羰基镁

仪器信息网羰基镁专题为您提供2024年最新羰基镁价格报价、厂家品牌的相关信息, 包括羰基镁参数、型号等,不管是国产,还是进口品牌的羰基镁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羰基镁相关的耗材配件、试剂标物,还有羰基镁相关的最新资讯、资料,以及羰基镁相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

羰基镁相关的资料

羰基镁相关的论坛

  • 【讨论】关于羰基值的再讨论

    【讨论】关于羰基值的再讨论

    [size=3]前面已经对羰基值发过帖子,没怎么解决,再发一次。2010版药典一部对羰基值的计算公式作了重大修改:[/size][font=宋体][size=3][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005252017_220628_1604723_3.jpg[/img]虽说对羰基值的计算公式作了修改,但具体到每味药材下,其限定值却没作修改。比如桃仁,其羰基值限定为11.请注意:设测得吸光度A=0.1(已经够小了),W=0.5g(附录中规定0.025-0.5g),最后计算得30.不合理。[/size][/font]

  • 羰基指数怎么测?

    最近要测羰基指数,样品为PTMEG(聚四亚甲基醚二醇)是是四氢呋喃的聚合物。测它的羰基指数怎么弄?一般找那个峰为基准?现在只知道有文献上写羰基指数CI=Ac=o/Aref..... 求高人指点

  • 【讨论】油脂羰基值的测定

    有没有版友用2,4-二硝基苯肼比色法做过油脂中的羰基值,测定结果精密度如何?需要注意哪些环节,我在测定过程中发现稳定性不好,不知什么原因

羰基镁相关的方案

  • 上海纳锘实业:石油产品中羰基硫的电位滴定法测量
    石油产品中羰基硫的电位滴定法测量 摘要:本文给出了用电位滴定法测定石油工业(天然气,液化石油气,用于吸收的溶液,馏出燃料,航空油,汽油,煤油,等)中气态和液态产品中的硫化氢,羰基硫和硫醇。试样用硝酸银的醇溶液滴定,用Ag Titrode电极作为指示电极。
  • 石油产品中硫化氢、羰基硫、硫醇的电位滴定法测量
    石油产品中硫化氢、羰基硫、硫醇的电位滴定法测量 摘要 本文给出了用电位滴定法测定石油工业(天然气,液化石油气,用于吸收的溶液,馏出燃料,航空油,汽油,煤油,等)中气态和液态产品中的硫化氢,羰基硫和硫醇。试样用硝酸银的醇溶液滴定,用Ag Titrode电极作为指示电极。
  • 单克隆抗体 N-糖基化的毛细管电泳和质谱分析
    糖基化是最重要的一种翻译后修饰,指的是将糖基部分连接到蛋白质上。糖基化模式的改变对免疫原性和整体生物活性有很大影响。因此,糖基化表征对基于生物医药的应用至关重要。虽然现在已有多种分析技术被应用于分析 N-糖基化,但低水平糖基化的精确测定仍面临着极大的挑战。本应用简报展示了利用毛细管电泳和质谱 (CEMS) 对重组单克隆抗体 (mAb) 糖基化进行分析。此方法包括利用 N-糖苷酶 F (PNGase F) 酶解 mAb 得到多糖,对多糖进行荧光标记( 8-氨基吡-1,3,6-三磺酸三钠盐,ATPS),并利用 Agilent 7100 CE 串联 Agilent 6520 精确质量 Q-TOF LC/MS 进行分析。从使用的重组 mAb 中,我们共鉴定出 7 种多糖,从每种多糖成分的相对百分比可知,主要及次要糖基化修饰均有存在。本应用简报证明了高分离速度的 CE 与高灵敏度检测限的 MS 相结合,使 CE-MS 成为一种替代 LC/MS 方法对 mAb 或其它糖蛋白进行糖基化表征的有效且最有前景的方法。

