当前位置: 仪器信息网 > 行业主题 > >

色谱展开方法

仪器信息网色谱展开方法专题为您提供2024年最新色谱展开方法价格报价、厂家品牌的相关信息, 包括色谱展开方法参数、型号等,不管是国产,还是进口品牌的色谱展开方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱展开方法相关的耗材配件、试剂标物,还有色谱展开方法相关的最新资讯、资料,以及色谱展开方法相关的解决方案。

色谱展开方法相关的资讯

  • 沃特世公司拓展开放体系操作平台,推出新型自动化集成方法SOP软件
    沃特世公司拓展开放体系操作平台,推出新型自动化集成方法SOP软件 NuGenesis SDMS 智能步骤管理系统:充实实验室功能流程的完整性,提高效率减少错误 新奥尔良 –2008年3月3日 – 沃特世公司(股票代码:WAT)今天拓展了信息开放操作平台,装有沃特世公司NuGenesis Scientific Data Management System (SDMS)科学数据管理系统,针对分析方法或测试的标准操作规范所要求的手工报告的改进。 沃特世公司NuGenesis® SDMS 智能步骤管理是一种流程软件包,可在日常复杂的标准操作规程中指导实验室分析人员,并整合了色谱数据系统,如沃特世公司Empower™ 2 色谱数据软件的结果。 “沃特世公司的实验室信息解决方案历来推行开放体系,可与各种仪器,厂商和学院一起合作,” 沃特世公司信息市场部高级经理,Phil Kilby说。“作为唯一可以从任何来源管理和查询科学数据的实验室软件包, NuGenesis SDMS 是这种开放式信息平台的神经中枢。通过集成这种开放体系的突出优势, 沃特世公司平台的设计使得实验室将仪器和软件分区在线直到实现全企业范围的整合。” 智能流程管理是在匹茨堡2008大会上最新推出的解决方案。“我们支持‘第一次就把事情做对’这一理念, 沃特世公司估计使用智能步骤管理将标准操作规程自动化集成化,相比传统的书面形式,可以降低一半的潜在循环周期,实现较少的错误机会,” Phil Kilby补充道。 由于当今实验室的手工或书面标准操作规程大纲都依赖于书面大纲,往往会导致时间低效率和数据转录错误。例如,1)仪器检查, 2) 标准品和样品制备, 3) 溶剂和流动相分离, 4) 分析检查, 5) 结果批复, 和6) 最后产品发布等,智能流程管理针对此方面进行了提高和改进。 从后期的开发到最终产品质量控制和批次投放,智能流程管理可以同步应用到任何必须严格遵守指定实验方法和标准操作规程的实验室环境中,包括现行药品生产管理规范操作的法规遵从要求。所有主要实验室数据和元数据都可以快速且容易地以电子形式进行采集并储存符合21 CFR Part 11、 cGMP-、GLP- 法规遵从的数据库中。 关于沃特世公司(www.waters.com) 50年来,沃特世公司在全球范围内,通过传递实用,可持续发展的创新技术,为实验室依赖型单位和组织,在人体保健,环境管理,食品安全和水质分析领域建立商业优势。 潜心钻研相互关联的整合分离科学,实验室信息管理,质谱和热分析技术,拥有专家水平的客户服务团队, 沃特世技术突破和实验室解决方案为用户的成功提供了持久的平台。 2007年,沃特世公司年销售额14.7亿美元,5000员工,为全球客户努力推进科学发现并保障卓越性能。 (Waters, NuGenesis 和 Empower 是沃特世公司商标。) 沃特世科技(上海)有限公司 蔡卓尔小姐 电话:+86 21 68794052 传真:+86 21 68794588 Email:joy_cai@waters.com 网址:www.waters.com www.waterschina.com
  • 聚焦“绿色”色谱分析技术,中国药典|沃特世联合开放实验室开放日活动成功举办
    12月3日,中国药典|沃特世联合开放实验室在北京成功举办了以“超临界流体色谱检验技术”(SFC)为主题的开放日活动。国家药典委、SFC技术联盟、相关药检所的专家以及药物生产企业受邀出席了本次活动,就SFC技术原理及方法开发、SFC在药物分析和药品质量研究中的应用等话题进行了经验分享与技术交流。开放日活动现场国家药典委员会秘书长张伟先生在致辞中表示:“中国药典|沃特世联合开放实验室自2015年正式成立以来,始终秉持公益、开放、创新、互利的原则,致力于将先进的分析技术转化到药品质量控制中,通过积极参与药品标准研究,及开展丰富多样的公益性培训交流活动,更好地服务于公共健康建设。本次开放日聚焦SFC技术,SFC研究应用虽然普及化程度尚低,但业界需求旺盛。我们希望通过此次开放日活动推动这一技术在更多药物品种分析上得到应用。”国家药典委员会秘书长张伟先生致辞沃特世大中华区应用总监Kate Yu女士随后说道:“联合实验室成立5年以来,在国家药典委、沃特世、北京药检所、振东药业的共同支持和努力下,工作成果显著。沃特世作为SFC技术的领导者,始终致力于为广大客户开发高性能且稳定的商品化SFC产品。我们很高兴能在此次的开放日中贡献关于SFC技术的专业建议。未来,我们希望能够凭借沃特世在药品质量标准分析领域的丰富经验,通过中国药典|沃特世联合开放实验室这一公益开放平台,助力国家药典推进中国医药产业升级和产品质量提升。”沃特世大中华区应用总监Kate Yu女士致辞近年来,SFC作为一种高效环保的新型“绿色”色谱分析技术,其基础理论研究、仪器软硬件技术和色谱柱技术不断发展创新与完善,在药物、食品、环境、化工等领域得到了日益广泛的应用。随着2015年版《中国药典》将SFC技术收录到四部《通则》中,业内人士对于通过该技术实现快速、高效、绿色分析及手性分离等研究的需求与日俱增。为进一步加深参会者对于SFC分析技术及其在药物研究领域应用的理解,此次的开放日活动以主题报告与演示实验相结合的方式展开。在主题报告环节,军事医学研究院辐射医学研究所马百平研究员以“超临界流体色谱在中药成分分离分析中的应用”为题,向参会者介绍了SFC的正相分离性能在中药甾体皂苷和黄酮类化合物分离纯化和定量定性分析中的应用优势。军事医学研究院辐射医学研究所马百平研究员做主题报告沃特世中国应用工程师张道康先生从技术原理及方法开发层面对于SFC技术做了全方位讲解,其中包括SFC发展历程、技术原理与技术优势、分离机理及方法开发实例等。