加合物

仪器信息网加合物专题为您提供2024年最新加合物价格报价、厂家品牌的相关信息, 包括加合物参数、型号等,不管是国产,还是进口品牌的加合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加合物相关的耗材配件、试剂标物,还有加合物相关的最新资讯、资料,以及加合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

加合物相关的资料

加合物相关的论坛

  • 【“仪”起享奥运】基于液相色谱-质谱技术的芦西丁-DNA加合物快速筛查

    [size=16px] [/size] [size=16px]目的 建立基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-三重四级杆质谱(LC-QQQ-MS)及[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-高分辨质谱(LC-HRMS)技术的DNA加合物通用型“发现-确证”分析策略,研究茜草中潜在遗传毒性物质芦西丁(lucidin,Luc)与3种2'-脱氧核苷的直接反应性和代谢反应性,筛查和确证可能的Luc特异性DNA加合物。 方法 采用与DNA加合物具有相同质谱碎裂模式的3种2'-脱氧核苷,建立和优化三重四极杆质谱中性丢失和伪中性丢失扫描模式下未知DNA加合物的非靶向筛查方法,以及高分辨数据依赖性扫描模式下的加合物靶向确证方法。将Luc与2'-脱氧核苷在Ⅰ相代谢激活和未激活条件下分别孵育,筛查生成的特异性DNA加合物,再通过特征性质谱碎裂离子进行结构验证。 结果 优化后的伪中性丢失扫描对脱氧核苷脱糖基的检测灵敏度可达pgmL-1级别。在Luc与脱氧核苷体外孵育模型中,发现并确证了6种Luc-DNA加合物,包含2种2'-脱氧胞苷(dC)加合物、2种2'-脱氧腺苷(dA)加合物、2种2'-脱氧鸟苷(dG)加合物,并对其结构进行了表征。Luc-DNA加合物的生成随着Luc暴露量、暴露时间的增加而升高,存在显著的剂量-反应、时间-反应关系,且该种结合无需代谢激活即可发生。 结论 所建立的DNA加合物“发现-确证”策略灵敏度高、准确性好,能够提供分子水平上加合物的结构信息,适用于评估Luc暴露所致的DNA损伤,为其毒性机理研究和再评价提供了有力数据支持,也为中草药中潜在遗传毒性成分快速筛查提供了重要的方法参考。[/size]

加合物相关的方案

加合物相关的资讯

  • Merck提供Milli-Q实验室超纯水的处理建议和方法
    LC-MS 实验室超纯水的处理建议和方法 [摘要]:本文用实验案例说明了实验室环境和纯水的储存对纯水质量的影响,对比 LC-MS 级别超纯水以及瓶装水,阐释了在 LC-MS 实验室应用中 Milli-Q 超纯水的优势。 实验室环境和纯水的储存避免长期储存纯水,并且避免纯水暴露在实验室环境当中。实验室环境中含有多种污染物(有机物质,碱金属,细菌,塑料等),因此纯水暴露在实验室环境中或者使用纯水过程中有多种转移步骤都会导致水质下降。实践证明,长期储存纯水会增加纯水与实验室环境的接触。这一结果会导致高 MS 背景噪音(图 1),金属加合物的产生和信号的抑制(图 2)。图1.超纯水储存和暴露在空气中与新鲜制备的纯水的效果对比上图:某品牌LC-MS级别纯水储存4周,并反复开盖数次。下图:Milli-Q超纯水检测方法:MS:Bruker Esquire 3000+离子阱流速:0.2mL/min温度:25°C进样方式:MS直接进样图 2 钠离子的存在增加了加合物的形成并对信号产生抑制作用 分析方法:样品:500pmol的Glu-Fibrionopeptide溶解于50/50乙腈/水(混合了不同浓度的氯化钠) 分析仪器:Waters Synapt HDMS进样模式:正ESI模式直接质谱进样技术影响• MS产生背景噪音• 质谱图谱变得更复杂• 形成加合物峰• 信号抑制• 灵敏度简单• 增加LOD (Ⅱ)存储容器材质避免塑料储存容器 操作及储存纯水过程中避免使用塑料容器,如塑料瓶或锥形瓶等。塑料容器比较容易引入一些普遍存在的添加剂(抗静电剂,稳定剂和塑化剂),这些都会导致鬼峰,并提高背景噪音(图 3)。建议使用表面特殊处理的棕色玻璃瓶或硼玻璃。标准玻璃瓶中,硅和碱金属的释放会形成加合物(请参考图 2 中钠离子的影响)。图3. 使用聚丙烯瓶储存超纯水上图:棕色玻璃瓶和塑料瓶中储存的超纯水MS谱图下图:棕色玻璃瓶和塑料瓶中储存的超纯水TIC谱图仪器及分析方法:Bruker Esquire 3000+离子阱 ESI+模式,直接进样分析技术影响• LC-MS分析中会出现鬼峰,并对信号产生抑制作用• 灵敏度降低,LOD值增加• 增加背景噪音• 质谱变得更加复杂 (Ⅲ)玻璃器皿的清洗避免使用洗瓶机洗瓶机操作时需要用大量的洗涤剂,其中含有很强的碱和表面活性剂。