倍镜筒、最适合装在流水线及狭小的机器中,它有较长的工作距离(物距)和优良的解像力,能够配用圆形照明、斜光照明、透光照明。较长的物距更有利于观察液体中微小的物体。4. 配合机器的要求可选择使用、在连续变倍镜筒上附有固定机能防止机器的震动及引起光学芯的偏动专业图像软件特点:充分利用WINDOWS系统资源,全面支持WIN95,WIN98操作环境;符合ISO9276-1和GB/T15445标准;最新的程序设计手段,全汉化图文界面,可泊位图形工具条,使用简洁、直观、方便、快捷,只需点击鼠标,便可完成分析;提供在线中文帮助提示,无需专业培训,便可掌握使用方法提供功能强大的区域选取工具,可对任意形状的区域进行处理与分析;可完成包括色度调整,图像变形,数学形态学处理,图像增强,图像匹配,纹理分析,特征识别等一百多种专业图像处理与分析功能;先进的颗粒自动识别、粘连颗粒自动切分功能,保证了复杂图像的准确分析;自动分析处理步骤编辑功能,使用户能够完成全自动分析过程的设置;悔步、重复功能,使用户能够找到最佳处理路径;分析结果可存入数据库,进行统计分析,制作图表,打印报告,并可以照片质量输出图像。
    留言咨询
  • 主要用途宽场荧光显微镜是进行神经元活动光学成像的重要手段。配合相应荧光探针,宽场荧光显微镜可以进行单色、多色(例如双层、三色)神经元活动荧光成像。自动对焦超微型显微成像系统为包含了微型光学器件、微型成像元件和微型镜体结构的微型化宽场荧光显微镜,可精确定位目标区域,极大的提高成像质量,是自由活动动物进行在体神经活动光学成像的理想方案。目前已经开始应用于国内外的神经科学研究中。工作流程及原理◆前期通过注射病毒表达GCaMP6或其它钙离子荧光指示剂,植入GRIN透镜并等待病毒表达。◆神经细胞的活动导致胞内钙离子浓度的升高,从而提高GCMP6等荧光探针的荧光强度,荧光通过埋植的透镜收集后,被CMOS转换为图像信号,并被高速图像采集卡采集。◆图像处理软件进一步分析神经细胞活动和行为的相关性。系统功能特点及优势◆系统组件包括显微镜镜体、固定板、GRN透镜、CMOS、图像采集卡及采集软件等。◆在单细胞分辨水平,记录一群神经元的钙信号;◆适用于自由活动动物的在体实验;◆通过植入GRIN透镜,可以实现深脑成像;◆系统体积小,重量轻,不影响小鼠自由运动和行为实验。 超微型显微成像系统&光遗传系统联用◆采集软件更新升级,体验感更佳;◆采用外置光源减轻了镜体重量,对实验动物的活动影响较小;◆基于全新的光学系统设计,进一步减轻镜体重量,减小了镜体体积,提高了照明光的质量;全新的照明光路设计,可实现更好的荧光激发光和光遗传刺激光的光斑质量,从而取得更好的成像效果;◆外置的光源端可以自由组合,根据不同的情况分别耦合不同的光源,可分别实现多色荧光成像、原位光遗传成像;◆可配视频同步行为学软件。
    留言咨询
  • 主要用途宽场荧光显微镜是进行神经元活动光学成像的重要手段。配合相应荧光探针,宽场荧光显微镜可以进行单色、多色(例如双层、三色)神经元活动荧光成像。自动对焦超微型显微成像系统为包含了微型光学器件、微型成像元件和微型镜体结构的微型化宽场荧光显微镜,可精确定位目标区域,极大的提高成像质量,是自由活动动物进行在体神经活动光学成像的理想方案。目前已经开始应用于国内外的神经科学研究中。 工作流程及原理◆前期通过注射病毒表达GCaMP6或其它钙离子荧光指示剂,植入GRIN透镜并等待病毒表达。◆神经细胞的活动导致胞内钙离子浓度的升高,从而提高GCMP6等荧光探针的荧光强度,荧光通过埋植的透镜收集后,被CMOS转换为图像信号,并被高速图像采集卡采集。◆图像处理软件进一步分析神经细胞活动和行为的相关性。 系统功能特点及优势◆系统组件包括显微镜镜体、固定板、GRN透镜、CMOS、图像采集卡及采集软件等。◆在单细胞分辨水平,记录一群神经元的钙信号;◆适用于自由活动动物的在体实验;◆通过植入GRIN透镜,可以实现深脑成像;◆系统体积小,重量轻,不影响小鼠自由运动和行为实验。 超微型显微成像系统&光遗传系统联用◆采集软件更新升级,体验感更佳;◆采用外置光源减轻了镜体重量,对实验动物的活动影响较小;◆基于全新的光学系统设计,进一步减轻镜体重量,减小了镜体体积,提高了照明光的质量;全新的照明光路设计,可实现更好的荧光激发光和光遗传刺激光的光斑质量,从而取得更好的成像效果;◆外置的光源端可以自由组合,根据不同的情况分别耦合不同的光源,可分别实现多色荧光成像、原位光遗传成像;◆可配视频同步行为学软件。
    留言咨询
  • 显微光分布测试系统 随着半导体照明的进一步快速和深入发展,LED在道路照明、室内照明、汽车灯、手提灯具等多个领域等到了越来越广泛的应用,同时,业界对LED灯具的二次光学设计以及利用LED灯具的空间光度数据进行照明设计的要求也越来越高。作为LED产品的心脏,LED光源的光品质就显得尤为重要!LED光源的主要功能是把电能转化成光能,而当前,芯片厂和灯珠厂在LED光源设计过程中,仅仅是针对光源进行相对简单的测量,获得整体的亮度、波长和电压等参数。而实际上,由于电极设计、芯片结构、封装方式等方面的影响,光源表面的亮度和颜色并不是均匀分布的,传统的光源测量方式并不能精确地描述光源表面这种空间光分布的特点,这样容易导致光源出现色度和亮度不均匀、光源整体效率低等问题,甚至导致光源失效。因此很有必要利用显微光分布测试系统对光源进行发光均匀度测试来优化光源设计,同时也为LED光源的二次光学设计提供更为准确、详尽的数据。针对以上情况,金鉴实验室联合英国GMATG公司联合推出显微光分布测试系统,主要用于测试光源的发光均匀性,帮助提高光品质。现已演化到第五代,而且价格从150万降到几十万!金鉴显微光分布测试系统针对LED及其他光电器件产业打造,可用于观察微米级发光器件的光分布,测试波长范围190nm ~1100nm,包含了紫外和红外不可见光的测试,可用于测量光源的光强分布、直径、发散角等参数。通过CCD测量光强分布,通过算法计算出光源直径等参数,测量光强的相对强度,不需要使用标准灯进行校准。适合光电器件及照明相关领域的来料检验、研发设计和客诉处理等过程,以达到企业节省研发和品质支出的目的。金鉴实验室自主研发的主要设备有显微红外热分布测试系统、显微红外热点定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉。性能卓著,值得信赖。应用领域:适用于LED芯片、LED灯珠灯具、面板灯、汽车照明灯、LCD显示屏、激光器及其他光电器件的来料检验、研发设计和客诉处理等过程,助力LED芯片设计优化、光源的光线追迹及发光均匀性测量。与近场光学测试设备相比,金鉴显微光分布测试系统优点显著: 近场光学设备与金鉴显微光分布探头对光敏感度差异对比:金鉴显微光分布探头对光敏感度较高,能分辨细小的光强差异,因此成像也更细腻。金鉴显微光分布与传统设备大PK:金鉴显微光分布测试系统可模拟工作温度进行测试,分辨率可达1微米,其具有3D功能,可观测芯片出光效果。金鉴显微光分布测试系统特点:1. 探测器感应波长为190nm-1100nm,覆盖深紫外到近红外光。不同波长光源的光分布图 2. 