吲哚啉

仪器信息网吲哚啉专题为您提供2024年最新吲哚啉价格报价、厂家品牌的相关信息, 包括吲哚啉参数、型号等,不管是国产,还是进口品牌的吲哚啉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吲哚啉相关的耗材配件、试剂标物,还有吲哚啉相关的最新资讯、资料,以及吲哚啉相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

吲哚啉相关的资料

吲哚啉相关的论坛

  • 二氢吲哚吡啶可灵

    有没有大神了解[b][url=http://www.baidu.com/link?url=MEKzgUrF5IsxkR7KbQCf_3-NQFYbBegGwMf7goxkMytE7tFF-AXdeTdx6tw3u30YghsXSJYyvJs48gB2dKDx8a]二氢吲哚吡啶可灵[/url]([font=tahoma, Arial, 宋体, &][size=16px][color=#444444]Dihydroindolopyridocoline[/color][/size][/font])这个物质的化学和物理性质,CAS号等信息。[/b]

  • 高效液相色谱(HPLC)测定吲哚

    [color=#444444]目前我使用HLB固相萃取小柱进行吲哚的前处理,采用乙醇进行洗脱,[/color][color=#444444] 但是,回收率不好,且峰形不标准。[/color][color=#444444] 请问各位都是怎么测定的,请赐教![/color][color=#444444]谢谢![/color]