碱会使碱金属和硅从玻璃中溶解出来,而硅则会附着在玻璃表面。图4. 洗瓶机清洗后的质谱玻璃器皿对质谱的影响:Milli-Q制备的超纯水分别储存在两种不同品牌洗瓶机和LC-MS级别水/乙腈清洗后的玻璃瓶中后的MS谱图及TIC谱图进样方式:直接进MS样,ESI+模式技术影响• LC-MS分析中会出现鬼峰• 灵敏度降低,LOD值增加• 增加背景噪音• 质谱变得更加复杂• 形成加合物 (Ⅳ)纯水系统的使用超纯水使用前弃去前段水滞留在纯水系统中的水会随着时间的推移质量下降。存在在试验室环境中的污染物也会被中端精制器上的滤膜富集在表面,再收集纯水的过程中会使水质污染。因此,在收集纯水之前建议有冲洗纯水系统的过程,例如,周末过后弃掉开始的几升水,每天在收集纯水前弃掉 250-500mL 水。图5A. 长时间未使用(比如,周末),并且没有冲洗流程的超纯水系统收集的超纯水的MS谱图。上述质谱使用的超纯水是经过周末后从超纯水系统中产出的超纯水图5B.冲洗流程的超纯水系统收集的超纯水的MS谱图上述质谱使用的超纯水是超纯水系统使用过一段时间后新鲜制备的图 5C.对比不同时间点 Milli-Q® 超纯水 TIC 谱图对比。上述分析方法:MS:Bruker Esquire 3000+ ion trap MS system,进样模式:ESI+, 直接 MS 进样流速:0.2 mL/min温度:25°C.技术影响• MS背景噪音• MS图谱变得复杂• 信号抑制• 灵敏度降低• LOD 增加 结论:Milli-Q 超纯水系统正确的安装和维护能够满足 LC-MS 实验用水的需求;新鲜的超纯水比储存的超纯水或暴露在空气中的超纯水能得到更好的实验结果。超纯水应使用玻璃容器承装, 并且玻璃容器不能用洗瓶机洗涤。
  • 中科院生态环境中心DNA损伤研究取得系列进展
    中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室汪海林课题组在DNA损伤研究方面取得了一系列重要进展。   DNA损伤是诱发基因突变、癌症发生和发育畸形的关键因素。由于缺少快速、高通量、广谱的筛选与鉴定手段,数目众多的化学品缺乏DNA损伤的毒性数据。研究人员利用敲除特定抗氧化基因的大肠杆菌增强对DNA损伤的敏感性,发展出一种广谱的细菌传感器,可快速、灵敏地筛选与鉴定过去难以检测的DNA损伤试剂如丙烯醛、卤代苯醌等,显著地拓展了检测范围。该项工作发表在美国化学会期刊Anal. Chem.上(2011, DOI/10.1021/ac200426x)。   近年来,他们发展了一种新颖的DNA缠绕分析方法,在此基础上,进一步揭示了修复酶可识别多种化学结构不同的损伤的机制,从而在DNA修复机制方面取得重要突破,有助于发展有效的癌症预防和治疗措施。该项成果发表在国际著名的综合性期刊Proc. Natl. Acad. Sci. USA( 2009, 106,12849)上。   在DNA加合物分析方面,他们发展的苯并(a)芘加合物分析新方法检测灵敏度可达6.6 × 10-21mol,比经典的32P放射性后标记方法提高了5400倍(Anal. Chem., 2009, 81, 10285)。这一方法的发展有望解决长期缺乏测定人体痕量加合物的高灵敏分析技术的难题。另外,研究人员还发展了新颖的DNA甲基化分析(Anal. Chem. 2009, 81, 7885)、金属调节-核酸电泳分离分析(Anal. Chem., 2010, 82, 487)以及荧光粒子计数免疫法(Anal. Chem., 2010, 82, 9901)。   这些前沿性的工作是在他们独立研制的先进的毛细管电泳-激光诱导荧光偏振检测装置上开展的。现已形成一个较为系统的DNA修饰评价体系,预期在环境与健康、癌症诊断与治疗等领域具有重要的研究和实际应用价值。   这一系列工作得到国家自然科学基金、中科院“百人计划”择优项目、中科院重大装备研制项目及环境化学与生态毒理学国家重点实验室基金等的支持。   图1 独立研制的毛细管电泳-激光诱导荧光偏振检测装置   图2 DNA缠绕-局部解链模型
  • icIEF-MS:探索单克隆抗体电荷异质性的前沿技术
