当前位置: 仪器信息网 > 行业主题 > >

质谱洗板方法

仪器信息网质谱洗板方法专题为您提供2024年最新质谱洗板方法价格报价、厂家品牌的相关信息, 包括质谱洗板方法参数、型号等,不管是国产,还是进口品牌的质谱洗板方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱洗板方法相关的耗材配件、试剂标物,还有质谱洗板方法相关的最新资讯、资料,以及质谱洗板方法相关的解决方案。

质谱洗板方法相关的资讯

  • 超90%色质谱分析方法标准,2024年版新污染物生态环境监测标准体系表发布
    生态环境部在研究建立健全新污染物环境监测技术体系方面开展了一系列工作。2021年—2023年,生态环境部先后在长江流域和河北、广东、广西等10个省份组织开展新污染物试点监测,并同步开展了监测技术方法研究。为落实《新污染物治理行动方案》,加强新污染物生态环境监测标准顶层设计,积极推动新污染物治理体系和治理能力现代化建设,2024年3月13日生态环境部发布《新污染物生态 环境监测标准体系表(征求意见稿)》,9月5日,生态环境部正式发布《新污染物生态环境监测标准体系表(2024年版)》,供开展新污染物调查监测、监督管理等工作参考。《体系表》中新污染物生态环境监测标准项目,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)三类。《体系表》中主要新污染物指标对标《新污染物治理行动方案》要求,涵盖了国际公约《关于持久性有机污染物的斯德哥尔摩公约》以及我国当前《重点管控新污染物清单(2023 年版)》中所列持久性有机污染物、内分泌干扰物、抗生素等,同时也包含了微塑料等其他重点新污染物。未来将根据国际公约和管控清单更新情况进行指标增减。《体系表》中共170项标准,其中技术规范5项、分析方法标准135项、标准样品30 项。135项分析方法标准中,已发布49项,在研19项,拟制订102项,水质标准42项,土壤和沉积物标准41项,环境空气和废气25项,固体废物27项。《体系表》所列标准项目与已有现行生态环境监测标准保持衔接,互为补充,不重复、不矛盾。技术规范类标准项目为新污染物环境监测技术指南、高分辨质谱筛查技术指南等。分析方法标准项目涉及的监测介质主要为水和废水、环境空气和废气、土壤和沉积物、固体废物,其中,对于水溶性较弱的指标,暂不考虑水和废水监测介质,对于挥发性较弱的指标,暂不考虑环境空气和废气监测介质。标准样品主要配套分析方法标准。《体系表》涉及的仪器品类中,液相色谱-三重四极杆质谱法 49 项;气相色谱-质谱法32项;气相色谱-高分辨质谱法23项;气相色谱-三重四极杆质谱法10项,高效液相色谱法1项;气相色谱法9项等。详细内容如下:附:1、《新污染物生态环境监测标准体系表(2024年版)》.pdf2、色质谱方法是主力∣新污染物生态环境监测标准体系分析方法标准共计182 项
  • 基于纳升电喷雾质谱直接进样的代谢组学分析新方法
    色谱-质谱联用是目前代谢组学分析的主流方法,但是色谱分离速度限制了其在大规模样本分析中的应用。直接进样质谱(DI-MS)虽然通量高,但面临着离子抑制效应导致代谢物检测灵敏度降低、缺少色谱分离使得定性定量困难等挑战。因此,亟需发展与DI-MS相配的高灵敏度质谱数据采集技术和数据分析技术。   为此,科研人员提出一种基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略:将一级精确质量、同位素分布模式、二级质谱相似度、母离子和子离子强度相关性等结合,使代谢物的定性准确率高于94%;定量方面采用一级母离子结合二级特征碎片离子的方式来实现。此方法稳定可靠,2-3分钟可分析一个样品,适合于大规模样本的高通量代谢组学研究。   此外,传统的细胞代谢组学分析方法通常需要数百万个细胞,但许多稀有细胞如循环肿瘤细胞、原代肿瘤细胞、干细胞等,面临着细胞数不足的问题。科研人员在上述工作基础上,建立了基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法,实现了3分钟内从20个哺乳动物细胞中检测19类脂质、500多种脂质代谢物。该平台在生命科学和临床医学研究中具有应用潜力。   相关研究成果分别以Strategy for Nontargeted Metabolomics Annotation and Quantitation Using a High-resolution Spectral-Stitching Nanoelectrospray Direct-Infusion Mass Spectrometry with Data-Independent Acquisition和Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家重点研发计划、国家自然科学基金等的资助。图1.基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略图2.基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法
  • 干货科普|浅析基于质谱分析的药物靶点发现方法
    药品与我们的生活密不可分。新药研发一方面关系着全人类的健康需求,另一方面也关系着国家经济与社会的发展需求。 据权威统计,单一药物上市的成本超过十亿美元,整个过程花费约十年的时间,药物筛选的失败率高达97%。但药物筛选是新药研发中至关重要的一步,确定靶标分子及筛选模型是现代新药开发的基础。它主要有两种方式,表型筛选(Phenotypic drug discovery, PDD)和靶点筛选(Target-based drug discovery,TDD)。PDD的起点是一个化合物库或抗体库,用一个和疾病高度相关的临床前模型或者实验来筛选库中的药效,找到达到期望药效的分子再进一步优化和开发。经典的药物表型筛选更多的是基于动物疾病模型的筛选,实验选择遗传背景明确或者来源清楚的动物,例如鸡、猪、狗、猫、鼠、蛙、蛇、猴子、鱼、果蝇、线虫等。TDD则是基于对疾病和靶点机理的理解,针对某一个和疾病机理高度相关的特定的靶点,从而有针对性的设计大分子或小分子药物的研发方式。由于表型筛选无法提供活性化合物作用靶标信息, 因此需要利用化学蛋白组学回溯鉴定那些因与小分子药物直接发生作用而引起功能改变的蛋白质,在分子水平上系统揭示特定蛋白质的功能以及蛋白质与化学小分子的相互作用, 从而准确找到药物的作用靶点。旨在建立药物活性与细胞表型之间的联系,阐明药物的作用机理,一方面探究药物的脱靶效应和耐药性机制, 提高药物发现的效率;另一方面在药物研发的早期阶段预测潜在的副作用和毒性, 从而降低药物研发失败的风险。 化学蛋白质组学研究方法的一般流程是, 先将化学探针或小分子化合物与蛋白质提取液进行共孵育,然后利用亲和层析等方法将这些蛋白质分离,再通过高灵敏度的质谱鉴定, 最后对它们做进一步的生物信息学分析。1. 基于活性的蛋白质谱分析 (activity-based protein profiling, ABPP)ABPP利用基于靶酶活性的特异化学小分子探针 (activity-based probes, ABPs) 来探测功能蛋白质组, 利用活性小分子探针来识别蛋白质靶点。分子探针是指能与特定的靶分子发生特异性相互作用并能被特殊方法所检测的分子。ABP 的设计通常包括两个基本组成部分:“反应基团”和“报告基团” , 一般通过碳链或者聚乙二醇链将二者连接在一起. 反应基团通常是具有独特化学结构的亲电性化学小分子, 能够选择性地与蛋白质组中某一类蛋白酶的活性中心结合, 并与其中执行重要催化功能的亲核性氨基酸发生反应, 从而将探针分子共价地标记在靶标蛋白上。活性分子探针结构示意图2. 药物亲和致靶点稳定性(drug affinity responsive target stability,DARTS)DARTS通过对比药物处理组与DMSO对照组蛋白质酶解片段的差异,找出酶解情况不同的蛋白质,再进行结合特异性分析,找出特异结合的靶标。DARTS实验步骤这种方法的优点是, 仅依靠药物和蛋白直接结合而并不需要对小分子化合物进行修饰, 从而确定出小分子的任意靶点。因此, 可采用小分子稳定其靶蛋白的结构从而导致蛋白酶抵抗, 结合质谱分析法发现未知靶点。DARTS 可将具有生物活性的天然产物提取物在分离之前就用于靶点发现,多用来研究多靶点药理学以及复方中成药物。3.细胞热转变分析(Cellular Thermal Shift Assay,CETSA)CETSA是一种检测细胞内药物与靶蛋白结合效率的实验,其原理是靶蛋白与药物分子结合时通常会变得稳定。即随着温度的升高,蛋白会发生降解;当蛋白结合药物后,相同温度下,未降解蛋白的量会提高,该复合蛋白的热熔曲线会右移。用溶解蛋白质的量作温度的函数可以得到蛋白质的变性曲线,由此可以确定蛋白质的变性温度点或蛋白质的熔点。CETSA实验的样品来源,可以是细胞,也可以是组织样本,检测方法主要有Western blot和MS。该技术能在天然的细胞环境中进行,也无需对目标分子和蛋白进行任何修饰以及标记。CETSA实验步骤目前已证实该技术能识别许多已知的抗癌试剂的靶点,如在细胞裂解液、完整细胞或组织样本中均鉴定出多个药物的作用靶标。然而,CETSA方法不适用于高度不均匀的蛋白质或蛋白质配体结合域的结构展开,并不会诱导蛋白的聚集和变性的情况,如DNA和伴侣蛋白质的结合。有研究将cellular thermal shift assay与质谱联用(MS-CETSA),可以同时监测整个蛋白质组在药物作用下蛋白质稳定性的变化,因此可以鉴定出与药物相互作用的蛋白质,而不需要预先知道药物的作用通路或机制。MS-CETSA流程图4. 有限蛋白水解质谱(Limited Proteolysis-Mass Spectrometry,LiP-MS)LiP-MS不需要对配体进行化学修饰,就可以实现在复杂的生物环境中鉴定药物靶标。实验步骤是用低浓度的非选择性蛋白酶K进行有限的蛋白水解,优先切割蛋白质暴露在外的柔性部分(环或者未折叠部分), 经过变性和胰蛋白酶消化后,通过LC-MS分析肽混合物。基于LiP-MS的小分子图谱靶点的发现在整个药物研发过程中起着至关重要的作用。随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,但并不是所有的靶点都能够成为与疾病有关的有效靶点,因此对新型靶点进行发现和验证便成为非常重要的工作。
  • 为质谱成像分析而生!这种新型离子基板的有啥不一样?
