当前位置: 仪器信息网 > 行业主题 > >

中子照相系统

仪器信息网中子照相系统专题为您提供2024年最新中子照相系统价格报价、厂家品牌的相关信息, 包括中子照相系统参数、型号等,不管是国产,还是进口品牌的中子照相系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中子照相系统相关的耗材配件、试剂标物,还有中子照相系统相关的最新资讯、资料,以及中子照相系统相关的解决方案。

中子照相系统相关的论坛

  • 煤的中子瞬发伽玛能谱分析

    煤的中子瞬发伽玛能谱分析   20世纪90年代初,我国某大型钢铁公司为正在建设中的京九铁路生产的一批钢轨,由于硫含量超标而全部退货,损失很大。因为硫含量超标的钢发脆,用在铁路上可能会造成重大事故。  钢中硫含量为什么超标呢?问题出在进入炼焦炉的煤的质量上。煤中硫含量如果超过千分之一,所炼出的焦炭硫含量也就超标。用这样的焦炭炼出的钢也就不会合格了。  要保证钢轨质量,就必须对炼焦所用煤的质量严格把关。  煤中硫含量是可以用化学方法分析测定的。可惜,化学分析太慢,该钢铁公司每天炼焦所用煤要装500节火车厢运来。要对每节车厢的煤作化学分析,来不及。因此,大型钢铁企业很需要建立煤质快速分析方法。  20世纪末,煤质快速分析方法在更大范围内提上了日程。环保要求,大型热电厂所用燃料煤中的硫含量要小于千分之五,否则城市空气中的二氧化硫含量就要超标。  生活在北京市西南远郊区的人们不难发现,近几年来,每天晚上都有许多运煤大卡车在公路上迅跑。原来因为房山区磁家务煤矿产的煤含硫量极低,但发热量差些。将这样的煤与其他煤矿产的含硫量偏高的煤混合使用,就可达到含硫小于千分之五的环境保要求。  北京每天空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量报告表明,近来三级(轻微污染)或使空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量更坏的罪魁祸首大多是“可吸入颗粒物”。二氧化硫含量经常是优良的一、二级,只有极少数日子才是三级。这其中就有发电厂用低硫煤的贡献。  我国现有600多个市(包括县级市),其中大多数靠燃煤的热电厂供电。这些热电厂大多需要陆续安装煤质快速分析装置以达到环保要求。这是我国特有的国情,因为我国是燃煤大国。发达国家大多烧石油。  发达国家的大型铝厂、大型水泥厂、钢厂等近年来用中子瞬发伽玛能谱仪在生产流水线上对原料的元素成分作在线分析以保证产品的质量,同时也可用于煤质分析。  中子瞬发伽玛能谱仪由中子源、伽玛射线能谱仪、物料传送系统、射线屏蔽准直系统、控制与剂量安全系统等部分组成。其基本原理是,中子与物料中的各种元素的原子核作用,使原子核处于激发状态。这些激发态的寿命很短,即刻发射出特征伽玛射线。不同类的原子核发出来不同能量的伽玛射线。特征伽玛射线的强度与物料中该种原子核的含量成正比。这与光谱分析相仿,不同元素的原子发射出不同能量(波长)的光。两者差别只是发出光子的能量不同,光谱分析的可见光子能量只有几电了伏,而伽玛光子的能量是兆电子伏左右。再就是激发方式不同,光谱分析的激发源是加热燃烧,伽玛能谱分析的激发源是中子。  