    近期,Analytical Chemistry杂志上发表的一篇文章提出了一项创新性的用于抗体药物电荷异质性表征的分析技术——icIEF-MS。icIEF-MS联用技术平台与传统的SCX-MS对蛋白异质性进行交叉验证,而且更高的灵敏度、更出色的重复性和更低的样品残留,这将为蛋白药物电荷异质性表征提供一种新的策略。 原文见:Anal. Chem. 2023, 95, 4, 2548–2560 蛋白质的电荷异质性是由多种复杂机制所共同作用形成,包括细胞过程、化学降解和制造过程中的生产条件。这些因素中的许多修饰会引起蛋白质等电点 (pI) 值的变化,例如翻译后修饰(PTMs) 的发生,包括 c 端赖氨酸缺失、焦谷氨酸形成、脱酰胺化、唾液酸化和糖基化等,都会导致电荷变异体的形成,从而对药物的稳定性和溶解度产生重要影响。因此,对电荷异质性的可靠表征是评估关键质量属性 (CQA) 的重要步骤,也是确保治疗性mAbs在整个临床和商业开发期间保持一致质量的关键所在。 目前,全柱成像毛细管等电聚焦 (icIEF) 和离子交换色谱 (IEX) 是治疗性mAbs在研发和质量控制中进行电荷异质性分析的两种常用技术。然而,传统的cIEF-MS联用技术在研究蛋白质电荷变异体方面还存在着许多缺陷,如重复性差、操作复杂以及与MS离子源不兼容等问题。 CEInfinite icIEF分析兼制备型全柱成像毛细管电泳系统 基于一体化的icIEF-MS技术平台,使用加拿大品牌艾易尔斯生物科技(AES)开发的分析与制备一体的CEInfinte系统,可实现快速的icIEF分离,并配合使用高分辨率的Thermo Q-Exactive Plus质谱平台对蛋白质的电荷变异体进行鉴定。icIEF分离部分采用了与MS兼容的两性电解质,无需使用甲基纤维素和尿素作为添加的的涂层毛细管柱。通过创新的纳流ESI接口,检测蛋白质药物电荷变异的灵敏度和重复性得到了极大提高,整个icIEF-HRMS分析可在25分钟内完成,比传统cIEF-MS所需的60分钟更加迅速。此外,该平台还可以灵活切换到icIEF馏分收集模式,对蛋白质的电荷变异体组分进行组分收集,并进行深入表征,包括LC-MS肽图分析、IEX-MS 完整蛋白分析、生物相互作用等研究。整合icIEF-MS和基于icIEF的馏分收集将在mAb电荷异质性表征的全新MS策略。图1 icIEF-MS的原理图 利用该icIEF-MS系统对9种不同的治疗性mAb的电荷变异体进行表征,并对icIEF-MS的方法进行了系统验证。同时,我们还使用SCX-MS分析了所研究mAb的电荷异质性。两种手段的分析结果表明,icIEF在分离分辨率、灵敏度、低残留效应和精确分子量测量精度等方面都具有明显优势。我们相信,结合传统的IEC-MS技术平,台icIEF-MS将成为电荷异质性表征领域中的一项重要技术,为研究人员提供更加快速、准确、灵敏和高效的分析手段。 表1 九种单抗的等电点信息和使用的icIEF试剂● icIEF和SCX分离9种单克隆抗体的性能比较 ●在最优化条件下,通过icIEF-UV和SCX-UV分别分离了9种单克隆抗体,并进行了性能比较。两种分离工具均在10分钟内完成了高通量分离,所研究的单克隆抗体获得了相同的峰序列。在icIEF分离中,首先洗脱的是酸性最强的异质体,其次是主峰和碱性异质体,这与SCX分离的顺序相同。然而,对于大多数异质性mAb混合物,icIEF的分离效率显著高于SCX,这是因为iCIEF基于pI差异进行分离,微小pI差异的蛋白质异质体就可以得到高分离度的分离。在某些情况下,如英夫利西单抗,通过icIEF可以实现4种电荷变异体和一个主成分的基线分离,但使用SCX的分离效率却不佳。类似地,对于帕博利珠单抗、阿替利珠单抗和地诺单抗,使用icIEF可以很好地检测出所有电荷变异体;然而,在使用SCX时,一些电荷变体却丢失了。尽管icIEF由于不同的分离机制而比SCX具有更宽的峰宽,但由于其pI的微小差异,icIEF表现出了更好的分离性能。图2 九种mAb的icIEF-UV图谱和SCX-UV谱图● icIEF和SCX串联MS的比较 ●如图3所示,icIEF-S和SCX-MS都可以用于鉴定阿替利珠单抗的电荷变异体。在SCX分离中,MS检测到的酸碱峰顺序与UV一致。而在icIEF分离中,碱性峰首先被纳流泵推向ESI源,因此MS检测中的酸碱峰顺序与UV检测的顺序相反。另一个显著的区别是,由于SCX-MS使用更高的流速,从UV到MS检测,柱外的峰展宽程度都较轻,这意味着UV峰形状与MS峰形状更一致。相比之下,icIEF-MS的较低迁移流速意味着柱外效应对icIEF分离的影响更大,从UV检测到MS检测,峰呈现更为明显的展宽,尤其是主峰,强度更高,并与稍低pI的酸性峰部分重叠。为了进一步提高icIEF-MS的分离度以克服峰展宽造成的分辨率损失,可以使用窄pH的两性电解质、新型的涂层分离毛细管柱和纳流ESI源。图3 以阿替利珠单抗为研究对象,比较icIEF-MS 和 SCX-MS分离效果:UV谱图(左)和MS-TIC谱图(右)。 在分析单克隆抗体时,icIEF-MS的信号响应比SCX-MS高。虽然icIEF-MS的样品载量只有SCX-MS的十分之一,但如图3所示。icIEF-QE Plus MS的TIC强度与SCX-Orbitrap Exploris 240相同(Orbitrap Exploris 240比QE Plus MS具有更高的检测灵敏度)。