研究级共焦仪

仪器信息网研究级共焦仪专题为您提供2024年最新研究级共焦仪价格报价、厂家品牌的相关信息, 包括研究级共焦仪参数、型号等,不管是国产,还是进口品牌的研究级共焦仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合研究级共焦仪相关的耗材配件、试剂标物,还有研究级共焦仪相关的最新资讯、资料,以及研究级共焦仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

研究级共焦仪相关的厂商

  • 电站化学监测技术研究所是西安热工研究院有限公司下属的科研部门,主要从事电厂在线化学仪表检验、腐蚀与防护、水处理优化、无损检测等方面的技术研究,技术力量雄厚,仪器设备齐全,拥有电力行业唯一的电厂化学仪表检验一级实验室。负责制定多项国家标准和电力行业标准,每年承担多次电厂化学专业的技术交流和学术报告会,定期举办全国电厂在线化学仪表检验校准培训班。电站化学监测技术研究所集科研开发、技术咨询、产品推广、工程承包于一体,竭诚为电厂提供优良的技术咨询和现场服务,为电厂节能降耗、提高机组运行的安全性、经济性、可靠性做出贡献。
    留言咨询
  • 公司简介:中国煤炭科工集团太原研究院有限公司下设CNAS认可的国家级实验室,同时拥有国家级质检中心和国家安全生产甲级机构,同时拥有专业的实验室、检验机构评审员和检验服务产品科研团队,专业技术力量雄厚。近年来,我们通过自主创新,致力于建设完善的检验检测软硬件生态系统,逐步基于系统平台开发兼容的检验仪器设备,建立完备的通讯互联协议,率先涉足检验检测物联网技术的研发,多年来,在实验室运营中积累了丰富的经验和团队力量,研发的LIMS软件产品已经经过了多次换版,满足了各行业实验室的需求,成为LIMS行业中适应能力最强、最专业的服务产品。公司资质:
    留言咨询
  • 青岛青岛新公仪器有限公司座落在美丽的滨海城市青岛,是一家集研发、生产、销售、服务等于一体现代化企业。公司目前包括检测设备事业部,人事业部。 检测设备事业部包括安全帽检测设备、安全网检测设备、安全带检测设备、安全鞋检测设备、防护服检测设备、燃烧性能检测设备、纸品塑料包装检测设备等产品。主要用于安全帽、安全网、安全带、防护服、纸品塑料包装、纺织布料及制品、塑料橡胶纤维等产品、保温材料及制品等的相关相关性能试验。 公司占地面积5000平,高标准厂房3000平,下设技术部、生产部、销售部、综合办、机械加工中心等部门,形成了自行研究开发、制造加工、综合试验、计量检测、经营销售、技术服务等一套完整的技术管理、经营管理、质量管理体系。公司以产品技术含量高、品质优良、服务周到而博得广大用户的厚爱。 公司愿同各界朋友诚合作,互惠互利,合作共赢,期待与您合作!
    留言咨询