与光学显微镜搭配,可观察微米级发光器件,图像具备2D和3D显示功能,表现效果更加强烈金鉴显微光分布测试系统的分辨率取决于与之搭配的光学显微镜的分辨率,即如果显微镜能1000倍放大,金鉴显微光分布测试系统也可以观测到1000倍率下的光分布细节。与可见光类似,像素越高画面越清晰越细腻像素越多同时获取的温度数据越多。金鉴GMATG 传感器像素640×595。 3. 独特的遮光设计,杜绝背景光影响,测量更加精准光分布探头接收的是视野内所有的光信号,包括被测样品发射的光以及环境反射光。光分布软件虽然具有背景光扣除功能,但是在测试过程中,环境的变化会导致环境反射光强度的变化,造成测试不准确。金鉴显微光分布测试系统,具备独特的遮光罩设计,隔绝了环境光的影响,大大增加了测试的准确性。如下图所示,在不使用遮光罩的情况下,受环境光变化的影响,芯片光分布图部分区域异常偏暗;在使用遮光罩后,彻底屏蔽了环境光的影响,光分布图异常偏暗区域消失。 4. 高精度控温系统,可实现光源在不同温度下光分布的测试光电器件性能受温度的影响较大,脱离实际环境所测试的结果准确性较差,甚至毫无意义。金鉴自主研发的显微光分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,实现光源在不同温度下光分布的测试,对定位光源最适宜的工作温度可提供最直观有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题。 如下图所示不同工作温度下的LED芯片发光均匀度对比,同一芯片,工作状态温度越高,亮度越低!温度越高,光衰趋势越大。支架引脚温度由80℃升高到120℃,LED芯片发光强度衰减30.6%。 LED芯片发光强度随温度上升而下降5. 定制化的光分析软件金鉴定制分析软件GM LED NF Analyzer,具有自动影像采集控制、实时影像、对位过程屏上显示、设置多重帧自动采集、灰阶与色彩数值显示、记录环境影像提供校正等多重功能,方便做各个维度的光强分布数据分析和图像效果处理,为科研及分析提供更专业的数据支持。(1)提供2D、3D光束分布显示和轮廓分析。 (2)通过CCD测量光强分布,通过算法计算出光源直径等参数。测量光强的相对强度,不需要使用标准灯进行校准。 (3)OSI彩虹及不同灰阶调色板,满足客户个性化的显示需求。 (4)扣除背景光干扰,增加测试精准度。 (5)可导出光分布图全部像素点的光强数据值,为专业仿真软件分析提供原始建模数据。 (6)自定义报告模式,测试报告一键展现;测试结果即时分享,高效协同。 测试案例:案例一:芯片电极设计对光分布的影响对某LED芯片电极图案进行评估,如下图所示,芯片的发光不均匀,区域1的亮度明显过高;相反地,区域2的LED量子阱却未被充分激活,降低了芯片的发光效率。对此,金鉴建议,可以适当增加区域1及其对称位置的电极间距离或减小电极厚度来降低区域1亮度,也可以减少区域2金手指间距离或增加正中间正极金手指的厚度来增加区域2亮度,以达到使芯片整体发光更加均匀的目的。 LED芯片发光效果图案例二:芯片金道设计对光分布的影响下图中芯片左边为两个负电极,右边为两个正电极,其中,区域1、2亮度较低,电流扩展性不够,需提高其电流密度,建议延长最近的正电极金手指以提升发光均匀度。区域3金手指位置的亮度稍微超出平均亮度,可减少金手指厚度来改善电流密度,或者改善金手指的MESA边缘聚积现象,另外,也可以增加区域3外的金手指厚度,使区域3外金手指附近的电流密度增加,提升区域3外各金手指的电流密度,以上建议可作为发光均匀度方面的改善,以达到使芯片整体发光更加均匀的目的。在达到或超过了芯片整体发光均匀度要求的前提下,可考虑减小金手指厚度来减少非金属电极的遮光面积,以提升亮度。甚至,可以为了更高的光效牺牲一定的金手指长度和宽度。 LED芯片发光效果图 案例三:光分布3D模块测试评估芯片光提取效率金鉴显微光分布3D测试模块可以观察芯片各区域的出光强度,填补芯片的光提取效率测试空白。下图垂直结构芯片采用了多刀隐切工艺,芯片侧面非常粗糙,粗糙界面可以反射芯片侧面出射的光,提高芯片的光提取效率。从该芯片的3D光分布图中可以直观的看到,该芯片边缘出光较多,说明多刀隐切工艺对芯片出光效率的提升显著。案例四:显微光分布测试帮助定位最高效率的电流电压金鉴显微光热分布系统,可帮助客户避免过度超电流,准确定位最高效率下的电流电压!如下案例中,芯片额定电流为60mA,超额定电流90mA下点亮时,芯片温度大大提高,亮度反而出现衰减。过度的超电流,LED芯片产热严重,光产出并不会增加,甚至出现光衰。 案例五:显微光分布测试系统应用于LED芯片失效分析失效的LED芯片必然在光热分布上漏出蛛丝马迹!某灯珠厂家把芯片封装成灯珠后,老化出现电压升高的现象。金鉴通过显微光分布测试系统发现芯片主要在正极附近区域发光。因此,定位芯片正极做氩离子截面抛光,发现正极底部SiO2层边缘倾角过大,ITO层在台阶位置出现断裂、虚接现象,ITO层电阻过大,电流扩散受阻,出现电压升高异常现象。案例六:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,使用热分布测试系统对芯片进行测试,由于红外测温是通过物体表面的红外热辐射测量温度,对于倒装芯片表面的蓝宝石也不能穿透,故无法对芯片内部电极等结构进行进一步的分析。此时,使用金鉴显微光分布测试系统可以清晰地观察到芯片电极图案,从光分布图可以看出,芯片负电极位置发光较强,因此推断负电极位置电流密度较大,导致此处发热量也较大,从而局部热膨胀差异过大引起芯片上方封装胶开裂异常。 案例七:多芯片封装的光分布监测金鉴显微光分布系统,能高效精准分析灯珠内各芯片电流密度,是品质把控的好帮手!例如某灯珠采用两颗芯片并联的方式封装,该灯珠点亮时,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 光学图 光分布图 热分布图 案例八:COB光源发光均匀度测试对于LED光源,特别是白光光源,由于电极设计、芯片结构以及荧光粉涂敷方式等影响,其表面的亮度和颜色并不是均匀分布的。如图所示,COB右半边灯珠亮度明显比左半边低,由标尺计算出,右半边亮度为左半边的三分之二,导致这一失效原因也许是COB的PCB板材左右边铜箔电阻不一致,导致灯珠左右两边的芯片所加载的电压不一致,造成两边芯片的发光强度出现差异。案例九:OLED光分布测试有机发光二极管(OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。使用金鉴显微红外热分布测试系统对OLED显示屏进行测试,可以直观的了解显示屏各区域光强分布情况,对于缺陷点也能及时发现,有助于检测和改善OLED发光品质。如下案例中,OLED电流输入端亮度较大,远离输入端亮度逐渐减小,在此情况下,损失的亮度转换为热能,因此温度的分布会变得不均匀,进而导致OLED显示面板中各处的薄膜晶体管(TFT)的阈值电压和迁移率的变化也分布不均,进一步导致整个显示面板的发光亮度不均匀。 案例十:激光器光束形貌及热场分布金鉴显微光热分布测试系统,配备专用光衰片及水冷散热系统,可测试大功率超亮激光灯的光热分布!
