当前位置: 仪器信息网 > 行业主题 > >

薄膜双折射仪

仪器信息网薄膜双折射仪专题为您提供2024年最新薄膜双折射仪价格报价、厂家品牌的相关信息, 包括薄膜双折射仪参数、型号等,不管是国产,还是进口品牌的薄膜双折射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合薄膜双折射仪相关的耗材配件、试剂标物,还有薄膜双折射仪相关的最新资讯、资料,以及薄膜双折射仪相关的解决方案。

薄膜双折射仪相关的资讯

  • Photonic Lattice发布online双折射测量仪WPA-KAMAKIRI新品
    主要简介:Photron集团公司是日本大型相机,视频,软件控制供应商,其旗下的高速/超高速摄像机业务应用非常广泛,欧屹科技代理的是其旗下KAMAKIRI品牌的双折射/残余应力测量设备,其高速相机CCD芯片与Photonic Lattice公司的偏光阵列片完美结合,研制在线双折射/残余应力测量仪,世界上仅有KAMAKIRI可以提供,广泛应用于光学薄膜,PVA,PC,COP和TAC等领域。 主要特点:可用来评估高相位差产品,PET薄膜和树脂成品三波长测定双折射范围可达3000nm可选配高相位差配件,满足10000nm的超过相位差测定需求应用领域:相位差薄膜(TAC/PC/PMMA/COC)保护薄膜(PET/PEN/PS/PI)树脂成型玻璃主要参数:项次项目具体参数1输出项目相位差【nm】,轴方向【°】2测量波长523nm、543nm、575nm3双折射测量范围0-3000nm4主轴方位范围0-180°5测量重复精度6测量尺寸97×77mm ~ 2900×2310mm7定制选项光学配件,可测量超过10000nm的高相位差创新点:可用来评估高相位差产品,PET薄膜和树脂成品 三波长测定双折射范围可达3000nm 可选配高相位差配件,满足10000nm的超过相位差测定需求 online双折射测量仪WPA-KAMAKIRI
  • Photonic Lattice发布PHL online应力双折射仪KAMAKIRI -X stage 新品
    KAMAKIRI -X stage 主要特点:STS的低配版,可升级STS 。 操作简单,可以调整色彩显示更直观的了解双折射分布。 记录双折射的数值数据,以进行进一步详细分析。应用领域:相位差薄膜(TAC/PC/PMMA/COC)保护薄膜(PET/PEN/PS/PI)树脂成型玻璃 技术参数:项次项目具体参数1输出项目相位差【nm】,轴方向【°】2测量波长543nm(支持客制化)3双折射测量范围0-260nm(支持客制化)4主轴方位范围0-180°5测量重复精度6测量尺寸A4(标准)7定制选项可定制大载台创新点:欧屹科技代理的是其旗下KAMAKIRI品牌的双折射/残余应力测量设备,其高速相机CCD芯片与Photonic Lattice公司的偏光阵列片完美结合,研制在线双折射/残余应力测量仪,世界上仅有KAMAKIRI可以提供,广泛应用于光学薄膜,PVA,PC,COP和TAC等领域。 PHL online应力双折射仪KAMAKIRI -X stage
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • Photonic Lattice发布PA系列双折射测量仪新品
    PA系列是日本Photonic lattice公司倾力打造的双折射/应力测量仪,PA系列测量双折射测量范围达0-130nm,可以测量的样品范围从几个毫米到近500毫米。PA系列双折射测量仪以其技术的光子晶体偏光阵列片,独有的双折射算法设计制造,得到每片样品仅需几秒钟的测量能力,使其成为业内,特别是工业界双折射测量/应力测量的选择。 PA-300 主要特点:操作简单,测量速度可以快到3秒。视野范围内可一次测量,测量范围广。更直观的全面读取数据,无遗漏数据点。具有多种分析功能和测量结果的比较。维护简单,不含旋转光学滤片的机构。高达2056x2464像素的偏振相机。 应用领域:光学镜片智能手机玻璃基板碳化硅,蓝宝石等 技术参数:项次项目 具体参数1输出项目相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度6视野尺寸27x36mm到99x132mm(标准)7选配镜头视野低至7x8.4(扩束镜头)8选配功能实时解析软件,镜片解析软件,数据处理软件,实现外部控制 测量案例:创新点:操作简单,测量速度可以快到3秒。 视野范围内可一次测量,测量范围广。 更直观的全面读取数据,无遗漏数据点。 具有多种分析功能和测量结果的比较。 维护简单,不含旋转光学滤片的机构。 高达2056x2464像素的偏振相机。 PA系列双折射测量仪
  • Photonic Lattice发布应力双折射测量仪新品
    在PA系类设备的基础上,加装晶圆专用的装置,可以高效精确的测量SIC和蓝宝石这类光学性能特殊的产品的双折射和残余应力的信息。 应力双折射测量仪主要特点:操作简单,测量速度可以快到3秒。视野范围内可一次测量,测量范围广。更直观的全面读取数据,无遗漏数据点。具有多种分析功能和测量结果的比较。维护简单,不含旋转光学滤片的机构。高达2056x2464像素的偏振相机。应力双折射测量仪应用领域: SIC 蓝宝石应力双折射测量仪技术参数: 项次 项目 具体参数1 输出项目 相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度40x48mm到240x320mm(标准)7选配镜头视野不适用8选配功能 实时解析软件,镜片解析软件,数据处理软件,实现外部控制创新点:测量速度可以快到3秒。 更直观的全面读取数据,无遗漏数据点。 具有多种分析功能和测量结果的比较。 维护简单,不含旋转光学滤片的机构。 高达2056x2464像素的偏振相机。 应力双折射测量仪
  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产!