研究级共焦仪相关的仪器

  • Finder Vista“微曼”系列显微共聚焦激光拉曼光谱仪 性能特点:● 更高系统灵敏度:采用大通光口径影像校正光谱仪和进口低噪声科学级CCD。● 适合多种样品,可在显微光路与宏光路之间自由切换。● 高重复性:光路设计结构稳固,全自动,一体化设计,软件控制电动切换光路,切换后无需重新校准。● 模块升级选项:可提供功能升级模块,满足多方面科研需求。● 易操作:软件窗口操作模式,简单易用产品简介:Finder Vista“微曼”系列拉曼光谱仪是卓立汉光公司研发的具有更高性能显微共聚焦激光拉曼光谱仪,基于新一代显微共聚焦光学系统,搭配高品质影像校正光谱仪和进口CCD探测器,所有部件一体化集成,最大限度的确保了仪器性能的稳定性,从而可以获得样品的有关化学成分、晶体结构、分子间相互作用以及分子取向等各种拉曼光谱的信息,广泛适用于高等院校、科研院所的物理和化学实验研究,如化合物官能团分析 、分子动力学研究 、碳纤维/碳纳米管拉曼光谱分析 、表面分析\单层薄膜分析、聚合物组织结构分析、细胞组织研究、刑侦鉴定、考古学、地质学等多学科领域。Finder Vista“微曼”系列显微共聚焦激光拉曼光谱仪,除了可以实现拉曼光谱测量功能外,还可以通过增加功能附件,实现拉曼光谱成像、PL荧光及成像、荧光寿命测量等功能,欢迎洽询。参数规格表:主型号Finder Vista拉曼光谱范围60-5,000 cm-1(典型值)分辨率≤0.9cm-1(@585.25nm)激光器标配:532nm(≥100mW,TEM00)选配:266nm、325nm、633nm、785nm等显微镜标配:正置显微镜空间分辨率水平1μm,垂直2μm探测器类型TE深制冷型背感光CCD(LDC-DD技术)有效像元2000×256像元尺寸15×15μm量子效率95%@780nm*规格参数为532nm激光条件下的典型值,依据所选激发波长的改变会有所改变,详情请洽询!测试实例:(Sulfur:激发波长:532nm)
    留言咨询
  • 中图仪器VT6000研究级共焦显微镜系统基于光学共轭共焦原理,结合精密纵向扫描、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量。在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,VT6000研究级共焦显微镜系统具有较高的三维图像分辨率。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000研究级共焦显微镜系统能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等,可广泛应用于半导体制造及封装工艺检测,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。应用领域在半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000光伏检测仪器3D显微镜轮廓仪可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 一、产品概述:共焦拉曼光谱仪是一种高精度的分析仪器,结合了共焦显微技术和拉曼光谱技术,能够对材料的分子结构、成分和化学性质进行非破坏性分析。它广泛应用于化学、材料科学、生物医学等领域,特别适合于微小样品或复杂样品的研究。二、设备用途/原理:设备用途共焦拉曼光谱仪主要用于材料的化学成分分析、相分布研究、薄膜和涂层的表征,以及生物样品的分子成分检测。它能够提供高空间分辨率和高光谱分辨率的信息,有助于研究人员深入理解样品的微观特性。工作原理共焦拉曼光谱仪的工作原理基于拉曼散射现象。当激光照射到样品表面时,样品中的分子会散射光并发生频率变化,形成拉曼散射光。通过共焦光学系统,仪器能够仅选择样品的特定焦点区域进行分析,从而消除背景噪声并提高信号强度。收集到的拉曼信号经过光谱分析,能够提供关于样品分子振动模式的信息,帮助识别材料的化学成分和结构特征。三、主要技术指标:系统功能:快速获得详细的图像和分析,非常适合于微观和宏观测量,提供先进的二维和三维共聚焦成像能力。LabRAM Odyssey&trade 具有高性能和直观的简易性,广泛用于标准拉曼分析、光致发光(PL)、 针尖增强拉曼光谱 (TERS) 和其他联用分析方法。通过简单的AFM 升级,从微米尺度转向纳米光学世界。
    留言咨询