吲哚啉相关的方案

吲哚啉相关的资讯

  • 福利+干货>2,读透草甘膦衍生要点
    2022年3月15日,国家市场监督管理总局和国家标准化管理委员会联合发布《生活饮用水卫生标准》等5项强制性国家标准。新发布的《生活饮用水卫生标准》标准号定为GB5749-2022,将于2023年4月1日起正式实行,全面代替现行的GB5749-2006。 图1:《生活饮用水卫生标准》发布本次修订对标准的范围进行了更加明确的表述,对规范性引用文件及检验方法进行了更新,其中农残的测试仍占据很大的比重。可见我国对于农残危害以及检测依旧高度重视。 草甘膦作为通用型的广谱杀虫剂,日常的使用占比很大,在常规的环境检测中均属于必检项目。而在2022版的《生活饮用水卫生标准》中依然沿用了,草甘膦的经典测试方法——柱后衍生法。 针对标准相关要求,Pickering实验室开发了“草甘磷的完整应用方案”,本文也将剖析草甘磷衍生化中的关键问题,并进行逐一解释。草甘膦的衍生化原理是什么呢?草甘膦和AMPA在强阳离子交换柱(Pickering Lot No.1954150)上完全磺化,交联、分离。等度分离后,用柱再生液(Pickering Lot No.RG019)再生色谱柱后,再用洗脱液重新平衡。荧光检测遵循两阶段柱后反应。 *阶段,草甘膦通过次氯酸盐被氧化成氨基乙酸。在第二阶段,氨基乙酸与OPA(Pickering Lot No.0120)和Thiofluor™ (Pickering Lot No.3700-2000)在pH值为9-10反应时产生高荧光的异吲哚。而AMPA不需要初始氧化,可直接与OPA反应,事实上,氧化会降低AMPA的荧光效应。(如图2所示) 图2:氧化会降低AMPA的荧光效应 为何需同时测试草甘膦及AMPA?根据标准要求,需同时测试草甘膦及氨甲基膦酸(AMPA)。 这是因为,按照标准要求,衍生溶液制备过程中,OPA稀释液(Pickering Lot No.GA116)中需加入5%次氯酸钠溶液。草甘磷在含氯消毒液中会发生降解,信号值发生变化,AMPA作为草甘膦的降解产物,在测试过程中与草甘膦信号值有对应关系,可帮助校准和确定草甘膦信号值是否达到*状态。(参考图3) 图3:AMPA与草甘膦信号值有对应关系 此处请注意:在添加时次氯酸钠的浓度非常重要,目前市面上出售的溶液浓度标示有不准确情况,建议先从低浓度加起,缓慢调整。 Pickering应用方案的方法灵敏度如何?根据标准要求“本方法草甘膦和氨甲基膦酸的*检测质量均为5.0 ng,若取200 μL直接进样,则*检测质量浓度均为25 μg/L。” Pickering应用方案在优化流动相(Pickering Lot No.GA104、K200)梯度情况下,可达到100μL进样,*检测浓度达到12 μg/L,完全满足方法要求。 图4:12ug/L草甘膦 Pickering推荐配置方案&获取方式 图5:Pickering推荐配置方案 点击填写表单,即刻咨询更多相关内容 上述配置方案,还可用于扩展呋喃丹、甲萘威等农残的测试。
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 李昂 雷晓光获四面体青年科学家奖
    p   近日,国际出版集团爱思唯尔(Elsevier)宣布,中国科学院上海有机化学研究所李昂研究员、北京大学雷晓光教授获得2017年“四面体青年科学家奖(Tetrahedron Young Investigator Award)”。这是除美国外,四面体青年科学家奖首次授予同一个国家的两名学者。两位获奖者将应邀出席2017年6月27日-30日在匈牙利布达佩斯举办的第18届四面体会议并作大会报告。 br/ /p p   四面体青年科学家奖由《四面体》系列杂志2005年设立,是有机化学领域的重要国际奖项。该奖分“有机合成”、“生物有机与药物化学”两个领域单独评审,每年仅分别评出一名获奖者,旨在奖励40岁以下的杰出青年有机化学家。该奖的获奖者包括普林斯顿大学戴维· 麦克米兰(David MacMillan)、斯坦福大学卡罗琳· 贝尔托齐(Carolyn R. Bertozzi)等国际著名的有机合成或生物有机化学家。作为之前唯一获奖的中国学者,北京大学施章杰教授曾于2012年获得有机合成领域的四面体青年科学家奖。 /p p   李昂研究员主要从事天然产物全合成研究。他发展了6p电环化-芳构化和Prins环化等高效构建多取代六元环的创新策略,完成了虎皮楠生物碱、五味子降三萜、台湾杉醌二萜二聚体、噁唑二萜、吲哚单萜生物碱、吡咯并吲哚生物碱、吲哚萜类等10多个家族天然产物的全合成。电环化-芳构化策略打破了从苯环起始原料出发逐级取代的传统思路,提高了立体化学环境复杂的多取代苯环的合成效率。李昂研究员曾获得2012年优秀青年科学基金项目和2015年国家杰出青年科学基金项目资助(项目编号:21222202,21525209)。 /p p   雷晓光教授主要从事分子探针导向的化学生物学研究。他系统地利用小分子探针,揭示出一系列新颖的程序性细胞死亡生物作用机制和化学调控方法 高效构建了一系列倍半萜多聚体类、石松生物碱天然产物分子探针,阐明了它们的生物作用靶点和全新的分子作用机制,进而开发出对肿瘤、感染性疾病与自身免疫性疾病有良好治疗前景的、基于天然产物的药物先导。雷晓光教授曾获得2012年优秀青年科学基金项目和2016年国家杰出青年科学基金项目资助(项目编号:21222209,21625201)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/noimg/8400429e-755f-4b41-883a-3de1f7ad7245.jpg" title=" 未标题-1.jpg" / /p