沃特世中国应用工程师张道康先生做主题报告中国药典∣沃特世联合开放实验室特聘专家王京辉女士则在题为“SFC在中药质控方法中的探索性研究”的报告中表示,中药质量控制研究一直是中药研究与发展的关键。如今,使用SFC技术进行重要质量标准的研究、对内在成分进行定量测定等方面已取得了重大进展。中国药典∣沃特世联合开放实验室特聘专家王京辉女士做主题报告在演示实验环节,王京辉女士与张道康先生分别进行了“SFC分析丹参样品”与“SFC分离手性样品”的演示实验,让参会者在实操案例中体验到了SFC技术分离性能好、效率高、回收率好、有机试剂使用量少等“绿色环保”的特点。演示实验环节关于中国药典|沃特世联合开放实验室“中国药典|沃特世联合开放实验室”是由国家药典委员会以及沃特世公司共同建立的公益性联合实验室。中国药典-沃特世联合开放实验室将深入开展药典标准研究,检测方法和开发与验证工作,同时开展国内外药典标准的分析方法,及各论的数据比对工作。实验室还将为药品监管及药品生产科研人员提供培训,并就药物开发研究开展广泛的国际间技术交流。联合实验室成立以来,本着公益、开放、创新、互利的理念, 针对当前药品行业广泛关注的问题,先后举办了多场主题开放日活动,内容涉及QbD、分析方法验证、滴眼液抑菌剂安全性等热点问题。关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球27个国家和地区直接运营,下设11个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 中国药典|沃特世联合开放实验室成功举办“药品质量检测新技术研讨会”暨“超临界流体色谱技术联盟”成立
    中国药典|沃特世联合开放实验室(以下简称“联合开放实验室”)于近日在北京成功举办了以“超临界流体色谱技术(以下简称SFC技术)及其应用”为主题的药品质量检测新技术研讨会,同期组建了“超临界流体色谱技术联盟”。中国科学院上海药物研究所陈凯先院士、国家药典会、相关省市药检所、研究机构以及国内外制药企业专家出席活动,围绕“超临界流体色谱技术在药品质量控制中的应用”为主题,进行技术研讨。 会议由国家药典委员会首席科学家钱忠直教授主持,国家药典委员会业务综合处洪小栩副处长转达了张伟秘书长的致辞。张伟秘书长指出,中国药典在保持科学性、先进性和规范性的基础上, 应充分借鉴国际上先进的药品分析技术,推动国内制药行业技术水平发展,扩大对新技术和新仪器方法的收载和使用, 希望SFC技术联盟能够成为推动药品质量检测新技术应用的“新动力”和“智慧源泉”。 国家药典委员会首席科学家钱忠直教授主持会议 本次会议的首个重要日程是成立“超临界流体色谱技术联盟”。该联盟旨在通过联盟内外有效的技术分享,凝聚产业界、学术界以及社会各界的共识与合力,推荐国内外在药物分析及质量控制领域的最新研究成果和使用经验,关注前沿发展动向和应用趋势。作为推动超临界流体色谱技术在药物分析及药品质量标准制定工作中应用的“智库”机构,联盟承担着为药品质量标准的制定及提高工作提供战略决策和技术咨询的重任。“超临界流体色谱技术联盟”由陈凯先院士、姚新生院士担任联盟名誉主席;张伟秘书长、罗国安教授、马双成教授及钱忠直教授担任联席主席;专家委员若干名。全国药物分析大会主席、清华大学罗国安教授宣读了“全国药物分析大会同意函”,正式接纳“超临界流体色谱技术联盟”成为大会下属机构之一。陈凯先院士亲自为联席主席及专家委员颁发聘书。 陈凯先院士为钱忠直教授颁发聘书以及全体联盟成员合影 联盟成立仪式结束后,陈凯先院士首先以“抓住机遇,迎接挑战 ---创新药物研发的趋势与对策思考”为题进行了精彩的主题报告,从各疾病领域新药临床研发情况、生物制药、靶点研发、高水平期刊发表情况等方面出发,全面介绍了医药产业和新药研发的发展态势,阐述了生命科学、基因组医学、精准医学及个性化治疗等新药研发的前沿动向。 陈凯先院士做主题报告 随后,国家药典委员会委员王玉教授、上海市食品药品检验所化药室杨永健主任,默沙东对外化学制药分析总监徐京博士,浙江华海制药分析部朱艳总监,及中国药科大学天然药物活性组分与药效国家重点实验室杨华副教授分享了SFC技术的原理和发展历程、国内外在药品研究和质量控制的应用和案例, 并就该技术的特点和应用展开深入的讨论。 与会专家就SFC技术在药品质量标准中的应用现状和发展趋势进行探讨(从左至右依次为:国家药典委员会委员王玉教授、上海市食品药品检验所化药室杨永健主任,默沙东对外化学制药分析总监徐京博士,浙江华海制药分析部朱艳总监,中国药科大学天然药物活性组分与药效国家重点实验室杨华副教授) 最后, 全国药物分析大会主席罗国安教授表示,通过会议报告及案例分享看到了超临界流体色谱技术对提高药品检测技术水平的推动力,并预祝“超临界流体色谱技术联盟”作为全国药物分析大会的一只重要新生力量取得进一步的成果。 国家药典委员会首席科学家兼联合开放实验室执行主任钱忠直教授表示:通过此次活动,期望行业内的各位专家可以关注超临界流体色谱这种‘绿色’分析技术,逐渐应用在日常分析工作中,通过搭建‘超临界流体色谱技术联盟’平台,增加彼此间的交流与互动。 国家药典委员会业务综合处洪小栩副处长表示:“绿色环保是在建立药品质量检测技术方法过程中需要考虑的因素之一,超临界流体色谱技术优势将在药品的基础研究工作中日益发挥更大的作用。” 联合开放实验室经理兼沃特世公司市场发展总监黄静表示:“将凭借沃特世在药品质量标准分析领域的丰富经验,进一步通过联合实验室这一公益开放平台,积极支持和参与中国药典标准的研究工作,分享沃特世在药品质量标准分析领域的丰富经验,为提高药品质量、保证公众用药安全贡献自己的力量。” 关于中国药典|沃特世联合开放实验室“中国药典|沃特世联合开放实验室”是由国家药典委员会以及沃特世公司共同建立的公益性联合实验室。中国药典-沃特世联合开放实验室将深入开展药典标准研究,检测方法和开发与验证工作,同时开展国内外药典标准的分析方法,及各论的数据比对工作。实验室还将为药品监管及药品生产科研人员提供培训,并就药物开发研究开展广泛的国际间技术交流。
  • 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办