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。  双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。  张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。  据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。  张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • Photonic Lattice发布应力双折射仪 PA-300-MT新品
    主要特点:操作简单,测量速度可以快到3秒;视野范围内可一次测量,测量范围广;更直观的全面读取数据,无遗漏数据点;具有多种分析功能和测量结果的比较;维护简单,不含旋转光学滤片的机构 高达2056x2464像素的偏振相机。应用领域:小尺寸样品专用光学镜头主要技术参数: 项次 项目 具体参数1输出项目 相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度7选配镜头视野6.3x7.5mm8选配功能 实时解析软件,镜片解析软件,数据处理软件,实现外部控制测量案例:创新点:操作简单,测量速度可以快到3秒; 视野范围内可一次测量,测量范围广; 更直观的全面读取数据,无遗漏数据点; 具有多种分析功能和测量结果的比较; 维护简单,不含旋转光学滤片的机构 高达2056x2464像素的偏振相机。 应力双折射仪 PA-300-MT
  • Photonic Lattice发布Photonic Lattice双折射测量仪超大幅新品
    主要简介: 汽车车窗玻璃幅面很大,一般桌面式测量双折射/残余应力测量仪无法测量,扫描测量由非常慢,无法满足实际使用,因此Photonic Lattece研制出超大幅面的WPA双折射测量仪,会根据客户样品定制大型圆偏振光光源系统,实现大幅面样品的高速测量。设备在日本的汽车厂商得到广泛应用。主要特点: 解决汽车车窗玻璃等大幅面产品的双折射/残余应力测量。测量速度快,可满足玻璃工厂研发或质量控制测量。采用523nm,543nm,575nm三种波长,相位差测量范围高达3000nm。采用广角偏振面阵传感器,一次得到测量结果。专用操作软件,功能强大,操作简单,便于做分析比较和品质判断。 主要参数:测量案例:创新点:解决汽车车窗玻璃等大幅面产品的双折射/残余应力测量。 测量速度快,可满足玻璃工厂研发或质量控制测量。 Photonic Lattice双折射测量仪超大幅
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • ATAGO(爱拓)举办多波长阿贝折射仪安装培训
    为提高用户操作水平,加强与用户的交流,ATAGO(爱拓) 近日在东莞举办多波长阿贝折射仪安装调试用户培训。ATAGO应用工程师一行三人在位于东莞市东城区的广东省计量科学研究院东莞分院测试中心面向计量院测试中心用户培训多波长数显阿贝折射仪的安装调试及维护保养、使用注意事项等内容。 图为安装调试好的DR-M4/1550多波长数显阿贝折射仪 这次培训的仪器是ATAGO(爱拓)公司最新研制的DR-M4/1550多波长数显阿贝折射仪,计量院测试中心主要用于测量眼镜镜片的阿贝数,方便对镜片质量的鉴定。ATAGO(爱拓)多波长数显阿贝折射仪的主要特点是可以测量不同波长下的折射指数或阿贝数(vd 或 ve) ,波长范围从450至1550nm,且能在液晶屏幕上数字显示折射指数与阿贝数,极大地提高了工作效率。被广泛的应用到电子胶水、液晶面板、镜片等材料的检测上。 图为广东省计量科学研究院东莞分院办公楼和测试中心外景 通过对培训的调查,大多数客户都希望能增加培训的次数,多讲解实际操作时发生的案例。今后,ATAGO(爱拓)中国将继续努力,将用户培训越办越好。   更多有关ATAGO(爱拓)全线折射仪,旋光仪,糖度仪产品资料及应用技术的资料 请密切关注日本ATAGO 中国分公司网站: www.atago-china.com   ATAGO(爱拓)是专业的折光仪,折射仪与旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度、旋光度的测量方案!   详情请点击 www.atago-china.com   或致电020-38108256   ATAGO(爱宕)中国分公司咨询
  • 天津港东SGC-10型薄膜测厚仪新品发布
    SGC-10薄膜测厚仪,适用于介质,半导体,薄膜滤波器和液晶等薄膜和涂层的厚度测量。该薄膜测厚仪,由我公司与美国new-span公司合作研制,填补了国内多项空白。该产品采用new-span公司先进的薄膜测厚技术,基于白光干涉的原理来测定薄膜的厚度和光学常数(折射率n,消光系数k)。它通过分析薄膜表面的反射光和薄膜与基底界面的反射光相干形成的反射谱,用相应的软件来拟合运算,得到单层或多层膜系各层的厚度d,折射率n,消光系数k。该设备关键部件均为国外进口,也可根据客户需要整机进口。详细信息可直接登录我公司网站www.tjgd.com 。或者来电咨询 022-83711190 。
  • 美研制出增强薄膜太阳能电池吸光技术
    据英国《自然》杂志网站近日报道,尽管薄膜太阳能电池应用广泛,但其也有“先天不足”:薄膜越薄,制造成本越低,但当其变得更薄时,会失去捕光能力。美国科学家表示,当薄层厚度等于或小于可见光的波长时,其捕光能力会变得很强。科学家们可据此研制出厚度仅为现在商用薄膜太阳能电池厚度的1%、但捕光能力却大有改善的薄膜太阳能电池。   科学家们用射线—光极值这一理论最大捕光值来标识一种材料最多能捕获多少光线,但是,只有当材料具有一定的厚度时,才能达到这一峰值。目前,科学家们已经制造出了吸光层的厚度仅为0.1纳米的薄膜太阳能电池,但这样纤细的薄膜会漏掉很多光。   然而,现在,加州理工学院应用物理和材料科学教授哈里阿特沃特和同事在最新一期《纳米快报》杂志上指出,他们找到了一种巧妙的方法,使薄层能帮助太阳能电池超越射线—光极值。他们发现,当薄层的厚度小于可见光的波长(400到700纳米)时,薄层会同这些可见光的波特性相互作用而不是将可见光看成一条直直的射线。阿特沃特说:“当我们制造出的薄层厚度等于或小于可见光的波长时,一切规则都改变了。”这样,一种材料的吸光能力不再取决于厚度,而取决于光线和吸收材料之间的波作用。   通过计算和计算机模拟,阿特沃特团队证明,让一种材料对光更有“胃口”的技巧在于,制造出更多“光态”让光来占领,这些“光态”就像狭缝一样,能吸收特定波长的光。一种材料的“光态”数量部分取决于该材料的折射率,折射率越高,其能支持的“光态”就越多。   其实,早在2010年,斯坦福大学的教授范汕洄(音译)和同事就将“光态”数确定为一种材料能吸入多少光线的主要因素。他们用一种折射率较高的材料将一种折射率低的材料包围,结果发现,高折射率材料的出现能有效提高低折射率材料的折射率,增强其捕光能力。   阿特沃特团队对上述结论进行了延伸,最新研究表明,薄膜吸光器内挤满 “光态”会大大增强其捕光能力。而且,可通过几种方式(比如,用金属或晶体结构包住吸光层或将吸光器嵌入一个更复杂的三维阵列中)来提高吸收器的有效折射率。范汕洄表示:“最新研究表明,我们可以采用多种不同的方法有效地突破射线—光极值。”   美国托莱多大学的罗伯特柯林斯表示,阿特沃特团队的研究是“非常关键的第一步”。但他也认为,这项技术还面临着诸多挑战,比如,需要额外的工业过程来制造这些超薄的薄膜,这会导致成本增加。