研究级共焦仪相关的资讯

  • 145万!中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪
    项目概况中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪项目招标项目的潜在投标人应在宁波中基国际招标有限公司在线购买链接(https://dwz.cn/BzVsB93Q)获取招标文件,并于2021年12月10日14点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:CBNB-20211851G项目名称:中国科学院宁波材料技术与工程研究所采购显微激光共焦拉曼光谱仪项目预算金额(元):1,450,000.00最高限价(元):1,450,000.00采购需求:标项一:标项名称:显微激光共焦拉曼光谱仪数量:1套最高限价(元):1,450,000.00简要技术需求:仪器采用长焦长光谱仪,焦长≥600mm。具体详见第二章《招标需求》。备注:本项目允许采购进口设备。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:3.1.未列入“www.creditchina.gov.cn、www.ccgp.gov.cn”网站失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信记录名单在禁止参加采购期限的供应商【以投标截止日当天采购代理机在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料。】。3.2.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一标项的投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加本项目的投标。三、获取招标文件时间:2021年11月19日-2021年11月26日(北京时间,下同)地点(网址):https://dwz.cn/BzVsB93Q方式:在线购买售价:500元/标段注:本项目招标文件实行“宁波中基国际招标有限公司”在线获取,不提供招标文件纸质版。招标文件发售联系人:李小姐,联系电话:0574-88090098,电子邮箱:719126619@qq.com。四、提交投标文件截止时间、开标时间和地点1.提交投标文件截止时间:2021年12月10日14点00分(北京时间)2.投标地点:中国科学院宁波材料技术与工程研究所(浙江省宁波市镇海区中官西路1219号新能源所ME606室)3.开标时间:2021年12月10日14点00分(北京时间) 4.开标地点:中国科学院宁波材料技术与工程研究所(浙江省宁波市镇海区中官西路1219号新能源所ME606室)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。供应商可到中国政府采购网自行下载财政部《质疑函范本》。2.采购项目需要落实的政府采购政策:(1)对小微企业的产品给予价格优惠(监狱企业、残疾人福利性单位视同小微企业;残疾人福利性单位属于小型、微型企业的,不重复享受政策);(2)扶持少数民族地区和不发达地区政策;(3)优先采购节能环保产品(注:所采购的货物在政府采购节能产品、环境标志产品实施品目清单范围内,且具有国家确定的认证机构出具的、处于有效期之内的节能产品、环境标志产品认证证书)。3.本次政府采购活动有关信息在宁波政府采购网公布,视同送达所有潜在投标人。4.疫情期间特别提醒事项:4.1.供应商递交投标文件方式:4.1.1采用邮寄方式递交投标文件,需按以下要求递交:供应商须在2021年12月09日16:00前(北京时间)将投标文件邮寄至规定地点,由招标代理工作人员进行签收。各供应商自行考虑邮寄在途时间,邮寄过程中无论何种因素导致投标文件未按时递交的后果,均由供应商自行负责。投标文件递交时间以招标代理实际收到投标文件的时间为准。迟到的投标文件将被拒收。请各供应商确保密封包装在邮寄过程密封包装完好,并在邮寄包裹上注明项目名称,因邮寄过程的密封破损造成不符合开标要求的,本招标代理及招标人概不负责。投标文件邮寄地址为:宁波市鄞州区天童南路666号中基大厦19楼。收件人:陈冲 联系方式:130819286864.1.2采用现场递交方式递交投标文件,在投标当天投标人员需持绿色“甬行码”、佩戴口罩且体温测量正常后方可进入开标现场(以开标当日测量体温为准)递交投标文件。若供应商因未按上述要求办理而导致无法准时进入开标现场的,由供应商自行负责。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国科学院宁波材料技术与工程研究所地址:浙江省宁波市镇海区中官西路1219号联系方式:范老师0574-863245292.采购代理机构信息名称:宁波中基国际招标有限公司地址:宁波市鄞州区天童南路666号19楼联系方式:陈冲、张亮0574-87425731、880902133.项目联系人(询问):陈冲项目联系方式(询问):0574-87425731书面质疑联系人:杨未书面质疑联系方式:0574-87425382
  • 激光差动共焦成像与检测仪器重大专项启动