    质谱分析是通过对待测样品进行电子束、激光等方法照射,使待测样品的原子、分子发生离子化,通过测定质荷比,对待测样品中包含原子、分子的种类、数量、分子结构等进行精密分析的方法。 回顾质谱分析技术的发展历史,不难看到,新的离子化法不断创造着质谱发展的新趋势,让横跨100多年的质谱技术研究,一直充满着活力。具有跨时代意义的离子化方法的诞生,也与质谱分析飞跃性的进步,甚至是业界的繁荣息息相关。 例如基质辅助激光解吸电离法(Matrix-Assisted Laser Desorption/Ionization,即MALDI)自上世界80年代末问世以来,将质谱应用提升了一个新台阶,成为目前生物质谱领域研究必不可少的工具,也是当下的一个热门关注点。质谱分析结构示意MALDI法是将能吸收激光能量的低分子有机化合物(下称Matrix)与待测样品混合,通过激光照射,对待测样品进行离子化的方法。在质量分析的同时,可实现对待测样品的成分、分布状态进行图像化的质谱成像。 不过想利用MALDI法进行质谱成像,在与Matrix(有机化合物)的调和、涂布、干燥的前处理的阶段,大概要耗时30分钟,且需要将Matrix在待测样品上均匀涂布。前处理显得十分费时费力。 滨松在5月推出了新研的离子化辅助基板DIUTHAME(Desorption Ionization Using Through Hole Alumina Membrane,是的它的名字hin长̷叫它“丢森”好了~)。这个小东西是利用200nm左右多孔氧化铝(贯穿的、细小的孔呈规则状打开的氧化铝)开发的,面向质谱成像分析的离子化辅助基板。其最大的特点,就是能够大幅缩减质谱成像分析时,待测样品进行离子化所需的前处理时间(仅需3分钟左右),且操作简单。 将待测样品加载到DIUTHAME上,利用毛细血管现象(在细管内侧,液体从管子中上升的现象),使待测样品的分子上升到表面,通过激光照射使其离子化而不破坏分子结构,实现在不使用Matrix的情况下,进行质谱成像分析。MALDI法使用DIUTHAME进行离子化 DIUTHAME是由滨松与日本光产业创成大学院大学的内藤康秀副教授共同研制的。一经面世,就收到了较大关注,并常常被用于和MALDI以及SALDI法的比较。那到底是出于什么样的原因开发了这个产品?除了大大缩短前处理时间外, 相对于MALDI法DIUTHAME在质谱成像分析中还有哪些优势?为何说DIUTHAME是质谱成像分析离子化的新方法?内藤副教授从开发者的角度,为我们进行了解读。 内藤康秀副教授问:DIUTHAME在质谱成像分析中还有哪些优势?解决了MALDI法中的什么问题? 在开发DIUTHAME前,我一直致力于质谱成像分析分辨率的提高。虽然希望通过提高设备分辨率来实现高分辨率的目标,但这个方法也是有极限的。 为什么这么说呢?因为在质谱成像分析中,以往普遍采用的离子化方法为“基质辅助激光解吸电离法(Matrix-Assisted Laser Desorption/Ionization,即MALDI)”。而无论怎么提高设备的空间分辨率,分辨率都无法超过Matrix结晶的尺寸。若要实现质谱成像分析的高分辨率,必须要摆脱对使用Matirx的离子化方法的依赖。而DIUTHAME的诞生,就打破了这一点的限制。 DIUTHAME的开发一开始就是以质谱成像分析为目标应用,它并不需要与Matrix的调和、涂布、干燥的前处理。在提高操作便利性(3分钟左右可完成前处理)的同时,其高质量的数据,有望取得良好的重现性。 另外,使用MALDI法进行离子化时,也会出现因待测样品成分的性质原因,而难以与Matrix共同结晶的情况;以及待测样品中包含盐、添加剂等杂质的浓度过高时,阻碍Matrix结晶的情况。在这样的情况中,使用DIUTHAME则不会有这样的困扰,能够获得很好的效果。 DIUTHAME还可对工业材料、兴奋剂禁药等MALDI法无法测定的小分子进行高精度的测量。 问:明明和SALDI的原理类似, 为何说DIUTHAME是一种新的方法? 目前有一种叫表面辅助激光解吸电离(SALDI)的离子化方法,它与DIUTHAME作用原理相同,市场上也有多类SALDI基板的商品。但是,目前市场上的SALDI基板并没有通孔的结构,在质谱成像分析中并不适用。在此意义上,使用DIUTHAME可以说是不同于SALDI的新型离子化办法。 将在DIUTHAME的哪些性能上进行继续开发? 多数的生物分子是通过质子化来生成离子的,针对这些待测样品,DIUTHAME的灵敏度并不如MALDI法。这是因为,MALDI中的Matrix可以给样品分子提供质子,而DIUTHAME却没有该项作用。 想拥有更广泛的应用,这个小家伙就必须具备更高的灵敏度。因此,我们也会对它的性能进行持续的开发。此外,DIUTHAME的工作原理之谜仍未完全解开,而在继续研究摸索的同时,我们也希望能够不断地提高它的灵敏度。滨松致力于光电技术探索60余年,在质谱探测器的研究也已有40余年的历史,可为质谱应提供MCP、EM、离子化光源等产品。除了DIUTHAME,2018年滨松还推出了一系列应用于质谱的新品,并在2018年ASMS中有所展示(包括在研品),如可解决小质谱低真空问题的三级结构的GEN3 MCP、适用于TOF-MS的MCP+AD、适用于Q-MS\IT-MS的管道型EM等等。滨松希望通过探测技术的原始创新,从最底层技术出发,稳定而坚实地推动最终质谱应用的发展。
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p   4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。 /p p   其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。 /p p   仪器信息网摘录如下: br/ /p table width=" 567" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 469" align=" center" valign=" middle" p style=" text-align: center " strong 标准名称 /strong /p /td td width=" 55" p style=" text-align: center " strong 性质 /strong /p /td td width=" 43" p style=" text-align: center " strong 状态 /strong /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫酸二甲酯和硫酸二乙酯的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种萘二酚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中二氯苯甲醇和氯苯甘醚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中38种限用着色剂的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种4-羟基苯甲酸酯的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中5种限用防腐剂的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中8-羟喹啉和硝羟喹啉的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中10种二元醇醚及其酯类化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫柳汞和苯基汞的测定 & nbsp & nbsp 高效液相色谱-电感耦合等离子质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中荧光增白剂367和荧光增白剂393的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 唇用化妆品中对位红的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中11种生物碱的检测 & nbsp & nbsp 液相色谱质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第21部分:砷量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第22部分:锑量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 锑矿石化学物相分析方法 & nbsp & nbsp 锑华 辉锑矿和锑酸盐的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 镍(钴)矿石化学物相分析方法 & nbsp & nbsp 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁矿石 & nbsp & nbsp 多种微量元素含量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁合金产品粒度的取样和检测方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料比表面积的测定 & nbsp & nbsp 亚甲基蓝吸附法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料电导率测试方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料表面含氧官能团含量的测定 & nbsp & nbsp 化学滴定法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 数字印刷版材中残留溶剂的检测 & nbsp & nbsp 顶空-气相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 & nbsp & nbsp 红外光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 光学遥感器在轨成像辐射性能评价方法 & nbsp & nbsp 可见光-短波红外 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 甲基乙烯基硅橡胶 & nbsp & nbsp 乙烯基含量的测定 & nbsp & nbsp 近红外法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中致敏染料的限量和测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中4-氨基偶氮苯的限量及测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中苯胺类化合物的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中甲醛的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 氦质谱真空检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 四极质谱检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铸钢铸铁件射线照相检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 铸件的工业计算机层析成像(CT)检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 耐火材料导热系数试验方法(铂电阻温度计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 隔热耐火材料导热系数试验方法(量热计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr /tbody /table p br/ /p
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 质谱成像技术概念及质谱成像方法介绍