为什么用中子去轰击物质呢?因为物料是大块物质,用中子才能穿透到大块物质的深部。  瞬发伽玛能谱分析所用中子源有二类。一是锎-252自发裂变源。锎-252是人造的,原子序数高达98。它会自动分裂成两个较轻的原子核,同时放出3个中子。它的半衰期是2.64年,即10000个锎-252原子核经2.64年后就只剩5000个了。锎自发裂变中子的平均能量是2.4兆电子伏。另一类是中子管。中子管是小型的真空密封式加速器。由一个质子与一个中子组成的氘原子核加速到10万电子伏左右,打到由一个质子与二个中子组成的氚原子核上。氘氚核反应变成一个中子与一个氦核。中子的能量是14兆电子伏。  锎源发出的中子与煤中各种原子核碰撞后损失能量(这一过程叫做慢化),很快就成为能量只有0.0253电子伏左右的热中子。所谓“热” 中子,就是其速度与周围物质的气体分子运动速度平衡的中子。室温时,其速度是2200米/秒。热中子在物质中扩散,然后被某原子核俘获吸收。中子从产生到被吸收的时间一般是数百毫秒。热中子被原子核吸收后立刻又发射出特征伽玛射线。这种伽玛射线叫做俘获伽玛射线,打到伽玛谱仪的探测器上就被记录下来。从中子的产生到俘获伽玛射线的产生不到1秒的时间,所以叫做“瞬发伽玛”。  锎源的中子能量不高,较易屏蔽,而且运行维护简单。用锎源的瞬发伽玛分析装置可以测得煤中的硫含量与灰分含量。关于灰分,仪器直接测得的是钙、硅、镁、铁等元素的含量,再按其各自的氧化物计算,即得到灰分含量,因为灰分就是这些氧化物的总和。  由于氧和碳的热中子俘获概率极低,用此方法测不到煤中氧和碳的总量。氢的热中子俘获概率较高,容易测到其俘获伽玛(2.2兆电子伏),但由于通常用石蜡、聚乙烯或水作屏蔽物质,周围物质产生的氢俘获伽玛本底太强,很难测准煤中氢的贡献,因而得不到煤中的水含量。要测水含量还要加别的装置。  近年来开展起来用用中子管作源的瞬发伽玛谱仪系统,除了利用中子慢化后产生的俘获伽玛测定硫和灰分含量以外,还可以直接测得煤中碳与氧的总量,因为14兆电子伏的快中子可以与碳和氧核发生非弹性碰撞,使碳和氧核分别激发到4.43与6.13兆电子伏的激发态,并迅速退激发到基态而发射出4.43与6.13兆电子伏的特征伽玛射线。总碳量决定了煤的发热量,而总氧量减去灰分中的氧量就是煤中水的含氧量,由此可以得到煤中含水量。  用中子管比之用锎源的优点是可以得到煤质的更全面的数据。缺点是14兆电子伏的中子的屏蔽准直装置比较庞大,运行维护复杂,所用中子管必需是长寿命的优质品,所用探测器也需有较强的抗辐照损伤的能力。  我国南京某单位于20世纪90年代中期,与国外同期独立开发了用锎源的瞬发伽玛能谱分析系统,分析钢厂的煤,对硫含量与灰分含量的测定达到了使用要求,但未能完成煤中水分测定。  20世纪90年代后期至今,南京另一单位进行了电厂用煤的中子管瞬发伽玛分析系统开发研究,并在此基础上与法国某公司合作开发研究,并在此基础上与法国某公司合作开发实用装置。  21世纪初,长春某单位又用其自制中子管开发出电厂用煤的瞬发伽玛分析系统,正在电厂试用。  由当前市场需求推动的中子瞬发伽玛能谱分析装置必将在我国生根、开花,结出丰硕成果,为经济建设和环保作出应用的贡献。