    2010 年 9 月 15 日北京&mdash &mdash 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办。研讨会主要详细介绍了 沃特世公司于今年 6 月向全球新推出的 ACQUITY CSH &trade 和 XSelect &trade HPLC 色谱柱。沃特世新一代的色谱柱 采用表面带电杂化颗粒( Charged Surface Hybrid )技术重新定义了最广泛的分离选择性和最佳的性能。新的色谱能提供沃特世有史以来最广泛的分离选择性,并当使用酸性、低离子强度的流动相时大大改善色谱分离的性能。 沃特世公司在 9 月 15 日和 9 月 17 分别在北京和上海举行 &ldquo 最新色谱柱技术与方法开发研讨会 &rdquo 。会上由沃特世总部市场经理 Eric S.Grumbach 进行 CSH 技术及其色谱柱相关介绍,并与中国用户分享了 UPLC 方法开发系统策略。籍此与业界的学者与科学工作者共享沃特世最新的色谱柱和方法开发解决方案,并展开了中国分离科学业界所关心的行业热点话题探讨,以助提高实验室工作效率。 新的 ACQUITY ® 超高效液相色谱( UPLC ® )和 HPLC 色谱柱,为从事方法开发科学家提供了更多不同的分离选择性。三种新的色谱柱可以在 UPLC 、 HP LC 和制备色谱之间以及不同粒径之间进行无缝的方法转换。新一代色谱柱提供 1.7 ( UPLC )、 3.5 和 5 &mu m ( HPLC )的颗粒,并且非常适合用于最新沃特世 ACQUITY UPLC ® H-Class 系统配合 S-Matrix ® 公司开发的 Fusion 方法研发&trade 软件进行 HPLC 和 UPLC 方法开发。 benwen : http://www.jssxkj.net
  • 中国药典|沃特世联合开放实验室“药品质量标准分析方法验证”开放日圆满举行
    中国上海 - 2016年4月25日 - 沃特世公司(Waters)与国家药典委员会合作创立的中国药典|沃特世联合开放实验室(以下简称“联合开放实验室”)于上周五在北京成功举办了“药品质量标准分析方法验证”开放日活动。此次活动特邀2015版药典“9101药品质量标准分析方法验证指导原则”章节编写负责人李清教授、国家药典委员会王旭主任药师以及北京市药品检验所资深专家高青主任药师担任嘉宾,吸引了来自政府相关机构、科研院所和制药企业的众多相关人员及科研项目负责人。联合开放实验室“药品质量标准分析方法验证”开放日活动现场 药品质量标准是保证民众用药安全有效的保障,也是药品生产、供应、使用、检验和药政管理部门共同遵循的法定依据。在质量研究的过程中,一项重要的工作就是对其中所涉及的分析方法进行方法学验证,以保证所用的分析方法确实能够用于药品的质量控制中,可满足相应检测要求。《中国药典》从2000年版开始对“药品质量标准分析方法指导原则”进行收载并在之后的每版中进行更科学的修订,足见其在药品质量研究中的重要性。 自2015年12月1日《中国药典》(2015年版)正式实施以来,联合开放实验室作为专注于药品标准研究的公益、开放的平台,多次开展了同“药品质量标准”相关的行业活动,本次活动围绕“方法学验证”这一主题进行了一系列深入探讨,从验证内容、项目设计到可接受标准,帮助中国制药行业掌握药品质量标准分析方法建立的精髓,并为中国制药行业提供了一个集思广益的交流平台,以应对科技发展与药品监管形势对药品质量标准的挑战。此次开放日活动是联合开放实验室工作步入正轨以来的首次行业活动。未来,联合开放实验室还将于每季度开展开放日、培训、项目合作等形式的行业活动,以满足制药企业与研究机构的交流需求。 开放日活动与会者参观联合开放实验室 国家药典委员会首席科学家兼联合开放实验室主任钱忠直教授表示:“中国药典|沃特世联合开放实验室举办的一系列关于药品质量标准分析方法研究的行业活动,正是联合实验室坚持以公益性、开放性、创新性、互利性原则开展工作的体现。我们始终致力于支持和参与国家药品标准建设的公益事业,打造一个药品标准研究和服务的公共平台,推动药品标准的社会共治。” 沃特世科技制药行业高级经理兼联合开放实验室经理黄静表示:“作为联合开放实验室的创建方之一,沃特世非常重视与国家药典的合作,我们希望能够凭借沃特世在药品质量标准分析领域的丰富经验,进一步通过联合实验室这一公益开放平台,帮助中国制药产业提升国际竞争力,加速国际化进程。” 关于中国药典|沃特世联合开放实验室“中国药典|沃特世联合开放实验室”是由国家药典委员会以及沃特世公司共同建立的公益性联合实验室。中国药典-沃特世联合开放实验室将深入开展药典标准研究,检测方法和开发与验证工作,同时开展国内外药典标准的分析方法,及各论的数据比对工作。实验室还将为药品监管及药品生产科研人员提供培训,并就药物开发研究开展广泛的国际间技术交流。 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ###Waters是沃特世公司的商标。
  • 国家药典委员会发布关于通则0502薄层色谱法修订草案的公示
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。近期,国家药典委员会发布了一系列的修订草案,目的是将中药标准进一步完善,逐步完成新版《中国药典》编制工作。关于通则0502薄层色谱法修订草案的公示我委拟修订《中国药典》2020年版通则0502薄层色谱法。为确保标准的科学性、合理性和适用性,现将拟修订的标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:徐昕怡电话:010-67079522电子邮箱:xuxinyi@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061附件:1. 0502薄层色谱法公示稿 2. 0502薄层色谱法修订说明国家药典委员会2023年04月24日0502 薄层色谱法修订说明《中国药典》四部通则 0502 薄层色谱法多版未作修订,参考各国药典,作如下修订:一、定量薄层色谱法的分离度是基于两相邻峰(斑点)距离和两相邻峰的峰宽计算,此次修订稿中增加了以半高峰宽计算分离度的公式。但考虑各版《中国药典》的延续性,仍保留原有公式作为过渡,并明确当有异议时,分离度(𝑅𝑆)应以半高峰宽(Wh/2)的计算结果为准(公式详细变化可查看附件1)。二、根据各国药典,修订稿增加了薄层色谱条件(参数)允许调整的内容,并以简单示例说明如何调整。