icIEF-MS比SCX-MS灵敏度高的原因有两个:首先,icIEF-MS的纳流流速(小于5μL/min)远低于SCX-MS的流速(300 μL/min),这导致icIEF-MS的去溶剂化效率和离子化效率较高,从而极大的提高了MS灵敏度和动态范围,即使样品量低至1 ng。此外,在icIEF-MS中,补偿液采用含0.5% FA的50%乙腈,流速为5 μL/min,纳流泵速为50-100 nL/min。在此比例下,进入MS的最终流动相处于酸性条件,而文章中用于SCX-MS的洗脱流动相的pH接近mAb的pI点 (pH 7~10),洗脱是在中性碱性条件下进行的,而在中性/碱性条件下,蛋白质与质子结合的能力比酸性条件下弱得多。因此,与SCX-MS相比,icIEF-MS在较低的电荷状态下具有更多的电荷数量,从而增加了电离和质谱效率。 总之,icIEF和SCX是两种有效的单克隆抗体分离工具,在高通量条件下分离效率都很高。然而,在icIEF-MS中,由于低迁移流速和酸性流动相的使用,其灵敏度比SCX-MS更高。这些结果表明,icIEF-MS是一种具有优越性能的单克隆抗体分离和表征方法,可以应用于生物制药的研究发现和质量控制。(A)(D) 图4 阿替利珠单抗的高灵敏度icIEF-MS表征分析:不同浓度(0.0 5 ~ 2 mg/mL ) 阿替利珠单抗(A) 的UV谱图,TIC (B) 和 MS(C )谱均为0.05 mg/mL;电荷变异体的浓度与MS响应强度的关系如图(D)所示。 图4展示了icIEF-QE Plus MS 在不同浓度阿替利珠单抗的结果,见图4。从酸性变异体和碱性变异体的 TIC和MS谱图得出,即使在 0.05 mg/ mL的最低浓度 (3倍S/N的UV信号)下,MS仍然检测到所有电荷变异体的明显信号。而SCX-QE Plus MS不能达到0.05 mg/ml的检出限。而在已报道的传统cIEF-MS研究中,典型的蛋白质分析浓度为 0.1~ 2 mg/mL。● icIEF-MS和SCX-MS的质量准确度比较 ●icIEF-MS 不仅在灵敏度上表现更优,而且在质量准确度方面也优于 SCX-MS。质量准确度是 MS 检测的一个关键指标,这取决于 MS 的分辨率。可达到的质量分辨率不仅取决于仪器的质量分辨率极限,还受电离过程的影响。加合物会使离子信号变宽,因为它们不仅来自于多重质子化的分析物,还来自于携带加合物的分析物。因此,更多的加合物会导致较差的分辨率和较大的质量误差(即较差的精度)。虽然源内碰撞诱导裂解(CID)可以减少加合物的形成,但并不是所有加合物都可以被去除。如表2所示,尽管使用了110 V 的源内CID值,但SCX-MS 获得的质谱峰仍然比 icIEF-MS 获得的质谱峰宽,导致SCX-MS 主成分的 MW 偏差(5.4 ppm)大于 icIEF-MS(2.7 ppm)。另一个例子是贝伐珠单抗,在没有脱盐预处理的情况下,SCX-MS 对贝伐珠单抗的 MW 偏差高达33.9 ppm。脱盐后进行分析,贝伐珠单抗的偏差降低到12.8 ppm。而 icIEF-MS,由于加合离子形成较少,即使不脱盐,获得的贝伐珠单抗的偏差也仅为9.6 ppm。表2 阿替利珠单抗的电荷变异体的icIEF-MS和SCX-MS分析结果比较● icIEF-MS和SCX-MS的残留效应 ●相比 SCX-MS,icIEF-MS 的残留效应要小得多。在对阿替利珠单抗分析后,icEF-MS 使用含有4% HR 8.5&minus 9.5 两性电解质的水溶液作为空白样本,而 SCX-MS 使用水作为空白样本。在 icIEF-UV 检测中未观察到明显信号,而 SCX-UV 在阿替利珠单抗峰值处检测到了信号残留。SCX-TIC 和 icIEF-TIC 中有信号峰相对明显,保留时间分别为6.82和21.5 min,。从这两个信号峰提取的 MS 数据通过去卷积得出,SCX-TIC检测到的残余信号是阿替利珠单抗,而 icIEF-TIC 检测到的信号只是两性电解质,这意味着 icIEF-MS 中没有检测到残余分析信号。低残留率使得 icIEF-MS 对微量蛋白电荷变异体的检测更加准确和可靠,避免了假阳性结果。图5 icIEF-MS和SCX-MS的残留效应的比较:SCX-MS (A-C)显示残留阿替利珠单抗信号,而icIEF (D-F)没有残留分析物信号。如图4和图5所示,观察到1500~2500 m/z 的背景信号,MS信息证实它们不是蛋白质,而是来自两性电解质和溶剂背景,背景离子不干扰mAb电荷变异体的鉴定。 ● icIEF-MS鉴定蛋白质的可重复性 ● 针对阿替利珠单抗电荷变异体进行的重复性考察表明,icIEF-MS 平台对其测定表现出良好的重复性。通过 icIEF-MS 对批间蛋白质样品进行鉴定,所有批间检测到的相同电荷变异的质量偏差都很小(表3列出了所有9种mAb的电荷变异体的修饰鉴定结果。