    3月28日上午,国家重大科学仪器设备开发专项&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 项目2013年度工作会在北京理工大学召开。  科技部条财司孙增奇处长、工信部科技司王锐副调研员,杨柯巍主管、金国藩院士、李天初院士、周立伟院士、项目监理组和&ldquo 两组一委&rdquo (项目总体组、项目技术组和项目用户委员会)22位专家以及项目牵头承担单位北京理工大学机关及学院领导等共计40余人参加了会议。  项目总体组成员代表北京理工大学科研院高新部张瑜部长代表学校致欢迎辞,工业与信息化部王锐副调研员、科技部条财司孙增奇处长、项目技术专家组组长金国藩院士、项目用户委员会组长北京交通大学理学院院长冯其波教授、监理组组长北京工业大学科技处处长石照耀教授分别作了讲话。  项目技术专家组组长金国藩院士主持了进展汇报会议,项目负责人赵维谦教授向与会领导专家汇报了项目的总体工作情况及我校承担的研制任务的年度进展情况,清华大学张书练教授、中国科学院物理研究所刘玉龙研究员分别汇报了其承担的研制任务的进展情况。  汇报结束后,与会专家现场考察了我校光电学院赵维谦教授项目组的实验室。现场询问了项目组研发的激光差动共焦干涉元件参数测量仪器、激光差动共焦曲率半径及焦距测量仪器、激光径向偏振光差动共焦显微仪器和激光差动共焦拉曼光谱成像仪器的研究状况,观看了项目组研发的关键部件&mdash &mdash 回馈激光干涉仪、余气回收式高精度气体润滑直线运动系统、高精度气体润滑回转运动系统、高精度气体润滑调倾/调心工作台和高分辨力大承载气体润滑四维调整工作台等,与会专家对研究成果的创新性及研究进展给予了高度评价。  现场考察结束后,专家组对项目组进行了质询。会专家一致认为:国家重大科学仪器设备开发项目&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 2013年度工作进展良好、实施效果显著,按计划全面完成了项目任务书所提出的研究工作,并希望项目组在后续的研究工作中,继续加强推进仪器的可靠性、产品化、软件、外观设计和知识产权保护等工作,提升仪器产品的竞争力。  最后,项目负责人赵维谦教授代表项目组对与会领导、专家的莅临指导表示感谢,并表示会高度重视专家的建议,在今后项目的研发过程中进一步增强仪器产品化设计意识。
  • 北京2015激光共焦超高分辨显微学研讨会通知
    关 于 举 办&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 的通 知  为推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用,北京理化分析测试技术学会和北京市电镜学会共同决定在2015年3月17日下午13:00-18:00(星期二),在北京市北科大厦举办一次&ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 。会期半天。届时将邀请国内专家学者和青年科技工作者作相关学科的发展前沿学术报告。同时还邀请相关的主要厂商和公司到会宣讲及展示其最新产品、仪器及其最新功能。(学术报告时间安排表附后)  具体事项通知如下:  1、会议日期及报到时间:  报到时间:2015年3月17日(星期二)。下午1:00&mdash 1:30  会议日期:2014年3月17日(星期二)。下午1:30至下午6:00。  2、会议地点:北京市海淀区西三环北路27号,北科大厦(路西,中国剧院对面)三楼报告厅。  3、乘车路线:可乘300、704、708、730、811、830、817、849、968、特5、运通103、运通201、运通206等,在万寿寺站下车便到。中国剧院对面就是北科大厦(路西)。  4、会议将根据实际报名情况准备好资料,并提供饮料、饮品等。  5、特邀请您及您的同事、学生参加。并将回执务必于2015年3月13日前,用EMAIL告知:yujing8855@126.com。  6、会议负责人的具体联系地址、联系电话、邮箱如下:  (1)北京理化分析测试技术学会:于靖琦:  EMAIL:yujing8855@126.com, 联系电话:010-68731259,13521470325,  (2)北京市首都师范大学,郑维能,  EMAIL:Cnu_zhengweineng@163.com,联系电话:13671116332。  (3)北大医学部,何其华,  EMAIL:hqh@bjmu.edu.cn,联系电话:13501058133。  (4)军事医学科学院,张德添 ,  EMAIL:Zhangdetian2008@126.com,联系电话:13366267269。  此致  敬礼!  北京理化分析测试技术学会  北京市电镜学会  2015年2月27日  回执用EMAIL发回yujing8855@126.com告知。姓名工作单位个人邮箱联系电话和手机号码 &ldquo 北京市2015年度激光共焦超高分辨显微学学术研讨会&rdquo 学术报告时间安排表(2015年3月17日下午13:00-18:00,星期二,北京北科大厦)时 间主持人报 告 人报 告 内 容 或 题 目13:10&mdash 13:30于靖琦 会议报到。资料发放等。13:30&mdash 13:55郑维能北大工学院:席 鹏。超高时空分辨率光学显微镜技术及应用。13:55&mdash 14:20何其华蔡司:库玉龙。ZEISS new generation of Confocal, with the advanced Airyscan technology。14:20&mdash 14:45张德添清华大学:谢红。双光子活体成像技术在学习记忆和阿尔兹海默病研究中的应用。14:45&mdash 15:10孙 飞徕卡:王怡净。徕卡激光共焦超高分辨显微学最新进展。15:10&mdash 15:35王素霞北航:李晓光。应用组织工程修复脊髓损伤的基础及临床试验研究。15:35--15:45 会议之间休息。 15:45&mdash 16:10张德添尼康:赵 媛。尼康超分辨显微镜的最新进展。16:10&mdash 16:35孙 飞生物物理所:李岩。Functional Imaging of a Single GABAergic Neuron during Learning in Drosophila Central Brain。16:35&mdash 17:00郑维能奥林巴斯:方 琳。奥林巴斯透明化定制技术及超分辨率共聚焦显微镜。17:00&mdash 17:25何其华阜外医院:聂 宇。激活心外膜&mdash &mdash 哺乳动物心肌再生调控的新途径。17:25--17:50王素霞PE:卢 毅。激光共聚焦高内涵系统在高通量生物学上的应用。17:50&mdash 18:00郑维能何其华、张德添。解答问题、自由交流、宣布会议圆满结束。  注:上述所有报告时间均为20分钟以内,提问答疑时间均为5分钟以内。  北京理化分析测试技术学会  北京市电镜学会  2015年2月27日