    p   现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。 /p p   因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。 /p p   质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: /p p style=" text-align: center " img title=" 9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg" / /p p   简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。 /p p   最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。 /p p   正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。” /p p   这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。 /p p    strong I. 挑战高分子量蛋白——MALDI质谱分子成像技术 /strong /p p   在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。 /p p   来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。 /p p   MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。 /p p   通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。 /p p    strong Ⅱ. 无需样品处理 实时成像——电喷雾电离技术 /strong /p p   一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。 /p p   一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。 /p p   这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。 /p p   DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。 /p p    strong Ⅲ. 活体成像——APIR MALDI/LAESI技术 /strong /p p   了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。 /p p   来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。 /p p   实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。 /p p   因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。 /p p   为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。 /p p   与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。 /p p    strong Ⅳ. 3D成像——二次离子质谱技术 /strong /p p   质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。 /p p   但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。 /p p   SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。 /p p   这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。 /p p   Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。 /p p   C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。 /p p   这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。 /p p   strong  Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术 /strong /p p   质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。 /p p   来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 /p p   NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 /p p   通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 /p p   由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。 /p p & nbsp /p p & nbsp /p
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。   许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。 中国科学院大连化学物理研究所 许国旺研究员   近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。   基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。   随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 岛津质谱谱图解析高级培训班在京举办
    质谱分析是当今最重要的分析方法之一,已日益倍受分析工作者的推崇。具备高超的质谱解谱能力,是分析工作者能够充分发挥质谱技术特长高水平地完成分析检测工作的关键。 为帮助岛津的有机质谱(含GCMS和LCMS)用户提高质谱解谱能力,岛津分析中心秉承&ldquo 专业分析者教育服务&rdquo 的核心服务理念,于2013年6月19日至6月21日在岛津北京分析中心成功举办了首届质谱谱图解析高级培训班。 培训班特邀请有机质谱界享有盛名的专家王光辉老师和盛龙生老师讲授有机质谱解析基础知识、离子丰度和离子碎裂机理、如何从质谱图推导化合物结构和大气压离子化质谱的解析等内容。13位来自全国各地的质谱用户抱着真诚的学习态度参加了本次培训班。 培训班课堂场景 6月19、20日两天,王光辉老师深入浅出地讲解了有机质谱图与分子结构的关联、由质谱图推测分子结构、偶电子离子裂解规律等内容。6月21日,盛龙生老师详尽讲解了大气压离子化质谱的解析等内容。 王光辉老师讲课 盛龙生老师讲课 两位专家渊博的学识和丰富的实践经验折服了本次培训班的学员。学员们从中学到了大量的质谱知识,理清了概念,受益非浅。学员们还就自身开展的项目向两位专家请教。王光辉老师特地介绍了岛津GCMSsolution软件和NIST软件在解谱上的实用功能;盛龙生老师为此次培训班特地编写了&ldquo 大气压离子化质谱的解析&rdquo 培训教材,这是业内所见到的第一个系统地讲解大气压下离子化质谱解析的教材。可见两位专家对此次培训班的用心。 鉴于此次培训班的成功举办,今后,该培训班有望在各地分析中心轮流举办,以满足不同地区用户的需要,作为岛津公司&ldquo 全面应对用户需求,提升服务品质&rdquo 实践中的重要一环。 附件 本次培训班特邀授课专家简介: 专家姓名 专家简介 王光辉 中国科学院化学所质谱中心研究员。国内最早从事质谱研究的专家之一,国内质谱解析领域的知名专家,有数十年从事质谱技术研究与教学工作经验。编著《有机质谱解析》一书,该书为国内质谱技术丛书的经典著作,是从事质谱解析工作的必备书籍。 盛龙生 中国药科大学教授,长期从事药物分析方法学研究。主要研究方向:质谱法及其联用技术的方法学和应用研究,包括色谱 /质谱联用技术在中药、生物药物、合成药物及药物代谢和代谢组学中的应用研究。著有《色谱质谱联用技术》,《药物分析》等多本专著。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 信立方有机质谱谱图解析专题培训班通知
    信立方质谱培训中心致力于有机质谱应用技术培训工作。为提高相关从业人员的技术水平,让有机质谱更好的为科研、生产及研发工作服务,适应当前从事质谱应用技术科技人员的迫切需求,培训中心考察了全国各类有机质谱应用技术培训现状,借鉴并发扬培训成效显著的全国有机质谱应用技术培训班的成功经验,与仪器行业最大的门户网站仪器信息网合作,于2009年开设了气质联用(3期)、液质联用(1 期)、谱图解析(2 期)等不同类型和层次的质谱培训班,受到广大学员欢迎和好评。2010年培训中心将继续举办此系列质谱培训班,并适当增加培训内容,计划从2010年3月开始,每月举办一期,详情请查看信立方质谱培训中心在仪器信息网的专栏:http://training.instrument.com.cn。   有机质谱分析基于不同质量数的带电离子在电场或磁场中的不同运动行为的原理进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、可同时进行多组分分析等优点,近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。为适应广大分析技术工作者的需求,我们将与仪器信息网合作于2010年5月17日在北京举办第三期有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。   适用对象   使用有机质谱联用仪进行常规检测、科研或研发的技术人员。   学习目标   系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下良好基础。   课程特色   讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验   有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出,通俗易懂   独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平   学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题   学员专享网上社区,学员可互动交流,免费下载资料,参加讲师的网上答疑活动。   专家团队   王光辉   中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。著有《有机质谱解析》等专著。   苏焕华   北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。著有《色谱-质谱联用技术及应用》等专著。   课程大纲      咨询联系方式:010-51299927-101,13269178446,training@instrument.com.cn
  • 有机质谱谱图解析培训班即将开班,从速报名
    信立方质谱培训中心致力于质谱应用技术培训工作。为满足当前从事质谱应用技术人员的迫切需求,培训中心与仪器行业最大的门户网站仪器信息网合作,在考察全国各类质谱应用技术培训现状的基础上,借鉴、发扬培训成效显著的质谱应用技术培训班的成功经验,旨在提高相关从业人员应用技术水平,使质谱技术更好地服务于科研、生产及质控,监测等领域。自2009年,迄今已开设二十余期不同类型和层次的质谱培训班,受到广大学员的欢迎和好评。2013年培训中心将继续举办此系列质谱培训班,并不断增加和更新培训内容,详情请查看信立方质谱培训中心。报名地址:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101009 有机质谱分析基于不同质量数的带电离子在电场或磁场中的不同运动行为的原理进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、可同时进行多组分分析等优点,近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。为适应广大分析技术工作者的需求,我们将与仪器信息网合作于2013年12月3日-6日在北京举办有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。 专家团队   &diams 王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》   &diams 苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》 课程大纲 一、谱图解析基础知识 二、离子的丰度 1、原子中电子的排布 2、奇电子离子与偶电子离子 3、氮规则 4、环加双键值 5、同位素峰 6、单分子反应 1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 三、离子碎裂的基本机理 四、常见有机化合物的质谱图特征 1、断裂 2、环的开裂 3、重排反应 4、置换反应 5、消除反应 1、碳氢化合物 2、醇、酮、醛、酸、酯、醚 3、胺类 4、酰胺类 5、腈 五、由质谱图推测分子结构 六、NIST谱图库检索实用技术 1、基本方法及思路 2、实例练习 1、NIST谱图库简介 2、NIST谱图库主要功能 3、NIST谱图库检索实例 咨询及报名联系方法   电话:010-51654077-8113 13810253507 传真:010-82051730   Email:training@instrument.com.cn