    留言咨询
  • 美国NeuroIndx品牌显微镜升级为单细胞分选捕获和显微切割系统美国NeuroIndx品牌显微镜升级为单细胞分选捕获和显微切割系统分为Kuiqpick和 Unipick两个系统:一、Kuiqpick显微镜升级为单细胞分选捕获和显微切割系统Kuiqpick是第一款运用真空负压和毛细玻璃管进行单细胞捕获和显微切割系统仪器系统.可应用在已有Olympus CKX31/41和 Labomed TCM400 倒置显微镜上.典型应用:在显微镜观察下,快速从贴壁,悬浮和3D细胞培养采集单细胞或细胞团,和从组织采集特定区域的组织和细胞样品.采集的 细胞和组织可用于再培养,和提取高质量的蛋白质,DNA,和RNA等生物大分子,用于定量RT-PCR,全基因表达,表观遗传 学和蛋白质组学,和单细胞测序等分子生物学研究。系统亮点:1.进行精准单细胞采集捕获可以从常规细胞培养皿中和3D细胞培养上,根据细胞形态或者荧光标记来采集或的单细胞。所采集过程中对细胞没有伤害,因此,所采集到的细胞可以克隆再培养2.进行组织切片显微切割可以成功切割厚度自5微米至300微米的切片2.1)对微切割的样品要求不需要固定,可切割:新鲜冷冻组织、蔗糖处理的组织、新鲜活组织。2.2)样品采集过程不涉及化学,热,激光和辐射处理:对细胞影响很小,保证细胞的活性和完整性,所分离的组织或细胞可以提取高 质量的DNA,RNA和蛋白质,供下游研究使用 3.相对于激光辅助系统(LCM)KuiqPick有以下几个优点1)需要最少的样品前处理,可用于未经处理的新鲜冷冻脑组织2)可直接从细胞培养皿中收集目的细胞,收集到的活细胞,可用于下游克隆检测和单细胞分析,对细胞活力的影响很小3)KuiqPick非常容易使用4)KuiqPick价格和维护成本相对于激光辅助系统要低得多。其低廉的成本和灵活多样的功能,已经对传统高成本的激光显微切割系统市场形成有效的替代或补充,目前,已广泛应用于神经生物学,干细胞,癌症细胞生物学及单细胞分析等生命科学研究领域中。4.经济实用:可在已有Olympus CKX41和Labomed TCM400倒置显微镜上升级改造,无需重复购置显微镜5.细胞组织损伤小,不影响再培养6.专业的KuiqpicK软件辅助自动捕获和切割主要技术参数:真空泵负压力范围:0-588.8 毫米***柱真空持续时间范围: 0-1秒线性马达每次移动距离: 0.0015毫米线性马达最大移动距离:8.9毫米线性马达最大移动速度:0.35毫米/秒照明光源: 144 LED环形灯光源寿命:10000小时适用组织样品类型: 新鲜冷冻组织,新鲜活组织,蔗糖处理组织适用组织切片厚度范围: 5-300um适用细胞培养类型: 悬浮细胞培养,贴壁细胞培养,3D细胞培养可供采集毛细管内径大小:15/20/30/40/50/60/80/100um采集毛细管总长度: 4.2±0.2 cm配备软件和计算机:否湿度:30-80% (31°C时)温度:5-40°C适合的倒置为显微镜:LABOMED TCM 400和Olympus CKX411倒置显微镜和二、Uniqpick显微镜升级为单细胞分选捕获和显微切割系统UnipicK系统原理和KuipqicK原理类似,多了一些功能,可以更方便调节毛细管,更方便采集细胞。对细胞 培养,任何类型都没问题,对贴壁太牢胞外基质较多的,可以先部分消化,松动细胞。但对组织,只能采集柔软组织, 比如脑组织,对硬的韧的组织,比如肌肉组织,皮肤组织等不能采集。有些难采集组织,在消化液处理后也可以采集特定细胞 类型或组织。UnipicK系统可以安装在Olympus CKX41上,也可以购买通用支架,这样可以用在大部分倒置显微镜上。与Kuiqpick相比Unipick系统亮点:1.适用的显微镜更加广泛:Kuiqpick只能只适用于Olympus CKX41和Labomed TCM400倒置显微镜上,Unipick配有通用显微镜适配支架,可以在几乎 所有的倒置显微镜上升级2.工作路径更长,工作面积更大,可以筛选的目标细胞数量更多与Kuiqpick相比 ,Unipick工作路径更长,工作面积更大,可以筛选的目标细胞数量更多.操作更为精巧,独特的针 头返回设计(Retract function)可以适合不同种类的多孔细胞培养板、细胞培养平皿、细胞培养瓶。3.Unipick适用的倒置为显微镜:通用支架可以使unipick适合几乎任何的倒置显微镜
    留言咨询
  • 北京艾锐精仪科技有限公司(艾锐科技)成立于 2020 年,依托北京大学席鹏教 授课题组雄厚、前沿的科研力量,专注于先进显微成像技术的研发,致力成为生 命科学与医学领域具有国际影响力的科研级显微仪器和系统解决方案提供商。 公司拥有一支深耕显微成像领域的光学、算法、软件、机械、电子、生物等工程 师团队,将以快速、高效、灵活的贴身服务,为您的科研工作提供强有力的个性 化技术支持。
    留言咨询
  • 中图仪器VT6000研究级共焦显微镜系统基于光学共轭共焦原理,结合精密纵向扫描、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量。在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,VT6000研究级共焦显微镜系统具有较高的三维图像分辨率。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000研究级共焦显微镜系统能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等,可广泛应用于半导体制造及封装工艺检测,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。应用领域在半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000光伏检测仪器3D显微镜轮廓仪可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • alpha300 RA –在一个系统里面集成化学成分分析和纳米级别的结构成像alpha300 RA 是市场上首个高度集成的拉曼原子力显微镜系统,可以在标准的Alpha 300R共聚焦拉曼系统上通过标准模块升级即可完成拉曼原子力系统联用,获得原位的AFM和Raman图像的叠加。alpha300 RA 独特的设计理念使联用系统既保留300R强大的化学组分分析能力,同时加入微纳级别的表面形貌等特性的分析能力,使研究者能对样品进行深度完善的分析和理解。 alpha300 RA 让拉曼和原子力两种互补的技术得以在一套系统里面实现,两种技术的性能完全不受联用的影响,而且使用同一个操作软件,使得操作和分析变得简单应用。拉曼和原子力显微镜使用不同的显微镜物镜,只需要简单转动物镜转盘,成像软件即可原位完成两种技术的图像对比,叠加和分析 此外alpha300 RA可进一步升级来配合TERS (高分辨拉曼)测量 拉曼原子力显微镜系统主要特点l 所有alpha300 R (拉曼) 和alpha300 A (原子力) 的性能集成到一个显微镜系统内l 优异的原位化学组分分析(拉曼)和微纳级别表面特征分析(原子力)的结合l 原子力和拉曼同时进行的绝佳选择l 严格原位,完全不需要在测量过程中移动样品l 只需要转动物镜转盘即可在两种测量技术之间简单切换 拉曼原子力显微镜系统应用实例 多组分高分子混合物,包含了1:1:1比例的聚苯乙烯(PS),充油丁苯橡胶(SRB)和丙烯酸乙基己酯(EHA)的原位拉曼及原子力图像对标最左边的拉曼成像: 绿色代表PS, 红色代表SRB,蓝色代表EHA.