酸性变异体的表征比碱性变异体更具挑战性,因为酸性变异体具有更复杂的修饰。虽然这种酸性修饰通常可以通过 pI 来区分,但它们在分子质量上的差异相当小。icIEF在线串联高分辨率质谱可以通过结合完整的蛋白质分子量和测量的pI值来阐明蛋白质的结构信息,为解决酸性电荷变异体的难题提供一个有用的icIEF-MS联用平台。表3 九种单克隆抗体的电荷变异体的iCIEF-MS表征结果在对一系列不同的治疗性单克隆抗体进行电荷变异体表征时,icIEF-MS 和 SCX-MS 可以获得类似的结果。然而,icIEF-MS 在分离分辨率、灵敏度、低残留效应和 MW 测量准确度方面比 SCX-MS 展现出更多的优势。因此,将 icIEF-HRMS 分析与更常见的 SCX-MS 相结合,通过正交的验证,可以为分离和鉴别蛋白电荷变异体提供更加全面的分析策略。 如需进一步了解相关信息,可联系我们获取更多文献。艾易尔斯生物科技(AES)致力于全柱成像毛细管等电聚焦技术(icIEF)技术与质谱的联用、馏分制备以及高分辨分离等领域。

加合物相关的仪器

  • Mnova MSChrom 400-860-5168转4663
    MestReNova (简称Mnova)软件是专业的兼容多种类型分析数据(NMR、LC/GC/MS、UV/Vis、NIR/MIR、Raman、荧光等),兼容不同操作系统(Windows、Mac、Linux等)的实验室数据软件平台。集不同类型实验数据和记录的处理、分析、报告、互动、共享、验证、解析、储存、管理、检索、应用等功能于一体,人性化的使用体验、自动化的操作流程、强大多样的功能属性让用户的科学实验更简便高效。 Mnova MSChrom Mnova MSChrom (Formerly MS)可以处理、分析和报告来自不同仪器的 LC-MS 和 GC-MS 数据。为来自不同仪器的质谱数据提供一个通用的接口,并实现了功能的自动化,如数据导入和显示、积分、扣除背景、显示提取的质谱图、分子匹配、列举分子式等。亮点为来自不同仪器的质谱数据提供通用接口并实现数据的可视化功能实现自动化,如数据导入和显示、积分、扣除背景、显示提取的质谱图、分子匹配、列举分子式等通过自动匹配分子离子和同位素峰,以及可能的 MS/MS 碎片峰来验证所提出的结构预测具有不同加合物/损失的分子式的同位素团簇,并与实验质谱进行比较对 MS 数据进行离线处理和报告,提高效率、节省时间通过使用 Mnova 脚本以批处理或实时模式自动化和自定义分析和报告,可大大提高工作效率使用 Mnova DB 能够使分析结果便于搜索计算 MS 峰纯度。Mnova MS 峰纯度可以显示与所选色谱峰下最丰富的质谱峰相关的曲线功能特征1.将 NMR 和 LC-MS 或 GC-MS 数据合并在同一个文档中可以打开来自不同仪器(Agilent、Bruker、JEOL、Thermo、Waters)以及 mzData 或 mzXML 格式的数据;自动或手动对TIC、MS、UV/ELSD 进行峰积分;根据 TIC 峰、是否扣除背景选择质谱,并以centroid 或 profile模式显示;可以手动添加质谱,也可以在同一文档中打开 NMR 和 MS 数据,并同时对其进行分析报告。 2.轻松生成 EMC/EIC、UV traces 和 UV光谱 生成给定质量范围或特定 m/z 值的提取质量/离子色谱图(EMC/EIC);也可以从 DAD trace 生成给定波长的 UV trace;从 PDA 总吸光度色谱图中提取选定保留时间的紫外光谱。 3.自动分子匹配用于结构确认 Mnova MS 中的分子匹配功能可以通过 LC/GC/MS 数据进行结构确认;输入化学结构,由软件确认哪些与实验数据相匹配,匹配标准可以通过选择加合物和损失、质量准确度和评分阈值等来确定。此功能非常快速且易于使用,便于专业用户,甚至是新手轻松掌握。4.预测具有各种加合物/损失的同位素簇,以验证元素组成该功能允许用户提出一个或多个分子式,并使用所有预定义的加合物/损失列表预测其质量峰;Mnova MS 预测列表中的分子离子峰和同位素峰,并自动将预测峰与实验峰(如果可用)进行匹配;用户可以选择在光谱上显示哪种预测(具有所需加合物或损失)以进行比较。常见问题解答1. 我的数据是否与 Mnova 兼容?Mnova MSChrom 支持大多数不同的质谱数据格式,请与我们联系进行确认。2. 我有 Mnova NMR,是否可以将 MSChrom 数据添加到NMR的报告中?可以的,您可以在同一个文档中打开 NMR 和 MS 数据,甚至可以将 MSChrom 与 NMR 数据剪切/粘贴到同一页来显示。3. 我可以使用 MSChrom 数据进行 verification 吗?可以的,在 Mnova MSChrom 中运行 Molecule Match 可以自动验证元素组成,或者使用 Mnova Verify 通过 MS 数据进行结构验证(Mnova Verify需要单独的license)。4. Mnova可以处理高分辨率 MSChrom 数据吗?Mnova MSChrom 可以处理高分辨率和低分辨率 MS 数据。 5. 我该如何购买或者试用 Mnova 呢? 关于Mnova软件的购买或试用请与我们联系。应用领域制药、化学和食品工业以及QC环境学术研究与核磁共振教学适用于个人用户、研究团体以及大型机构和公司