研究级共焦仪相关的方案

  • 仪真分析仪器:中国南部珠江三角洲一带人群头发中汞含量和食物摄入关系的研究
    汞是一种剧烈的神经毒素,是威胁人类公共健康的因素之一。元素汞经常是因为采矿或者煤炭的燃烧从而形成汞蒸汽,并长距离的传播,从而污染水源和土壤。虽然汞通常以无机的形式存在,但是它经常可以在厌氧情况下由微生物作用形成毒性更大的甲基汞。甲基汞的毒性往往可以通过食物链的环节在生物体中形成生物积聚和生物放大,从而急剧恶化。头发中的汞和血液中的汞常被用做人体汞暴露程度评估的生物指标。一般头发中的汞是血液中汞浓度的250倍。与血汞测试比较,头发中的汞测试更为常用,因为汞在头发的生长过程中会累积,更能反应汞暴露的长期性。另一项研究表明,食用鱼肉是被认定为除了汞职业暴露之外的另一主要的甲基汞在人体中积聚的主要原因。基本上有75%-100%的汞在鱼肉中是以甲基汞的形式存在,所以通常食用更多鱼肉的人,头发中汞的含量也越高。因此作者以中国南方珠江三角洲一带以渔业为生的人群作为研究对象,设计了调查问卷,并对广东省多个地区人群的头发,主要食物如:鱼类,贝类,蔬菜,谷物进行了采样,并进行汞含量的分析。实验中甲基汞的测定用到的是Brooks Rand 生产的MERX全自甲基汞分析系统。通过实验分析发现,被调查人群头发中总汞和甲基汞的平均含量分别为1.08 ± 0.94 μg g-1 (0.14–7.15)和0.58 ±0.59μg g-1 (0.03–4.64)。进一步的研究表明,影响这些人头发中汞含量的因素主要和被分析人的年龄、饮食习惯以及抽烟习惯有密切关系,其中鱼肉和谷物的摄入是当地居民汞暴露的主要途径。
  • 北京佳仪:用PyGC-MS 研究丁腈橡胶/氯磺化聚乙烯并用胶硫化反应
    丁腈橡胶(NBR)以其优异的耐油性著称,在胶管工业生产中得到了广泛的应用。为了改善NBR 的耐臭氧老化性能,并用耐臭氧性优异的氯磺化聚乙烯(CSM)橡胶,可大大提高NBR 基复合胶管的使用寿命。由于NBR 与CSM 在饱和度方面的差异,共硫化性能较差,并用胶的力学性能下降。因此在制备NBR/CSM 并用胶时,首要考虑的是选用恰当的硫化体系和工艺,使NBR/CSM 能达到共硫化,使并用胶各胶相的硫化速度同步,同时在并用胶各胶相界面间产生共交联,使整个并用胶成为一个统一的体性网状结构(包括过渡层)在内,以获得良好的物理机械性能和使用性能。通常采用测定并用胶的宏观力学性能、玻璃化转变温度、交联密度等的变化来研究其共硫化反应,这些方法均不能说明并用胶在各胶相中交联反应的程度,从而对并用体系的选择和工艺控制带来困难。采用裂解气相色谱—谱联用技术(PyGC-MS),通过研究并用胶热裂解碎片的特征和分布,可以获得并用胶中各胶相的相对组成,从而得到并用胶共硫化的信息。本文应用PyGC-MS 法研究 NBR/CSM 并用橡胶体系各胶相在整个硫化周期的交联反应动力学特征,为实现体系的共硫化提供数据。
  • 中国南部珠江三角洲一带人群头发中汞含量和食物摄入关系的研究
    汞是一种剧烈的神经毒素,是威胁人类公共健康的因素之一。元素汞经常是因为采矿或者煤炭的燃烧从而形成汞蒸汽,并长距离的传播,从而污染水源和土壤。虽然汞通常以无机的形式存在,但是它经常可以在厌氧情况下由微生物作用形成毒性更大的甲基汞。甲基汞的毒性往往可以通过食物链的环节在生物体中形成生物积聚和生物放大,从而急剧恶化。头发中的汞和血液中的汞常被用做人体汞暴露程度评估的生物指标。一般头发中的汞是血液中汞浓度的250倍。与血汞测试比较,头发中的汞测试更为常用,因为汞在头发的生长过程中会累积,更能反应汞暴露的长期性。另一项研究表明,食用鱼肉是被认定为除了汞职业暴露之外的另一主要的甲基汞在人体中积聚的主要原因。基本上有75%-100%的汞在鱼肉中是以甲基汞的形式存在,所以通常食用更多鱼肉的人,头发中汞的含量也越高。因此作者以中国南方珠江三角洲一带以渔业为生的人群作为研究对象,设计了调查问卷,并对广东省多个地区人群的头发,主要食物如:鱼类,贝类,蔬菜,谷物进行了采样,并进行汞含量的分析。实验中甲基汞的测定用到的是Brooks Rand 生产的MERX全自甲基汞分析系统。通过实验分析发现,被调查人群头发中总汞和甲基汞的平均含量分别为1.08 ± 0.94 μg g-1 (0.14–7.15)和0.58 ±0.59μg g-1 (0.03–4.64)。进一步的研究表明,影响这些人头发中汞含量的因素主要和被分析人的年龄、饮食习惯以及抽烟习惯有密切关系,其中鱼肉和谷物的摄入是当地居民汞暴露的主要途径。

研究级共焦仪相关的资料

研究级共焦仪相关的论坛

  • 激光共焦扫描显微镜研究与软件研制

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]郑伟[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b]激光共焦扫描显微镜研究与软件研制[/b][/b][/font][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns.cnki.net/kcms/detail/detail.aspx?filename=1018798236.nh&dbcode=CMFD&dbname=CMFDTEMP&v=tp8D2bwk5nHWNaI8kWxjxAWIhbvBSi0KpipnvlBaa1QI0oJbPJNOQEe5HcciaOqv]激光共焦扫描显微镜研究与软件研制 - 中国知网 (cnki.net)[/url][/b][/color][/font]