第二至第五张图像分别是样品的表面拓扑结构,相位,粘附力和粘度 金刚石压砧在单晶硅表面的压痕的应力分析,原位拉曼原子力图像左图:10x10um原子力表面拓扑结构和深度轮廓图,右图压痕周边的应力拉曼图像,紫色为未受应力影响,黄色为压力应变,灰色为张力应变 拉曼原子力显微镜系统性能通用拉曼操作模式l 拉曼光谱成像:连续扫描的拉曼高光谱全谱成像,每个样品点都能获得完整的拉曼光谱l 平面2D和包含深度Z方向的3D成像模式l 快速和慢速时间序列l 单点及Z方向深度扫描l 光纤耦合的UHTS 系列光谱仪,专为弱光应用的拉曼光谱设计l 共聚焦荧光显微镜功能l 明场显微镜功能 通用原子力显微镜操作模式l 接触模式l AC 模式(轻敲模式)l 数字脉冲力模式 (DPFM)l 抬高模式l 磁力显微镜模式 (MFM)l 静电力显微镜模式 (EFM)l 相位成像模式l 力曲线分析l 微纳操控及微纳印刷l 横向力模式 (LFM)l 化学力模式 (CFM)l 电流探测模式l 其他可选 基本显微镜指标l 研究级别的光学显微镜,6孔物镜转盘l 明场CCD相机,代替目镜观察样品l LED明场科勒照明l 电动XYZ样品台,25x25x20mm平移范围l 主动隔震平台 各类拉曼升级选项(如true surface等)l 多种激光可选择l 多种光谱仪可选择l 自动共聚焦拉曼成像l 自动多区域多点测量l 可升级超快拉曼图像模式(需配置EMCCD和Piezo样品台,可获得每秒1300张光谱的速度)l 可升级落射荧光照明l 自动聚焦功能l 显微镜观察法可选,如暗场,像差,偏光,微分干涉等 超高通光量UHTS光谱仪l 各类透射式波长优化谱仪可选 (UV, VIS or NIR),均为弱光拉曼光谱设计l 光纤耦合,70%超高光通量l 优异的成像质量,光谱峰形对称无像差 控制电脑WITec控制和数据采集,处理软件
    留言咨询
  • 失效分析检测公司推荐的设备,功能多多,科研利器!显微红外热分布测试系统金鉴显微红外热分布测试系统(GMATG-G5)由金鉴实验室和英国GMATG公司联合推出,采用法国的非晶硅红外ULIS探测器,通过算法、芯片和图像传感技术的改进,打造出一套高精智能化的显微红外热分布测试体系。这套测试体系专为微观热成像设计,价格远低于国外同类产品,除传统红外热成像的优势外,还具有更高精度的成像系统、更高的温度灵敏度,更便捷的操作体系,并为微观热成像研究添加诸多实用和创新的功能,是关注微观热分布的科研和生产必不可少工具。金鉴显微红外热分布测试系统已演化到第五代:配备20um的微距镜,可用于观察微米级别芯片的红外热分布;通过软件算法处理,图像的分辨率高达5μm,能看清芯片金道;高低温数显精密控温体系,可以模拟芯片工作温度;区域发射率校准软件设置,根据被测物上的不同材质,设置不同发射率,才能得到最真实的温度值;具备人工智能触发记录和大数据存储功能,适合电子行业相关的来料检验、研发检测和客诉处理,以达到企业节省研发和品质支出的目的。金鉴实验室联合英国GMATG公司设立仪器研发中心,自主研发的主要设备有显微红外热分布测试系统、显微红外定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉,性能卓著,值得信赖。与传统红外热像仪相比,金鉴显微红外热分布测试系统优点显著:应用领域:适用于LED、半导体器件、电子器件、激光器件、功率器件、MEMS、传感器等样品的研发设计、来料检验、失效分析、热分布测量、升温热分布动态采集。金鉴显微热分布与传统设备大PK:金鉴显微热分布测试系统特点:1. 20μm微距镜,通过软件强化像素功能将画质清晰度提高4倍,图像分辨率提高至5μm,可用于观察芯片微米级别的红外热分布。 LED芯片热分布图 2. 模拟器件实际工作温度进行测试,测试数据更真实有效。电子元器件性能受温度的影响较大,金鉴显微热分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,模拟器件实际工作温度进行测试,提供更为真实有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题 3. 1TB超大视频录制支持老化测试等长期实时在线监测。金鉴显微热分布测试系统的全辐射视频录像可保存每一帧画面所有像素的温度数据,支持逐帧分析热过程和变化,可全面的观测分析温度与时间的关系、温度与空间的关系,更容易发现和确认真实的温度值,以及需要进一步检查的位置。灯具温升变化图 灯珠芯片温升变化图4. 热灵敏度和分辨率高,便于分辨更小温差和更小目标,提供更清晰的热像。 专业测温,-20℃~650℃宽温度量程,测温误差±2℃或±2%。热灵敏度0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。红外分辨率640x480,若使用算法改进的像素增强功能,可有4倍图像清晰度,画质提升为1280x960。5. 定制化的热像分析软件,为科研和分析提供专业化的数据支持。金鉴定制PC端、APP分析软件: IR pro、JinJian IR,针对不同测试样品开发的特殊应用功能,人性化的操作界面,纠正多种错误测温方式,具备强大的热像图片分析和报告功能,方便做各个维度的温度数据分析和图像效果处理。(1) PC和手机触屏操作界面,简单易学,即开即用。 手机软件主界面 PC软件主界面(2)支持高低温自动捕捉,多个点、线、面的实时温度显示、分析功能,可导出时间温度曲线、三维温度图等测试数据。 (3)多达15种调色板,适用于不用的测试样品和场景需求,显示颜色的变化不影响温度的测试。(4) 微小器件由不同材质组成,不同材质、不同粗糙度等都影响发射率,图像上大部分对比度通常是由于发射率变化而不是温度变化引起的,因此发射率校正显得尤为重要。金鉴显微热分布测试系统可灵活设置不同区域的发射率,实现不同材质单独测量,温度测试更加准确。 (5)视频录制触发与自由定义帧频,最快25帧/秒,可精准捕捉有效的温度数据和视频图像。 (6)切换图像模式,可实现热像图和可见光图融合,可查看画面中高温区域或温度变化较大区域。 图像模式热成像-可见光融合图(7)导出热像图全部像素点温度数据值,为专业仿真软件建立温度云图等分析提供原始建模数据。 (8)温差模式,可直观获取任意两张热像图的温度差异,分析更快速精准。测试案例:案例一:不同环境温度下热分布测试金鉴显微热分布测试系统配备高精度控温体系,可实现器件在不同温度下的热分布测试。本案例模拟灯具芯片在不同环境温度下的结温及热分布状态,测试结果表明,控制环境温度达到80℃时,芯片结温122℃,继续升高环境温度可能导致芯片发光效率低下甚至芯片受损。案例二:不同厂家芯片光热分布差异以下案例中A款芯片发光最强,发热量最小,光热分布最均匀,量子效率最高。强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据!做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。 