  • 有机质谱谱图解析专题培训班第一轮通知
    有机质谱分析基于不同质量数的带电离子在电场或磁场中的不同运动行为的原理进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、可同时进行多组分分析等优点,近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。 为适应广大分析技术工作者的需求,我们将与仪器信息网合作于2014年7月22日-25日在北京举办有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。 培训日期:2014年7月22日-25日 培训地点:北京 外国专家大厦 培训日程: 主要课程及讲师 授课时间及主要内容 有机质谱解析基础&mdash &mdash 王光辉 7月22日-23日全天 ①基础知识(原子中电子的排布;奇电子离子与偶电子离子;氮规则;环加双键值;分子离子的识别;同位素峰;单分子反应) ②离子丰度(质荷比与离子丰度;影响碎片离子丰度的基本因素) ③离子碎裂的基本机理(电荷及游离基定域的概念;离子碎裂的类型) ④由质谱图推测分子结构 常见有机物质谱解析 7月24日全天 常见有机物质谱解析(碳氢化合物、醇、醚、醛、酸、酯、胺、卤代物、硝基化合物) 质谱解析小结&mdash &mdash 苏焕华 7月25日全天 ①质谱解析方法小结(各类化合物的质谱特征,质谱推导结构的基本方法) ②质谱解析练习题 & 答疑 专家介绍: 王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,曾参与国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作: 《有机质谱解析》; 苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,曾参与国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。著作:《色谱-质谱联用技术及应用》; 其他课程: 2014年7月29-31日 液质联用(LC-MS)应用技术培训班(医药) 2014年10月21-23日 液质联用(LC-MS)应用技术培训班(食品/环境) 报名方式: 电话:010-51654077-8123 15801554077 安老师 Email:job@instrument.com.cn 报名地址:http://www.instrument.com.cn/training/train_sign.asp?TRI_No=101113
  • 中科院一电喷雾质谱装置及其质谱分析方法获国家专利
    p   中国科学院成都生物研究所“一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法”获国家知识产权局发明专利(专利号:ZL 201610125529.5)。   /p p   中国科学院成都生物研究所成立于1958年,是以一级学科建所的中国科学院直属科研事业单位。成都生物所公共实验技术中心具有多种共用实验装备,拥有600MHz核磁、高分辨质谱、氨基酸自动分析仪、多功能显微镜等各类先进仪器设备。目前,成都生物所已取得科技成果300多项,其中获省部级以上科技成果奖100多项。一直以来,成都生物所一直对于电喷雾离子化技术都有很深的研究。 /p p   电喷雾离子化技术于上世纪七十年代问世,具有不易引发化合物碎裂的软电离特性,是质谱分析领域应用最广泛的离子化方法。但是传统的技术具有如不能直接分析含高盐的生物样品的缺点,需要事先对高盐样品预先脱盐处理,也不能与使用缓冲盐的液相色谱联用。 /p p   2017年的时候,成都生物研究所主持承担的中科院科研装备研制项目“生物质谱探针电喷雾离子源的研制”就通过了结题验收。成都生物研究所通过不断优化控制方式、样品加载方式、高压接通方式及离子传输方式,使其具备了抗高压干扰、耐盐、抗基质干扰等特性,在此基础上,继续深入开发了液相接口,使得该离子源可与使用高盐缓冲溶剂的液相色谱联用,并且已经成功的研制出了设备。 /p p   在研发过程中,成都生物研究所又遇到了新的问题。电喷雾离子化过程通常在极性溶剂中完成的,这种电离技术适用于中高极性体系的离子化分析。然而,许多化合物只溶于低极性溶剂中,而这种样品难以通过电喷雾离子化,从而使得ESI-MS在低极性溶剂体系的分析和部分有机反应的机理研究方面中受到限制。 /p p   针对遇到的难题,中国科学院成都生物研究所研究人员克服现有技术的缺点,提供一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法,除了能够离子化溶解在极性溶剂中的化合物,还能够较好的离子化溶解在低极性溶剂中的化合物,同时满足极性和低极性体系的质谱分析需求,且方法简单、成本低廉、需调节参数少、离子化效率高、无需引入额外辅助溶剂、无额外溶剂的基质干扰。 /p
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 《质谱分析方法通则》国家标准正式发布
    p   近日,国家标准化管理委员会在2020年第4号中国国家标准公告中发布了《质谱分析方法通则》(GB/T 6041—2020)。该标准将代替GBT 6041—1985、GBT6041—2002。新标准将在2021年2月1日实施。 /p p   该标准由中国石油和化学工业联合会提出。归口全国化学标准化技术委员会。起草单位有:中国石油化工股份有限公司北京化工研究院、上海市计量测试技术研究院、广州中科检测技术服务有限公司、复旦大学以及衢州氟硅技术研究院。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 360px height: 252px " src=" https://img1.17img.cn/17img/images/202004/uepic/8607a3c4-a493-48c5-8440-c90cf4e8fa17.jpg" title=" GBT 6041-2020.jpg" alt=" GBT 6041-2020.jpg" width=" 360" vspace=" 0" height=" 252" border=" 0" / /p p    strong 新版本中的变化主要有: /strong /p p    span style=" text-decoration: none " (1) span style=" text-decoration: none color: rgb(255, 0, 0) " 关于定性分析 /span :增加相关描述和术语解释,如“质荷比”“质量准确性” 增加了定性分析的“样品分析”“数据分析”和“结果报告”等项目。 /span /p p span style=" text-decoration: none "   (2) span style=" text-decoration: none color: rgb(255, 0, 0) " 关于定量分析 /span :增加了术语解释,如“质量范围”“提取离子色谱图” 增加了定量分析的“结果报告”项目。 /span /p p span style=" text-decoration: none "   (3) span style=" text-decoration: none color: rgb(255, 0, 0) " 增加了新设备的标准 /span :扩散进样系统等进样器,ESI、APCI、MALDI、ICP、STI等离子源,离子透镜以及TOF、3D/linear ion trap、Orbitrap等质量分析器。 /span /p p   质谱(Mass Spectrometry, MS)是一种测量未知化合物质量的方法,是纯物质鉴定的有力工具。与色谱联用,可以检测不同组分的物质 与光谱、NMR联用,可以推测出化合物的具体结构。广泛应用于科学研究,化工产业,医学检验以及药物分析等领域。 /p p   详细文件请点击 a href=" https://www.instrument.com.cn/download/shtml/948710.shtml" target=" _self" 【此处链接】 /a /p p br/ /p
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 质谱分析|Native MS中计算质量、误差和不确定性的方法
    大家好,本周为大家介绍的是一篇发表在Journal of the American Society for Mass Spectrometry上的文章Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry1,文章通讯作者是来自美国亚利桑那大学化学与生物化学系的Michael T. Marty教授。  非变性电喷雾离子化质谱(native ESI mass spectrometry)已经发展为一种成熟的、表征生物分子相互作用和结合化学计量的技术,通过将生物分子的缓冲体系换成质谱可兼容的挥发性盐溶液,来保护样品的结构和非共价相互作用在离子化过程中不被破坏。随着该技术的发展,一些计算概念的标准化是有必要讨论的。本文介绍了native MS中质量的定义、计算、误差和不确定性。  对于一个质谱峰,有三个位置可以描述它的质荷比:平均值(mean)、中位数(median)和顶点(apex)。平均值又称为质心,即每根峰的质荷比加权其强度得到的平均值 中位数很少被用来描述峰值 顶点是指峰强度最高处的质荷比。在理想的情况下,质谱峰应该是完全对称形状的,质心和顶点的质荷比应该相同(图1A),但这种情况在native MS中比较少见,因为经常会有盐离子等小分子加合到峰上,导致质心和顶点分离以及峰型不对称(图1B),在这种情况下,顶点作为计算真实质量的参数更为合理。Native MS峰也可能与噪音(图1C)和基线(图1D)叠加,相比之下,噪音对顶点的影响大于基线,很可能干扰顶点的识别,这种情况下,选择超过一定阈值的质心计算质量更为合适。由于待测物会产生一系列电荷分布,建议在每个电荷态单独计算出质量后,再按电荷态的相对强度进行加权,获得最终的检测质量。  图1. 几种可能的谱峰形状:理想(A)、有加合(B)、有噪音(C)、基线高(D)。  在比较实测质量和理论质量时,误差指的是实测质量减理论质量,在谱峰鉴别时通常需要计算误差,而不确定程度是指在测量过程中不可避免的值的离散,为了评估误差和不确定程度,作者考虑了三个指标:①从不同电荷态计算出的质量的加权标准差(图2A),这反映了通过所有电荷态计算出的质量的平均值的准确程度,标准差越小,平均值就越准确,这种计算标准差的衡量不确定程度的方式,适合手动计算质量时使用。②峰宽(图2B),如果将质谱峰视为高斯分布,峰宽也是体现不确定程度的参数,在native MS中通常使用半峰宽来衡量峰之间的差异,由于重叠的峰难以手动区分但可以被软件识别,这种衡量方式更适合软件。③重复性(图2C),相比于前两种方式,重复性是更好的确定不确定程度的方式,不确定程度可以定义为多次重复测量出的质量的标准差,但重复实验也需要考虑实验重复性因素(喷针口径,样品制备方法,样品批次,仪器校准等)。  图2. 三种测量峰不确定程度的方法:不同电荷态计算出的质量的加权标准差(A),峰宽(B),重复性(C)。  总结:本文讨论了native MS谱峰的质量、误差和不确定程度的定义,推荐从native MS谱图中不同电荷态的峰计算质量后,加权平均以获得精确质量,并通过重复实验考察不确定程度。  1. Marty, M. T., Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? Journal of the American Society for Mass Spectrometry 2022, 33 (10), 1807-1812.