  • 煤的中子瞬发伽玛能谱分析

    煤的中子瞬发伽玛能谱分析中国原子能科学研究院老科协孙汉城  20世纪90年代初,我国某大型钢铁公司为正在建设中的京九铁路生产的一批钢轨,由于硫含量超标而全部退货,损失很大。因为硫含量超标的钢发脆,用在铁路上可能会造成重大事故。  钢中硫含量为什么超标呢?问题出在进入炼焦炉的煤的质量上。煤中硫含量如果超过千分之一,所炼出的焦炭硫含量也就超标。用这样的焦炭炼出的钢也就不会合格了。  要保证钢轨质量,就必须对炼焦所用煤的质量严格把关。  煤中硫含量是可以用化学方法分析测定的。可惜,化学分析太慢,该钢铁公司每天炼焦所用煤要装500节火车厢运来。要对每节车厢的煤作化学分析,来不及。因此,大型钢铁企业很需要建立煤质快速分析方法。  20世纪末,煤质快速分析方法在更大范围内提上了日程。环保要求,大型热电厂所用燃料煤中的硫含量要小于千分之五,否则城市空气中的二氧化硫含量就要超标。  生活在北京市西南远郊区的人们不难发现,近几年来,每天晚上都有许多运煤大卡车在公路上迅跑。原来因为房山区磁家务煤矿产的煤含硫量极低,但发热量差些。将这样的煤与其他煤矿产的含硫量偏高的煤混合使用,就可达到含硫小于千分之五的环境保要求。  北京每天空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量报告表明,近来三级(轻微污染)或使空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量更坏的罪魁祸首大多是“可吸入颗粒物”。二氧化硫含量经常是优良的一、二级,只有极少数日子才是三级。这其中就有发电厂用低硫煤的贡献。  我国现有600多个市(包括县级市),其中大多数靠燃煤的热电厂供电。这些热电厂大多需要陆续安装煤质快速分析装置以达到环保要求。这是我国特有的国情,因为我国是燃煤大国。发达国家大多烧石油。  发达国家的大型铝厂、大型水泥厂、钢厂等近年来用中子瞬发伽玛能谱仪在生产流水线上对原料的元素成分作在线分析以保证产品的质量,同时也可用于煤质分析。  中子瞬发伽玛能谱仪由中子源、伽玛射线能谱仪、物料传送系统、射线屏蔽准直系统、控制与剂量安全系统等部分组成。其基本原理是,中子与物料中的各种元素的原子核作用,使原子核处于激发状态。这些激发态的寿命很短,即刻发射出特征伽玛射线。不同类的原子核发出来不同能量的伽玛射线。特征伽玛射线的强度与物料中该种原子核的含量成正比。这与光谱分析相仿,不同元素的原子发射出不同能量(波长)的光。两者差别只是发出光子的能量不同,光谱分析的可见光子能量只有几电了伏,而伽玛光子的能量是兆电子伏左右。再就是激发方式不同,光谱分析的激发源是加热燃烧,伽玛能谱分析的激发源是中子。  为什么用中子去轰击物质呢?因为物料是大块物质,用中子才能穿透到大块物质的深部。  瞬发伽玛能谱分析所用中子源有二类。一是锎-252自发裂变源。锎-252是人造的,原子序数高达98。它会自动分裂成两个较轻的原子核,同时放出3个中子。它的半衰期是2.64年,即10000个锎-252原子核经2.64年后就只剩5000个了。锎自发裂变中子的平均能量是2.4兆电子伏。另一类是中子管。中子管是小型的真空密封式加速器。由一个质子与一个中子组成的氘原子核加速到10万电子伏左右,打到由一个质子与二个中子组成的氚原子核上。氘氚核反应变成一个中子与一个氦核。中子的能量是14兆电子伏。  锎源发出的中子与煤中各种原子核碰撞后损失能量(这一过程叫做慢化),很快就成为能量只有0.0253电子伏左右的热中子。所谓“热” 中子,就是其速度与周围物质的气体分子运动速度平衡的中子。室温时,其速度是2200米/秒。热中子在物质中扩散,然后被某原子核俘获吸收。中子从产生到被吸收的时间一般是数百毫秒。热中子被原子核吸收后立刻又发射出特征伽玛射线。这种伽玛射线叫做俘获伽玛射线,打到伽玛谱仪的探测器上就被记录下来。从中子的产生到俘获伽玛射线的产生不到1秒的时间,所以叫做“瞬发伽玛”。  锎源的中子能量不高,较易屏蔽,而且运行维护简单。用锎源的瞬发伽玛分析装置可以测得煤中的硫含量与灰分含量。关于灰分,仪器直接测得的是钙、硅、镁、铁等元素的含量,再按其各自的氧化物计算,即得到灰分含量,因为灰分就是这些氧化物的总和。  由于氧和碳的热中子俘获概率极低,用此方法测不到煤中氧和碳的总量。氢的热中子俘获概率较高,容易测到其俘获伽玛(2.2兆电子伏),但由于通常用石蜡、聚乙烯或水作屏蔽物质,周围物质产生的氢俘获伽玛本底太强,很难测准煤中氢的贡献,因而得不到煤中的水含量。要测水含量还要加别的装置。  近年来开展起来用用中子管作源的瞬发伽玛谱仪系统,除了利用中子慢化后产生的俘获伽玛测定硫和灰分含量以外,还可以直接测得煤中碳与氧的总量,因为14兆电子伏的快中子可以与碳和氧核发生非弹性碰撞,使碳和氧核分别激发到4.43与6.13兆电子伏的激发态,并迅速退激发到基态而发射出4.43与6.13兆电子伏的特征伽玛射线。总碳量决定了煤的发热量,而总氧量减去灰分中的氧量就是煤中水的含氧量,由此可以得到煤中含水量。  用中子管比之用锎源的优点是可以得到煤质的更全面的数据。缺点是14兆电子伏的中子的屏蔽准直装置比较庞大,运行维护复杂,所用中子管必需是长寿命的优质品,所用探测器也需有较强的抗辐照损伤的能力。  我国南京某单位于20世纪90年代中期,与国外同期独立开发了用锎源的瞬发伽玛能谱分析系统,分析钢厂的煤,对硫含量与灰分含量的测定达到了使用要求,但未能完成煤中水分测定。  20世纪90年代后期至今,南京另一单位进行了电厂用煤的中子管瞬发伽玛分析系统开发研究,并在此基础上与法国某公司合作开发研究,并在此基础上与法国某公司合作开发实用装置。  21世纪初,长春某单位又用其自制中子管开发出电厂用煤的瞬发伽玛分析系统,正在电厂试用。  由当前市场需求推动的中子瞬发伽玛能谱分析装置必将在我国生根、开花,结出丰硕成果,为经济建设和环保作出应用的贡献。