0502 薄层色谱法修订变化对比红色字体为删除内容,蓝色字体为增订内容薄层色谱法表述薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品中所含成分分离。薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品所含成分分离。薄层色谱扫描仪表述系指用一定波长的光对薄层板上有吸收的斑点,或 经激发后能发射出荧光的斑点,进行扫描,将扫描得到的谱图和积分数据用于物质定性或定量分析的仪器。系指用一定波长的光对薄层板上有吸收的斑点,或经激发后能发射出荧光的斑点,进行扫描,将扫描得到的谱图和积分数据用于物质定性或定量的分析仪器。操作方式表述展开 将点好供试品的薄层板放入展开缸中,浸入展开剂的深度为距原点 5mm 为宜,密闭。除另有规定外,一般上行展开 8~15cm,高效薄层板上行展开 5~8cm。溶剂前沿达到规定的展距,取出薄层板,标记溶剂前沿,晾干,待检测。展开 将点好供试品的薄层板放入展开缸中,浸入展开剂的深度为距原点 5mm 为宜,密闭。除另有规定外,一般上行展开 8~15cm,高效薄层板上行展开 5~8cm。溶剂前沿达到规定的展距,取出薄层板,晾干, 待检测。显色与检视 有颜色的物质可在可见光下直接检视,无色物质可用喷雾法或浸渍法以适宜的显色剂显色,或加热显色,在可见光下检视。有荧光的物质或显色后可激发产生荧光的物质可在紫外光灯(365nm 或 254nm)下观察荧光斑点。对于在紫外光下有吸收的成分或用其他方法无法检视的物质,可用带有荧 光剂的薄层板(如硅胶 GF254 板),在紫外光灯(254nm)下观察荧光板面上形成的暗斑。显色与检视 有颜色的物质可在可见光下直接检视,无色物质可用喷雾法或浸渍法以适宜的显色剂显色,或加热显色,在可见光下检视。有荧光的物质或显色后可激发产生荧光的物质可在紫外光灯(365nm 或 254nm)下观察荧光斑点。对于在紫外光下有吸收的成分,可用带有荧光剂的薄层板(如硅胶 GF254 板),在紫外光灯(254nm)下观察荧光板面上的荧光物质淬灭形成的斑点。增加色谱条件调整品种正文项下规定的色谱条件可作如下调整: 展开剂的组成比例:占比小的组分,可在相对值±30%或绝对值±2%范围, 取较大者进行调整;其他组分的调整不得过绝对值 10%。占比小的组分是指小于或等于(100/n)%组分,n 是展开剂中各组分个数。当展开剂由 3 个组分组成, 如某组分占比为 10%,为占比小的组分,其相对值±30%的范围是 7%~13%,绝对值±2%的范围是 8%~12%,可在较大的相对值范围调整。 除另有规定外,展开剂中水相组分的 pH 值可在±0.2 pH 单位范围内调整。 展开剂缓冲组分中盐的浓度可在原规定值±10%范围内调整。 点样体积:如使用 2~10μm 的细颗粒薄层板,可在规定点样体积的 10%~20%范围调整。应评价色谱条件调整对分离和检测的影响,必要时对调整后的方法进行确认。若调整超出上述或品种项下规定的范围,将被认为是对方法的修改,需要进行充分的方法学验证。当对调整色谱条件后的测定结果产生异议时,应以品种项下规定的色谱条件的测定结果为准。2020年版无此部分描述。薄层色谱扫描法表述薄层色谱扫描法用于含量测定时,通常采用线性回归二点法计算,如线性范 围很窄时,可用多点法校正多项式回归计算。供试品溶液和对照标准溶液应交叉 点于同一薄层板上,供试品溶液点样不得少于 2 个,对照标准溶液每一浓度 不得少于 2 个。扫描时,应沿展开方向扫描,不可横向扫描。薄层色谱扫描用于含量测定时,通常采用线性回归二点法计算,如线性范 围很窄时,可用多点法校正多项式回归计算。供试品溶液和对照标准溶液应交叉 点于同一薄层板上,供试品点样不得少于 2 个,标准物质每一浓度 不得少于 2 个。扫描时,应沿展开方向扫描,不可横向扫描。0502薄层色谱法公示稿.pdf0502薄层色谱法修订说明.pdf
  • “《生活饮用水标准检验方法》——离子色谱篇”仪器信息网主题约稿函
    GB/T 5750《生活饮用水标准检验方法》是我国GB 5749《生活饮用水卫生标准》配套检验方法的系列标准,是开展生活饮用水卫生安全保障工作的重要技术基础。与GB/T 5750-2006版本相比,2023版增加了76个检测方法,总数从193个增加至238个;同时对原有的7个方法进行了修订和完善;涵盖指标较2006版增加了73个,总数从142个增加到215个。其中,在无机非金属指标、有机物指标、农药指标、消毒副产物指标中都新增了离子色谱法。在此背景下,为了进一步促进生活饮用水检测工作的交流与合作,仪器信息网特别发起“《生活饮用水标准检验方法》——离子色谱篇”主题约稿,欢迎专家用户,以及领域内仪器厂商们积极投稿。 1、约稿主题:《生活饮用水标准检验方法》——离子色谱篇(问题见下文)2、稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;3、稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;4、投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。5、如果仪器厂商投稿,供稿人建议是贵公司相关离子色谱产品或应用负责人,请提供姓名、职务、照片等信息。6、稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文/整合综述文章),同时在专题中推送宣传。回稿时间:2023年12月30日前投稿邮箱:lirui@instrument.com.cn 附问题:您可以根据下述某一个问题或多个问题进行稿件撰写,也可以由此展开相关话题。问题1:我国生活饮用水检验标准的发展历程如何?您认为近些年该领域里程碑式的标准有哪些?问题2:相比GB/T 5750-2006,新版的系列标准中离子色谱的检测内容主要有哪些变化?为什么关注这些内容的检测?问题3:新标准在多项指标中新增了“离子色谱法”,贵司是否有满足该标准要求的仪器设备,以及解决方案?问题4:贵司的离子色谱产品拥有哪些独具优势的技术(可提供相关专利技术介绍)?应用解决方案有哪些独特的地方?问题5:您认为,离子色谱仪器与应用技术的未来发展方向或趋势是怎样的?贵公司在这些方向上有哪些准备?问题6:您认为,目前以及将来,生活饮用水之外或之后,离子色谱有哪些热点应用需求?