  • 信立方有机质谱谱图解析培训班圆满结束
    有机质谱分析近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,已成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。 为适应广大分析技术工作者的培训需求,信立方质谱培训中心与仪器信息网合作开展的第一期有机质谱谱图解析技术专题培训班,于2009年7月20日在北京如期举办. 培训班为期5天,邀请中国科学院化学研究所质谱中心王光辉研究员、北京石油化工科学研究院苏焕华高工和北京防化研究院杨小兵博士共同主讲。培训内容涉及谱图解析的基础知识、离子的丰度、离子碎裂的基本原理、常见有机化合物的质谱图特征和NIST谱图库检索实用技术等,培训过程中主讲专家还带领学员进行了由质谱图推测出分子结构的基本方法和思路的实例练习。通过此次学习,加深了学员对有机质谱解析的理解和认识,并且更系统和条理的掌握了质谱解析的思路和方法. 谱图解析培训班授课现场 按照此次培训班日程安排。7月24日上午培训中心安排全体学员进行了有机质谱谱图解析培训班结业考试,考试结束后,便由王光辉和苏焕华老师针对培训班学员提出的问题进行集中答疑,杨小兵老师对学员的结业试卷进行批阅。答疑过程中,两位专家不仅仅只是解答单一的疑问,而是将所有的疑问归纳汇总,综合答疑。对全体学员解惑的过程也是将此次培训班所讲授的知识与实际操作融汇贯通的过程. 专家答疑现场 老师认真批阅结业试卷 此次培训班结业考试中,宁波市海洋与渔业研究院、上海计量测试技术研究所和石家庄疾病预防控制中心的三名学员分获前三名。培训中心向他们颁发了优秀学员证书并进行了500元至200元不等的优秀学员奖金奖励. 优秀学员与授课专家合影留念 有机质谱谱图解析技术不仅需要分析工作者深厚的经验积累,而且需要其对繁杂的裂解规律具有清晰的解析思路和系统条理的解析方法,为使广大分析工作者更系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,为有机质谱的定性分析打下良好基础。同时,也为未能参加此次培训班的学员再提供一次良好的学习机会,信立方质谱培训中心拟于2009年10月下旬在北京举办第二期有机质谱谱图解析技术专题培训班,结合实例讲解谱图解析的基本思路和方法,望感兴趣的广大分析工作者切莫错失良机。详细课程设置请密切关注本网培训中心专栏。 注:第三期气质联用(GC-MS)应用技术培训班9月21日-25日在杭州举办。目前已开始报名,详情请查阅: http://www.instrument.com.cn/training/training_info.asp?TRI_No=100244。
  • 2018中国质谱学术大会聚焦:质谱新方法、新技术
    p style=" line-height: 1.5em " strong & nbsp & nbsp & nbsp & nbsp 仪器信息网讯 /strong 2018年11月24日,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办,中国广州分析测试中心、中山大学承办,广东省分析测试协会及广东省质谱学会协办的“2018年中国质谱学术大会”(CMSC 2018)在广州东方宾馆隆重开幕。本次会议主题为:中国质谱新时代。来自全国质谱技术与应用方面的专家学者、质谱厂商及相关用户共1900余人参加了本次会议,会议规模相比往届再攀新高。仪器信息网作为合作媒体将对本次大会进行系列报道。 /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 本次大会为期2天半(11月24日-26日),共邀请12位专家做大会主题报告并开设主题为生命科学与医学、质谱新方法新技术、仪器研发与基础理论、环境与食品、地球科学及材料与能源、临床质谱等多个分会场会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/bfd169af-bc45-4cde-b743-158a46fad8ad.jpg" title=" 图片 1.png" alt=" 图片 1.png" / /p p style=" text-align: center line-height: 1.5em " 分论坛现场 /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 质谱的新方法、新技术是质谱研究领域的热点,本次大会特别开设了十四个质谱新方法新技术分组报告会,带来了近百个最新的质谱新方法新技术的精彩汇报。复旦大学陆豪杰教授、中国科学院化学研究所聂宗秀研究员、中国医学科学院药物研究所张金兰研究员、香港浸会大学蔡宗苇教授、厦门大学谢素原教授、中科院化学研究所陈义研究员等专家带来了最新的研究成果。 span style=" text-align: center " & nbsp & nbsp /span /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d2723d8a-5560-42e9-93dc-61430f3a795a.jpg" title=" 图片 2.png" alt=" 图片 2.png" / /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 复旦大学陆豪杰教授 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 报告题目:蛋白质翻译后修饰组分析新方法 /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 报告主要介绍了陆豪杰课题组在蛋白质组学分析方法方面最新的研究进展。他在报告中介绍了一系列蛋白质翻译后修饰组的分析新方法。包括利用磁性纳米材料的高效富集方法、基于代谢标记的定量分析新方法以及基于肽段等重标记的蛋白质泛素串联质谱定量新方法等。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/2162128a-6696-4589-9557-e5e1bfdfff6c.jpg" title=" 图片 3.png" alt=" 图片 3.png" / /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 中国科学院化学研究所聂宗秀研究员 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 报告题目:活体质谱与成像 /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp MALDI质谱具有高灵敏度、高通量、高选择性、高分辨等优点,广泛应用于生物学研究。但同时MALDI也具有耐盐性较差、分析小分子困难等局限性,使得其在检测代谢物上有一定困难。基于此,聂宗秀主要介绍了在耐盐性小分子新基质、生物组织中小分子的质谱成像以及对纳米载体药物释放的质谱成像研究。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/e6011b65-1636-4a80-9cda-9623b949da3e.jpg" title=" 图片 4.png" alt=" 图片 4.png" / /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(128, 100, 162) " 中国医学科学院药物研究所张金兰研究员 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(128, 100, 162) " 报告题目:基于HPLC-HRMS技术的药用辅料吐温成分快速分析新策略 /span /strong /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 吐温是药物制剂常用的辅料之一,但近年来,关于吐温作为辅料的安全性问题越来越受到关注。吐温成分的聚合度、结构类型、理化性质、分布比例与不良反应密切相关,所以优先最佳质量、最适用度的吐温,对提高制剂的安全性和稳定性十分重要。由于吐温结构的特殊性,其分析十分困难,报告主要介绍了张金兰团队建立的快速分析吐温的HPLC-HRMS方法。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/52af2fdc-8529-4c86-af08-1573516ae4b2.jpg" title=" 图片 5.png" alt=" 图片 5.png" / /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 香港浸会大学蔡宗苇教授 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 报告题目:质谱成像与环境毒理研究 /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 质谱成像技术相较于其他分析技术具有免标记、高通量、可以表示空间信息等多种优势,是近年来发展极快的一种分析手段。而报告中,蔡宗苇教授表示,在环境毒理研究中,质谱成像也可以发挥重要作用。并以使用MALDI质谱成像用于双酚A类似物毒性研究工作为例进行了介绍。他表示,质谱成像技术在药物研发领域有巨大的应用前景,也为环境毒理研究提供了新的视角和解决方案。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d40ae980-fdc0-4bef-a5d7-8311800a5dcb.jpg" title=" 图片 6.png" alt=" 图片 6.png" / /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(128, 100, 162) " 厦门大学谢素原教授 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(128, 100, 162) " 报告题目:质谱直接嗅探气态物质 /span /strong /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 报告主要介绍了谢素原团队开发的一种直接在线嗅探气体物质的质谱方法。该方法基于实验室常用质谱仪进行改进,相对于传统的气体传感器,能够直接获取混合气态物质的指纹图谱,同时对于有毒物质有很高的耐受性。该方法检出限较低,具有广泛的适用性,可用于日常用品的气味检测、气态物质扩散的实时监测以及气源定位等。 /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong img src=" https://img1.17img.cn/17img/images/201811/uepic/331e8225-0c4c-474e-bb4d-8c6514f32b6c.jpg" title=" 图片 7.png" alt=" 图片 7.png" / /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 中科院化学研究所陈义研究员 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(128, 100, 162) " strong 报告题目:酶与化学辅助下超痕量植物激素的色谱-质谱测定 /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp 植物激素对植物的生长起到重要的调控作用,但植物激素在植物体内含量很低、测定困难,报告主要介绍了课题组利用LCMS对痕量植物激素赤霉素的定量分析以及其在植物中的时空分布的相关研究。他表示,结合酶解与化学衍技术,可以得到赤霉素的LCMSi(液相质谱成像)。 /p p br/ /p
  • 色质谱方法是主力∣新污染物生态环境监测标准体系分析方法标准共计182 项
    据了解,生态环境部在研究建立健全新污染物环境监测技术体系方面开展了一系列工作。2021 年—2023年,生态环境部先后在长江流域和河北、广东、广西等10个省份组织开展新污染物试点监测,并同步开展了监测技术方法研究。为规范新污染物生态环境监测工作,加强生态环境监测标准顶层设计,生态环境部组织制订《新污染物生态 环境监测标准体系表》(以下简称《体系表》),于2024年3月13日公开征求意见。《体系表》中新污染物生态环境监测标准项目,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以 下简称标准样品)共 3 类。体系表中共 219 项标准,其中技术规范 6 项、分析方法标准 182 项、标准样品 31 项。182项分析方法标准中,已发布48项,在研13项,拟制订121项,水质标准56项,土壤和沉积物标准52项,环境空气和废气38项,固体废物35项,其他1项。分析方法标准项目涉及的监测介质主要为水和废水、环境空气和废气、土壤和沉积物、固体废物等,对于挥发性较弱的新污染物,不考虑环境空气和废气监测介质。《体系表》中的监测指标以列入管控清单、履约、 优控名录和优评计划中的新污染物为主。监测指标覆盖微塑料、抗生素、三氯杀螨醇、多氯萘、六溴联苯、毒杀芬、有机磷酸酯类、麝香类、N,N'-二甲苯基-对苯二胺、甲醛和乙醛、邻甲苯胺、多环芳烃、烷基汞、硝基苯类、邻苯二甲酸酯类、紫外吸收剂、卡拉花醛、有机锡化合物、得克隆、多氯联苯、有机氯农药、二噁英类、多溴二苯醚、中链氯化石蜡、短链氯化石蜡、五氯苯酚、挥发性有机物、酚类化合物、六溴环十二烷和双酚A、全氟化合物类和氯苯类等。《体系表》涉及的仪器品类中,液相色谱-三重四极杆质谱法 49 项;气相色谱-质谱法56项;气相色谱-高分辨质谱法21项;气相色谱-三重四极杆质谱法14项,高效液相色谱法8项;气相色谱法12项等。详细内容如下:附:1、征求意见单位名单.pdf2、新污染物生态环境监测标准体系表(征求意见稿).pdf3、《新污染物生态环境监测标准体系表(征求意见稿)》编制说明.pdf仪器信息网将在5月7-9日举办“第五届土壤检测技术与应用”网络会议,其中”土壤新污染物检测“专场将为大家分享最新的分析技术进展与应用,点击免费报名:第五届土壤检测技术与应用网络会议_3i讲堂_仪器信息网 https://www.instrument.com.cn/webinar/meetings/soil240507/