    留言咨询
  • 台式 microESR 通用型ESR/工业分析/教育 电子自旋共振(ESR)波谱仪能够检测样品中自由基的浓度和成分。简介Micro ESR 配备了一个小巧的0.348 特斯拉稀土磁体。这个磁体装置采用低功率电磁铁芯来调节磁场。microESR是一台连续波(CW)波谱仪,扫描范围超过50 0Gauss。磁场中心位于自由电子自旋g值附近。这台波谱仪采用线性压控振荡器作为微波源,可在9.7GHz频率下产生0.5至70mW射频功率。microESR采用正交锁相检测法,系统内置锁相放大器。应用实例过渡金属和超精细分裂本实验旨在分析影响到ESR波谱线型和线宽的多种现象。探究黏性对TEMPOL波谱的影响。这是测定旋转相关时间的直接应用。分析溶剂对线宽的影响,以及分子氧的存在,如何为电子提供有效的弛豫途径。分析浓度对线宽的影响,介绍自旋-自旋交换概念。介绍自旋标记概念。动力学向学生介绍如何使用ESR来监测反应。这项实验使用了稳定的氮氧自由基——TEMPOL(2,2,6,6-四甲基哌啶氮氧-4氧基)——来测定果汁的抗氧化性。microESR的交互式采集软件,允许学生进行动力学实验。学生可以设定每次测定的扫描次数、测定次数和测定间隔时间。波谱仪将在每次扫描后显示测得的波谱。然后,利用microESR处理和分析软件,进一步分析ESR波谱仪采集到的数据。所有数据均保存为.csv文件,以便载入任何数据表程序,进行数据处理。实验在水中进行,因此,学生实验可以使用放置在5mm石英管内的熔点毛细管。5mm石英管可以重复使用多次。ESR谱图的线型和线宽本实验旨在分析影响到ESR波谱线型和线宽的多种现象。探究黏性对TEMPOL波谱的影响。这是测定旋转相关时间的直接应用。分析溶剂对线宽的影响,以及分子氧的存在,如何为电子提供有效的弛豫途径。分析浓度对线宽的影响,介绍自旋-自旋交换概念。介绍自旋标记概念。自旋捕捉剂和自旋加合物利用ESR测定浓度学生使用ESR来测定过渡金属配合物的浓度这项实验非常适用于分析化学,特别是较之于诸如UV/VIS、滴定法和重量分析法等其他测定浓度的方法。这项实验要求学生绘制校正曲线。借助microESR的处理和分析软件,学生可以比较测定浓度所采用的峰峰信号强度和二重积分值。哪种方法更为精确?进行定量ESR测定时,样品旋转方向和取向起到了重要作用。尽管这项实验所分析的样品是液体,仍要求学生分别使用放置在5mm石英管内的硼硅酸盐毛细管、和2mm石英管进行测量,并比较测定结果。电子密度ESR是用于理解电子密度的工具,电子密度是一个非直观概念。学生将制取多种半醌自由基阴离子,并分析其各自的ESR波谱。学生还将分析稳定的氮氧自由基TEMPOL的ESR波谱。尽管所有化合物都是环状化合物,但是,氮氧化物的未成对电子局域在氧原子和氮原子上;而半醌自由基阴离子则具备一个离域π电子。在半醌自由基阴离子中观察到的质子超精细分裂,表明了未成对电子所在的位置。虽然TEMPOL环上有2个等价质子,但我们并未观察到它们发生任何超精细分裂。
    留言咨询
  • PAIMS离子迁移谱系统 400-860-5168转2889
    便携式AIMS是小型紧凑型分析仪器。AIMS引擎,AIMS控制单元,两个数字质量流量控制器和压力控制器集成为一体。该便携式先进的离子迁移谱仪提供多重设置。对于对移植性实验要求强大的分析仪器感兴趣的用户来说,它是理想的选择。PAIMS兼容离子迁移谱技术所有优点。PAIMS的所有操作参数均可由用户自定义设置调整,适用于实验室研究以及工业直接应用PAIMS的主要优点是:非放射性等离子体电离源高灵敏度高分辨率在大气压和亚大气压下操作可移植性技术参数:工作压力:600-1200mbar工作温度:30-100℃分辨率 N2/Air:70 FWHM检测限ppb以下漂移速率:500-1200ml/min流量:5-500ml/min漂移场强:200-560V/cm电源:24V极性:正负极电离源:电晕放电通讯:USB2.0尺寸:352x305x142mm 应用环境:快速,远程监控流程气相色谱仪或多毛细管柱气相色谱仪的接口痕量气体检测VOC / TOC监测环境监测室内/室外空气质量监测化学分析研究实验室可以配置作为AGILENT GC气相色谱仪的检测器,GC-IMS组合是食品,饮料,制药和环境工业中复杂基质2D分析的完美组合 异构体和构象选择性大气压化学电离邻苯二甲酸二甲酯在这项工作中,我们研究了大气压化学电离(ACPI)的电离机理,用于邻苯二甲酸二甲酯(邻苯二甲酸二甲酯 - DMP(邻位异构体),间苯二甲酸二甲酯 - DMIP(间)和对苯二甲酸二甲酯 - DMTP(对))的三种异构体离子迁移谱(IMS)和IMS结合正交加速飞行时间质谱仪(oa-TOF MS)。