  • 良质美手,信在今辰——沃特世质谱技术开放日成功举行
    沃特世公司于7月8日、11日分别在上海、北京两地成功举办了“沃特世质谱技术开放日”活动 (以下简称“开放日”),并正式向中国市场推出了全新的SELECT SERIES Cyclic IMS 高分辨离子淌度系统、SYNAPT XS 高分辨质谱仪及应用于临床领域的ACQUITY UPLC I-Class/Xevo TQ-S micro IVD系统。此外,开放日还邀请到了国内质谱应用专家、高校教授、沃特世总部产品专家、核心研发人员及应用科学家等,围绕“离子淌度技术”、“原位电离技术”、“定量质谱技术”及“质谱信息化平台技术”四个质谱热门话题,并结合自身科研工作经验进行了分享与交流,上演了一场精彩的质谱行业盛宴。沃特世SELECT SERIES Cyclic IMS 高分辨离子淌度系统(左)、SYNAPT XS 高分辨质谱仪(中)、ACQUITY UPLC I-Class/Xevo TQ-S micro IVD系统(右)沃特世中国区总经理于笑然先生在开场致辞中表示:“作为全球领先的分析仪器公司之一 ,沃特世世在质谱领域灵活应对市场变化、不断提升技术水平,凭借持续创新引领着业界发展潮流。此外,沃特世始终遵循‘用户的成功就是我们的使命’这一宗旨,助力客户迎接挑战,走向成功。”沃特世中国区总经理于笑然先生致开场辞沃特世大中华区市场部质谱产品顾问舒放先生回顾了公司50多年来的质谱发展历史,他介绍道:自1997年成功完成对英国知名质谱公司Micromass的收购后,沃特世一跃从LC跨入了LC-MS时代,并在之后的二十多年中不断刷新质谱产品的广度和高度,为质谱分析提供了全新的维度。沃特世大中华区市场部质谱产品顾问舒放先生发表主题演讲质谱新品为研发注入无限潜能此次开放日上,沃特世重磅发布了三款质谱新品,成为了整场活动的焦点。多名业内知名嘉宾及沃特世公司管理层代表共同为新产品揭幕。(上海场)左起:沃特世中国区总经理于笑然先生、沃特世总部质谱系统市场总监Mike Wilson博士、沃特世大中华区应用总监Kate Yu博士、南京理工大学周敏教授、沃特世大中华区市场部质谱产品顾问舒放先生、沃特世总部先进质谱技术科学研究员 James Langridge博士、上海中医药大学杨莉教授、沃特世大中华区市场总监黄静女士(北京场)左起:沃特世总部研发部首席科学家Emrys Jones博士、沃特世中国区总经理于笑然先生、沃特世总部信息学产品高级总监Ronan O’Malley博士、北京大学化学与分子工程学院刘虎威教授、北京师范大学质谱中心谢孟侠教授、沃特世大中华区市场部质谱产品顾问舒放先生SELECT SERIES Cyclic IMS与SYNAPT XS系统已于此前刚刚结束的第67届美国质谱年会(ASMS)上亮相。其中, SELECT SERIES Cyclic IMS是业内首款将环形离子淌度谱(cIM)技术与高性能研究级飞行时间质谱仪无缝集成的产品。该产品用创新的紧凑型环形离子导向装置替代传统的线性离子淌度区域,将离子淌度分离技术提升到了全新高度。全新的SYNAPT XS系统则是SYNAPT研究级质谱仪系列的最新成员。它在SYNAPT系统基础上配备了全新技术模块,可提高分析棘手化合物时的灵敏度,质量分辨率远优于原有型号,同时分析稳定性进一步提升。回顾沃特世在ASMS 2019上的表现时,Mike Wilson博士详细介绍了SELECT SERIES Cyclic IMS、SYNAPT XS及BioAccord系统特点,以及它们在沃特世高分辨质谱产品线中的定位与意义。沃特世总部质谱系统市场总监Mike Wilson博士而ACQUITY UPLC I-Class/Xevo TQ-S micro IVD系统是近日获批可正式应用于中国体外诊断(IVD)领域的沃特世临床质谱又一新成员。该产品基于色谱与质谱原理/技术,被批准在临床上用于对来源于人体的生物样品进行定性或定量检测,检测范围包括内源物质(激素、多肽、蛋白、氨基酸、维生素、有机酸、核酸)及外源物质(治疗药物、毒物)项目。专家齐聚 共话质谱技术未来开放日演讲环节围绕“当离子淌度遇上质谱技术”、“原位电离技术”、“三重四极杆质谱——质谱的中坚力量”、“大数据时代下的质谱信息学平台”四大主题展开。在“当离子淌度遇上质谱技术”主题下,James Langridge博士向与会来宾详细介绍了“新一代环形离子淌度质谱在生物发现中的应用”。此外,南京理工大学周敏教授与中国科学院长春应用化学研究所宋凤瑞教授分别于上海与北京场做了题为“离子淌度质谱在蛋白质复合体动态结构和功能调控方面的探索”和“离子淌度质谱技术研发蛋白构象及与小分子相互作用”的演讲,进一步阐述了离子淌度质谱技术的应用研究进展。左起:沃特世总部先进质谱技术科学研究员 James Langridge博士、南京理工大学教授周敏教授、中国科学院长春应用化学研究所宋凤瑞教授针对“原位电离技术”,沃特世总部研发部首席科学家Emrys Jones博士从“快速”、“自动”、“智能”三个维度介绍了下一代技术发展趋势。来自温州医科大学的王海星博士则以“REIMS质谱在水产品研究中的应用及质谱成像的探索研究”为题发表演讲。在中医药应用领域,上海中医药大学杨莉教授与中国中医科学院中药研究所徐江博士分别于上海和北京场做了相关介绍。左上依次:沃特世总部研发部首席科学家Emrys Jones博士、温州医科大学王海星博士、上海中医药大学杨莉教授、中国中医科学院中药研究所徐江博士沃特世革新的串联四极杆质谱技术为定量型UPLC/MS/MS量身打造,具有高性能、稳健和可靠的特点。Mike Wilson博士在第三部分“三重四极杆—质谱中的中坚力量”中介绍了沃特世三重四极杆质谱平台及最新技术。复旦大学叶丹教授及清华大学胡泽平教授分别介绍了如何进行“代谢物的表观遗传调控”与“代谢组学分析在生物医药研究中的应用”。值得一提的是,第三部分还特别针对临床质谱设置了“当质谱走入临床”专题。沃特世大中华区市场部临床市场高级经理谭晓杰博士做了相关主题演讲,她表示:“沃特世公司在临床诊断领域拥有超过20年历史,并且是首个进入中国的临床质谱解决方案供应商。