  • 中科大张斗国教授团队研制出基于光学薄膜的平面型显微成像元件
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar photonic chips with tailored angular transmission for high-contrast-imaging devices为题,发表在Nature Communications上。光学显微镜利用光学原理,把人眼不能分辨的微小物体放大成像,进而拓宽人类观察物质结构的空间尺度范围。通用的光学显微镜是明视场显微镜(Brightfield Microscopy),它利用光线照明,样本中各点依其光吸收的不同在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于对光线的吸收少,其明视场显微镜像的对比度差,难以观测。为解决以上问题,科学家们发展出暗视场显微镜(Darkfield Microscopy):其照明光线不直接进入成像物镜,只允许被样品反射和衍射的光线进入物镜。无样品时,视场暗黑,不可能观察到任何物体;有样品时,样品的衍射光与散射光等在暗的背景中明亮可见,因此其成像对比度远高于明场光学显微镜,如图1a所示。另外一个解决方案是,利用光线全反射后在介质另一面产生衰失波(又称表面波)来照明样品,无样本时,衰失波光强在纵向呈指数衰减的特性使得其不会辐射到远场,视场暗黑;有样品时候,衰失波会被散射或衍射到远场,从而在暗背景下形成物体的明亮像,该显微镜被称为全内反射显微镜(Total internal reflection microscopy, TIRM),同样可以提高成像对比度。衰失波光强在纵向呈指数衰减的特性,只有极靠近全反射面的样本区域会被照明,大大降低了背景光噪声干扰观测标本,故此项技术广泛应用于物质表面或界面的动态观察,如图1b所示。然而,上述两种显微镜均需要复杂的光学元件,如暗场显微镜需要特殊的聚光镜来实现照明光以大角度入射到样品;全内反射显微镜需要高折射率棱镜或高数值孔径显微物镜来产生光学表面波;这些元件体积大,不易集成,成像效果严格依赖于光路的精确调节,增加了其操作复杂度。研究提出的基于光学薄膜的平面型显微成像元件可有效弥补上述不足。图1c为该元件结构示意图,主要包含三部分:中间部分是掺杂有高折射率散射纳米颗粒的聚合物薄膜,利用纳米颗粒的无序散射来拓展入射光束的传播角度范围;上部和下部是由高低折射率介质周期性排布形成的光学薄膜,利用其来调控出射光束的角度范围。通过光子带隙设计,下部光学薄膜只允许垂直入射的光束透过,其他角度光束的均被抑制;上部光学薄膜在750 nm波长入射下,只有大角度的光束才能透射;在640 nm波长下任何角度的光均不能透射,只能产生全内反射。图1. 传统暗场照明(a)与全内反射照明(b)光学显微镜,基于光学薄膜结构的显微成像照明元件(c)因此,在正入射下,经过该光学薄膜器件的光束出射角度或大于一定角度(对应750 nm波长),或在薄膜表面产生光学表面波(对应640 nm 波长)。利用一块光学薄膜器件,在常规的明场显微镜上(图2a),可同时实现暗场显微成像与全内反射成像。成像效果如图2b,2c所示,相对于明场光学显微镜像,其成像对比度有大幅提升。该方法不仅适用于空气中的样品,也适用于液体环境中生物活细胞的成像,如图2d所示。进一步实验结果表明,该方法可以实现介质薄膜上的表面波,并可用于金属薄膜表面等离激元,如图3所示,研究利用其作为照明光源,实现了新的表面等离激元共振显微镜架构,相较于目前广泛使用的基于油浸物镜的表面等离激元共振显微镜,基于光学薄膜器件的表面等离激元显微镜结构简单,成本低、操作便利,易于集成。图2. 基于光学薄膜结构的全内反射照明与暗场照明显微成像图3. 利用光学薄膜结构激发表面等离激元实现新型表面波光学显微镜上述实验结果表明,无需改变现有显微镜的主体光路架构,通过设计、制作合适的显微镜载玻片可以有效提升其成像对比度,拓展其成像功能。研究工作得到国家自然科学基金委员会、安徽省科技厅、合肥市科技局等的支持。相关样品制作工艺得到中国科大微纳研究与制造中心的仪器支持与技术支撑。论文链接
  • 基于介质多层薄膜的光谱测量元器件
    近日,南京理工大学理学院陈漪恺博士与中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授合作,提出并实现了一种基于介质多层薄膜的光谱测量元器件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。研究成果以“Planar Photonic Chips with Tailored Dispersion Relations for High-Efficiency Spectrographic Detection”为题发表在国际学术期刊ACS Photonics。光谱探测技术被广泛应用在科学研究和工业生产,在材料科学、高灵敏传感、药物诊断、遥感监测等领域具有重要应用价值。近年来,微型光谱仪的研究受到了广泛关注,其优点在于尺寸小,结构紧凑,易于集成、便携,成本低。特别是随着纳米光子学的发展,光谱探测所需的色散元件、超精细滤波元件以及光谱调谐级联元件等,都可以利用超小尺寸的微纳结构来实现。如何兼顾器件的小型化、集成化,与光谱测量分辨率、探测效率一直是该领域的重点和难点之一。截至目前,文献报道的集成化微型光谱仪大多利用线性方程求解完成反演测算,信号模式之间的非简并性(不相似性)决定了重建光谱仪的分辨能力。这种基于逆问题求解的光谱反演技术易于受到噪音的干扰,从而降低微型光谱仪的探测分辨率和效率。近期研究工作表明,通过合理设计结构参数,调控介质多层薄膜的色散曲线,同时借助介质多层薄膜负载的布洛赫表面波极低传输损耗特性,可以实现了光源波长与布洛赫表面波激发角度之间的近似一一对应关系,如图1a,1b所示。它意味着无需方程求解,即可以完成光谱的探测与分析,避免了逆问题求解过程中外界环境噪声对反演过程的干扰,节约了时间成本,提升了探测效率。该介质多层薄膜由高、低折射率介质(氮化硅和二氧化硅)薄膜交替叠加组成,可通过常规镀膜工艺(如等离子体增强化学的气相沉积法)在各种透明衬底上大面积、低成本制备,其制作难度与成本远小于基于微纳结构的光谱测量元件。图1:一种基于介质多层薄膜的光谱探测元件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。作为应用展示,该光谱探测元器件被放置于微型棱镜或者常规反射式光学显微镜上,当满足布洛赫表面波激发条件时,即可实现光谱探测。如图1c,当激光和宽带光源分别入射到介质多层薄膜上时,采集到的反射信号分别为暗线和暗带,其强度积分及对应着光源的光谱(图1d,1e所示)。钠灯的光谱测量实验结果表明,该测量器件能达到的光谱分辨率小于0.6 nm (图1f所示)。不同于常规光谱仪需要在入射端加载狭缝,该方法无需狭缝对被测光源进行限制,从而充分利用信号光源,有效提升了光谱探测的信噪比和对比度,因此器件可以应用于荧光光谱和拉曼散射光谱等极弱光信号的光谱表征,展现出其在物质成分和含量探测上的能力,如图1g,1h所示。介质多层薄膜的平面属性,使得其可以在同一基底上加载不同结构参数的介质多层薄膜,从而实现宽波段、多功能光谱探测器件。该项工作表明,借助于介质多层薄膜负载布洛赫表面波的高色散、低损耗特性,可以实现低成本、高效率、高分辨率的光谱测量,为集成化微型光谱仪的实现提供了新器件。该项工作也拓展了介质多层薄膜的应用领域,有望为薄膜光子学研究带来新的生长点。陈漪恺博士为该论文第一作者,张斗国教授为通讯作者。上述研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、合肥市科技局、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 上海精科:阿贝折射仪“家族”添新丁