  • 英国国家物理实验室升级中子测量设施

    [color=#000000]英国国家物理实验室(NPL)宣布升级新的中子测量设施,增强英国核能、国防和聚变研究领域的安全可靠运行和持续发展。升级的新型粒子加速器为荷兰制造的2.0 MV同轴VHC Tandetron,功率将提高6倍,成为全球少数提供精确可追踪中子标准的设施之一。新的加速系统可满足英国核基础设施和未来反应堆安全高效运行所需的新仪器和探测器的特性需求,支持聚变研究机构及其供应链,为国防和安全部门生产单能中子场和热中子场。[/color][来源:科技部][align=right][/align]

  • 关于大板照相

    弱弱地请问, 金相显微镜中的大板照相是一个什么装置, 有什么优缺点呢?

  • 便携式中子剂量仪 中子剂量当量率仪

    便携式中子剂量仪 中子剂量当量率仪

    RAM-800 中子剂量当量率仪采用高灵敏的进口He3管作为探测器,反应速度快。该便携式中子剂量仪使用方便;灵敏度高、抗γ性能好、能量响应特性好,即可用作便携式仪器又可用作固定式中子剂量监测仪。此外便携式中子剂量仪通过配套的RenRiNeutron中子剂量率管理软件可将存储的数据读出后分析。该[url=http://www.zgfangfuyuan.com/product/szjcly/167.html]便携式中子剂量仪[/url]适用于环保、化工、石油、医疗、进出口商检、核电、加速器、中子源和其他安检、边境控制、海关检测等需进行中子辐射检测的场合。[img=中子剂量仪,660,550]http://ng1.17img.cn/bbsfiles/images/2016/07/201607061132_599440_3098478_3.jpg[/img]功能特点:1、中子剂量率,中子累积剂量均可测量。2、高灵敏度,宽测量范围,良好的能量响应特性。3、数字及标尺显示剂量率状态。4、中、英文双语菜单式操作界面。5、数字式LCD液晶显示,高亮背光功能。6、可存储800条剂量率,能随时查看,断电不丢失。7、USB数据接口,可将数据上传到计算机。8、剂量率超阈值后声、光报警功能。9、超阈值报警、阻塞报警、探测器故障报警功能。10、电池电量实时显示。11、标配:RenRiNeutron中子剂量率管理软件。技术规格: 1、测量类型:中子射线2、探测器: 进口3He正比计数管3、中子测量范围:剂量率:0.1μSv/h ~100mSv/h累积剂量:0.01μSv ~10Sv4、能量范围:中子0.025eV~16MeV5、慢化材料:聚乙烯球6、角响应:±20%7、测量时间:1~120秒可编程设置8、中子灵敏度:大约 1.4 CPS/μSv/h9、伽玛灵敏度:对伽玛射线不灵敏(相对Co-60 的100mSv/h的伽玛射线内)11、报 警 阈: 0.25、2.5、10、20(μSv/h)或自行设置12、显示单位: 剂 量 率:μSv/h、μGy/h、μR/h;累计剂量:nSv;计数率:CPS13、通讯:USB通讯接口,仪器可存储800条数据,并可导出到RenRiNeutron软件14、使用环境:温度-15℃~+50℃、相对湿度(在40℃温度下)≤95%15、电源和功耗:2节标准1号电池(或充电电池)整机耗电≤120mW 16、重量和尺寸:约 300×250×245 (mm)、约7.8Kg17、RenRiNeutron中子剂量率管理软件提供文字表格、曲线图形显示联系人:张经理 13720045883相关内容:http://www.zgfangfuyuan.com/product/szjcly/167.html相关内容:http://www.fsybyq.com/product/zzjcy/167.html