自2008年沃特世Quattro micro新生儿筛查解决方案首获国家药监局体外诊断许可后,沃特世已相继有5套系统在中国获批医疗器械注册证。其中,以ACQUITY UPLC I-Class/Xevo TQD IVD和ACQUITY UPLC I-Class/Xevo TQ-S IVD为代表的超高效液相色谱串联质谱系统在临床领域发挥了重要作用,经过多年的市场考验,获得了用户的广泛认可。”复旦大学附属中山医院检验科主任郭玮教授与北京协和医院检验科质谱平台技术主管禹松林老师则受邀分别于上海与北京场分享了各自的临床检测经验。左上依次:复旦大学叶丹教授、清华大学胡泽平教授、复旦大学附属中山医院检验科主任郭玮教授、沃特世大中华区市场部临床市场高级经理谭晓杰博士、北京协和医院检验科质谱平台技术主管禹松林老师云概念、AI人工智能等如何与质谱的信息化平台相结合?在第四部分中,沃特世总部信息学产品高级总监Ronan O’Malley博士介绍了下一代软件解决方案的自适应信息学生态系统。此外,在黄静女士与Kate Yu女士主持的圆桌讨论环节中,现场观众围绕以上四大主题与演讲嘉宾展开了更为深入的交流与讨论。沃特世总部信息学产品高级总监Ronan O’Malley博士关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球27个国家和地区直接运营,下设11个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 盛瀚十周年庆典感恩巡礼暨离子色谱仪科技成果和应用方法发布会---成都站
    热烈庆祝青岛盛瀚色谱技术有限公司十周年庆典全国感恩巡礼暨离子色谱仪科技成果和应用方法发布会&mdash &mdash 成都站顺利召开 2012年6月20日青岛盛瀚色谱技术有限公司十周年庆典全国感恩巡礼暨离子色谱仪科技成果和应用方法发布会&mdash &mdash 成都站在成都芙蓉饭店顺利召开。 本次会议由青岛盛瀚公司主办,四川省科学器材公司协办,来自各行业的50余位嘉宾热情地参加了为期一天的会议。会议由四川省科学器材公司及四川分析测试服务中心党委书记刘学伟致开幕词,刘书记对以盛瀚为代表的国产离子色谱事业取得的成绩给予了充分肯定并寄予厚望。会议内容包括盛瀚十年发展简介、盛瀚CIC系列离子色谱仪在环保、质检、疾控、供排水及其他众多领域的适用产品及应用支持、盛瀚公司老用户仪器应用心得体会分享、仪器现场参观演示等环节。整个会议得到参会嘉宾的热烈反响,现场嘉宾积极与盛瀚技术工程师互动沟通,并饶有兴趣的参观了解了CIC-300型离子色谱仪及SH离子色谱柱等产品。 会议由国产科学仪器应用示范(四川)中心何五星主任总结发言,何主任对盛瀚公司积极组织此次会议并取得圆满成功表示了感谢,并对盛瀚自主创新、专业坚韧的作风给予了鼓励和期望。会后,数位嘉宾又与盛瀚工作人员展开了热烈讨论,并对产品和技术表现出极大兴趣。 青岛盛瀚色谱技术有限公司注册成立于2002年11月28日,盛瀚人坚持专业制造、自主创新的精神,10年来只专注于离子色谱事业,使CIC系列离子色谱仪从无到有,从粗到精,逐步成长为国产离子色谱的优秀代表;CIC-100、200、260、300型离子色谱仪凭借优秀的稳定性和精密性及完善的应用技术支持,在环保、质检、疾控、供排水、农业、水文、高校等众多行业拥有大量忠实用户。盛瀚一直坚持自主创新,在研发领域的人资投入逐年加大,已取得各型专利32项。离子色谱柱技术的突破使得盛瀚一跃成为国内唯一一家掌握此项专利技术并能实现批量化生产的离子色谱生产企业,成功打破了进口品牌的长期垄断,为国内广大离子色谱用户带来了极大便利。 坚持和创新是盛瀚发展的两大动力,术业有专攻,厚积而薄发,对研发和人才储备的不间断投入使得盛瀚步履维艰,但经过十年的坚持和积淀,盛瀚公司有信心有能力研制性能更优越,更适用于国内用户的CIC离子色谱,如今,这个步子迈得将更加稳健。
  • “药品质量检测新技术研讨会”召开暨“超临界流体色谱技术联盟”成立
    2016年12月12日中国药典|沃特世联合开放实验室(以下简称“联合开放实验室”)在北京成功举办了以“超临界流体色谱技术(以下简称SFC技术)及其应用”为主题的药品质量检测新技术研讨会,同期组建了“超临界流体色谱技术联盟”。中国科学院上海药物研究所陈凯先院士、国家药典会、相关省市药检所、研究机构以及国内外制药企业专家出席活动。  会议由国家药典委员会首席科学家钱忠直教授主持,国家药典委员会业务综合处洪小栩副处长宣读了张伟秘书长的致辞。张伟秘书长指出,中国药典在保持科学性、先进性和规范性的基础上,应充分借鉴国际上先进的药品分析技术,推动国内制药行业技术水平发展,扩大了对新技术和新仪器方法的收载和使用, 希望SFC技术联盟能够成为推动药品质量检测新技术应用的“新动力”和“智慧源泉”。  国家药典委员会首席科学家钱忠直教授主持会议  本次会议的首个重要日程是成立“超临界流体色谱技术联盟”。该联盟旨在通过联盟内外有效的技术分享,凝聚产业界、学术界以及社会各界的共识与合力,推荐国内外在药物分析及质量控制领域的最新研究成果和使用经验,关注前沿发展动向和应用趋势。作为推动超临界流体色谱技术在药物分析及药品质量标准制定工作中应用的“智库”机构,联盟承担着为药品质量标准的制定及提高工作提供战略决策和技术咨询的重任。“超临界流体色谱技术联盟”由陈凯先院士、姚新生院士担任联盟名誉主席 张伟秘书长、罗国安教授、马双成教授及钱忠直教授担任联席主席 专家委员若干名。全国药物分析大会主席、清华大学罗国安教授宣读了“全国药物分析大会同意函”,正式接纳“超临界流体色谱技术联盟”成为大会下属机构之一。陈凯先院士亲自为联席主席及专家委员颁发聘书。  陈凯先院士为钱忠直教授颁发聘书   全体联盟成员合影            联盟成立仪式结束后,陈凯先院士首先以“抓住机遇,迎接挑战---创新药物研发的趋势与对策思考”为题进行了精彩的主题报告,从各疾病领域新药临床研发情况、生物制药、靶点研发、高水平期刊发表情况等方面出发,全面介绍了医药产业和新药研发的发展态势,阐述了生命科学、基因组医学、精准医学及个性化治疗等新药研发的前沿动向。  