案例三:多芯片封装,电流密度均匀性需把控某款灯珠采用两颗芯片并联的方式封装,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 案例四:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,金鉴显微热分布测试分析显示,芯片负极焊盘区域温度比正极焊盘区域温度高约15℃。因此,推断该芯片电流密度均匀性较差,导致正负极焊盘位置光热分布差异较大,局部热膨胀差异过大从而引起芯片上方封装胶开裂异常。 案例五:显示屏模组热分布监测PCB板大屏显示模组存在过热区,过热区亮度会偏低,高温还会加速LED光源的老化,热分布不均势必会造成发光不均,影响显示模组清晰度。在显示屏分辨率快速提升的当下,光热分布不均已成为制约LED显示屏清晰度的最大因素。因此,提升LED显示屏光热分布均匀性对提高当下LED显示屏清晰度,意义重大! 案例六:IC器件热分布测试未开封的IC器件也可观察到表面热分布图。无需化学或激光开封,金鉴的红外热分布测试系统使用更高灵敏度的探头以及更先进的图像优化技术,即可了解器件内部热分布高点和低点的区域,真正实现无损检测。案例七:LED灯具热分布测试日常使用的灯具过热容易引起电子器件故障,缩短产品使用寿命,严重甚至造成安全隐患,检测LED灯具发热均匀情况能帮助设计产品,合理布置发热部件,有效防止过热。LED灯具热分布 案例八:定位电源失效区域电源失效案例中,金鉴使用红外热分布测试系统对电源进行测试,发现电源结构中的R5电阻在使用时发热严重,温度高达90℃。厂家建议碳膜电阻在满载功率时最佳工作温度在70℃以下,而该电源中R5碳膜电阻在90℃温度下满载工作,长期使用过程中导致R5电阻失效。 电源热分布图及热点定位 案例九:OLED热分布测试OLED发光材料像素在不同温度下表现出不同的发光特性,温度的分布不均会使得OLED显示面板中各处的薄膜晶体管的阈值电压和迁移率的变化也分布不均,进而导致整个显示面板出现发光亮度不均。 案例十:集成电路芯片温度测试通过金鉴显微红外热分布测试系统可测试封装后集成电路芯片工作时的温度及温度场分布,也可以直接测试芯片微米大小区域的温度数据,观察芯片的温度场分布,轻松发现温度聚集点,并且能够测试芯片开启后的温升曲线,判断芯片达到热稳定的时间。 集成电路芯片工作时的热分布及局部放大热分布图 集成电路芯片通电开启后的温升曲线 集成电路芯片通电开启热分布瞬态图案例十一:热分布测试应用于PCB领域红外热分布测试用于PCB板的检测,可直观显示电路板各区域和元件的温度分布,设计阶段可用于分析电路板布局设计是否合理,最大限度地减少故障排查和维修带来的高成本。生产阶段也可及时发现可靠性隐患,因为异常组件的升温速度通常比正常的要快,通过热分布测试,许多缺陷在出厂前就能被发现。案例十二:热分布系统全辐射视频录像功能应用于GaN器件领域 电子元器件器件实际应用过程中,进行单一热像图的分析往往是不够的,例如某GaN器件,其工作时的各项性能参数受温度影响较大,因此需要监控器件开始工作瞬间直至稳定的整个温度变化过程,这就涉及到金鉴显微热分布测试系统的全辐射视频录像功能。金鉴显微红外热分布测试系统全辐射视频录像功能采样速率可达到25帧/秒,可实现1TB单个视频录制,轻松捕捉器件通电瞬间温升变化。通过逐帧分析器件的升温过程全辐射视频录像可以看出,器件通电瞬间开始升温,这个瞬间时长仅有几十个毫秒左右,并在开始通电后2分钟左右达到温度稳定,同时各项电性参数也达到稳定。GaN器件工作过程温升变化曲线 GaN器件工作过程电流变化曲线案例十三:电器开关柜红外热分布测试电气设备在生产中已广泛采用,而电气故障是不可避免的,如何排查电气故障是面临的一大问题。电气设备的初期异常通常伴随温度的变化迹象,采用红外热分布测试可在不断电状态下进行检测工作,及时发现和诊断问题。
    留言咨询
  • BXFM小型系统显微镜是可进行明视野、暗视野、微分干涉、简易偏光、荧光观察的小型系统显微镜。光源可选卤素灯、光纤照明,可以配电动物镜转盘、成像系统,可以对应多种需求的系统显微镜。UIS2物镜观察到的鲜明影像丰富的附件满足检查需求
    留言咨询
  • SOPTOP 物联显微互动教学系统是将智能终端设备、无线通讯技术与数码显微技术结合的创新产品,不仅具备高分辨率的数字图像,还拥有稳定、快速的传输速度,极大的提高教学效率和质量。便捷的实验室管理,简单的图像获取,创新宏观观察模式,物联显微互动教学系统将为您带来全新的互动教学体验。基于 5G Wi-Fi 网络的显微互动系统,满足密集部署需求,数据传输效率更高,网络延迟性更低。即使在高负载环境下也能保持信号的稳定传输。全高清 1080P 实时预览,最大帧率 25FPS。SOPTOP学生端 采用 1600万/2000 万像素芯片,可为您提供更丰富的镜下图像,包括全高清动态显微图像、全高清广播图像,远程1600万/2000万像素全分辨率静态图像捕捉。图像清晰噪音低、色彩还原逼真,在满足清晰度的同时,还能给您带来毫无迟滞的观察体验。新一代 5G Wi-Fi 显微互动教学系统,学生端同时支持IOS、Android、Windows系统,通过手机、平板、电脑等各种终端移动设备可实现移动时的互动教学。实时监看:具有宏观观察、微观观察两种监看模式。微观观察可以同步观察学生镜下图像;宏观观察可直接调用学生端摄像头,实时监看学生实验过程,并记录实验步骤。两种监看模式可随意切换。拥有 1x2,2x2,3x3,4x4 多种不同的窗口监看模式,一键切换,随意分页。即时通信:师生之间可以单独进行通讯交流,消息内容可以是文字、图片、标注等,不影响其他学生。SOPTOP 物联教学互动系统集成数字切片系统和课堂练习功能,更加有效的管理教学资源。
    留言咨询
  • PARISS这是一款弧形棱镜反射式面阵高光谱图像分析系统,配合研究型显微镜组成具有分析样品光谱细节特性的多为显微高光谱图像分析系统。PARISS高光谱显微影像分析系统作为显微镜附件,不改变显微镜结构,适用于四大显微镜品牌的多数产品。 由于显微光谱成像技术能够同时提供定性、定量和定位信息,将光谱分析技术与图像分析技术融合形成的全新分析检测技术,在现代生物、生命科学、医学、法医学、环境、生态、材料、制药、分析化学、临床检验、微电子等等有着广阔的应用前景,是近年来世界各国高科技界广泛重视的热点科研方向。
    留言咨询
  • DSC和HP DSC显微镜系统 400-860-5168转4449
    将显微镜与差示扫描量热仪DSC组合生成联用系统是梅特勒托利多的特有技术。有两种组合系统,一种是DSC1+显微镜,另一种是高压HP DSC1+显微镜。DSC测量试样随温度或时间变化而变化的热流,通过可同步显微镜观察和摄录图像,直接观察样品在加热、冷却或恒温过程中形状、结构、颜色等的变化。图像信息与DSC曲线互为补充,可更全面准确地解析样品在升降温过程中的转变。技术参数:温度范围: DSC1:-150~700℃;HP DSC1:RT~700℃温度准确性: +/-0.1℃升温速率:0.02~300℃/min量热灵敏度: 0.04μW(FRS5)(专业型) / 0.01μW(HSS8)(至尊型)压力范围:真空~2MPa(HP DSC1-显微镜系统)显微镜:Olimpus或Leica或其它主要特点:DSC测量-高灵敏度、高分辨率测量热流变化HP DSC-高灵敏度、高分辨率测量压力下的热流变化成像技术-可直接观察研究形态和颜色等转变光学灵敏度-光学灵敏度不受加热或冷却速率的影响同步显微成像与DSC测量-提供了样品完整的热分析信息应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。主要型号:DSC 1+显微镜、HP DSC 1+显微镜