  • 【分享】基础知识--中子

    中子(neutron)是组成原子核的核子之一。中子是1932年B.查德威克用a粒子轰击的实验中发现,并根据E. 卢瑟福的建议命名的。中子的质量与质子的质量大约相等,并且中子与γ射线一样也不带电. 因此,中子与原子核或电子之间没有静电作用. 当中子与物质相互作用时,主要是和原子核内的核力相互作用, 与外壳层的电子不会发生作用. 中子与物质相互作用的类型主要取决于中子的能量.在辐射防护中,根据中子能量的高低,可以把中子分为慢中子(能量小于5 kev,其中能量为0.025ev 的称为热中子), 中能中子(其能量范围为5-100 kev), 和快中子(0.1-500Mev)3种. 中子与物质的原子核相互作用过程基本上可以分为两类:散射和吸收.散射又可以分为弹性散射和非弹性散射.慢中子与原子核作用的主要形式是吸收.中能中子和快中子与物质作用的主要形式是弹性散射.对于能量大于10Mev的快中子.以非弹性散射为主.在上述的中子和物质的相互作用过程中,除了弹性散射之外,其余各种现象均会产生次级辐射.从辐射防护的观点来看,是相当重要的.在实际工作中,大多数情况遇到的是快中子,快中子与轻物质发生弹性散射时,损失的能量要比与重物质作用时多得多,例如,当快中子与氢核碰撞时,交给反冲质子的能量可以达到中子能量的一半.因此含氢多的物质,像水和石蜡等均是屏蔽中子的最好材料,同时水和石蜡,由于价格低廉,容易获得,效果又好,是最常用的中子屏蔽材料. 石蜡能隔阻中子[flash]http://ng1.17img.cn/bbsfiles/images/2017/10/2009814235022_01_0_3.swf[/flash]

  • 【求助】急需“镅-铍中子源”的中子湿度计

    [size=4]我研究试验急需一台“镅-铍中子源”的中子湿度计,我想打听其测湿范围能达到多少,精度又是多少,能否用于散粒物料的湿度检测,其价格是多少啊?还有就是如何就此写一个实用新型专利啊?[/size]

  • 求助照相的文献2篇

    电脑知识与技术 2004年10期 【年、卷、期、起止页码】:2004年10期【全文链接】:http://2010.cqvip.com/onlineread/onlineread.asp?id=96173172.【序号】:2【作者】:赵刚【题名】:用数码照相机拍摄证件照【期刊】:《照相机》 2004年02期【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-ZXJZ200402020.htm

  • 中子散射让费米液体展示出新的密度波 有望推动高温超导理论的发展

    科技日报 2012年03月30日 星期五 本报讯(记者刘霞)据物理学家组织网3月29日(北京时间)报道,科学家们使用中子散射,首次对二维费米液体进行了研究,结果发现了一类新的波长非常短的密度波(高温超导性就源于这类密度波动)。科学家们认为,电子等费米液体可能也存在同样的现象,因此,最新发现有望推动高温超导理论的发展,也有助于科学家们理解金属和中子星的成分。研究发表在3月28日出版的《自然》杂志上。 费米液体由相互作用力很强的费米粒子(包括夸克子、电子、质子和中子等)组成。费米子广泛存在于原子核、金属、半导体和中子星内。费米液体也是科学家们用来建模并解释原子甚至亚原子粒子之间复杂的相互作用(这类互作用受到名为“量子多体物理学”的量子力学的支配)的两类量子液体之一。 费米子也满足泡利不相容原理,即两个以上的费米子不能出现在相同的量子态中,这就使得费米子系统相当复杂。因此,尽管另一类由胶子、光子等玻色子组成的量子液体的物理学基础已被科学家破解,但费米液体一直是个未解之谜。 在最新研究中,来自法国国家科学研究院(CNRS)、芬兰阿尔托大学、美国橡树岭国家实验室、纽约州立大学布法罗分校和奥地利约翰开普勒林茨大学的科学家们通过中子散射,首次对一份费米液体中波长非常短的元激发进行了直接观察。在研究中,中子被集中在一层原子厚的氦-3上,在地球上,氦-3比氦-4(用于氢气球和宇宙飞船中)少见,其在接近绝对零度时的行为就像费米液体。 使用这种散射技术,科学家们观察到了高频率的、波长非常短的密度波——零声波振荡。科学家们认为,在费米氦液体中发现这些振荡非常有意思,因为如果能在由电子组成的费米液体中观察到这类高频密度振动,这将有望让高温超导领域大大受益。 该研究团队接下来打算对该费米子氦系统的属性进行调查,随后再对电子液体进行调查。 该研究的领导者、法国国家科学研究院凝聚态物理学专家亨利·郭德弗瑞表示:“如果费米子电子系统也拥有同样的属性,这会让研究电子系统的科学家深感兴奋,而且,我们的最新发现也表明,电子液体有可能拥有同样的属性。这是量子液体领域的一个重大发现,会对量子多体物理学产生重要的影响,尤其有助于科学家们理解金属和中子星的成分。” 总编辑圈点: 尽管经过了编译加工,费米液体展示出新密度波这样的内容仍然非常生涩难懂,但如果由此实现高温超导,必将成为与核技术一样引领人类历史的发现。这便是基础科学研究的特点:尽管多数时候难以被理解和默默无闻,却是认识自然现象、揭示规律并获取新知识、新原理、新方法的必由之路,其衍生出的发明创造已经涵盖了现代文明的每个角落。从类似消息中,我们既要喝彩新的发现,更要看到竞争,多问问自己做得怎么样。