    多年来几乎是一手按触摸键一手扭动转盘的传统阿贝折射仪,今天科技人员将其“改头换面”,用自动轻松的调试测量方法代替了上述“两手动”的传统阿贝折射仪,并改“竖”式为卧式,使人感到新鲜又方便。这种新型的“WYA-2”自动阿贝折射仪即将面市,科技人员称其是“阿贝折射仪家家族”的“新宠”。   分析仪器产品部生产的阿贝折射仪具有较长的历史,在国内外享有一定的知名度,四年前通过了欧盟CE认证,产品三分之一出口欧盟。今年下半年,阿贝折射仪出口形势也较为乐观,比去年同期增长了18%。WYA-2自动阿贝折射仪是今年年初开始设计研发的,用了短短10个月的时间。采用了CCD图像传感器和大尺寸LCD显示屏,启动电源,用手触摸显示屏就可以方便的操作,且分析测试读数准确、直观。
  • 700万!宁波海洋研究院采购红外折射率测量仪及中波红外干涉仪项目
    一、采购项目名称:宁波海洋研究院采购红外折射率测量仪及中波红外干涉仪项目二、项目编号:CBNB-20221203三、公告期限:2022年5月31日至2022年6月8日止四、采购组织类型:分散采购委托代理五、采购方式:公开招标六、招标项目概况(货物名称、数量、简要技术要求、采购预算/最高限价):品目号货物名称数量简要规格描述采购预算/最高限价一红外折射率测量仪1台用于测量光学材料的折射率特性,具体详见招标文件450万元二中波红外干涉仪1台用于红外玻璃均匀性检测,球面、非球面以及自由曲面等面型透镜加工精度检测,具体详见招标文件250万元
  • ATAGO(爱拓)PAL数显折射仪在制糖行业中的应用
    甘蔗作为制糖的主要原料,甘蔗蔗糖分是衡量甘蔗成熟和品种材料优劣的最重要指标,因此甘蔗蔗糖分检测成为甘蔗品种培育和种植工作中不能缺少的重要环节。一般情况下,当甘蔗的蔗茎田间蔗糖分13.00%以上时即可砍收,削去叶、梢和根等杂质,送到糖厂加工。 目前我国蔗糖生产和科研单位普遍采用的甘蔗糖分检测方法是二次旋光法。但二次旋光法测定步骤繁琐、耗时、费力,因而导致检测效率低,无法进行大批量样品的检测,迫切需要建立一种可简便快速的甘蔗糖分测定方法。 PAL系列迷你数显折射计操作方法: ATAGO(爱拓)的PAL系列迷你数显折射计是手持式折射计的创新与代表,完全颠覆了过去用户对于手持式折射计的传统认知,数字显示,仅手掌大小,重100g,具有使用快速简便、测定准确(测量精度Brix± 0.2%)、重量轻、体积小等优点。用与传统的刻度式手持折射计相比,其数显特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。而且PAL迷你数显折射计拥有让您惊奇的快速测量能力。只需用取样锥,取2~3滴甘蔗汁溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。可流水冲洗,具自动温度补偿。其革命性的E.L.I(外部光线阻止)功能,在野外测量受到外部强光干扰测量时,仪器会自动提示,确保得到准确的测量值。 糖厂投入使用的检测仪器: 手持式折射计主要是糖厂农业部在野外检测用,工厂压榨时检测都是用全自动台式折光仪; 广西是中国最大的糖业产地和集散地。广西地处华南,北回归线横贯其中,属亚热带气候区,发展糖业生产的气候条件得天独厚。 目前广西有糖厂98间,日榨甘蔗能力36万吨,分别属于10大糖业集团和部分国有控股企业。2003/2004年榨季原料甘蔗产量在4800万吨左右,产成品糖588万吨左右,产糖量占全国总产量的60%以上,2004/05年榨季由于播种面积减少和旱灾、霜冻等自然灾害影响,产糖有所减少,产糖量在530万吨左右,05/06年榨季甘蔗种植面积有所回生,预计甘蔗种植面积达到1030万亩,甘蔗产量将出现恢复性增产,甘蔗产量预计达到4850万吨左右,产糖600万吨左右。 广州市爱宕科学仪器有限公司的ATAGO(爱拓)的PAL系列迷你数显折射计和工厂压榨时检测工具全自动台式折光仪:在广西地区更是得到广大企业的认可和应用以下主要介绍广西博庆食品有限公司和广西洋浦南华糖业集团股份有限公司对本产品的应用中的成效: 广西博庆食品有限公司 广西博庆食品有限公司与ATAGO(爱拓)合作以来以来,使用PAL系列迷你数显折射计在甘蔗的砍收过程中取得了显著的成效,使得对甘蔗的砍收更准确,对整个制作工序达到了时间上的节约,人工上的节约,从而降低成本,使得企业旗下的石别、怀远两家制糖企业,现在现生产能分别为9000吨/日和6000吨/日得到了更大的保障且与ATAGO(爱拓)合作以来,旗下的石别、怀远两家制糖企业的日产平均增长达到0.4%,ATAGO(爱拓)优质的售后服务以及强大的技术团队使得我们的合作方的效益最大化,更使得我们双方共赢。 广西洋浦南华糖业集团股份有限公司 据悉,2012年崇左全市甘蔗生产的目标任务是:完成甘蔗种植面积430万亩以上,其中新植蔗要达到190.9万亩、新扩种面积20万亩以上;力争2012/2013年榨季原料蔗和产糖量创历史新高,原料蔗达2300万吨以上、产糖287万吨以上,田间平均蔗糖分14.7%以上。 当然在这样浩大的工程中理所当然会有我们的作为强有力的技术支持后盾,PAL系列迷你数显折射计将发挥其最大的优势,ATAGO(爱拓)最为洋浦南华的合作方,会在仪器应用技术上保障博庆在使用过程中最大化的体现出PAL系列迷你数显折射计的简介准确性,更加希望洋浦南华在2012年取得辉煌,ATAGO(爱拓)将不计余力提供最好的售后服务保障。 以下是ATAGO(爱拓)和广西糖厂建立良好的合作关系: 广西南华糖业有限责任公司 广西崇左东亚糖业有限公司 广西博宣食品有限公司 广西博华食品有限公司 南宁糖业股份有限公司   结束语 蔗糖是人类基本的食品添加剂之一也是食品中有营养的甜味剂。是光合作用的主要产物,广泛分布于植物体内。ATAGO(爱拓)食品检测工具,给广西糖厂带来了制糖生产过程中间制品快速分析检测 ,糖料品质检测 ,ATAGO(爱拓)PAL系列迷你数显折射计可以非常方便的用于田间或基层,简单快速的测量样品中糖分以判断其成熟度;或在附近没有实验室的条件下快速进行浓度测量以得到分析结果。通过以上分析,ATAGO(爱拓)的工厂压榨时检测工具全自动台式折光仪在制糖行业的应用得到了糖厂广泛认可。 本文来之:广州市爱宕科学仪器有限公司