通过反应物离子H + (H 2 O)n (n = 3和4)对分子进行化学电离。异构体的阳性IMS和IMS-oaTOF质谱显示离子迁移率和离子组成的显着差异。IMS-oaTOF光谱由簇离子MH + (H 2 O)n组成 对于不同的异构体具有不同的水合度(n = 0,1,2,3)。在DMP异构体的情况下,我们观察到 通过质子转移电离几乎排他地形成MH +,而在DMIP和DMTP水合离子的情况下,MH + (H 2 O)n (n = 1,2,3) )分别为MH + (H 2 O)n 检测到(n = 0,1,2),通过加合物形成反应形成。电离过程的差异阐明了这种行为。为了阐明电离过程,我们对中性和质子化和水合异构体(对于不同的构象异构体)的结构和能量进行了DFT计算,并计算了相应的质子亲和力(PA)和水合能。 碱性和结构对质子化分子水合,质子束缚二聚体和团簇形成的影响:离子迁移率 - 飞行时间质谱和理论研究通过配备电晕放电离子源的IMS-TOFMS技术研究氨,甲醛,甲酸,丙酮,丁酮,2-辛酮,2-壬酮,苯乙酮,乙醇,吡啶及其衍生物的质子化,水合和簇形成。发现质子化分子MH +参与水合或簇形成的趋势取决于M的碱性。具有较高碱度的分子比具有较低碱度的分子水合较少。低碱性分子如甲醛的质谱表现出较大的M n H +(H 2 O)n簇,而对于碱性较高的化合物如吡啶,只有MH + 和MH +。观察到M个峰。DFT计算的结果表明,随着分子的碱性增加,水合焓和团簇形成减少。通过比较甲酸,甲醛和乙醇的质谱,还研究了结构对簇形成的影响。通过离子迁移率和质谱技术研究了对称(MH + M)和不对称质子结合二聚体(MH + N)的形成。理论和实验结果均表明,不对称二聚体在分子(M和N)之间更容易形成,具有相当的碱性。随着M和N之间的碱度差异增加,MH + N形成的焓降低。 离子迁移谱结合质谱法研究含有和不含NH 3掺杂剂的电晕放电离子源的常压化学电离机理:理论和实验研究使用离子迁移率(IMS)和时间 - 来研究在电晕放电(CD)大气压化学电离(APCI)离子源中2-壬酮,环戊酮,苯乙酮,吡啶和二叔丁基吡啶(DTBP)的电离。飞行质谱(TOF-MS)。在不存在和存在氨掺杂剂的情况下记录IMS和MS光谱。在没有NH 3掺杂剂的情况下,反应物离子(RI)是H +(H 2 O)n,n = 3,4,并且MH +(H 2 O)x 簇作为产物离子产生。水合模型显示水合量(x)取决于M的碱度,温度和漂移管的水浓度。在氨存在下(NH 4+(H 2 O)n为RI)根据M的碱度,生成两种产物离子MH +(H 2 O)x 和MNH 4 +(H 2 O)x。使用NH 4 +( H 2 O)n 作为RI,吡啶和具有较高碱性的DTBP的产物离子是MH +(H 2 O)x, 而环戊酮,2-壬酮和具有较低碱性的苯乙酮产生MNH 4 +(H 2 O)x。为了解释产物离子的形成,M-H +,H + -NH 3和H + -OH 2 在M-H + -NH 3 和M-H + -OH 2 和M-H中的相互作用能通过B3LYP / 6-311 ++ G(d,p)方法计算+ -M复合物。发现对于具有高碱性的分子M,M-H + 相互作用强,导致H + -NH 3的弱化,并且 M-H + -NH 3 和M- 中的H + -OH 2相互作用。H + -OH2个 复合体用于移动机器人手臂离子迁移谱仪检测爆炸物
    留言咨询

加合物相关的耗材

  • 基于HPLC的AccQ• Tag氨基酸分析
    基于HPLC的AccQ Tag氨基酸分析HPLC AccQ Tag方法使用柱前衍生试剂,可产生容易被检测到的荧光加合物。其所使用的AccQ Fluor试剂—— 6-氨基喹啉-N-羟基琥珀酰亚胺氨基甲酸酯(AQC)——能够通过一个简单反应同时衍生伯胺和仲胺,产生高度稳定的、具有荧光性的加合物。我们将AccQ Tag方法作为一个套装产品提供,其中包括预包装的试剂和全面的文件资料。AccQ Tag化学产品套装所含产品,能够满足您250次以上蛋白和肽水解物氨基酸分析所需。AccQ Fluor试剂盒(每盒5瓶)1、AccQ Fluor硼酸盐缓冲液2、AccQ Fluor试剂稀释液3、AccQ Fluor试剂粉末AccQ Tag氨基酸分析色谱柱分离AccQ Fluor衍生反应所得到的氨基酸衍生物。 AccQ Tag色谱柱是经过专门质控验证可用于AccQ Tag方法的高效色谱柱。该色谱柱的保养和使用方法在“沃特世AccQ Tag氨基酸分析色谱柱保养和使用手册”中加以说明。