  • 玩照相机的--请你告诉我

    我出的度量衡问题其实是个观察能力的问题,知识都是随意而来,只要你有心。下面看看玩照相的人是否仔细:当然好像还不是数码。1。你知道照相机光圈的档次是什么规律排的吗? 例如:最大一档是2.0时往下怎么排?2。你知道照相机快门档次是什么规律排的吗?3。你能在两分钟内用方程式表达底片感光度ISO标准和DIN标准的关系吗? 你知道 ISO 100 = 21 DIN ISO 200 = 24 DIN4。谁能告诉我一卷正宗的135胶卷有多长?5。一张12吋照片是12*10 英寸平方就是30cm*25cm 一张6照片是6*4 英寸平方就是15cm*10cm 怎么把大张的裁成6吋的? 其实这也不“转弯”,就是玩玩而已,玩中知道一些其他的事。

  • 照相photo提示load

    我现在日电1230照相出现photo老是load状态,电镜放了段时间没有使用,但机器是开着的。以前是正常的,现在放底片进去就出现load不能拍照。底片也没有卡住,真空也抽好了。求大侠帮忙分析,是那里出问题了。有几种解决方案,谢谢。

  • 【原创】牛津仪器推出最新应用于中子散射研究的低温磁场环境仪器(2007年8月1日)

    牛津仪器纳米科学部推出一系列最新产品,可以为中子散射研究提供低温高磁场的样品环境(低温至25mk, 磁场至15T)。 牛津仪器有独一无二的多领域科研团队,与从事中子散射研究的科学家团体有着多年的合作。牛津仪器为能设计出应用于中子散射研究的低温磁场系统而感到骄傲,我们一直处于该领域的最前沿。牛津仪器超导部此次研发出的新仪器是 VarioxAc-TL, Tritontm DR制冷机 和新型超导磁体。 [color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 【讨论】耶拿产品居然还有照相机???

    昨晚看电视看见有耶拿照相机卖,800万相素799元...不知道那个耶拿是不是做[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的耶拿...不过产地说是德国的...那照相机里面也是CCD呈相..不知道那个CCD和大型仪器里的CCD检测器有什么区别...

  • 中子射线:稍微懂点“内功”