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现   人工界面改写光的反射和折射定律   光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。   光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。   经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。   研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。   阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。   这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。   利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 日本ATAGO爱拓手持折射仪PAL-1销售9周年庆
    公元2003年5月21日正式开始发售的PAL-1, 数字手持袖珍折射仪PAL-1分别荣获了2003年优秀设计奖 Good Design Award !从2003年5月面世到现在已经经历9周年的客户体验,现在还继续在全世界保持超高人气。全新的数字式手持折射仪PAL-1,它是经过重新设计的产品,PAL-1的发表,彻底改变了传统折射仪的概念,是一种革命性的,颠覆传统的科学仪器产品,PAL-1的袖珍型大小将能让您随身携带,并且不论厂房内外均能使用。您将会对它的尺寸、设计、功能与性能感到惊奇!PAL-1将会扩展您检测范围的更多可能性。 PAL系列完全采用模块化设计,将光学分析模块与电子器件(包括模数转换,数据处理,显示器驱动,显示LCD板,按键等)部分完全分离,并采用共用模具设计制造工艺,使得一个检测仪器能够像消费类电子产品一样被大规模复制,设置不同的测试功能只是在工厂里重写Flash-ROM-BIOS数据,因而该仪器既能够被制造得小巧玲珑,又能够满足测试精度,还能够衍生出无数种不同参数的测试仪器,并且,价格还非常便宜。目前PAL-1数字式折光糖度计的价格仅相当于过去买一只手持刻度式折光糖度计的价钱。 数字手持袖珍折射仪PAL-1荣获了2003年优秀设计奖 Good Design Award !数字手持袖珍折射仪PAL-1荣获了2004年东京杰出创新技术奖!数字手持袖珍折射仪PAL-1荣获了2005年食品产业技术功劳奖! 为了拓展PAL-系列的应用,ATAGO开发出了许多单参数的特殊标度PAL浓度测定仪,应用领域包括:糖、蜂蜜、豆奶、盐卤(氯化镁)、拉面汤(两种刻度)、盐水、海水、食品添加物、酒精、药剂、葡萄汁(未发酵葡萄酒)、消毒剂,漂白剂、碱性液体、融雪剂、冷冻剂(两种刻度)、皮革鞣剂、纺织、糊状物、各种化学制品和溶剂浓度的测量等等。 比如:具有特殊标度的较高浓度盐分折射仪,可以应用在腌菜制造、测量冲洗海洋产品的盐水浓度、料理食物用盐水浓度等,还可以在冬天测定融雪剂的浓度以控制盐类工业品的使用量。 PAL-06S是具有特殊标度的海水盐度折射仪。还有另外一款刻度式手持折射仪,MATER-S/MillM,MATER-S/Millα,MATER-S10α,MASTER-S28M盐度折射仪目测得到数据,满足你不同的盐度要求。立即以数字显示海水盐分浓度,适于测量海产品养鱼池的盐分,以便对水产品的生育状态进行监测控制。使用方便、操作简易,易于携带,并采用防水设计,掉在水中也没问题! 另外一个例子:PAL-37S,既可以用于测量丙二醇的浓度,还可以判断在冬天的冻结温度, 适用于北方的汽车司机,维修厂进行冷却剂浓度的管理。 PAL-22S 蜂蜜折射仪是特别设计以折射指数表示,用来测量蜂蜜含水量的仪器。具有轻巧,易于携带,数字显示,操作简易,防水设计等特性 还有另外一款刻度式手持折射计HHR-2N蜂蜜折射仪,适合测量12.0 至 30.0%( 蜂蜜含水量 )标度范围。 数字手持袖珍葡萄折射仪(Baume,波美度) PAL-84S,专门用于测量葡萄的成熟过程中的各种指标,可以提供给葡萄栽培酿造商、酿造厂、葡萄收购者等测量葡萄浓度, 以便确定葡萄用于酿酒的最佳时期。 目前ATAGO在PAL-系列上开发出了大约80种特殊标度的数字式折射仪,请根据您的样品种类选择合适型号。 目前可供销售的型号和标度如下: 各个型号的浓度测定范围等详细技术参数资料请联系ATAGO(爱拓)中国索取。 附表:色标字母,机身的颜色参考图例。 A B C D E F 橙色 黄色 银色 蓝色 桃红 紫色 上述PAL-系列的产品目前在全球非常畅销,成为ATAGO取得新的市场成功的关键性产品,当然,ATAGO还有已经获得市场广泛认同的Pallet系列数字折射率/多种物质浓度测定仪,RX-5000a, RX-7000a高精度数字式折光仪,新品触摸屏式数字式折光仪,RX-7000i,1T, 2T, 3T, 4T阿贝折射仪,DR-A1数字式阿贝折射仪和DR-M4多波长数字式阿贝折射仪,在旋光度测定仪方面,ATAGO的AP-300全自动旋光仪,成为最佳性能价格比旋光仪的典型代表,一经上市,目前已经成为全球范围最畅销的旋光度测量仪产品。 Pallete系列, 32α, 101α RX-5000a,7000a,7000i 1T,2T,3T,4T(DR-A1-Plus) AP-300,制药,制糖行业 糖度,特殊标度折射仪 高精度触摸屏数字折射仪 新品 阿贝折射仪 高精度全自动旋光仪 2011年ATAGO(爱拓)中国分公司的成立和正式运行(全称广州市爱宕科学仪器有限公司),将使广大国内用户能够快速地购买产品,获得使用指导和维修服务。有关此品牌产品的任何购买问题;请联系:info@atago-china.com 任何技术问题:请联系:wxb@atago-china.com 通讯地址:中国广州:广州市天河区林和西路9号耀中广场A座702 (510620)电话:86-20-38108256 38106065 38106057 传真:86-20-38109695E-mail: info@atago-china.com http://www.atago-china.com ATAGO(爱拓)中国 提醒:本文件的内容可随意下载,转贴,公示而不受版权限制,但仅限于本文章的完整章节和整体,任何断章取义的粘贴,歪曲或传播将不被鼓励和容许。
  • 迷你数显折射仪 日本ATAGO(爱拓)的应用
    迷你数显折射仪(又名折光仪)的应用与刻度式手持折射仪/折光仪类似,其数显折射仪(又名折光仪)特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。 ATAGO(爱拓)的PAL系列迷你数显折射仪/折光仪是手持式折射仪/折光仪的创新与代表,完全颠覆了过去用户对于手持式折射仪/折光仪的传统认知,数字显示,仅手掌大小,重100g。 PAL迷你数显折射仪/折光仪拥有让您惊奇的快速测量能力。只要将一滴样本溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。PAL迷你数显折射计/折光仪可流水冲洗,具自动温度补偿,能测量高温样品,您将会对它的尺寸、设计、功能与性能感到惊奇!(日本ATAGO爱拓 折射仪&mdash 折射仪/折光仪&mdash 折光仪/旋光仪&mdash 旋光仪) ATAGO(爱拓)的AP-300旋光仪旋光仪是一款具有旋光度和国际标准糖度(ISS)双标度的全自动旋光仪旋光仪,AP-300全自动旋光仪/旋光仪专为需要测定旋光度和糖度的制糖行业而设计的一款旋光仪旋光仪。 ATAGO(爱拓)是专业的折光仪/折射仪与旋光仪旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪 旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度 、旋光度的测量方案!更多折光仪/折射仪/旋光仪旋光仪详情请点击 www.atago-china.com 或致电020-38108256 ATAGO(爱拓)中国分公司咨询。