    留言咨询
  • 介绍:显微共轭焦拉曼 / 荧光光谱系统具有完整的扩充能力及客制化的系统配置〈包含临场与近场光谱客制设计〉可根据应用需求设计专属量测系统。特色:1)高灵敏性与高分辨率之光谱系统 2)双边缘镜 / 滤光片之光学设计 3)自动化控制系统 4)可选配光栅数量多达四组 5)可升级三维扫描系统 6)可升级针尖式增强拉曼散射 / 近场扫描学显微镜 / 扫描式电化学显微镜功能 7)可升级奈米级时间相关单光子计数器做场扫描光学显微光谱影像扫描成像软件 - UniSCAN X、Y 线性扫描,2D & 3D 扫描图像 &sbquo 图像包含: 峰值比、强度或数量值、半高宽、拉曼位移或波长 &fnof 软件可自建公式试算成像
    留言咨询
  • TG80超景深三维立体显微系统① 高速自动对焦,省去了频繁手动对焦的过程;② 超景深影像,突破了显微景深浅的观察瓶颈;③ 三维成像测量,解决了立体分析的显微难题。GC80,让您的显微分析更客观、更精确、更高效!3D测量记录物体完整尺寸信息10秒即可创建3D模型,进行任意位置的三维测量,并能实时记录数据,≤50微米Z轴测量精度以及≤5微米重复精度可满足绝大数的显微测量需求。昆虫复眼在同一平面上观察复眼特征弹壳痕迹鉴定在同一平面上观察不同特征点超景深影像实现清晰立体的显微观察实时景深拓展(EDF)功能,1秒获得全幅对焦画面,光机电一体化结构及算法联动技术能够解决第三方软、硬件系统偏差造成的角度旋转及焦面不平坦等问题,从而实现在同一平面进行超景深观察。自动边缘抽取功能可快速完成标准品的测量,一键批量测量,自动完成未知样品的测量与分析。3微米分辨率,测量精度≤5微米,重复精度≤3微米,有效消除人为误差。自动测量提高微小器件测量效率16-160X放大观察全程高速自动对焦采用液体镜头自动对焦技术,鼠标点击处,即刻自动对焦,省去以往需要手动对焦的繁琐过程,让显微操作变得简单、流畅。自动创建报告轻松愉快的结束工作!不仅可以保存图像、视频数据,还能自动创建图文并茂的测试报告,工作流中涉及的测量数据均可导出,操作结束,工作即完成,简单又轻松!产品型号GC80相机参数传感器Sony 1/2"CMOS彩色分辨率200万像素(1920×1080)像元尺寸3.75μm×3.75μm快门模式电子卷帘曝光扫描方式逐行扫描帧率60fps(Normal)30fps(WDR)增益自动/手动曝光时间自动:0.5ms-16.6ms,手动:0-1s白平衡自动/手动图像存储TIFF/JPEG视频格式AVI/MP4(1080P)位宽24bit电子接口高清接口HDMI 2.0存储容量内置32G Emmc开关有LED指示灯开机亮蓝灯网络连接百兆以太网USB3.0Host x2USB2.0Host x2电源12V8A输入鼠标输入USB鼠标键盘输入USB键盘光学参数系统放大倍率16x-160x光学倍率0.25-2.5X光学分辨率3μm工作距离范围:35mm-220mm,zui佳:81±1mm视野大小最小倍:28.8mmx16.2mmx200mmzui大倍:2.88mmx1.62mmx4.5mm对焦方式自动/手动Z轴调整方式手动Z轴调整行程200mm(单圈23mm)光源照明四分区LED环形灯照明寿命40000小时色温6500K左右高级功能(嵌入式)自动对焦连续自动/单次自动倍率识别自动3D降噪支持WDR功能支持实时EDoF支持边缘增强支持灰度系数修正(对比度)支持色彩增强支持平场校正支持e预览模式正常/负片/浮雕/灰度3D显示支持测量功能(嵌入式)2D测量基本元素直线、半径、直径、角度、弧、平行线、垂线2D测量标尺显示有2D自动测量最小倍:测量精度±20um 重复精度±13umzui大倍:测量精度±5um 重复精度±3um3D测量zui大倍:测量精度±50um 重复精度±5um其他工作温度范围5°C到40°C相对湿度低于85%(无冷凝)重量6.5Kg外观尺寸(宽x高x深)276mm x 402mm x 363mmCE认证有RoHs认证有在线升级支持参考标准:GB∕T 1182-2018 ,ISO 25178
    留言咨询
  • Queensgate生产高速、高精度的压电式平台和皮米级分辨率的电容式传感器,用于最苛刻的纳米定位应用。专门从事要求高性能、高负载和高速的定制解决方案,通常适用于要求很高的环境。提供OP400物镜定位器和NanoScan SP纳米定位平台系列产品。最佳步进稳定及定位性能高通量筛选和分析是生物和材料科学成像的支柱。因此,OP400和SP系列的设计考虑到了速度,产品在全行程范围内可提供快速性能以及市场上较快的步进整定时间。这意味着高分辨率的长距离z–stacking在速度上迈入了新的领域。高速扫描会导致振荡,进而影响图像质量和z-stacking,甚至对纳米定位系统造成损坏。Queensgate产品具有高谐振频率;与Queensgate专有的数字控制技术结合,系统可以在没有振荡风险的情况下以同类最佳速度运行。有了Queengate的专业技术,不再需要由于系统不稳定或牺牲z-stack采集速度,而舍弃每个stack开始的图像。速度不会影响性能。SP系列有 400nm 和 600nm 行程范围可选,拥有同级较短行程产品相当或更优越的性能。OP400的线性度是典型压电式物镜定位器的两倍,同时具有良好的线性度和可重复性。这两种产品在实验中都具有极高的轴向分辨率,提供亚纳米分辨率。生物科学家认为,显微镜z轴的机械分辨率显然会高于其成像技术的光学分辨率。根据不同的分析方法,可检测或成像低至0.7nm的形态变化,是半导体或冶金样品表面检测的理想选择。这一系列操作都是通过集成的超灵敏电容式传感器实现的,无论移动速度或系统温度如何,传感器都能提供最高的定位灵敏度。轻松集成,助力实验成功尽管纳米定位设备的性能在市场上有很大优势,但相对于其系统的其他组件来说,用户几乎不需要校准这些纳米设备。产品的最高速度设置可与重达500g的物镜兼容,并为专业物镜提供二次校准。Queensgate的NPC控制器系列可完成其余工作。用户有理由相信Queensgate能够提供适合其实验需求且开箱即用的产品。 OP400和SP系列不仅易于设置,而且能够与各类显微镜兼容。OP400可兼容任何螺纹尺寸的显微镜鼻轮和物镜,包括32mm宽视场系统。NanoScan SP系列与所有的Prior Scientific倒置步进、直线电机平台兼容,也可兼容尼康,奥林巴斯和其他主流显微镜制造商的电动平台,以及东海希多和Okolabs的培养箱。此外,系统还可用于增强Prior的硬件PureFocus 850快速自动对焦系统的性能,为长时间延时实验提供 +/- 50nm 的聚焦稳定性。应用 共聚焦,超分辨,电生理,形貌测量等要求样品绝对稳定性的显微镜应用。
    留言咨询