羰基镁相关的资讯

  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2

羰基镁相关的仪器

  • 【磐诺硫化物在线气相色谱仪】该系统环境样品先经过在线除水装置除去其中的水份,再吸附到低温冷阱复合吸附管中,然后吸附管闪蒸快速升温至250℃解吸,进样,载气带着热解析出来的气体样品进入预柱分离,待目标化合物进入分析柱中后,切换阀,载气将高沸点化合物从预柱中反吹出去,目标化合物在分析柱中继续分离通过火焰光度检测器FPD检测得到。【仪器特点】1)在线样品富集、解吸附、样品分析,自动运行;2)全部管路和器件均经过硫钝化处理,对目标硫化物无吸附;3)低温冷阱富集,增强了对低沸点化合物的富集效率;4)快速升温,瞬间解吸附进样,大大的减小了分析误差;5)高灵敏度高选择性FPD检测器,用于硫化物检测的最佳选择;6)仪器具有开机自检功能,断气保护功能,断电自动重启功能和报警功能,保证系统安全和稳定性;7)使用自动电子流量控制技术(EPC)控制载气、空气和氢气,高精度(0.01psi),重复性和再现好;8)核心部件均使用国际知名品牌,可靠性高,使用寿命长。【应用领域】环境空气在线监测或科研焦化、造气、造纸、印染、制革、纤维等工业废气在线监测【技术参数】检测能力羰基硫、硫化氢、甲硫醇、甲硫醚、二甲二硫醚、二硫化碳和噻吩等检测器火焰光度检测器(FPD)检出限≤0.1ppb重复性RSD≤5%分析周期20min功率电源<800W,220V AC/50Hz工作环境温度:(-10~50)℃,湿度:(10%~90%)RH气源要求载气:高纯氮气或零级空气(≥99.999%);燃烧气:高纯氢气(≥99.999%)助燃气:零级空气(烃类<20ppb)输出4-20mA、RS232/RS485、以太网尺寸19"标准机箱,7U
    留言咨询
  • MIRA OCS羰基硫分析仪 400-860-5168转2145
    MIRA OCS羰基硫分析仪——亚ppb级、中红外激光、超便携产品介绍MIRA OCS羰基硫分析仪使用创新的多通道吸收室与固态中红外激光技术相结合,检测室无反射镜,坚固和小巧,在60ml 的小空间里取得15m 的光程,同时测量OCS和H2O,使用独特的专有微分方法,可以消除温度引起的漂移,可实现亚ppb级别灵敏度,在1 分钟内达到35 ppt 的灵敏度,并且通过多次平均可以提升至10 ppt。用户能够自定义校准间隔,以实现特定应用的更高精度测量。分析仪可选配GPS,以输出.kml 格式的位置和浓度数据文件,可以很方便地在 Google Earth 中查看。MIRA OCS羰基硫分析仪可以实时高精度OCS 浓度测量,从而在土壤室研究或环境监测等一系列应用中进行现场测量。 OCS 是用于量化生物系统中光化学诱导的碳吸收的已知代理。传统上,OCS 使用更昂贵的系统来测量的,这些系统通常比MIRA OCS羰基硫分析仪大10倍,还有更高的功耗需求,使现场测量变得困难或不可能。作为一种基于中红外吸收的测量方法,MIRA OCS羰基硫分析仪在宽动态范围内实现了高精度和线性度,是一款真正意义上的便携式、高精度 OCS 分析仪,可实现实验室质量的测量。低成本,超紧凑,布放方式灵活,可便携、车载、机载、机架式安装。工作原理MIRA OCS羰基硫分析仪采用中红外波段,OCS在中红外的吸收是近红外的数千倍,从而显著提高了系统的测量精度和灵敏度。检测室无反射镜,坚固和小巧,在极小的体积 (60cc) 内实现了 15m 的吸收路径长度,从而实现了超高灵敏度、快速响应时间和低功耗。1min和10min间隔下的测量序列使用 MIRA Pico OCS 分析仪对旧金山海湾湿地OCS 水平进行自主监测。仪器以用户定义的时间间隔自动执行内置的定期校准,从而优化系统精度,通过30分钟内的信号平均获得10ppt级别的精度,数据显示了昼夜光化学诱导的 OCS 吸收循环,这在许多情况下与 CO2 吸收有关。产品选型MIRA OCS羰基硫分析仪共有4种型号可选,但其核心测量室都是一样的。MIRA pico OCS羰基硫分析仪MIRA Pico便携式OCS羰基硫分析仪为基础款,可移动式、车载测量,极低的功耗(15W),电池续航5-6h,亦可12-15V DC: 2A或110-220V AC: 0.5A供电 MIRA Ultra便携式&机架式OCS羰基硫分析仪MIRA Ultra系列OCS羰基硫分析仪相比于pico系列的不同为,Ultra系列升级为带有温控的(恒温42℃)检测室,具有毫开尔文级稳定性,以实现高灵敏度和超低漂移并避免样品冷凝,在许多情况下显著降低或完全消除校准要求。 