精氨酸

仪器信息网精氨酸专题为您提供2024年最新精氨酸价格报价、厂家品牌的相关信息, 包括精氨酸参数、型号等,不管是国产,还是进口品牌的精氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精氨酸相关的耗材配件、试剂标物,还有精氨酸相关的最新资讯、资料,以及精氨酸相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

精氨酸相关的资料

  • L-精氨酸
    L-精氨酸
  • D-精氨酸
    D-精氨酸
  • D-精氨酸
    D-精氨酸

精氨酸相关的论坛

  • 【转帖】新型氨基酸精氨酸生素研制成功

    精氨酸是机体蛋白合成的底物,并且可以转化为许多生物活性物质以调节细胞生化功能,精氨酸在增强机体的免疫力、细胞分裂、伤口复原、激素分泌、血管紧张性、胰岛素敏感度和内皮功能等各种生理过程中,也都有着重要的角色。中国科学院亚热带农业生态研究所印遇龙研究员带领的团队就精氨酸的研究与美国Texas A&M大学进行了长期合作,发现精氨酸是幼龄仔猪限制性氨基酸。但是精氨酸的吸收与赖氨酸等拮抗,因此,对精氨酸及其内源性合成调控研究具有极大的应用价值和实践意义。通过进行断奶仔猪动物实验,研究了精氨酸和精氨酸生素在提高仔猪生长性能和维护健康的作用。研究表明,与基础日粮组相比,添加精氨酸和精氨酸生素可以有效缓解仔猪断奶应激,促进肠道生长;精氨酸生素试验组仔猪腹泻率降低了18%。同时,试验结果还表明,精氨酸或者精氨酸生素通过促进肠道粘膜HSP70表达,防止肠道细胞凋亡,维护肠道粘膜形态。因此,精氨酸或精氨酸生素可以作为断奶仔猪日粮中一种功能性添加物,以提高仔猪的生长性能和维护仔猪肠道健康。在此基础上,中国科学院亚热带农业生态过程重点实验室自主研发了一种新型功能性氨基酸-精氨酸生素(AAA, Arginine activator additive)。该研究成果已于2010年8月发表在SCI收录期刊《氨基酸》(amino acids)39卷3期上

精氨酸相关的方案

  • 人精氨酸加压素(AVP)检测试剂盒
    人精氨酸加压素(AVP)检测试剂盒人精氨酸加压素(AVP)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人精氨酸加压素(AVP)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人精氨酸加压素(AVP)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人精氨酸加压素(AVP)抗原、生物素化的人精氨酸加压素(AVP)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人精氨酸加压素(AVP)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 盐酸精氨酸的含量测定的产品配置单
    盐酸精氨酸注射液,适应症为用于肝性脑病,适用于忌钠的患者,也适用于其他原因引起血氨增高所致的精神症状治疗。《中华人民共和国药典》对于盐酸精氨酸注射液含量有明确规定:含盐酸精氨酸应为标示量的 95%~105%。本文按照药典规定的方法用自动旋光仪来检测注射液中盐酸精氨酸的含量,操作简单、结果快速准确。2仪器与试剂
  • 人L-精氨酸(L-ARG)检测试剂盒
    人L-精氨酸(L-ARG)检测试剂盒人L-精氨酸(L-ARG)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人L-精氨酸(L-ARG)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人L-精氨酸(L-ARG)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人L-精氨酸(L-ARG)抗原、生物素化的人L-精氨酸(L-ARG)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人L-精氨酸(L-ARG)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度