  • 视网膜影像系统是专为啮齿动物,特别是针对大小鼠设计的眼科成像系统。主要功能:视网膜眼底成像、视网膜电图、眼科 OCT、OCT 分割、眼科激光、CNV(激光电凝术后脉络膜心血管生成)、眼前节成像等。MICRON IV 视网膜眼底成像系统采用模块化设计,体积小巧占用空间少,可根据实验需求进行功能扩展。其他系统大多数都需要搭载该系统才能得以实现其功能。可以说,MICRON IV 视网膜眼底成像系统是对啮齿动物进行眼部结构和功能全方位研究的基础。出色的成像能力视网膜眼底成像系统具有 3 种成像功能:明场成像、血管造影成像和荧光成像有的三芯片 CCD 相机可提供 3um 的明场分辨率,并具有捕捉微弱荧光图像的灵敏度。除了荧光素和伊文氏蓝血管造影外,还可以对常见的报道分子(如 GFP、YFP、mCherry 和 CFP)进行成像。图像处理软件“Discover ”具有包括控制在内的多项新功能,确保在实验过程中能够捕捉到效果最佳的图像。新功能包括 图像处理 对比拉伸 软件适用性增强 线条轮廓国际认可度高Micron 技术在北美、亚洲和欧洲的 200 多个研究中心发挥着不可或缺的作用,并被国际 300 多种出版杂志引用。该系统已被广泛应用于包括基础眼科、毒理学、药效学和神经学等多项科学研究当中。主要特点: 有别於一般眼底镜,专为大/小鼠设计之视网膜影像撷取系统; 视网膜成像分辨率低于4μm,视野范围(FOV)可达60度(2mm); 具有3种成像方式,明场、血管造影和荧光 定制的三芯片 CCD 相机提高了捕捉更微弱荧光图像的灵敏度 近红外成像的新功能可捕获长波段荧光成像和血管造影成像 能够实现捕捉静止图像或视频的实时成像 使用方式和萤光显微镜类似,可观察明视野和萤光(Ex.CFP,GFP,mChrry等)影像; 兼具单张图像拍摄及数位影像录影功能; 非常适合用在萤光血管造影,甚至可看到微血管内血球的动态流动; 可即时切换萤光滤片及焦距调整; 设计灵活可扩展,可根据科研需求选配 ERG、OCT、激光或裂隙灯等系统 对人机工程学设计进行改进,更加方便实验操作主要应用范围: 萤光血管造影 糖尿病视网膜病变 视网膜母细胞瘤 视网膜黄斑衰退症 早产儿视网膜病变 脉络膜新生血管 视网膜色素变性等参考文献:1. Hampel, U., Klonisch, T., Makrantonaki, E., Sel, S., Schulze, U., Garreis, F., Seltmann, H., Zouboulis, C. C., & Paulsen, F. P. (2012). Relaxin 2 is functional at the ocular surface and promotes corneal wound healing. Investigative Ophthalmology & Visual Science, 53(12), 7780–7790. 2. Victorino DB, Scott-McKean JJ, Johnson MW, Costa ACS(2020). Quantitative analysis of retinal structure and function in two chromosomally altered mouse models of Down syndrome. Invest Ophthalmol Vis Sci, 61(5), 25. 3. Sun J, Huang X, Egwuagu C, Badr Y, Dryden SC, Fowler BT, Yousefi S(2020).Identifying mouse autoimmune uveitis from fundus photographs using deep learning. Trans Vis Sci Tech, 9(2), 59. 4. George, A. K., Homme, R. P., Majumder, A., Tyagi, S. C., & Singh, M. (2019). Effect of MMP-9 gene knockout on retinal vascular form and function. Physiological Genomics, 51(12), 613–622. 5. Choudhary, M., Safe, S., & Malek, G. (2018). Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochimica Et Biophysica Acta. Molecular Basis of Disease, 1864(5 Pt A), 1583–1595. 6. Fuma, S., Nishinaka, A., Inoue, Y., Tsuruma, K., Shimazawa, M., Kondo, M., & Hara, H. (2017). A pharmacological approach in newly established retinal vein occlusion model. Scientific Reports, 7, 43509. 7. Becker, S., Wang, H., Stoddard, G. J., & Hartnett, M. E. (2017). Effect of subretinal injection on retinal structure and function in a rat oxygen-induced retinopathy model. Molecular Vision, 23, 832–843. 8. Guo, C. X., Mat Nor, M. N., Danesh-Meyer, H. V., Vessey, K. A., Fletcher, E. L., O’Carroll, S. J., Acosta, M. L., & Green, C. R. (2016). Connexin43 Mimetic Peptide Improves Retinal Function and Reduces Inflammation in a Light-Damaged Albino Rat Model. Investigative Ophthalmology & Visual Science, 57(10), 3961–3973. 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 手术显微镜高清影像系统,手术显微镜高清录像示教系统,手术显微镜3D录像系统及3D摄像机眼科显微镜高清影像系统,神经外科手术显微镜高清影像系统,骨科手术显微镜高清影像系统,手术显微镜影像系统高清升级,手术显微镜高清影像系统改造,手术显微镜工作站,手术为微镜3D摄像机,医用3D摄像机我公司为眼科显微镜提供全套方案,公司代理索尼,日本池上,松下等高清医疗摄像机,配套进口,国产分光器,显微镜光学接口 国内,国际厂商开发的手术显微镜影像工作站,为您的手术显微镜提供一站式服务功能参数适用范围1. 可连接各种高清显微镜、内窥镜设备.新建2. 提供***的基本资料项目,完善的模板可自由增加、修改、删除;3. 图文海量存储;软件界面4. 进入软件就可预览动态图像,可显示动态窗口,拍照实时显示;5. 清晰、直观的软件界面,科学合理的布局,简单易学。图像采集与录像6. 采用进的图像采集卡,高清晰同步显示实时动态录像,数字化采集清晰、逼真图像;7. 可脚踏、鼠标方便控制采集;8. 可根据时间设置录像文件大小、长短。图像浏览及处理9. 可以直接浏览所抓取的图片,对所拍图片快速作出直观分析;10. 有上下镜像、左右、伪彩、灰度、增加亮度等功能。报告编辑模块