AccQ Tag洗脱浓缩液A预混合的浓缩型水相缓冲液。氨基酸水解物标准品十个装有氨基酸水解物标准品的1mL安瓿瓶。每个安瓿瓶装有浓度为2.5mM的17种氨基酸(其中胱氨酸浓度为1.25mM)混合标准品。6 x 50 mm样品管用于制备样品和标准品。AccQ Tag化学产品包的使用手册介绍AccQ Tag氨基酸分析方法。AccQ Tag分析蛋白水解物氨基酸进样体积指导AccQ Tag HPLC柱及消耗品产品描述 规格/数量 部件号AccQ Tag化学品包,可进行250次分析 — WAT052875该产品包包括:AccQ Fluor试剂 1 5 x 6 mL vials —AccQ Fluor试剂2A 5 x 3 mg vials —AccQ Fluor试剂2B 5 x 3 mL vials —AccQ Tag色谱柱 3.9 x 150 mm —AccQ Tag洗脱液A,浓缩液 2 x 1 liter —样品衍生管 4 x 72/pk氨基酸标准品,水解物 10 x 1 mL ampules WAT088122AccQ Tag用户指南 — WAT052874AccQ Fluor试剂包,包括:AccQ Fluor试剂 1,5x6mL样品瓶AccQ Fluor试剂2A,5x3mg样品瓶 — WAT052880AccQ Fluor试剂2B,5x4mL样品瓶AccQ Tag色谱柱 3.9 x 150 mm WAT052885AccQ Tag洗脱液A,浓缩液 1 x 1 liter WAT052890AccQ Tag洗脱液B(配用高压梯度泵) 1 x 1 liter WAT052895
  • 瑞士万通 NIO 表面活性剂电极 | 6.0507.010
    NIO 表面活性剂电极订货号: 6.0507.010这种表面活性剂电极必须搭配参比电极使用,并且适用于例如:● 水性基质中的非离子表面活性剂滴定● 基于聚氧乙烯加合物的表面活性剂滴定● 滴定含四苯基硼酸钠的活性药物成分技术参数pH 范围0...12上部杆径(mm)12下部杆径(mm)2.5指示电极形式Pin指示电极类型Non-ionic surfactants最大安装长度(mm)123最小浸没深度(mm)20测量范围tensidabh?ngig电极插头Metrohm plug-in head G电极杆材料PVC短时温度范围(°C)0 ... 40磨口套管灵活的磨口套管长时温度范围(°C)0 ... 40
  • AccQ Tag HPLC柱及消耗品
    AccQ Tag HPLC柱及消耗品HPLC AccQ?Tag方法使用柱前衍生试剂,可产生容易被检测到的荧光加合物。其所使用的AccQ?Fluor试剂—— 6-氨基喹啉-N-羟基琥珀酰亚胺氨基甲酸酯(AQC)——能够通过一个简单反应同时衍生伯胺和仲胺,产生高度稳定的、具有荧光性的加合物。我们将AccQ?Tag方法作为一个套装产品提供,其中包括预包装的试剂和全面的文件资料。AccQ?Tag化学产品套装所含产品,能够满足您250次以上蛋白和肽水解物氨基酸分析所需。AccQ Fluor试剂盒(每盒5瓶)AccQ Fluor 硼酸盐缓冲液AccQ Fluor 试剂粉末AccQ Tag氨基酸分析色谱柱分离AccQ Fluor衍生反应所得到的氨基酸衍生物。 AccQ Tag色谱柱是经过专门质控验证可用于AccQ?Tag方法的高效色谱柱。该色谱柱的保养和使用方法在“沃特世AccQ?Tag氨基酸分析色谱柱保养和使用手册”中加以说明。AccQ Tag洗脱浓缩液A预混合的浓缩型水相缓冲液。氨基酸水解物标准品十个装有氨基酸水解物标准品的1mL安瓿瓶。每个安瓿瓶装有浓度为2.5mM的17种氨基酸(其中胱氨酸浓度为1.25mM)混合标准品。6 x 50 mm样品管用于制备样品和标准品。订货信息:产品描述规格/数量部件编号AccQ Tag化学品包,可进行250次分析—WAT052875该产品包包括:AccQ?Fluor试剂15 x 6 mL 瓶—AccQ?Fluor试剂2A5 x 3 mg 瓶—AccQ?Fluor试剂2B5 x 3 mL 瓶—AccQ?Tag色谱柱3.9 x 150 mm—AccQ?Tag洗脱液A,浓缩液2 x 1 升—样品衍生管4 x 72/pk氨基酸标准品,水解物10 x 1 mL 安瓿WAT0881221AccQ Tag用户指南—WAT052874AccQ Fluor试剂包,包括:AccQ Fluor试剂 1,5x6mL样品瓶—WAT052880AccQ Fluor试剂2A,5x3mg样品瓶AccQ Fluor试剂2B,5x4mL样品瓶AccQ Tag色谱柱3.9 x 150 mmWAT052885AccQ Tag洗脱液A,浓缩液1 x 1 升WAT052890AccQ Tag洗脱液B(配用高压梯度泵)1 x 1 升WAT052895