    福岛核事故以来,相信大家对电离辐射的概念不再陌生。大师兄α射线,是带有2个质子和2个中子的氦核,二师兄β射线,是高速运动的电子,三师兄γ射线,是一种高能光子,四师兄X射线,是一种比γ射线能量低一些的高能光子。除此之外,还有一个名气不大,本事不小的小师弟,他就是中子射线。中子射线之所以排在四位师兄的后面,因为出场的机会较少。α、β和γ常常产生于天然放射性衰变中,X射线也常常与医学检查联系在一起。除此之外,工业生产当中也时不时地会遇到这几位的身影。相比之下,中子射线就没那么常见了。只有极少数放射性元素衰变时会放出中子,个别原子序数较大的天然放射性元素也会自发裂变释放出中子。为了得到大量的中子射线,往往要用一种粒子去轰击原子核。例如,用α射线轰击铍-9,会生成碳-12和中子。因此,日常生活中接触到中子射线的机会要比其他射线小得多。由于宇宙射线的影响,在海平面附近,中子的通量密度约为60中子/平方厘米·小时,这代表平均1平方厘米的面积上一个小时之内会通过大约60个中子。而在3km的高空,这个数值就增加到了600中子/平方厘米·小时。相比之下,体重70公斤的成人体内每秒钟有约4300个钾-40原子发生衰变,释放β或γ射线,假设人体的横截面是500平方厘米,宇宙射线全部来自竖直方向的话,那么每秒钟穿过人体的中子数约为8.3~83个,还不及钾-40衰变的零头,完全不需担心。 微妙的平衡中子虽然是小师弟,但他还懂一点儿师兄们都不擅长的"内功",那就是把某些本来没有放射性的化学元素变成它的放射性同位素,叫做中子活化(neutron activation)。我们知道,化学元素的原子核由质子和中子组成。在强相互作用、弱相互作用和电磁相互作用的明争暗斗之下,原子核的“砖块”之间保持着一种微妙的平衡。此时,如果原子核俘获了一个外来的中子,三种相互作用的比例就会发生变化,微妙的平衡也许就不复存在,原子核的大厦变得摇摇欲坠,随时可能土崩瓦解——这就形成了该元素的放射性同位素。中子射线的师兄们也有类似的本领。不过要么是它们的穿透性比中子弱,不能深入物体内部;要么需要很高的能量,天然放射性元素释放的能量通常没这个高;要么与原子核发生反应的概率比中子的小几个数量级,所以放射剂量学的文献通常不考虑它们的“活化反应”。那么,中子射线相对擅长的本领要不要考虑呢?看一个真实的案例就知道了中子射线的真实案例由于天然的放射性元素衰变时极少释放中子,因此,一般人受到大剂量中子射线影响的唯一可能便是核武器和临界核事故了。在核爆炸的最初十几秒中,会释放出大量γ射线和中子射线。1999年,发生在日本JCO公司某燃料厂的临界事故,也释放出了大量γ射线和中子射线,造成2人死亡,留下了惨痛的教训。在日本JCO公司的这次事故中,共有三名操作员受到了致命剂量的辐射,其中A为16~20Gy,B为6~10Gy,C为1~4.5Gy,与之相对的是,人们平均一年所受到的所有辐射的剂量当量为1~10mSv。Gy(戈瑞)表示吸收剂量,1Gy等于1焦耳每千克。如果换算成衡量辐射的生物学效应的剂量当量,Sv(希沃特),还要乘以一个比例因子。对α粒子来说,这个因子是20,对中子来说,这个因子在5~20之间,对β和γ射线来说,这个因子是1。 JCO事故中,患者A的尿液所含的放射性元素的能谱,样品96ml,计数时间为20000秒由于中子射线活化了人体内的化学元素,它们还带上了一定程度的放射性。日本放射科学国家研究所的一篇论文写道,研究人员对受害者血液、尿液和呕吐物进行检测,得到三位受害者体内的钠-24的放射性衰变活度约为每秒1百万~9百万次衰变(8.7MBq,4.0MBq,1.2MBq)。自然界中钠-23的丰度为100%,因此受害者体内的钠-24一定是在核事故中产生的。我们根据文献中的“放射性药物单位给药量的有效剂量”做一个大概的估计,这些钠-24将给受害者造成额外的0.4~2.8mSv的照射,大约相当于做了一次CT检查。因此通常的放射性计量学文献也很少提到中子射线的活化反应。人体的化学元素组成按照重量排,依次是氧、碳、氢、氮、钙、磷、硫、钾、钠、氯、镁等等。除此之外,还有一些不超过人体重量0.4%的微量元素。这些化学元素中的大部分并没有天然放射性;即使其中一些元素俘获了一个中子,要么新产生原子核很稳定,没有天然放射性,要么它的半衰期非常长,对人体的影响可以忽略。要么衰变时不发出、或很少发出γ射线,不易探测。因此,JCO核事故中,从受害者样本中检测到的被中子活化的放射性元素主要有放出γ射线的钠-24、钾-42和溴-82。表一:人体的化学元素组成(按照重量排) 氧 碳 氢 氮 钙 磷 硫 钾 钠 氯 镁 61% 23% 10% 2.6% 1.4% 1.0% 0.20% 0.20% 0.14% 0.12% 0.027%中子射线与食品安全中子射线会不会对我们的食品安全造成影响呢?笔者查询了许多文献,搜索了各种关键词的组合,都没有找到相关话题的讨论。从理论上讲,食品当中的化学元素的确有可能被中子射线活化,从而带有额外的放射性。但讨论这个问题实在有点儿杞人忧天——自然界单位时间的中子通量密度约为60中子/平方厘米·小时,而JCO事故中,受害者遭受的中子通量密度约为5700亿中子/平方厘米,相当于自然情况下100万年的总和。因此,不需要估算吸收剂量,我们就能确定完全不需要考虑日常生活中中子射线的影响。况且,在核事故中,中子射线主要产生在堆芯附近;而食品安全主要讨论的是周围几十公里的区域。在这种时候(即使受到了核武器攻击),对食品安全影响最大的应该是放射性物质的沉降——如果随风飘散的放射性物质都没有影响到食品安全,那么直线运动的,经过防护罩重重阻隔所泄露出来的中子射线(造成的活化)就更加不需要考虑了。这是由于资料匮乏,笔者得出的个人想法。相比α、β、γ和X射线,中子射线的确是个不容小瞧的角色。不过在日常生活中,中子射线对人的负面影响微乎其微,完全不需要考虑。许多工业技术、科学研究和医疗手段都要依赖中子射线、或中子活化所产生的放射性同位素。它就像其它几位师兄一样,已经成为人类生活的重要组成部分。不知不觉之间,它就在改变你的生活。