    留言咨询
  • 它与传统激光显微切割系统不同,徕卡激光显微切割系统无需移动样品,而是通过移动激光、重力收集,大限度地避免样品污染,为您提供可即时分析的理想切割组织样品。激光显微切割 (LMD,亦被称为激光捕获显微切割或LCM) 便于用户分离特定的单个细胞或整个组织区域。徕卡激光显微切割系统采用独特的激光设计和易用的动态软件,从整个组织区域到单个细胞,用户可以轻松分离目标区域(ROI)。激光显微切割通常用于基因组学(DNA)、转录物组学(mRNA、miRNA)、蛋白质组学、代谢物组学,甚至下一代测序(NGS)。神经学、癌症研究、植物分析、法医学或气候研究人员均借助这种显微切割技术进行学科研究。此外,激光显微切割也是活细胞培养 (LCC) 的一款理想工具,可用于克隆、再培养、操作或下游分析。我们移动的是激光,而不是样品当你尝试通过移动纸张而不是移动笔在一张纸上写下您的名字时,是否很难做到?是的,显然移动笔比移动纸张更快更容易,而笔就相当于我们的激光。因此,我们在激光捕获显微切割中选择移动激光,而不是移动样品。目前,只有徕卡显微系统采用高精确度的光学部件并借助棱镜沿着组织上所需的切割线对激光束进行操纵激光束。这意味着徕卡激光显微切割可垂直于组织实施切割,从而获得切割精确、无污染的分离体。精确无误 始终如一以较高的精度和速度实施切割;使用“移动切割”技术,进行直接、实时地切割;能够获得理想视野,影像录制便利。重力收集,实现清洁无污染下游分析需要具备无污染的分离体。因此,徕卡激光捕获显微切割系统借助重力对切除组织进行收集。其基于激光引导的独特显微切割技术保留了分离体的完整性,使其保持无接触、无污染的状态。三步获得无污染样品:选择目标区域, 沿着要切除的区域移动激光, 100%无污染的切除组织落入培养皿中,供进一步分析使用。真正资产:重力始终有效。
    留言咨询
  • Thermo Scientific&trade HeliScan&trade 显微计算机断层扫描系统Thermo Scientific&trade HeliScan&trade 为各类研究应用开创了新一代的显微 CT 技术:螺旋扫描和迭代重构技术产生了无与伦比的图像保真度,并且提供与传统环形扫描技术相比较高的信噪比。通过利用先进的螺旋扫描和迭代重构技术以产生无与伦比的图像保真度,HeliScan 把材料科学带入了显微 CT 的新时代。作为多尺度成像解决方案的组成部分,HeliScan 使得科学家能够从内部结构中得到宝贵洞见,以探索和验证各种材料特性。主要优势 使用单次持续扫描以完全消除对于多次扫描拼接方法常见的伪影,从而获得高样品的高保真图像 使用创新的自动包络工作流技术在初始扫描中检测样品的轮廓。没有其他的显微 CT 系统具备这样的功能。 用先进的伪影修正技术使得螺旋轨道扁平化,防止广为人知的移动变形产生影响。Heliscan 显微 CT 的石油与天然气应用HeliScan 提供图像准确性和分辨率,可帮助地质学家、岩心分析师、岩石物理学家和储层工程师了解其岩心样品的微观结构背景。HeliScan 填补了全岩心 CT 和 SEM 数据集之间的空白,是岩心栓样品的实验可视化、量化特性评估和高分辨率数字存档的理想选择。多尺度工作流HeliScan 是多尺度、多模式工作流的一个重要组成部分,该工作流从用聚焦离子束/扫描电子显微镜进行的更高分辨率成像到透射电子显微镜中的原子尺度分析都会取得进步。图像准确性问题无论是对样品进行四维实验、详细研究、扫描和数字化以便未来存档,还是量化孔隙率、渗透率和动态岩石性质,螺旋显微 CT 扫描技术都能提供较佳用户体验。
    留言咨询
  • IMA™ 高光谱显微成像系统 IMA™ 是一种超高速且一体化的可定制高光谱显微镜平台,具有高空间和光谱分辨率。完全集成的系统可快速绘制VIS-NIR-SWIR光谱范围内的漫反射,透射率,光致发光,电致发光和荧光。基于高通量全局成像滤波器,IMA™ 比基于扫描光谱仪的高光谱系统更快,更高效。 IMA™ 可实现复杂的材料分析,如太阳能电池和钙钛矿的表征,成分,应力,材料缺陷等的映射,光谱信息的监测,单个发射器强度的变化,波长漂移或光谱带宽变化。 Photon Etc.的IMA™ 可在400至1700 nm范围内成像,带宽为3 nm,能够测量光电特性,如电压开路和外部量子效率,并可对材料中的缺陷进行精确检测和表征,这对于半导体器件(GaAs,SiC,CdTe,CIS,CIGS等)的质量控制。 IMA™ 覆盖的光谱范围非常适用于在第二个生物窗口中发射的荧光团的空间和光谱识别和测量。通过可能集成暗视野照明模块,它成为检测嵌入细胞中的纳米材料的成分和位置或活体,体外和未染色生物样品的复杂分析的特殊工具 有机和无机物质的特性。例如,单壁纳米管(SWNT)发射带窄(~20nm),每个带对应于独特的物种(手性)。使用IMA™ ,可以在表面或活细胞中以单一SWNT空间分辨率分离这些物种。生物学家将喜欢它的减弱组织吸收,更高的穿透深度和有限的自发荧光,用于非破坏性分析。IMA超光谱显微镜平台提供了同样高的光谱和空间分辨率。该模块化系统被配置成快速扫描可见光、近红外和/或SWIR光谱,同时映射光致发光、电致发光、荧光、反射率和/或透射率的组合。每个IMA都配备有高通量的全球成像滤波器,这使得它能够比依赖于扫描光谱仪的高光谱系统更快地测量一个百万像素超立方体。IMA™ 打开门 进行复杂的材料分析,如太阳能电池表征和半导体质量控制(例如:钙钛矿,GaAs,SiC,CIS,CIGS等)。研究复杂环境中的IR标记,包括活细胞和组织。例如,在第二生物窗口中发射的IR荧光团的光谱异质性。检索暗场图像并获得透明和未染色样品(如聚合物,晶体或活细胞)的对比度。 特性:快速全局映射(非扫描);高空间和光谱分辨率;完整的系统(光源,显微镜,相机,过滤器,软件);无损分析;可定制;在SWIR范围内,可见光范围为400至1200 nm,900 nm至1700 nm范围内敏感;应用领域 光伏 IMA 提供光谱和空间分辨的光致发光和电致发光图像。它已成功地用于研究CIS,CIGS,GaAs和钙钛矿型太阳能电池的光电特性的空间分布。SWCNT的多重 IMA™ 可以识别和绘制17种不同种类(手性)的碳纳米管的分布图。 用IR光谱显微镜,它是 可以分离这些物种的,带有单个SWNT的空间分辨率,在表面上,在活细胞(在体内) 和 在VITR ò。SiC的缺陷 IMA ™ 可以快速准确地识别导致4H-SiC绿色发射的缺陷类别。光学化学传感器 IMA™ 提供了来自DNA多荧光团的快速定量荧光成像。这些多荧光团被用作光学化学传感器,用于检测污染土壤中碳氢化合物的复杂混合物。神经影像 细胞和组织成像受标记或污渍数量的限制,这些标记或污渍可用于同时成像和研究许多组织类型或分子种类。Photon等人的技术可以通过使用新颖的窄带标签及其高光谱成像仪来消除这些限制。癌细胞中的纳米颗粒当Photon等的高光谱成像仪与高效的暗场聚光镜结合使用时,可以生成生物样品(例如癌细胞)的高对比度图像。如需索取更多资料请联系佰泰科技有限公司电子邮件联系电话:或直接联系 常经理
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制