  • “让折射仪又好、又小、性价比更高”——“创新100”访北京领航力嘉机电有限公司
    北京领航力嘉机电有限公司成立于2013年,是一家液体浓度测量产品及行业解决方案供应商,专注于液体测量仪器的设计与制造,主要从事光学测量仪器的研发和生产,主要提供便携式数字折射仪、在线液体浓度传感器等产品,是国家高新技术企业、中关村高新技术企业。仪器信息网独家对话领航力嘉创始人马玉峰,关注这家液体浓度测量产品企业的发展与成长。北京领航力嘉机电有限公司创始人 马玉峰“创业初期是领航力嘉生存的关键期,我们怀着‘要做国内最好的折射计产品’的初心,努力克服资金紧张、人员不足、办公环境简陋等各方面的困难,齐心协力,迈出了科技攻关的第一步,对标国际水平填补国内市场空白,完成企业市场定位由OEM向ODM的角色转换。“马玉峰回忆。“让折射计产品又好、又小、性价比更高”,是领航力嘉技术团队最朴实的愿望,在此基础上,领航力嘉的产品开发始终遵循“4S”原则——“Small”、“Smart”、“Low cost”、“Scale”,即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产,让折射计产品服务于更多人群和更多行业领域。根据光学折射原理,领航力嘉产品可在线测量DMAC、NMP、DMF、车用尿素、切削液、乳化液、乙二醇、氨水、酒精清洗液等各种化工液体的浓度百分比、折射率、温度等参数,产品广泛应用于食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域。目前,领航力嘉已针对食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域提供细分化产品与专业的行业解决方案。领航力嘉产品不仅畅销全国各地,还远销至欧洲、北美及东南亚等海外市场,收获了用户的广泛好评。仪器信息网:领航力嘉目前的研发能力如何?马玉峰:领航力嘉拥有业内领先的自主核心技术和可持续研发能力,是国家高新技术企业、中关村高新技术企业,目前有员工25人,研发人员占比超过30%,办公面积约800㎡。领航力嘉成创立初期的核心团队成员均拥有十年以上的折射计产品研发经验,这为项目的顺利启动奠定了坚实的基础。领航力嘉已有自主研发的专利包含:发明专利1枚、实用新型专利8枚、外观专利5枚、软件注册权6枚。并已申请ISO9001认证证书、14001认证证书。仪器信息网:领航力嘉目前有着怎样的竞争优势?马玉峰:领航力嘉的竞争优势主要体现在三个方面。一是技术优势。领航力嘉的产品功能,主要包括:精准折射率测量,温度测量,折射率与浓度或密度的转换,测量数据上传云端或工控机,云端大数据的监控及分析。二是应用优势。领航力嘉主张折射计产品应该小型化,微型化,数据化,网络化,走进各行各业,走进千家万户。由于折射计产品具备无损、快速、稳定、可测液体种类多等优势,适合与大数据和物联网相结合,并进行数据分析,提供有效的数据服务,并由此形成新的应用。三是性价比优势。领航力嘉产品始终坚持“小型化”、“低成本”、“可规模化生产”的研发路线,为让折射计产品能服务更多行业用户与消费者,市场售价仅为国外品牌同类产品的30%左右。仪器信息网:领航力嘉当前的业绩增长点集中在哪几个方面?马玉峰:领航力嘉目前主要的业务增长点集中在C端、B端和G端。C端包括小家电消费市场的应用,如智能控糖水杯。B端体现在在线传感器面向工业物联网的应用逐步丰富,当前产品重点关注的使用场景包括车用尾气管理、锂电池过程液体管理、结构加工用液体管理、精酿啤酒酿造过程管理等。G端包括环保监测领域应用,如道路交通执法。仪器信息网:领航力嘉目前有着怎样的市场布局?马玉峰:经过20多年的积累,本人及技术团队实现了在折射仪行业内的基础技术原始积累,包括光学原理、光学结构、制造工艺、电路设计、软件算法等。在企业的发展理念上,也更加重视整体规划和市场布局。同时,坚持“4S”产品研发思路,重视知识产权的保护、积极开拓国内市场,使得领航力嘉产品的市场竞争力和市场占有率不断提高。1.技术发展从技术发展的角度来看,领航力嘉通过创新的光学设计,不仅使产品性能更加稳定,同时还大幅度降低产品的成本,使折射计产品小型化,甚至微型化;同时还结合“大数据应用”和“互联网+”的设计理念,填补了多项行业空白,为数字折射计产品的普及和推广应用打下了坚实的基础。2.贸易发展从贸易的角度来看,过去我们的中高端仪器仪表类产品长期依赖进口,高端仪器仪表产品几乎被国外公司垄断,全球知名的折射计研发及生产厂家有日本ATAGO、德国B+H、奥地利安东帕、瑞士梅特勒-托利多、和美国鲁道夫公司等,其中日本ATAGO在我国国内市场占据明显优势,主要通过代理商来销售。特别是传感器类仪器仪表产品,不仅价格昂贵,而且80%以上来自国外。这些年来,经过我们的不断努力,不仅大大降低了数字折射计产品的生产成本,使产品的外形设计趋于微型化,还解决了产品规模化生产等问题,从而提高了产品在国内市场和国际市场的竞争力和市场占有率,收获了来自海内外用户的广泛好评。让“中国发明,中国制造”真正走向世界!3.社会效益一直以来,由于国内相关企业在液体测量仪器方面技术研发基础比较薄弱、品牌意识欠缺等原因,导致国外的折射计产品占据了国内高端仪器仪表的绝大部分市场。面对这样的现状,我们深感责任重大,虽然我国测量仪器设备的总体水平确实落后于国际先进水平,尤其是光学测量系统的设计水平,但我们必须迎难而上,打破国外企业的技术垄断,打造出中国智能测量领域的民族品牌。面对这样的差距,我们需要加大加快投入力度,重视技术研发和生产线的改造升级。仪器仪表行业是从业人员的长征路,我们一直在与时间赛跑,通过二十多年的努力,我们在折射计领域已经取得了长足的进步,我们的折射计产品从无到有,从有到精,不断前进。与此同时,折射计产品的应用领域也得到了前所未有的扩展,目前应用领域有食品加工、汽车、医疗、能源、纺织、印刷、化工等多个行业及实验室、高校、科研院所等单位。产品可以用来测量食品饮料的糖浓度,测量人体尿液指标,测量蓄电池电解液参数(蓄电池电量测量及寿命诊断),测量汽车用玻璃水、冷冻液的冰点及刹车油的沸点,测量柴油车的燃油添加尿素的指标(ADBLUE)以及汽、柴油的品质等等。不仅打破行业壁垒,细化用户群体,更实现了良好的社会效益。仪器信息网:领航力嘉产品在工业物联网中的定位?马玉峰:领航力嘉深耕折射计行业20年, 具有“国家高新技术企业”、“中关村高新技术企业”双高认证,拥有自主知识产权的ODM产品体系,产品覆盖国内和海外欧、美、韩、印市场, 不仅支持测量数据云存储,更实现了产品的物联网化转型,致力于成为国内一流的工业液体光电传感器供应商。领航力嘉产品在工业物联网中的定位即顺应“工业4.0”的发展需求,强调工业物联网的搭建, 突出传感器的应用。中国制造2025,强调生产的智能化,在智慧物流(供应链)和数据学习能力中形成优势,包括:1、基于传感器、控制器、移动设备的物联网硬件体系 无线/有线网络,射频标签(RFID), 传感器构成基础服务的硬件架构。2、基于软件平台的服务互联网包括PLM、SCM、CRM、ERP等功能 的自动化集成,通过云服务和边缘计算实现。3、基于信息物理系统的数据融合 在CPS系统中的物理对象和虚拟对象通过网络通信,生产数据通过网络被各处理节点触达。