  • 【金秋计划】魔芋胶、黄原胶、卡拉胶共混凝胶特性的研究

    [font=宋体, SimSun][color=#535151][b][size=20px]魔芋胶、黄原胶、卡拉胶[/size][size=20px][/size][/b][/color][/font][font=宋体, SimSun][color=#535151][b][size=20px] [/size][/b][/color][/font][font=宋体, SimSun][size=15px][color=#48494d]魔芋胶,系多年生天南星科草本植物魔芋(Amorphophallus Konjac. K)的地下块茎,其主要成分为葡甘露聚糖(KGM),其水解液中存在葡萄糖和甘露糖。[/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d]黄原胶,是一种稳定的微生物胞外代谢胶,完全水解后可得到葡萄糖、甘露糖、葡萄醛酸。[/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d]卡拉胶,也称角叉莱胶、鹿角藻胶、爱尔兰苔菜胶,主要是从低等隐花植物的角叉菜属(Chondrus)、麒麟菜属(Eucheuma)、杉藻属(Gigaruna)及沙菜属(Hypnea)等品种海藻中获得,其品种繁多,化学结构复杂。[/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d]胶类物质是重要的食品添加剂,然而由于被批准用作食品添加剂的食品胶极其有限,开发一种新的食品胶耗资巨大,所以胶的复配就显得特别重要。[/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font] [font=宋体, SimSun][size=15px][color=#48494d]许多研究表明,K- 卡拉胶与刺槐豆胶混合有增强凝胶强度的作用,然而用于食品工业的刺槐豆胶大多都是依靠进口,价格昂贵。同时,人们在研究中发现,产于我国的魔芋胶与刺槐豆胶有很多相类似的性质,并且用魔芋胶代替 刺槐豆胶与K-卡拉胶复配,其凝胶强度更强。考虑到魔芋胶与黄原胶也有良好的复配效果,本文选择以上不同等级的生物体中获得的胶类,进行混合,取得了更好的效果。[/color][/size][/font] [b][size=20px] [/size] [size=20px]食用胶的复配[/size][/b] [font=宋体, SimSun][b][size=15px][color=#007aaa]2.1 魔芋胶与卡拉胶的配比效应[/color][/size][/b][/font] [img=,637,533]https://ng1.17img.cn/bbsfiles/images/2024/09/202409042245487881_9600_6545943_3.png!w637x533.jpg[/img] [font=宋体, SimSun][size=15px][color=#48494d] 由图 1 可知,随着KGM的比例不断增大,卡拉胶的比例不断减小,当KGM与卡拉胶的共混比例为40/60时。凝胶强度达到最大值140g/cm2 。若继续改变两种胶的共混比例,凝胶强度下降。[/color][/size][/font] [font=宋体, SimSun][color=#007aaa][b][size=15px]2.2 魔芋胶与黄原胶的配比效应 [/size][/b][/color][/font][font=宋体, SimSun][size=15px][color=#48494d] [img=,573,437]https://ng1.17img.cn/bbsfiles/images/2024/09/202409042246170635_4662_6545943_3.png!w573x437.jpg[/img] 从图2可以看出,随着KGM的比例不断增大,黄原胶的比例不断减小,当KGM 与黄原胶的共混比例为60/40时。凝胶强度达到最大值。若继续改变两种胶的共混比例,凝胶强度下降。[/color][/size][/font][font=宋体, SimSun][size=15px][color=#48494d] [/color][/size][/font][font=宋体, SimSun][color=#007aaa][b][size=15px]2.3 魔芋胶与黄原胶的配比效应[/size][/b][/color][/font][font=宋体, SimSun][size=15px][color=#48494d]根据二元混合比例,初步确定KGM的比例为50%,余下黄原胶和卡拉胶的比例分别为10∶40、15∶35、20∶30、30∶20、35∶15、40∶10。[/color][/size][/font] [font=宋体, SimSun][color=#4d4e4f][b][size=20px]结果与讨论[/size][size=20px][/size][/b][/color][/font][font=宋体, SimSun][color=#4d4e4f][b][size=20px] [/size][/b][/color][/font][font=宋体, SimSun][size=15px][color=#48494d]魔芋胶和卡拉胶有比较好的共混凝胶特性。魔芋胶单独和黄原胶共混时,其凝胶特性也有一定程度的提高,但和卡拉胶共混比,效果要差,原因可能与魔芋胶和黄原胶的单体结构有类似有关,其降解产物均含有甘露糖。魔芋胶、卡拉胶、黄原胶三元共混发现有更好的协同作用,有关凝胶的更多测试参数以及更多的应用有待继续深入。[/color][/size][/font]