  • 照相相片上有光斑如何解决?

    在低倍照相的时候 ,光斑不能完全散开 照片中间总有一个亮斑 。以前4K以下有 现在4K都有了,是灯丝电压设得太高的缘故吗?这个现象如何让解决?

  • 【求助】紧急求助,照相拉杆的问题

    请问各位,我在照相时把拉杆一拉,屏幕立刻闪一下,回到2000倍的状态,有时电镜的后面还伴随着噗噗的响声,不知道是为什么,又那位大侠给说一下,电镜型号H-7000

  • 【分享】GB/T 23901-2009 《无损检测 射线照相底片像质》

    [size=3]GB/T 23901-2009 《无损检测 射线照相底片像质》共分为五部分:GB/T 23901.1-2009 无损检测 射线照相底片像质 第1部分:线型像质计像质指数的测定GB/T 23901.2-2009 无损检测 射线照相底片像质 第2部分:阶梯孔型像质计像质指数的测定GB/T 23901.3-2009 无损检测 射线照相底片像质 第3部分:黑色金属像质分类GB/T 23901.4-2009 无损检测 射线照相底片像质 第4部分:像质指数和像质表的试验评价GB/T 23901.5-2009 无损检测 射线照相底片像质 第5部分:双线型像质计图像不清晰度的测定[/size][b][b][size=3][/size][/b][/b]

  • 【求助】电镜中如果选用底片照相

    现在大家一般都用ccd,没有最后光学放大的效果,我想问问,如果选用底片照相,像最后延伸的光程势必导致最终的像产生光学放大,我想知道,这种光学放大对于成像有没有影响,比如说分辨率等等,还有光学放大的倍数有没有规律?还望,大侠们不吝赐教!谢谢

  • 【求助】我研究试验急需一台镅-铍中子源中子湿度计

    [size=4]高手们: 我研究试验急需一台镅-铍中子源中子湿度计,我想具体了解它的一些性能,主要是能否在散粒物料中进行水分监测,其监测的范围是多大?精度又能达到多少?我需要测试的样品湿度监测要求为5%-10%,可有更好的测试仪器,还有就是如何对其进行防腐保护,那个探头要如何设计才会更具有适用性,最后我想知道其价格是多少,在哪能买到该产品? 测得的慢中子数具体与物料中总的含氢量又是一个什么关系,而对于复阻抗湿度测量法中的两复阻抗的差值与被测材料的未知含水量存在一种什么关系?有没有什么更好的方法可以进一步提高其精度?谢谢高手们了,急急急![/size]我的邮箱:zhangmegzu@126.com

  • 【求助】徕卡Leica DMILM显微镜,是怎么照相的?

    【求助】徕卡Leica DMILM显微镜,是怎么照相的?

    对于徕卡Leica DMILM显微镜,使用数码相机照相时,是怎么把数码相机与镜筒相连的?是怎么把目镜光源转换到照相镜筒这边来的?我不会照相,期望你的答复[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705082252_51167_1624517_3.jpg[/img]

  • 求中子活化分析的相关资料

    因为从事的是较为高纯的材料的分析,有时候看到文献会涉及到中子活化分析。但是网上又很难以找到该类文献。故请坛友帮忙提供点这方面的基本资料,例如基本原理、应用等。。。或者给些这类文献的链接。多谢了。

  • 北京哪里可以做劳厄X射线照相?

    RT有人做过这个吗?现在X射线衍射基本是衍射仪,很少有其它仪器。有少数的单晶面探测器衍射仪,这和传统的劳厄X射线照相有什么区别?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制