4、未来的数据供应商(MaaS) 打通分立的物理感知系统,通过采集数据(大数据)和决策策略(智能学习) 的共享和分享,在信息系统间实现提效。仪器信息网:领航力嘉折射计产品的发展趋势?马玉峰:领航力嘉折射计产品的发展趋势有三个方面:1.与大数据和物联网相结合,并进行数据分析,提供有效的数据服务。云端的大数据处理和数据分析,是现代信息社会的发展趋势。2.小型化,微型化发展未来人们需要许许多多的传感器来量化我们的生活,感知工业生产中的各个环节,大型而笨重的传统测量设备正在逐步远离我们的工作与生活。作为用于液体折射率测量的折射计,由于其具备无损、快速、稳定、可测液体种类多等优势,更加适合于目前的技术潮流。让数字折射计小型化,微型化,数据化,网络化,走进各行各业,走进千家万户,这是折射计产品不可逆转的发展趋势。3.应用场景多样化目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。仪器信息网:您如何评价公司目前的发展情况,您对公司未来发展有怎样的愿景,最想要实现的一件事是什么?马玉峰:领航力嘉作为国内仪器仪表行业的新生力量,面对激烈的技术竞争和商业竞争,经过这几年的艰苦奋斗,已经取得了不俗的成绩。这些都得益于,我们始终以市场需求驱动发展,实现产品的快速迭代,进而形成良性的生态循环。最想实现的目标:让原来“高、大、上”的实验室科学仪器走出实验室,进入更广阔的工业领域及民用市场。只有这样,才能实现科技普惠大众的理念。仪器信息网:您认为企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?马玉峰:目前政府相关部门已经出台了一系列政策来支持鼓励仪器仪表行业的发展,但是仅仅这些还不够,仪器仪表类产品的研发与制造是一个前期投资高、回报周期长的行业,很多公司在最初几年很难盈利,即使产品研发成功,但测量仪器的精准度、稳定性、可靠性都是需要客户在较长时间(半年甚至是一年)的实际使用后才能得出可信的结论。因此,客户认可滞后、销量滞后,依然会使公司面临亏损的尴尬局面。国家可以继续加强政策上的激励和资金上的支持,从而为仪器仪表行业注入新的活力。仪器仪表行业作为技术密集型行业,也希望国家能建立一套完整的知识产权保护机制,在仪器仪表产业链的薄弱环节,积极鼓励创新,营造良好的产业环境。仪器信息网:您如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?马玉峰:国产科学仪器的发展,需要科技创新、企业创新和人才创新。互联网、物联网和大数据的发展,必然给国产科学仪器带来更多机遇。目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。过去二十多年,我们在折射计领域已经取得了长足的进步,折射计产品的应用已经渗透到工业生产和人们生活的很多领域。未来十年,折射计产品在社会经济发展中也存在着巨大的发展空间。新技术、新产品的出现必将带来巨大的市场,而国产替代化,也将催生一批新的仪器仪表企业。在中国经济转型和产业升级的浪潮中,只要我们稳扎稳打,刻苦攻坚,始终坚持“科研创新,科技自强”的信念,就一定会迎来属于我们自己的新时代!领航力嘉主要折射计产品简介:2013年,领航力嘉创始人马玉峰及技术团队成立北京领航力嘉机电有限公司,开始创业的征程。有了之前二十余年产品研发工作的积累,并明确创业的目标和方向,深挖国内市场需求,并制定了领航力嘉的产品开发“4S”原则,即:“Small”、”Smart”、”Low cost”、”Scale”。即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产。(一)离线折射计产品的研发与推广自2014年开始,领航力嘉技术团队相继开发了MSDR-P系列智能数字折射仪产品;MDSR-M系列笔式折射仪产品;MDSR-D系列台式折射仪产品;行业内首个数字折射仪云端数据平台,并相继取得了包括国家发明专利在内的二十项知识产权成果。这些产品均具备与云端数据库进行数据交互的功能,完成了产品智能化的框架构成,与同类产品相比,具有独特的技术优势。产品在国内外市场获得认可的同时,产品与客户的黏度提升,甚至已经改变了部分客户及经销商对数字折射仪产品的使用习惯和销售策略,也将更高品质、更高性价比的折射计产品普及应用到更多领域,实现了科技进步、企业盈利与社会经济同步发展的目标。(二)在线折射计产品的研发与推广随着国家对环境污染治理的重视,机动车尾气排放第六阶段标准(国六标准)的落地以及中国制造2025(强调生产、物流的智能化)的开展。领航力嘉自2017年开始,进军液体浓度在线测量传感器领域,并于2018年做出快速开发车用尿素浓度在线检测传感器的决策。2019年,领航力嘉完成在线传感器产品的标准作业程序,同年送测B端客户。2020年,领航力嘉在线传感器产品的应用场景,已扩展至新能源锂电池制备(NMP回收液),柴油车尾气治理液监测(车用尿素液),机械加工过程监测(切削液)等多个领域,并实现量产出货。2022年,领航力嘉又将液体浓度传感器产品的应用扩展至制药行业,开辟了又一行业应用新领域。领航力嘉折射计系列:(一)便携式数字折射计MSDR-P系列MSDR-P系列折射计,2014年研发成功,并于当年获得第一项实用新型专利证书,2015年进入规模化量产阶段,该系列产品可测量液体的糖度、盐度、蜂蜜的波美度、酒类产品的酒精度、清洗液/玻璃水/车用尿素的浓度等等,适用于日常民用,以及食品、医疗、车用等行业。MSDR-P系列折射计,可搭配蓝牙模块,支持自定义修改刻线和云端数据存储,自进入国内市场以后,以其亲民的价格、稳定的性能和多场景应用,收获了大量的用户好评,市场份额逐年快速提升。MSDR-P系列折射计产品,主要依靠数学在电子技术上构建的优势和“互联网+”应用,获得了产品与服务的成功。在此基础上,后期MSDR-P系列产品线逐渐增加了MSDR-P0、MSDR-P1、MSDR-P2、MSDR-P3多种型号及定制化产品,从外观设计、价格、功能等各个方面满足了不同用户的需求。MSDR-P系列产品以2B2C销售模式为主,兼顾G端政府采购。近两年,我们着力推进G端环保监测用市场发展, 2020年产品中标广州市移动源监测能力建设项目,形成示范效应。主要解决柴油车车用尿素浓度检测的问题,因为车用尿素溶液能够将氮氧化物转换成无害的氮气和水排入大气中,实现节能与环保。(二)台式数字折射计MSDR-D系列MSDR-D系列折射仪产品采用线阵CMOS高精度传感器,采样精度高,重复性好。测量面采用蓝宝石玻璃,硬度更高,不易划伤,同时采用5寸大液晶显示屏,数据读取更便捷。标配18650锂电池,可自主更换。该系列产品拥有PC软件扩展功能,用户可以自定义刻线编程,定制属于自己的刻线,也支持经销商利用云端数据库下载不同应用。MSDR-D系列折射仪产品适用于科研实验室、食品饮料行业品质监控、医疗卫生、化工及汽车等多个行业领域,可满足特定客户定制需求。(三)在线传感器系列