  • 江桂斌研究员:高分辨色谱/高分辨质谱方法在持久性有机污染物分析中的应用
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   中国科学院生态环境研究中心的江桂斌研究员一直从事持久性有机污染物的研究,并且首次发现了一些新的持久性有机污染物。此次江桂斌研究员就有机质谱在持久性有机污染物分析中的应用研究进行了介绍。 中国科学院生态环境研究中心的江桂斌研究员   持久性有机污染物(POPs)是一类半挥发性的物质,如二恶英(Dioxin)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)等,其具有在环境中难降解、长距离迁移、具有生物累积和放大效应、毒性大等特点。基于以上原因,POPs已成为各国最为关注的环境问题之一,并且中国于2004年底正式加入《斯德哥尔摩公约》,履约工作对中国POPs研究提出了更多的挑战。   目前,在POPs的分析研究中,由于POPs物质分子量差别很小、含量非常低、基体复杂等,必须使用高分辨质谱进行研究。中国已经颁布的涉及高分辨质谱分析方法的国标有三项:GB/T 5009.205-2007、 HJ/T 365-2007 、HJ77.1-2008,分别适用于食品、危险性废弃物焚烧排放废气、水和废水中POPs检测。国内拥有高分辨质谱分析POPs的机构有13家:中科院水生生物研究所、深圳疾病预防控制中心、北京大学、上海疾病预防控制中心、中科院生态环境研究中心、中科院大连化物所、中科院广州地球化学研究所、浙江疾病预防控制中心、国家环境分析中心、中国检验检疫科学院、浙江大学、清华大学。江桂斌研究员表示,未来中国还将配备30个持久性有机污染物相关实验室,而其中的关键不在于资金,而在于此方面的人才。   在报告中,江桂斌研究员详细介绍了其实验室建立的高分辨色谱/质谱分析POPs的方法用于青藏高原POPs冷凝效应研究实例,证明了持久性有机污染物的长距离迁移性。   江桂斌研究员认为,在POPs的分析方面,今后的研究将集中在利用光谱、色谱、质谱等技术发现更多的污染物、复杂基体的分离、化合物不同结构/手性的分离鉴定、污染物小分子与生物分子的作用,污染源追踪等方面。
  • 用户成就丨一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法
    见证用户成就灭多威肟是氨基甲酸酯类杀虫剂灭多威的合成中间体,具有一定毒性。目前针对水体中灭多威肟的研究较为普遍而土壤中灭多威肟的检测方法的研究较少,因此有必要建立一种气相色谱质谱联用仪检测土壤中灭多威肟的检测方法。为解决这一问题,广电计量检测(合肥)有限公司及安徽建筑大学有关研究人员提出了《一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法》并将相关研究成果发布在Hans Journal of Agricultural Sciences 农业科学, 2022, 12(4), 237-245。本方法通过实验条件的探究,确定萃取溶剂为二氯甲烷–丙酮混合溶剂(1+1)、加压流体萃取温度为 70℃,压力为12 Mpa,选择了C18柱作为净化柱,8mL二氯甲烷–丙酮混合溶剂(1+1)进行洗脱,20℃减压旋蒸作为收集液的浓缩方式,最终建立了一种以加压流体萃取–气相色谱质谱联用仪测定土壤中灭多威肟的定性定量方法。该方法自动化程度高,可进行批量的土壤分析,操作简便,精密度和准确度高,方法检出限为:1.17 µg/kg。该方法的建立填补了测定土壤中灭多威肟的方法空白,为场地新型环境污染调查提供必要技术支持。在样品萃取环节,此次实验采用睿科 HPFE 06S 加压流体萃取仪。在高温环境下,睿科HPFE高通量加压流体萃取仪可使萃取时间由索式抽提的十几个小时降低至15~30分钟,溶剂耗量由原来的200mL降低至20 ~ 50mL,有了它,土壤“把脉”更轻松!
  • 2015年第12期有机质谱谱图解析应用技术培训班邀请函
    信立方培训中心(北京信立方科技发展股份有限公司运营的科学仪器专业门户网站—仪器信息网(www.instrument.com.cn)旗下专业培训机构)致力于分析科学仪器的应用技术培训工作。为提高相关从业人员的技术水平,使分析科学仪器更好地服务于科研、生产及研发工作,适应当前从事质谱应用技术人员的迫切需求,培训中心自2009年起,至今已开设近三十期不同类型和层次的质谱培训班,涵盖气质、液质、谱图解析等领域,受到广大学员欢迎和好评。  有机质谱分析基于不同质荷比(m/z)的带电离子在电场或磁场中的不同运动行为进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、同时进行多组份分析等优点。近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为日常工作中非常重要的定性定量分析方法。质谱的定性分析基于对质谱谱图的解析而实现,但由于有机化合物种类繁多,繁杂的裂解规律不易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。为适应广大分析技术工作者的需求,信立方培训中心将于2015年8月18日-21日在北京举办第十二期有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。  培训时间:2015年8月18-21日  培训地点:外国专家大厦(华严北里8号院外国专家大厦(北四环))  适用对象:  各企事业单位、科研院所从事食品卫生、检验检测、石油化工有环境监测及等行业负责分析测试的技术人员,以及各大专院校相关专业在校研究生及分析中心等技术人员。  学习目标:  系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下坚实基础。  课程特色:  讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验   有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出,通俗易懂   独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平   学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题   授课专家:  1、王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》   2、苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》   3、授课专家不宜公开   授课大纲:  一、谱图解析基础知识  1、原子中电子的排布  2、奇电子离子与偶电子离子  3、氮规则  4、环加双键值  5、同位素峰  6、单分子反应  二、离子的丰度  1、质荷比与离子丰度包含的结构信息  2、影响碎片离子丰度的基本因素  三、离子碎裂的基本机理  1、断裂  2、环的开裂  3、重排反应  4、置换反应  5、消除反应  四、常见有机化合物的裂解及质谱图特征  1、碳氢化合物  2、醇、酮、醛、酸、酯、醚  3、胺类、酰胺类  4、卤代物、硝基化合物  5、腈  五、由质谱图推测分子结构  1、基本方法及思路  2、实例练习  六、NIST谱图库检索实用技术  1、NIST谱图库简介  2、NIST谱图库主要功能  3、NIST谱图库检索实例  授课方式:  (一)课程讲座  (二)案例讲解  注:学员可自带原始数据采集文件,讲师可采用学员的文件作为案例进行分析  培训费用:  每人3800元,2人以上组团报名可每人优惠100元(含报名费、培训费、资料费、培训期间每日午餐费用)。  颁发证书:  参加相关培训并通过考试的学员,可以获得:  由信立方培训中心颁发并有授课老师签字的结业证书。该证书可作为有关单位专业技术人员能力评价、考核和任职的重要依据。  报名咨询:  联系人:李老师  电话:010-51654077-8119/15910410867  邮箱:liru@instrument.com.cn
  • 501项国标批准发布 色谱、质谱、光谱多项仪器分析方法在列
    p   8月30日,国家市场监督管理总局、国家标准化管理委员会批准发布501项国家标准和6项国家标准修改单,其中包括多项仪器分析方法,包括:电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、气相色谱-质谱法、离子色谱法、近红外光谱法、原子荧光光谱法、高效液相色谱、原子吸收光谱法等。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" align=" center" tbody tr class=" firstRow" td width=" 123" nowrap=" nowrap" p style=" text-align:center " strong 国家标准编号 /strong /p /td td width=" 265" nowrap=" nowrap" p style=" text-align:center " strong 国 /strong strong & nbsp & nbsp /strong strong 家 /strong strong & nbsp & nbsp /strong strong 标 /strong strong & nbsp & nbsp /strong strong 准 /strong strong & nbsp & nbsp /strong strong 名 /strong strong & nbsp & nbsp /strong strong 称 /strong /p /td td width=" 132" nowrap=" nowrap" p style=" text-align:center " strong 代替标准号 /strong /p /td td width=" 85" nowrap=" nowrap" p style=" text-align:center " strong 实施日期 /strong /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 223.89-2019 /strong /p /td td width=" 265" p style=" text-align:center " 钢铁及合金 碲含量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 4333.1-2019 /strong /p /td td width=" 265" p style=" text-align:center " 硅铁 硅含量的测定 & nbsp & nbsp 高氯酸脱水重量法和氟硅酸钾容量法 /p /td td width=" 132" p style=" text-align:center " GB/T & nbsp & nbsp & nbsp & nbsp 4333.1-1984 /p /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 6730.56-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铁矿石 铝含量的测定 & nbsp & nbsp 火焰原子吸收光谱法 /p /td td width=" 132" p style=" text-align:center " GB/T & nbsp & nbsp & nbsp & nbsp 6730.56-2004 /p /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 6730.77-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铁矿石 砷含量的测定 氢化物发生-原子荧光光谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 6730.78-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铁矿石 镉含量的测定 & nbsp & nbsp 石墨炉原子吸收光谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 6730.79-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铁矿石 镉含量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 6730.80-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铁矿石 汞含量的测定 冷原子吸收光谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 7739.14-2019 /strong /p /td td width=" 265" p style=" text-align:center " 金精矿化学分析方法 & nbsp & nbsp 第14部分:铊量的测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 8152.14-2019 /strong /p /td td width=" 265" p style=" text-align:center " 铅精矿化学分析方法 & nbsp & nbsp 第14部分:二氧化硅含量的测定& nbsp & nbsp 钼蓝分光光度法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 12442-2019 /strong /p /td td width=" 265" p style=" text-align:center " 石英玻璃中羟基含量检验方法 /p /td td width=" 132" p style=" text-align:center " GB/T & nbsp & nbsp & nbsp & nbsp 12442-1990 /p /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 15456-2019 /strong /p /td td width=" 265" p style=" text-align:center " 工业循环冷却水中化学需氧量(COD)的测定 & nbsp & nbsp 高锰酸盐指数法 /p /td td width=" 132" p style=" text-align:center " GB/T & nbsp & nbsp & nbsp & nbsp 15456-2008 /p /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 18882.3-2019 /strong /p /td td width=" 265" p style=" text-align:center " 离子型稀土矿混合稀土氧化物化学分析方法& nbsp 第3部分:二氧化硅含量的测定 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 24583.6-2019 /strong /p /td td width=" 265" p style=" text-align:center " 钒氮合金 硫含量的测定 & nbsp & nbsp 红外线吸收法 /p /td td width=" 132" p style=" text-align:center " GB/T & nbsp & nbsp & nbsp & nbsp 24583.6-2009 /p /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37787-2019 /strong /p /td td width=" 265" p style=" text-align:center " 金属材料 显微疏松的测定& nbsp 荧光法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37796-2019 /strong /p /td td width=" 265" p style=" text-align:center " 隔热耐火材料 & nbsp & nbsp 导热系数试验方法(量热计法) /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37837-2019 /strong /p /td td width=" 265" p style=" text-align:center " 四极杆电感耦合等离子体质谱方法通则 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37840-2019 /strong /p /td td width=" 265" p style=" text-align:center " 电子电气产品中挥发性有机化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37848-2019 /strong /p /td td width=" 265" p style=" text-align:center " 水中锶同位素丰度比的测定 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37849-2019 /strong /p /td td width=" 265" p style=" text-align:center " 液相色谱飞行时间质谱联用仪性能测定方法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37859-2019 /strong /p /td td width=" 265" p style=" text-align:center " 纸、纸板和纸制品 & nbsp & nbsp 丙烯酰胺的测定 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37860-2019 /strong /p /td td width=" 265" p style=" text-align:center " 纸、纸板和纸制品 & nbsp & nbsp 邻苯二甲酸酯的测定 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37861-2019 /strong /p /td td width=" 265" p style=" text-align:center " 电子电气产品中卤素含量的测定& nbsp 离子色谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37865-2019 /strong /p /td td width=" 265" p style=" text-align:center " 生物样品中14C的分析方法 & nbsp & nbsp 氧弹燃烧法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37883-2019 /strong /p /td td width=" 265" p style=" text-align:center " 水处理剂中铬、镉、铅、砷含量的测定 & nbsp & nbsp 电感耦合等离子体发射光谱(ICP-OES)法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37884-2019 /strong /p /td td width=" 265" p style=" text-align:center " 涂料中挥发性有机化合物(VOC)释放量的测定 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37905-2019 /strong /p /td td width=" 265" p style=" text-align:center " 再生水水质& nbsp 铬的测定& nbsp 伏安极谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37906-2019 /strong /p /td td width=" 265" p style=" text-align:center " 再生水水质& nbsp 汞的测定& nbsp 测汞仪法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37907-2019 /strong /p /td td width=" 265" p style=" text-align:center " 再生水水质& nbsp 硫化物和氰化物的测定& nbsp 离子色谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-07-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37929-2019 /strong /p /td td width=" 265" p style=" text-align:center " 无损检测仪器& nbsp X射线管寿命试验方法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " GB/T 37969-2019 strong /strong /p /td td width=" 265" p style=" text-align:center " 近红外光谱定性分析通则 /p /td td width=" 132" p style=" text-align:left " & nbsp /p /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37930-2019 /strong /p /td td width=" 265" p style=" text-align:center " 无损检测仪器& nbsp 汽车轮毂X射线实时成像检测仪技术要求 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37945-2019 /strong /p /td td width=" 265" p style=" text-align:center " 有机发光二极管显示器用材料 & nbsp & nbsp 玻璃化转变温度测试方法 & nbsp & nbsp 差热法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2019-12-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37946-2019 /strong /p /td td width=" 265" p style=" text-align:center " 有机发光二极管显示器用材料热稳定性的测试方法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2019-12-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37949-2019 /strong /p /td td width=" 265" p style=" text-align:center " 有机发光二极管显示器用有机小分子发光材料纯度测定& nbsp 高效液相色谱法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2019-12-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37983-2019 /strong /p /td td width=" 265" p style=" text-align:center " 晶体材料X射线衍射仪旋转定向测试方法 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr tr td width=" 123" p style=" text-align:center " strong GB/T & nbsp & nbsp 37984-2019 /strong /p /td td width=" 265" p style=" text-align:center " 纳米技术& nbsp 用于拉曼光谱校准的频移校正值 /p /td td width=" 132" br/ /td td width=" 85" p style=" text-align:center " 2020-03-01 /p /td /tr /tbody /table
  • 网络课堂|多功能临床质谱检测方法
    近几年,国产MALDI-TOF MS的研发与生产快速起步,新产品接连井喷式发布。MALDI-TOF MS将很有可能成为中国企业掌握最领先的核心技术并引领技术发展的质谱仪器类。 2021年11月11日下午14:00,东西分析项目经理高利艳博士将在第十二届质谱网络会议(iCMS 2021)上为大家带来一场《多功能临床质谱检测方法》的报告,欢迎感兴趣的小伙伴们报名参加。 扫描左侧二维码报名报告内容Ebio Reader 3700是一款多功能的IVD检测平台,被广泛应用于医学微生物鉴定、工业微生物鉴定、医学生物标志物鉴定、蛋白和核酸鉴定、医学SNP检测和食品安全等领域。东西分析利用该平台开发了多种应用。01Ebio Reader 3700拥有强大的微生物数据库,通过与其配套的数据分析软件,对所得的蛋白指纹图谱与数据库种的指纹图谱进行比对检索,从而实现对微生物的鉴定;02利用质谱法体外定量测定血管性血友病因子裂解酶(ADAMTS13/vWF-cp)的活性,实现对血栓性血小板减少性紫癜的早期筛查;03配套相应蛋白芯片,借助独特的蛋白指纹图谱技术,构建病毒类疾病的蛋白指纹图谱,进行检测;04通过检测核酸的单点突变,在基因水平上进行疾病检测,可以同时完成30-40重PCR反应,实现对多种病原体的同时检测。除此之外,我们还在进行利用蛋白指纹图谱的方法对老年痴呆、帕金森等疾病的筛查检测的研究。讲师简介高利艳,博士,毕业于首都师范大学生命科学学院遗传学专业。曾赴默多克大学(Murdoch University)进行学术深造。在国际主流学术期刊上发表论文10余篇。曾获得“2008年国家科技进步一等奖”、2013年和2014年连续两年获得“重要科研进展奖“,“优秀青年奖”。 现担任东西分析MALDI-TOF质谱项目负责人。相关仪器Ebio Reader 3700飞行时间质谱系统
  • 又一大波仪器分析方法标准即将制定 涉及光谱、色谱、质谱等