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

研究级共焦仪相关的耗材

  • 日本共立理化研究所WAK日本共立测试包
    日本共立理化研究所WAK日本共立测试包 深圳市方源仪器有限公司代理销售日本共立理化研究所WAK日本共立测试包,该WAK日本共立测试包有61种不同类别试剂包,也可检测一种参数下高、中、低浓度下含量值。该测试包使用非常简易,且广泛的使用在废水管理、环境污染等调查研究(周)。 日本共立理化研究所WAK日本共立测试包产品展示: 日本共立理化研究所WAK日本共立测试包测试参数:前处理剂:型 号名 称目 的使用次数Cr-RA全铬前处理剂3价铬转换成6价铬时必用100NO3-RA硝酸前处理剂在溶液混有NO2时必用 50WAS-D-SO4溶解铁用的稀硫酸中和处理、金属类测定时酸处理20mlWA-NH4-D 氨分离浓缩试剂除去溶液中干扰物质时用50UVR-Me金属分解装置有机物分解装置50 型 号测量项目测 量 范 围测量时间测定回数- PO4(C) 磷酸(高浓度)2 5 10 20 50 1001分钟40次/盒0.66 1.65 3.3 6.6 16.5 33- PO4磷酸0.2 0.5 1 2 5 101分钟40次/盒0.066 0.165 0.33 0.66 1.65 3.3- PO4(D)磷酸(低浓度)0.05 0.1 0.2 0.5 1 25分钟40次/盒0.02 0.05 0.1 0.2 0.5 1 -S硫化物0.1 0.2 0.5 1 2 53分钟40次/盒-SiO2 二氧化硅2 5 10 20 50 1006.5分40次/盒-SiO2(D)二氧化硅(低浓度) 0.5 1 2 5 106.5分40次/盒-SO3(C)亚硫酸(高浓度)50 100 200 500 1000 2000 10秒50次/盒-TH硬度0 10 20 50 100 20030秒 50次/盒-TNi氮0 5 10 25 50 10020分钟40次/盒 -Zn锌0 0.2 0.5 1 2 5以上1分钟50次/盒-Mg镁0 1 2 5 10 201分钟50次/盒0 4.1 8.2 20.5 41 82-Mn锰0.5 1 2 5 10 20以上30秒50次/盒-NH4(C)氨(高浓度)0 0.4 0.8 1.6 4 8 16以上15分钟50次/盒- NH4氨0.16 0.4 0.8 1.6 4/85分钟50次/盒-Ni镍0.5 1 2 5 105分钟50次/盒-Ni(D)镍(低浓度)0.3 0.5 1 2 5 102分钟50次/盒-NO2(C)亚硝酸(高浓度)16 33 66 160 330 660以上2分钟50次/盒 5 10 20 50 100 200以上- NO2亚硝酸0.02 0.05 0.1 0.2 0.5 12分钟50次/盒 0.005 0.01 0.02 0.05 0.1 0.2 0.5- NO3(C)硝酸(高浓度)90 225 450 900 2250 45005分钟50次/盒20 50 100 200 500 1000- NO3硝酸1 2 5 10 20 453分钟 50次/盒0.2 0.5 1 2 5 10- O3臭氧0.1 0.2 0.5 1 2 51分钟 50次/盒-PHPHPH5.0-9.5, 0.5间隔 10阶段20秒50次/盒 -TBLTBLPH1.6-3.4, 0.2间隔 10阶段20秒50次/盒-BCGBCG(酸雨)PH3.6-6.2 0.2间隔 14阶段20秒50次/盒-BTBBTBPH5.8-8.0以上 0.2间隔 12阶段20秒50次/盒-TBHTBH PH8.2-9.6 0.2间隔 7阶段20秒50次/盒-Pd钯1 2 5 10 20 30 50 1分钟50次/盒-PMDPMD(浴池,水池)0 3 6 10 12 157分钟 50次/盒-PNLPNL0 0.2 0.5 1 2 5 108分钟40次/盒 -COD(H)COD高浓度0 30 60 120 200 250以上5分钟50次/盒-CODCOD0 5 10 13 20 50 1005分钟50次/盒-COD(D)COD低浓度0 2 4 6 8以上5分钟50次/盒-Cr6+6价铬 0.05 0.1 0.2 0.5 1 22分钟50次/盒-CrT总铬0.5 1 2 5 10 20 5.5分40次/盒-Cu铜0.5 1 2 3 5 10以上1分钟 50次/盒-CuM铜(排水)0.5 1 3 5 102分钟50次/盒 -F游离氟0 0.4 0.8 1.5 3 8以上10分钟50次/盒-Fe铁0.2 0.5 1 2 5 102分钟50次/盒-Fe(D)铁(低浓度)0.05 0.1 0.3 0.5 1 22分钟50次/盒-Fe2+2价铁0.2 0.5 1 2 5 1030秒50次/盒- Fe2+(D)2价铁(低浓度)0.1 0.2 0.5 0.8 1.2 2.5 30秒50次/盒-FOR甲醛0 0.1 0.2 0.3 0.5 1 24分钟 40次/盒-H2O2?