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。 图一:IV曲线图 图二:量子效率 量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。 早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。 系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。 图三:系统整体图 先进的光源配置: 系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。 图四:普通卤素灯的光谱图 图五:普通氙灯的光谱图 独特的测试光路设计: 大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。 强大的偏置光配置: 为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。 功能全面高效的软件: 软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。 图六:功能强大的图标管理功能 特点总结: 1、实现内外量子效率同步测试 2、双光源测试,契合IEC标准,提高测试准确性 3、双路可调偏置光,轻松实现三节电池测试 4、功能强大的测试软件
  • HORIBA Scientific新品系列(四):薄膜精准测量新突破
    薄膜分析专家,可精确分析薄膜各种物理、光学特性,轻松获取如下信息:● 厚度(低至1A) ● 折射率● 消光系数● …… 您也可以向我们索取产品报价、样本关应用资料超高性能的仪器,是薄膜研究佳选择! 可测低至单原子层厚度样品 可测低衬度样品,如硅上氧化硅等 高准确性、高稳定性,实验结果真实可靠,更具信服力 190nm-2100nm宽光谱范围,材料研究范围更加广阔,为您的研究方向提供无限空间先进设计理念,操作更轻松,功能更强大! 微光斑可视系统,8个尺寸可选,复杂形貌样品精准轻松定位 全自动化设计,减少人为操作失误 操作简单,初学者也可快速掌握 强大的软件平台,完美集成数据采集与建模拟合功能,满足资深科研人员的使用要求● TFT-LCD● PDP● LED, ELD, OLED● 柔性显示器● 晶体管● 高k、低k材料● 光刻胶● 数据存储● II-VI, III-V 和硅太阳能电池● 有机太阳能电池● TCO● 石墨烯, 碳纳米管● 纳米结构● 有机膜下载新的《光谱系列丛书 入门手册》关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 日本ATAGO(爱拓)完成AP-300旋光仪与多波长折射仪DR-M4仪器安装调试
    日前,日本ATAGO(爱拓)中国分公司,已经完成长沙浏阳工业园湖南尔康药业有限公司 AP-300全自动台式旋光仪的安装调试工作,目前客户已经投入使用该测试仪器,并进行内部旋光度检测测试工作。在本次安装中,用户主要研究领域为测量医药原料比旋光度、浓度、纯度、符合国家药点的标准,仪器调试顺利正常,用户使用操作熟悉。 另外,今天日本ATAGO(爱拓)中国工程师在成都一家化工厂:中昊晨光化工研究院为客户购买仪器前做样品仪器性能分析测试工作,该测试使用的是ATAGO的多波长阿贝折光仪(型号:DR-M4),用户主要研究领域为硅胶、树脂类产品折射率,测试完毕后客户对该设备及此次测试工作给予了高度的评价。 图为与化工厂工现场使用测试的多波长折射仪以及工程师与科研人员的合照 图为湖南尔康药业有限公司正式使用ATAGO的AP-300全自动台式旋光仪! 更多有关ATAGO(爱拓)全线盐度计,在线浓度计 折射仪,旋光仪,自动恒温台式折光仪产品资料及应用技术的资料 请密切关注日本ATAGO 中国分公司网站: www.atago-china.com ★ATAGO(爱拓)中国 提醒★:本文件的内容可随意下载,转贴,公示而不受版权限制,但仅限于本文章的完整章节和整体,任何断章取义的粘贴,歪曲或传播将不被鼓励和容许。
  • ATAGO爱拓-阿贝折射仪操作清洗方法与维护保修问题
    阿贝折射仪测透明、半透明液体或固体的折射率ND的检测仪器。ATAGO(爱拓)阿贝折射仪有恒温器,可测定温度为0℃~70℃内的折射率ND,并能测出糖溶液内含糖量浓度的百分数。故此种仪器是石油工业、油脂工业、制药工业、造漆工业、食品工业、日用化学工业、制糖工业和地质勘察等有关工厂、教学及科研单位不可缺少的常用设备之一。 手持式折射仪是根据不同浓度的液体具有不同的折射率这一原理设计而成的,是一种用于测量液体浓度的精密光学仪器,具有操作简单、携带方便、使用便捷、测量液少、准确迅速等特点,是科学研究、机械加工、化工检测、食品加工及海水养殖的必备仪器。 一、产品结构 ①折光棱镜 ②盖板 ③校准螺栓 ④光学系统管路 ⑤目镜(视度调节环) 二、使用步骤 1、将折光棱镜 ①对准光亮方向,调节目镜视度环 ②直到标线清晰为止。 2、调整基准:测定前首先使用标准液(有零刻度的为纯净水,量程起点不是零刻度的,得使用对应的标准液)、仪器及待测液体基于同一温度。掀开盖板②,然后取1滴标准液滴于折光棱镜①上,并用手轻轻按压平盖板②,通过目镜⑤看到一条蓝白分界线。旋转校准螺栓③使目镜视场中的蓝白分界线与基准线重合(0%) (注:ATATGO(爱拓)每一台光学仪器出厂时都经过严格的校验,可直接使用) 3、测量:可用棉花(柔软绒布、较好的纸巾、擦镜纸)擦净棱镜①表面及盖板,掀开盖板②,取1滴被测溶液滴于折光棱镜①盖上盖板②轻轻按压平,里面不要有气泡,然后通过目镜⑤读取蓝白分界线的相对刻度,即为被测液体的含量(根据每一台仪器的标准刻度而定)。 4、测量完毕后,直接用棉花(柔软绒布、较好的纸巾、擦镜纸)和水(或是酒精)擦干净棱镜表面及盖板上的附着物,待干燥后,妥善保存起来。注意:防止仪器脱落,造成盖子或棱镜损伤。 三、注意事项及维护 1、使用完毕后,防水型号可直接用水直接冲洗;而不防水型号严禁用水直接冲洗,避免光学系统管路进水。 2、在使用与保养中应轻拿轻放,不得任意松动仪器各连接部分,不得跌落、碰撞,仪器要精心保养,光学零件表面不应碰伤、划伤。 3、本仪器应在干燥、无尘、无腐蚀性气体的环境中保存,以免光学零件表面发霉。 4、与被测物接触的棱镜为光学玻璃,可放心使用。 四、附件 仪器装在专用盒内,配有:说明书1份,校正螺丝刀1把。 五、保修 仪器自销售之日起保修1年,由于使用者的人为破坏或使用、维护不当造成的损坏,不在保修范围之内。 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 &hellip 查看详细仪器价格、产品目录资料、技术资料并订购,请访问ATAGO(爱拓)中国官网或者致电联系我们: Web: http://www.atago-china.com TEL:020-38108256/38106065/38106057
  • 上海精科阿贝折射仪今年出口依然强劲
    广泛用于制糖、制药、饮料、食品、石油、化工工业生产、科研、教学等领域作检测分析的WAY-2S阿贝折射仪,是我精科公司的重点产品之一,近年来畅销国内外市场。2008年下半年,欧洲市场受美国次贷危机影响,需求量明显下行,对高档科学仪器需求日益减少,但对精科公司的中档科学仪器━━WAY-2S阿贝折射仪却青睐有加,需求量全年未减少,反而有增加,比去年增加了20-25%。 我公司制造的WAY-2S阿贝折射仪出口主要地是欧盟。据市场营销管理部出口科认为,WAY-2S阿贝折射仪虽属中档科学仪器,但造型大方、操作简便、分析精准、质量可靠(2006年初通过德国CE认证)和用途广泛,继续受到现在已是“节俭办一切事情”的欧洲老外的欢迎。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制