精氨酸相关的资讯

  • 黄超兰研究组发表精氨酸甲基化综述论文
    中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员黄超兰受邀在蛋白质组学国际期刊Expert Review of Proteomics上发表综述文章。黄超兰与博士彭超(该文第一作者)撰述的The Story of Protein Arginine Methylation: Characterization, Regulation, and Function 于1月5日在线发表在此杂志上。该论文系统地介绍了鉴定不同类型的精氨酸甲基化的技术方法及其发展历程,并对精氨酸甲基化不同类型的writers和erasers的最新进展、生物学功能以及与疾病的紧密联系进行了系统性的总结和展望。  精氨酸甲基化(Arginine methylation)是蛋白质后修饰中重要的一种,它参与了基因表达的调节、DNA的修复等重要的生命过程,与肿瘤、心血管疾病、病毒感染和自身免疫性疾病等多种疾病密切相关 甲基化水平异常的蛋白质可以作为潜在的生物标志物或药物研究靶点。该综述能使读者加深对精氨酸甲基化蛋白质、后修饰位点、表达水平以及其调控机制的了解,有利于人们进一步探索其在生命过程中的作用,特别是与疾病发生的关系,加快相关药物靶点的研究进程。  黄超兰研究组一直致力于质谱和基于质谱的蛋白质组学应用于蛋白质研究的难题技术研发,相关技术已经帮助广大科学家解决了众多的科学难题,大力促进了科学研究的发展。该项工作得到了中科院引进杰出技术人才、关键技术人才和国家基金委自然科学基金青年项目等的资助。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry

精氨酸相关的仪器

  • 氨基酸分析仪是基于阳离子交换柱分离、柱后茚三酮衍生、光度法测定的原理,对氨基酸进行分离和定性定量分析的仪器。LC-16AAA氨基酸分析仪继承岛津Essentia LC-16液相色谱系统卓越性能的同时,加入了CRB-40化学反应器模块、智能阀切换单元、氮气鼓泡单元等氨基酸分析专用器件,实现氨基酸快速、稳定、灵敏的分析结果。硬核耐用,卓越稳定性(1)超高速分析45min 即可完成分析+平衡全过程,标配梯度洗脱程序(2)性能优异,符合氨基酸测定标准精氨酸保留时间重复性RSD可达到<0.01%;可实现17种氨基酸分离度>1.2;化学反应器温度精密度可达到±0.1℃;各项指标全面优于《JJG 1064-2011 氨基酸分析仪检定规程》的要求;(3)专用软件简单易操作图形化界面,简洁流畅;标准曲线制作简单;可直接计算百分含量,一键打印报告。(4)高度自动化,一站式服务仪器+试剂耗材+专用软件,软件内置实验方法,全自动进行样品测试。应用案例依据GB 5009.124 2016《食品安全国家标准 食品中氨基酸的测定》对牛奶、鸡蛋、酱油进行了前处理及分析
    留言咨询
  • EX-CELL CellventoTM 4Feed是一种配方中不含动物来源的化学成分限定的流加培养基。产品应用在使用中华仓鼠卵巢细胞(CHO)为表达体系进行生物药品研发或生产中。EX-CELL CellventoTM 4Feed是高度浓缩的中性pH流加培养基,在流加培养模式中,用于补足耗尽的细胞功能所需营养素,以及维持和延长生产期。该单一流加培养基被浓缩到130 g/L以上,可减少向培养基中添加的流加体积,从而提高体积生产率。它也含有半胱氨酸和酪氨酸衍生物,已显示会在整个培养过程中缓慢释放游离半胱氨酸和游离酪氨酸。这种随时间推移的释放,避免了酪氨酸耗尽(可导致序列突变)。该过程也导致释放游离半胱氨酸,同时保持较低的氧化还原环境。这常常与更高的细胞生长和生产率有关。EX-CELL CellventoTM 4Feed是设计用来优化CHO这种悬浮培养细胞系的生长和生产性能的,但也不排除它能够用来培养CHO细胞的其他细胞系。它是用来配合EX-CELL CellventoTM 4CHO这种生产培养基在流加培养工艺中使用的。此产品仅用于研发或生产,不能用于人体或治疗使用。更多信息,e.g., 配制方法,订货信息等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • L-精氨酸作用用途 L-精氨酸添加量 食品级L-精氨酸 饲料级L-精氨酸 L-精氨酸生产厂家L-精氨酸是化学物质,分子式是 C6H14N4O2。经水重结晶后,于105 ℃失去结晶水,其水溶性呈强碱性,可从空气中吸收二氧化碳。溶于水(15%,21℃),不溶于乙醚,微溶于乙醇。 中文名称:L-精氨酸英文名称:L-ArginineCAS:74-79-3-精氨酸是多种生理功能的半必需氨基酸,经常被面临生育问题的夫妻作为药物补充身体。我们的身体能够制造L-精氨酸,但是Chemicalbook摄入足够的饮食才能保证这种氨基酸。良好的饮食来源包括坚果、小扁豆、芸豆和新鲜大豆。其他饮食来源包括蛋黄、肉和乳制品。-精氨酸是蛋白质合成中的编码氨基酸,属于人体必需的8种氨基酸之一。身体需要它行使多种功能。例如,它刺激人体释放Chemicalbook特定化学品,如胰岛素和人类生长激素等。这种氨基酸还帮助清除体内的氨并有促进伤口愈合的作用。人体产生肌氨酸也需要它-精氨酸是蛋白质合成中的编码氨基酸,属于人体必需的8种氨基酸之一。身体需要它行使多种功能。例如,它刺激人体释放Chemicalbook特定化学品,如胰岛素和人类生长激素等。这种氨基酸还帮助清除体内的氨并有促进伤口愈合的作用。人体产生肌氨酸也需要它
    留言咨询