    p   7月26日,国际标准委发布关于对《蒸压加气混凝土板》等266项拟立项国家标准项目征求意见的通知, 征求意见截止时间为2017年8月9日。 /p p   在拟立项的这266条国家标准中,数十项涉及仪器分析及化学分析方法,包括液相色谱质谱法、紫外荧光法、 电感耦合等离子体发射光谱(ICP-OES)法、傅里叶变换红外光谱法、高效液相色谱法、拉曼光谱法、离子色谱法等。仪器信息网特别摘录部分如下:& nbsp table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" tbody tr class=" firstRow" td width=" 535" p style=" TEXT-ALIGN: center" strong 标准名称 /strong /p /td td width=" 85" p style=" TEXT-ALIGN: center" strong 性质 /strong /p /td td width=" 71" p style=" TEXT-ALIGN: center" strong 状态 /strong /p /td td width=" 159" p style=" TEXT-ALIGN: center" strong 公示截止日期 /strong /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 生物检材中11种生物碱的检测 液相色谱质谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 有机化工产品试验方法 第10部分 有机液体化工产品微量硫的测定 紫外荧光法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 液体硫磺中硫化氢和多硫化氢的测定 傅里叶变换红外光谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 直接还原铁 硅、锰、磷、钒、钛、铜、铝、砷、镁、钙、钾、钠含量的测定 电感耦合等离子体原子发射光谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品色谱分析方法验证通则 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品中11种唑类抗真菌药物的测定 液相色谱-串联质谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-质谱/质谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品中碱金属硫化物和碱土金属硫化物的检测 亚甲基蓝分光光度法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品中甲巯咪唑的测定 高效液相色谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 化妆品中氨含量的测定 滴定法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 纺织染整助剂产品中4,4& #39 -亚甲基双(2-氯苯胺)的测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 人体外周血中循环游离DNA浓度检测基于Alu序列实时荧光PCR法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 工业微生物菌株质量评价 拉曼光谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 气体分析 微量水分的测定 第4部分:石英晶体振荡法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 再生水水质 铬的测定 伏安极谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 再生水水质 汞的测定 测汞仪法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 再生水水质 硫化物和氰化物的测定 离子色谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 染料产品中分散黄23和分散橙149染料的测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 荧光增白剂产品中磷含量测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 电子烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 活性炭脱汞催化剂化学成分分析方法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 软钎剂试验方法 第1部分:重量法测定不挥发物质 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 软钎剂试验方法 第2部分:沸点法测定不挥发物质 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 软钎剂试验方法 第2部分:沸点法测定不挥发物质 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 直接还原铁 金属铁含量的测定 三氯化铁分解重铬酸钾滴定法 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 纺织染整助剂产品中4,4& #39 -亚甲基双(2-氯苯胺)的测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr tr td width=" 535" p style=" TEXT-ALIGN: center" 纺织染整助剂产品中短链氯化石蜡的测定 /p /td td width=" 85" p style=" TEXT-ALIGN: center" 推 /p /td td width=" 71" p style=" TEXT-ALIGN: center" 制 /p /td td width=" 159" p style=" TEXT-ALIGN: center" 2017-08-09 /p /td /tr /tbody /table /p p & nbsp /p p & nbsp /p
  • GB/T 5750-2023《生活饮用水标准检验方法》新增质谱方法盘点
    生活饮用水保障是关系到国计民生的重要公共卫生问题之一。2023年3月经国家市场监督管理总局(国家标准化管理委员会)批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准在10月1日正式实施,成为我国新版《生活饮用水卫生标准》(GB 5749-2022)配套检验方法的系列标准。本次修订主要特点有:①大幅增加了高通量的分析方法;②大幅扩展了质谱技术的应用范畴;③重点加强了自动化程度高检测方法;④进一步强化了以人为本的制标理念;充分体现了方法标准的配套性和前瞻性。特别值得关注的是,在2023版新标准增加的水质检测方法中,以质谱技术相关的方法居多,涉及质谱技术的检测方法由2006版标准的3个增加至本次的28个。其中气相色谱质谱法由原有的2个增至14个,新增1个气相色谱串联质谱法、1个液相色谱质谱法,同时增加了11个液相色谱串联质谱法。涉及质谱方法变化的各章节的具体情况见下表:GB/T 5750.5 无机非金属指标》》》点击下载序号项目方法方法编号1碘化物电感耦合等离子质谱法13.42高氯酸盐超高液相色谱串联质谱14.3GB/T 5750.6 金属和类金属指标》》》点击下载序号项目方法方法编号1砷液相色谱-电感耦合等离子质谱法9.52硒液相色谱-电感耦合等离子质谱法10.53六价铬液相色谱-电感耦合等离子质谱法13.24氯化乙基汞液相色谱-电感耦合等离子质谱法28.2GB/T 5750.8 有机物指标》》》点击下载序号项目方法方法编号1四氯化碳吹扫捕集气相色谱质谱法4.22丙烯酰胺高液相色谱串联质谱法13.13邻苯二甲酸二(2-乙基己基)酯固相萃取气相色谱质谱法15.14微囊藻毒素液相色谱串联质谱法16.25环氧氯丙烷气相色谱质谱法20.161,2-二溴乙烯吹扫捕集气相色谱质谱法61.17双酚A超高液相色谱串联质谱75.18土臭素顶空固相微萃取气相色谱质谱法76.19五氯丙烷吹扫捕集气相色谱质谱法78.210戊二醛液相色谱串联质谱80.111环烷酸超高液相色谱串联质谱81.112苯甲醚吹扫捕集气相色谱质谱法83.113全氟辛酸超高液相色谱串联质谱84.114二甲基二硫醚吹扫捕集气相色谱质谱法86.115多氯联苯气相色谱质谱法89.116药品及个人护理品超高液相色谱串联质谱90.1GB/T 5750.9 农药指标》》》点击下载序号项目方法方法编号1甲基对硫醚液相色谱串联质谱8.32甲萘威液相色谱串联质谱13.43氟氯脲液相色谱串联质谱25.14乙草胺气相色谱质谱法41.1GB/T 5750.10 消毒副产物指标》》》点击下载序号项目方法方法编号1二氯乙酸高液相色谱串联质谱15.32亚硝基二甲胺固相萃取气相色谱质谱法23.1液液萃取气相色谱质谱法23.1在此背景下,为了进一步促进生活饮用水检测工作的交流与合作,仪器信息网特别发起“《生活饮用水标准检验方法》——质谱篇”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们积极投稿。点击图片,进行投稿
  • 十余项环保标准首次发布 色谱质谱分析方法占主流
    p   日前,环保部接连发布两则公告,先后公布十二项国家环境保护标准,分别于2018年2月1日起和2018年3月1日起实施。 /p p   此次公布的十二项环保标准中,包括了十项仪器分析方法,涉及气相、液相、气质、分光光度法等。 /p p style=" TEXT-ALIGN: center" strong 关于发布《土壤 阳离子交换量的测定 三氯化六氨合钴浸提-分光光度法》等四项国家环境保护标准的公告 /strong /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428288.shtml" target=" _blank" 一、《土壤 阳离子交换量的测定 三氯化六氨合钴浸提-分光光度法》(HJ 889-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428294.shtml" target=" _blank" 二、《土壤和沉积物 多氯联苯混合物的测定 气相色谱法》(HJ 890-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428295.shtml" target=" _blank" 三、《固体废物 多氯联苯的测定 气相色谱-质谱法》(HJ 891-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428296.shtml" target=" _blank" 四、《固体废物 多环芳烃的测定 高效液相色谱法》(HJ 892-2017)。 /a /p p   以上标准均为首次发布,自2018年2月1日起实施。 /p p style=" TEXT-ALIGN: center" strong 关于发布《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》等八项国家环境保护标准的公告 /strong /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428271.shtml" target=" _blank" 一、《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017) /a /p p   本标准是对《环境空气总烃的测定气相色谱法》(HJ 604-2011)的修订。 /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428272.shtml" target=" _blank" 二、《环境空气 有机氯农药的测定 气相色谱-质谱法》(HJ 900-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428273.shtml" target=" _blank" 三、《环境空气 有机氯农药的测定 气相色谱法》(HJ 901-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428278.shtml" target=" _blank" 四、《环境空气 多氯联苯的测定 气相色谱-质谱法》(HJ 902-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428280.shtml" target=" _blank" 五、《环境空气 多氯联苯的测定 气相色谱法》(HJ 903-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428282.shtml" target=" _self" 六、《环境空气 多氯联苯混合物的测定 气相色谱法》(HJ 904-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428285.shtml" target=" _blank" 七、《功能区声环境质量自动监测技术规范》(HJ 906-2017) /a /p p    a title=" " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428287.shtml" target=" _blank" 八、《环境噪声自动监测系统技术要求》(HJ 907-2017)。 /a /p p   以上标准自2018年3月1日起实施,除第一条是修订外,其余全为首次发布。 /p p & nbsp /p
  • 广东省分析测试协会征集《新会陈皮陈化年份鉴定方法 高效液相色谱-四极杆飞行时间质谱法》、《新会陈皮产地鉴定方法 电感耦合等离子体质谱法》2项团体标准参编单位
    各有关单位:根据粤测协字〔2023〕33号文件,《新会陈皮陈化年份鉴定方法 高效液相色谱-四极杆飞行时间质谱法》(立项编号GAIA/JH20230204)、《新会陈皮产地鉴定方法 电感耦合等离子体质谱法》(立项编号GAIA/JH20230205)2项团体标准项目已获广东省分析测试协会批准立项。为使标准更具广泛性、代表性,协会现征集上述标准的参编单位,申报事项如下:一、参编单位要求具有独立法人资格、标准相关领域的企事业单位,能选派专家根据要求参与标准编制工作;选派专家应熟悉相关工作,并能积极参与标准编制的各项工作,确保标准的适用性、有效性和先进性。二、责任与义务参与标准编制的单位应能积极承担、合作完成标准编写小组安排的各项工作任务,并缴纳一定费用,用于标准立项、技术审查、批准发布、标准管理等费用。三、申报要求及审核意向参与标准编制的单位,请填写《参与编制T/GAIA标准项目申请表》(见附件),并将申请表盖章扫描后的电子版发送至协会秘书处邮箱gdaia@fenxi.com.cn。经审核符合要求的单位,由秘书处通知参与标准编制的相关事宜。四、联系方式广东省分析测试协会秘书处联系人:杨熙,020-37656885-833,18922377359 苏艳凤,020-37656885-227,15307841521附件:参与编制T/GAIA标准项目申请表广东省分析测试协会2023年12月11日附件:参与编制T GAIA标准项目申请表.doc广东省分析测试协会关于征集《新会陈皮陈化年份鉴定方法 高效液相色谱法-四级杆飞行时间质谱法》、《新会陈皮产地鉴定方法 电感耦合等离子体质谱法》2项团体标准参编单位的通知.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制