图 Ultra便携式 图 Ultra机架式MIRA Strato机载式OCS羰基硫分析仪MIRA Strato 系列机载式OCS羰基硫分析仪,带电池重量仅为 2kg,内置GPS传感器,旨在在不牺牲性能的情况下打造更轻的气体分析仪。可搭载于无人机上用于OCS羰基硫监测,可使用电池供电(续航90min)或无人机供电。通信通常通过 RS-232 端口实现,该端口可以以高达 10Hz 的数据速率进行传输。 产品特征&bull ppt级灵敏度和精确度,1s响应速率,1min预热即用&bull 同时高精度测量CO2和H2O&bull 1Hz测量频率&bull 内置自动零点校准,免维护传感器&bull 30秒生成ppt级OCS气体的浓度报告&bull 优秀的线性响应,覆盖ppb到 ppm的浓度量级&bull 媲美DNPH-HPLC精度,无需样品制备和耗材&bull 数据通讯WIFI、RS-232、USB&bull 同步检测水汽背景,获取摩尔分数(干燥),无需干燥样气和数据修正。&bull 轻便小巧,野外应用可选配GPS组件,获取OCS “卫星图”&bull 超低功耗,内置锂电池可持续工作6小时,内置采样泵技术参数 测量方法 中红外激光吸收光谱技术 灵敏度 35ppt/min, 10ppt/15 minutes漂移 (σ) 50ppt (30s) 温度/湿度 10 ~ 40°C/10 to 95% RH (无冷凝) 浓度范围<1ppb-100ppm 尺寸(W*D*H) Pico: 11.5” x 8” x 3.75” Ultra便携:15” x 12” x 7”Ultra机架:17” x 11” x 5-3/8”Strato:7.5” x 7.5” x 3.5” 重量 Pico: 2.75kg Ultra便携:6.5kgUltra机架:9kgStrato:2kg 功耗Pico: 15W Ultra便携:25WUltra机架:25WStrato:17W 电源 直流电:12 ~ 15V,1.5A;交流电:110 ~ 220V,0.2A 数据通讯 WiFi, USB, RS232, 模拟输出 (可选) 内存 32GB(可扩展) 数据更新速率 1 or 2 Hz,最高10Hz
    留言咨询
  • TE-423 羰基采样器–甲醛等醛和酮属于羰基化合物。空气中最常见的羰基化合物是甲醛,乙醛和丙酮。一般通过酸化的,4二硝基苯(二硝基苯肼)收集空气中的羰基化合物,然后回到实验室通过液相色谱和气相色谱进行测量。该仪器使用美国沙漠所(DRI)推荐的标准方法。技术参数: 3个通道,1个或2个筒来支持使用挥发性有机物采样器技术 触摸屏控制面板 带LCD的前面板 温度控制的臭氧溶蚀器 臭氧溶蚀器总运行时间计时器 可远程控制3个通道的采样 19英寸机架安装和桌面橡胶脚 与前面板一起工作的PLC控制中心来控制采样器 前操作面板,可操作控制系统采样时间和运行时间。 结构坚固,可运行多年并且可进行移动操作 118VA/C 50/60 Hz. / 3安培 样品流速从1-ML/MIN. 到2-SLPM 仪表的背景照明,功率灯和通道灯来显示采样器的工作情况
    留言咨询

羰基镁相关的耗材

  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
  • 快速气体检测管 21 羰基硫
    产品信息:快速气体检测管系列检测范围5-10 ppm10-100 ppm100- 200 ppm抽气次数211/2修正系数1/212取样时间3 分钟/次检测限度1 ppm (n=2)颜色变化蓝色 → 黄色反应原理COS + I2O5 + H2SO4 → SO2 + CO2SO2 + BaCl2 + H2O → BaSO3+ HClHCl + 指示剂→ 黄色产物误差10% (10- 30 ppm), 5% (30 -100 ppm)有效期2 年温湿度修正不需修正10oC (50oF) 以下冷藏保存.干扰及影响物质浓度影响本身变化二硫化碳+黄色二氧化硫+黄色丁烷5000 ppm无丙烷5000 ppm无订货信息: 被检物质型号及名称检测范围抽气次数颜色变化保存期限(年)备注羰基硫COS21 羰基硫100-200ppm1/2蓝色→黄色2年冷藏双管 10-100ppm①5-10ppm221La 羰基硫50-125ppm1/2兰紫色→白色2年冷藏双管/温度校正 5-50ppm①2-5ppm2碳酰氯见光气

羰基镁相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制