精氨酸相关的耗材

  • 左型精氨酸HCI
  • 大赛璐冠醚手性柱CROWNPAK CR(+)和CR(-)
    北京绿百草科技专业提供大赛璐冠醚手性柱CROWNPAK CR(+)和CR(-)。手性柱CROWNPAK CR(+)和CR(-),5&mu m硅胶表面涂敷手性冠醚,能拆分18个基础氨基酸和手性中心附近有伯氨基团的化合物。通常使用酸性流动相,如pH1-2的过氯酸溶液。增加甲醇的含量可以缩短样品的保留时间,但是甲醇含量不能超过15%。手性柱CROWNPAK CR(+)和CR(-),这两根柱子能互相参照,样品的出峰顺序相反。 能拆分的常规氨基酸有: 丙氨酸、半胱氨酸、丝氨酸、色氨酸、苯丙氨酸、酪氨酸、苏氨酸、组氨酸、蛋氨酸、天冬酰胺、天冬氨酸、精氨酸、谷氨酸、谷氨酰胺、亮氨酸、缬氨酸、赖氨酸、胍氨酸、己氨酸、异亮氨酸。 货号 手性柱商品名 用途 内径(mm) 长度(mm) 粒径(&mu m) 27711 CROWNPAK CR 保护柱柱芯 4.0 10 5 27714 CROWNPAK CR(+) 分析柱 4.0 150 5 28714 CROWNPAK CR(-) 分析柱 4.0 150 5 27734 CROWNPAK CR(+) 制备柱 10 150 5 28734 CROWNPAK CR(-) 制备柱 10 150 5
  • UniSil氨基和氰基硅胶填料
    UniSil氰基和氨基硅胶填料多数情况下既可用于正相模式,也可用于反相模式。UniSil两相硅胶填料的应用范围非常广泛,填装柱子之后的应用如下。典型应用UniSil-NH2氨基填料UniSil-CN氰基填料非还原糖(如D-半乳糖,D-乙酰葡萄糖,D-核糖,寡糖等)、核苷酸酶、水溶性维生素、丙二烯磷酸,门冬氨酸和鸟氨酸及其原料、精氨酸、富马酸、门冬氨酸钾、左卡尼汀、尿囊素铝等蛋白类固醇、儿茶酚、极性天然物、异福酰胺片、盐酸艾司洛尔、奥氮平、奥拉西担、硫酸双/盐酸肼屈嗪、曲格列汀、偶氮甲酰胺、氢溴酸、红古豆碱、奥格列汀、甲氧苄啶与杂质B、新利司他等订货信息*还提供100g,500g和5Kg包装规格*更多规格型号,请联系业务代表