过氧化氢(高浓度)0.02 0.1 0.2 0.5 1 51分钟50次/盒 -H2O2过氧化氢3 7 13 20 35 70 100 130 200 400 70020秒50次/盒-HYD肼0.05 0.1 0.2 0.5 1 210分钟40次/盒-Me5种金属总量0 0.2 0.5 1 2 5以上1分钟50次/盒-Ag银0 0.5 1 2 5以上3分钟50次/盒-Al铝0 0.05 0.1 0.2 0.5 11分钟40次/盒-Au金0 2 5 10 2030秒40次/盒 -B硼0 0.5 1 2 5 1030分钟50次/盒-Ca钙0 2 5 10 20 50以上2分钟50次/盒0 5 12.5 25 50 125以上-Cl(300)氯化物200 250 300以上10秒40次/盒-Cl(200) 氯化物100 150 200以上10秒40次/盒-Cl(D)氯化物(低浓度) 0 2 5 10 20 50以上1分钟40次/盒-Ag银0 0.5 1 2 5以上 3分钟50次/盒-Al铝0 0.05 0.1 0.2 0.5 11分钟 40次/盒-Au金0 2 5 10 2030秒40次/盒 -B硼0 0.5 1 2 5 1030分钟50次/盒-Ca 钙0 2 5 10 20 50以上2分钟50次/盒0 5 12.5 25 50 125以上-Cl(300) 氯化物200 250 300以上10秒40次/盒-Cl(200)氯化物 100 150 200以上10秒40次/盒-Cl(D)氯化物(低浓度)0 2 5 10 20 50以上 1分钟40次/盒-ClO(C)残留氯(高浓度)5 10 20 30 50 100 150 200 300 600 1000以上10秒50次/盒-ClODP残留氯(游离)0.1 0.2 0.4 1 2 510秒50次/盒-TClO总残留氯0.1 0.2 0.4 1 2 52分钟50次/盒 -ClO2二氧化氯0.2 0.4 0.6 1 2 5 1010秒40次/盒-CN 游离氰0.02 0.05 0.1 0.2 0.5 1 210分钟40次/盒 中国代理商:深圳市方源仪器有限公司
  • 日本共立理化研究所镍测试包镍离子测试
    日本共立理化研究所镍测试包镍离子快速测试盒 日本共立理化研究所镍测试包镍离子快速测试盒,方源仪器热销供应,镍测试包有高浓度镍测试包和一般浓度测试包两种,可根据客户需要来选择。(周) 常规测试参数:测试参数 测试型号 测试范围 测试次数 测试时间镍 WAK-NI(D) 0.3 0.5 1 2 5 10 50次/盒 30s 日本共立理化研究所镍测试包镍离子快速测试盒操作方法: 1.拔出管类端的细丝。2.以孔为上,用手指捏紧比色管的下半,赶出里面的空气。3.插入被检测水质中,吸入水一半左右时停止。4.轻轻摇晃5-6次,在指定的时间后(途中摇晃1-2次),与所带标准比色卡比色。 日本共立理化研究所镍测试包镍离子快速测试盒型 号测量项目测 量 范 围测量时间测定回数-Ag银0 0.5 1 2 5以上3分钟50次/盒-Al铝0 0.05 0.1 0.2 0.5 11分钟40次/盒-Au金0 2 5 10 2030秒40次/盒-B硼0 0.5 1 2 5 1030分钟50次/盒-Ca钙0 2 5 10 20 50以上2分钟50次/盒0 5 12.5 25 50 125以上-Cl(300)氯化物200 250 300以上10秒40次/盒-Cl(200)氯化物100 150 200以上10秒40次/盒-Cl(D)氯化物(低浓度)0 2 5 10 20 50以上1分钟40次/盒-ClO(C)残留氯(高浓度)5 10 20 30 50 100 150 200 300 600 1000以上10秒50次/盒-ClODP残留氯(游离)0.1 0.2 0.4 1 2 510秒50次/盒-TClO总残留氯0.1 0.2 0.4 1 2 52分钟50次/盒-ClO2二氧化氯0.2 0.4 0.6 1 2 5 1010秒40次/盒-CN游离氰0.02 0.05 0.1 0.2 0.5 1 210分钟40次/盒-COD(H)COD高浓度0 30 60 120 200 250以上5分钟50次/盒-CODCOD0 5 10 13 20 50 1005分钟50次/盒-COD(D)COD低浓度0 2 4 6 8以上5分钟50次/盒-Cr6+6价铬0.05 0.1 0.2 0.5 1 22分钟50次/盒 -CrT总铬0.5 1 2 5 10 205.5分40次/盒-Cu铜0.5 1 2 3 5 10以上1分钟50次/盒-CuM铜(排水)0.5 1 3 5 102分钟50次/盒-F游离氟0 0.4 0.8 1.5 3 8以上10分钟50次/盒-Fe铁0.2 0.5 1 2 5 102分钟50次/盒-Fe(D)铁(低浓度)0.05 0.1 0.3 0.5 1 22分钟50次/盒-Fe2+2价铁0.2 0.5 1 2 5 1030秒50次/盒- Fe2+(D)2价铁(低浓度)0.1 0.2 0.5 0.8 1.2 2.530秒50次/盒-FOR甲醛0 0.1 0.2 0.3 0.5 1 24分钟40次/盒-H2O2?过氧化氢(高浓度)0.02 0.1 0.2 0.5 1 51分钟50次/盒-H2O2过氧化氢3 7 13 20 35 70 100 130 200 400 70020秒50次/盒 中国代理商:深圳市方源仪器有限公司
  • 共焦位移传感器配件
    共焦位移传感器配件是测量位移的高精度位移传感器,共焦位移传感器配件可用在标准的和全球唯一独特的小型化设计产品,运用不同反射特性测量各种不同的表面,并用于单面厚度的测量。共焦位移传感器配件规格测量范围(mm):0.12 | 0.300 | 1 | 3 | 8.5 | 10 | 20 | 22 | 24 最大线性0.12μm 最大分辨率0.005μm 极小和恒定的光斑尺寸 高精度测量,也用于镜子和玻璃 纳米级分辨率 单面厚度测量 轴向和径向版本
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制