吲哚啉相关的仪器

  • “16mm 系列”— Linear16-z (闭环控制) 低温 压电运动- 线性位移系列最⼩ 的线性位移台,⽀ 持闭环控制Linear16-z 线性位移台主要特点&bull 紧凑设计, 尺⼨ : 16*15.7 mm&bull 超⾼ 真空 & 超低温兼容: 2 E- 11 mbar & 30 mK&bull ⽆ 磁材料(纯 Ti & BeCu),最⾼ 兼容 18 Tesla 磁场&bull 超⾼ 负载 & 超⾼ 推⼒ : 250 g & 3 N&bull ⼤ ⾏ 程 : 3 mm&bull 闭环控制,内置位置传感器, 最⼩ 位置分辨率 0.1 um⼆ 维尺⼨ Linear16-z, Speciication*所有数据均通过50欧姆线缆测量. 虽然对导线的电导率没有要求,但我们建议电阻低于50欧姆。 可选版本⇨ .HV (默认).ULT.UHV.ULT.UHV.HV ⾼ 真空版本,默认产品 .ULT 超低温版本, 兼容氦-3制冷系统 & 稀释制冷机.UHV 超⾼ 真空版本, 最⾼ 兼容 2E-11 mbar1 三维尺⼨ 16 × 16 mm × 16 mm2 质量12 g适⽤ 环境范围 3 基础温度范围: 1.4 ~ 400 K 最低真空度: 2e-7 mbar 最⼤ 磁场: 18 Tesla4 可选1 - 30 mK&check &check 5 可选2 - 2e-11 mbar&check &check 材质6 主体Pure TiBeCuPure TiBeCu7 线缆磷⻘ 铜双绞线,20cm8 针脚材质聚酯材料(玻璃纤维填充), BeCuPeek, BeCu9 针脚数量驱动 - 2 pins, 传感 - 3 pins运动参数10 ⾏ 程3 mm11 最⼤ 运动速度 @300 K~ 2 mm/s12 驱动电压Max. 200 V13 最⼤ 负载250 g14 最⼤ 推⼒ 3 N传感器(闭环)15 位置传感器、16 传感器⾏ 程3 mm17 传感器分辨率~ 150 nm18 重复定位精度1 - 2 um
    留言咨询
  • “16mm 系列”— Linear16-x (闭环控制)低温 压电运动- 线性位移系列最⼩ 的线性位移台,⽀ 持闭环控制线性位移台Linear16-x 主要特征&bull 紧凑设计, 尺⼨ : 16*16*10.5 mm&bull 超⾼ 真空 & 超低温兼容: 2 E- 11 mbar & 30 mK&bull ⽆ 磁材料(纯 Ti & BeCu),最⾼ 兼容 18 Tesla 磁场&bull 超⾼ 负载 & 超⾼ 推⼒ : 50 g & 1.5 N&bull ⼤ ⾏ 程 : 3 mm&bull 闭环控制,内置位置传感器, 最⼩ 位置分辨率 0.1 um⼆ 维尺⼨ Linear16-x, Speciication*所有数据均通过50欧姆线缆测量. 虽然对导线的电导率没有要求,但我们建议电阻低于50欧姆。可选版本 ⇨ .HV (默认).ULT.UHV.ULT.UHV.HV ⾼ 真空版本,默认产品 .ULT 超低温版本, 兼容氦-3制冷系统 & 稀释制冷机.UHV 超⾼ 真空版本, 最⾼ 兼容 2E-11 mbar1 三维尺⼨ 16 × 16 mm × 10.5 mm2 质量10 g适⽤ 环境范围 3 基础参数温度范围: 1.4 ~ 400 K 最低真空度: 2e-7 mbar 最⼤ 磁场: 18 Tesla4 可选1 - 30 mK&check &check 5 可选2 - 2e-11 mbar&check &check 材质6 主体Pure TiBeCuPure TiBeCu7 线缆磷⻘ 铜双绞线,20cm8 针脚材质聚酯材料(玻璃纤维填充), BeCuPeek, BeCu9 针脚数量驱动 - 2 pins, 传感 - 3 pins运动参数10 ⾏ 程3 mm11 最⼤ 运动速度 @300 K~ 2 mm/s12 驱动电压Max. 200 V13 最⼤ 负载50 g14 最⼤ 推⼒ 1.5 N传感器(闭环)15 位置传感器电阻传感16 传感器⾏ 程3 mm17 传感器分辨率~ 150 nm18 重复定位精度1 - 2 um
    留言咨询
  • 中文名称:吲哚英文名称:1H-indole中文别名:氮茚 氮杂茚 苯并吡咯 2,3-苯并吡咯 英文别名:1H-Benzo[b]pyrrole 1-Azaindene Ketole indole Benzopyrrole CAS号120-72-9外观与性状:白色晶体带有一种令人不愉快的气味 密度:1.22 沸点:253-254 °C(lit.) 熔点:51-54 °C(lit.) 闪点:230 °F 折射率:1.68含量:99%吲哚用途吲哚广泛应用于制造香料、农药、制药工业中。可广泛用于茉莉、紫丁香、橙花、栀子、忍冬、荷花、水仙、依兰、草兰、白兰等花香型香精。极微量可用于巧克力、悬钩子、草莓、苦橙、咖啡、坚果、乳酪、葡萄及果香复方等香精中。包装:25KG/复合编织袋 可拆分
    留言咨询

吲哚啉相关的耗材

吲哚啉相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制