陈凯先院士做主题报告  随后,国家药典委员会委员王玉教授、上海市食品药品检验所化药室杨永健主任,默沙东对外化学制药分析总监徐京博士,浙江华海制药分析部朱艳总监,及中国药科大学天然药物活性组分与药效国家重点实验室杨华副教授分享了SFC技术的原理和发展历程、国内外在药品研究和质量控制的应用和案例, 并就该技术的特点和应用展开深入的讨论。  与会专家就SFC技术在药品质量标准中的应用现状和发展趋势进行探讨  (从左至右依次为:国家药典委员会委员王玉教授、上海市食品药品检验所化药室杨永健主任,默沙东对外化学制药分析总监徐京博士,浙江华海制药分析部朱艳总监,中国药科大学天然药物活性组分与药效国家重点实验室杨华副教授)  最后,全国药物分析大会主席罗国安教授表示,通过会议报告及案例分享看到了超临界流体色谱技术对提高药品检测技术水平的推动力,并预祝“超临界流体色谱技术联盟”作为全国药物分析大会的一支重要新生力量取得进一步的成果。  国家药典委员会首席科学家兼联合开放实验室执行主任钱忠直教授表示:通过此次活动,期望行业内的各位专家可以关注超临界流体色谱这种‘绿色’分析技术,逐渐应用在日常分析工作中,通过搭建‘超临界流体色谱技术联盟’平台,增加彼此间的交流与互动。  联合开放实验室经理兼沃特世公司市场发展总监黄静表示:将凭借沃特世在药品质量标准分析领域的丰富经验,进一步通过联合实验室这一公益开放平台,积极支持和参与中国药典标准的研究工作,分享沃特世在药品质量标准分析领域的丰富经验,为提高药品质量、保证公众用药安全贡献自己的力量。
  • 环监总站PM2.5自动监测方法适用性比对测试展开
    环境空气质量新标准颁布在即,环保部明确了我国“十二五”环境空气质量监测工作“三步走”的指导方针,即在2012年在京津冀、长三角、珠三角等重点区域以及直辖市和省会城市开展PM2.5等新指标监测,2013年在113个环境保护重点城市和环保模范城市开展监测,2015年在所有地级以上城市开展监测,2016年在全国各地都要按照该标准监测和评价环境空气质量状况,并向社会公布监测结果。   为确保“十二五”PM2.5监测工作的顺利开展,中国环境监测总站在2011年12月份就开始着手准备PM2.5自动监测方法适用性比对测试工作,并制定了《PM2.5自动监测方法适用性比对测试实验方案》。参考美国EPA对PM2.5自动监测仪器的认证方法,以我国手工监测标准方法为标准,对不同厂家、不同原理的环境空气自动监测仪进行单机比对测试,以全面了解PM2.5监测中的β射线方法、β射线方法联用湿度补偿和光散射法、振荡天平(TEOM)方法、震荡天平联用膜补偿测量方法(TEOM-FDMS)等国内外主流监测方法与手工标准监测方法之间的差异,为我国“十二五”空气监测工作中PM2.5监测技术路线确定、监测技术规范编制提供技术支持。2012年1月总站又专门组织北京大学、北京市环境保护监测中心、上海市环境监测中心、重庆市环境监测中心、广东省环境监测中心的相关专家对比对实验方案进行了技术论证,对实验方案进行了进一步的完善。   总站领导对测试工作高度重视,多次召开专题会议,研究、部署比对测试事项,按排相关处室提供人力、物力、财力支持。按照总站的统一部署,总站大气室、质检室、质管室、分析室迅速行动,联合开展了比对测试工作,分别负责自动和手工方法的比对测试、PM2.5监测质控研究、颗粒物组分分析等工作。   2012年1月8日起,总站大气室先后调集了美国 Thermo Fisher Scientific公司的TEOM1405F、TEOM1405、FH62C14、5030-SHARP等型号的PM2.5监测仪,美国Met One公司的BAM-1020PM2.5监测仪等国外品牌的监测仪,以及河北先河公司的XHPM-2000E监测仪、北京中晟泰科公司的7201型监测仪、武汉天虹公司的TH2000TM监测仪、安徽蓝盾光电子公司TEOM监测仪等国产监测仪器共9种PM2.5自动监测仪器,以及美国 Thermo Fisher Scientific公司、德国Derenda公司、武汉天虹公司等国内外厂家的4种手工采样监测仪器,开始进行仪器设备安装调试工作,至1月18日完成了所有自动监测仪器、手工监测仪器的安装、调试、校准工作,以及天平室准备和实验室样品前处理准备工作,1月18日至20日进行了手工监测方法的平行性测试等前期准备工作,为全面开展比对测试实验打下了良好的工作基础。   2012年1月29日,春节假期过后的第一天,大气室、质检室、质管室、分析室立即召开专门会议,对比对测试工作进行安排和部署,工作人员按照质量保证和质量控制相关要求,对参与实验的所有仪器设备再次进行了全面维护检查和校准,目前全部仪器设备工作状况良好,实验室样品前处理准备工作和分析方法准备工作进展顺利,测试工作按照实验方案已全面展开。
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 中国药典-沃特世联合开放实验室成立一周年
    p   中国上海 - 2016年2月5日 - 沃特世公司(Waters)与国家药典委员会合作创立的中国药典-沃特世联合开放实验室(以下简称“联合开放实验室”)近日迎来其一周岁生日。联合开放实验室成立一年来,沃特世公司大力支持实验室建设成为一个坚持公益性、开放性、创新性和互利性原则的实验平台,并在检测技术培训、药典标准热点问题方法学研究等方面进行了广泛合作。未来,沃特世公司与国家药典委员会将进一步深化合作,加强联合开放实验室建设,助力国家制药标准研究与发展,为维护公众用药安全做出贡献。 /p p   针对制药标准建设与用药安全保障,沃特世公司协助联合开放实验室于2015年进行了一系列相关培训与科研工作。联合开放实验室不仅与药典委共同举办了“基于‘质量源于设计’(QbD)理念的药品质量控制研究高级培训班”, 还在药典科学年会和行业研讨会上就药典标准分析和检测技术发展展开交流,以帮助众多药品生产企业的检验研发人员了解世界药品标准现状、掌握相关政策法规和学习生产质量控制的先进理念,为促进我国医药产品走向国际搭建平台。 /p p   而在科研领域,沃特世与联合实验室为推进小颗粒色谱柱在制药行业的应用,尝试建立了从5微米到亚2微米色谱方法转换的原则和可接受标准,并以阿托伐他汀类药物与银杏叶检测为例,验证了方法转换的可行性与检测结果的平行性。同时,实验室也尝试建立了ACQUITY UPLC与HPLC方法并行的药典标准,为愿意尝试新技术,提高检验效率的企业提供了法规上的依据。此外,为了推动中药标准现代化,联合开放实验室积极参与了连翘子、连翘、黄芩、丹参、黄花等多个品种的标准研究工作。 /p p   新年伊始,沃特世公司总裁兼首席执行官Chris O& #39 Connell先生即访问了联合开放实验室,国家药典委员会秘书长张伟先生对Chris的来访表示欢迎,并指出: “中国药典-沃特世联合开放实验室成立一年来,已经取得了重大的工作进展与学术成果,并在药典标准制定中体现出兼具‘前瞻性、引领性、示范性和基础性’的重要作用。未来,我们要充分发挥联合开放实验室的技术优势,更好地支持药典标准发展,造福社会公众。” /p p   Chris也表示:“沃特世非常重视与国家药典的合作,希望沃特世在中药、天然药物和植物药的领域的丰富经验与众多解决方案,双方能够进一步深化合作,从而加速联合开放实验室发展,并在药品质量标准建设、先进检测技术的推广应用、技术培训等方面为中药产业的现代化与全球化做出更大的贡献。” /p p   面对当前中国中药市场药材质量差异大,质量不稳定,尤其真、伪、优、劣难以辨认的客观现实,沃特世公司作为科技创新的领导者,在中药、天然药物和植物药等领域与包括国家药典在内的众多合作伙伴及客户进行了广泛紧密的科研合作,并开发了众多完整解决方案,广泛应用于中药及天然产物中的成分鉴定、中药复方的组分研究、药物溯源、中药农残筛查、中药打假等领域。例如UPLC技术能够解决中药成分复杂、分离难度大、分离周期长的难题 ACQUITY UPC2(超高效合相色谱)则针对中药中异构体、脂溶性成分、易挥发性组分等实现技术互补 最新UNIFI天然产物解决方案则为科研人员设计了一个高效简便的工作流程及多种实用的模板,并且该流程中嵌入了独特的中药数据库,为天然产物的组分分析及鉴定提供了一体化的平台。 /p p   以银杏叶检测为例,为了保护银杏叶制剂的产品安全,沃特世与联合开放实验室共同开发了槐角苷检查方法。为了提高检验效率,同时保证方法的普适性,实验室同时建立了基于UPLC(亚2微米)、UHPLC(亚3微米)、HPLC(5微米)平台的三种方法,企业可根据实际需求选取其中一种进行槐角苷检测。此后, 沃特世公司也利用其全球资源帮助联合实验室开展国际合作,继续致力于银杏叶的特征性鉴别相关研究工作,为保护中国银杏叶市场贡献力量。 /p p   2016年,中国正致力于建设中药化学物质数据库,以保障中药质量与临床用药安全,建立中药质量控制的公共服务体系。沃特世将积极支持联合开放实验室这一公益实验平台,在2015年推出方法转换原则的基础上,继续以实际样品为例,验证方法转换的可行性,为企业在新技术应用上扫清法规上的障碍,并参与配方颗粒标准的制定工作,帮助规范药品质量。 /p p   沃特世还将协助联合开放实验室,结合中国药品质量标准建设(特别是中药标准建设)的发展需要,积极参与相关培训与行业活动,并针对药品质量研究和质量管理技术人员举办相关培训,利用最前沿的分析仪器及技术,理论结合操作为新技术及新理念的推广提供技术支撑,如针对2015版药典附录新增的分析检测技术SFC(超临界流体色谱)进行解读及应用培训等。随着2015版药典正式颁发,对现有药典标准进行转换需要做哪些工作一直是困扰分析工作者的问题之一。沃特世与联合实验室将与广大业内同仁共同努力,不断完善技术方案,提高国内药品的研究分析工作,并为全球制药及天然产物质量标准的提高以及国际标准的协调统一提供支持。 /p p    strong 关于中国药典-沃特世联合开放实验室 /strong /p p   “中国药典-沃特世联合开放实验室”是由国家药典委员会以及沃特世公司共同建立的公益性联合实验室。中国药典-沃特世联合开放实验室将深入开展药典标准研究,检测方法和开发与验证工作,同时开展国内外药典标准的分析方法,及各论的数据比对工作。实验室还将为药品监管及药品生产科研人员提供培训,并就药物开发研究开展广泛的国际间技术交流。 /p p    strong 关于沃特世公司(www.waters.com) /strong /p p   50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 /p p   作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 /p p   2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 /p p   Waters、ACQUITY、ACQUITY UPLC、UPLC、UPC2 和UNIFI是沃特世公司的商标。 /p p & nbsp /p
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 色谱百家讲坛全国巡讲—北京站开讲
    仪器信息网讯 2011年6月28日,由中国分析测试协会、中国化学会色谱专业委员会、北京理化分析测试技术学会及北京科学仪器装备协作服务中心共同主办的“色谱百家讲坛全国巡讲——北京站”在北京天文馆4D科普剧场隆重开讲,约200余人参加了此次活动。 色谱百家讲坛全国巡讲——北京站现场 中国分析测试协会秘书长张渝英女士   作为活动的主办方之一中国分析测试协会秘书长张渝英女士在致辞中说到:“色谱百家讲坛”是一项极具创意的科技活动,活动采用分站全国巡讲的方式举办,每站均邀请色谱领域最具权威、最有影响力的院士、专家演讲,力图达到普及色谱知识、推动色谱技术大规模推广的目的。北京站是色谱百家讲坛全国巡讲的第二站,首站已于5月31日杭州开讲,卢佩章院士、姚守拙院士、张玉奎院士等十几位颇有影响力的专家作了精彩的报告,得到普遍热烈的欢迎,使与会者获益匪浅,相信在北京站也会获得巨大的成功。  北京科学仪器装备协作服务中心主任张晓强先生 北京科学技术研究院副院长刘清珺先生   北京科学仪器装备协作服务中心主任张晓强先生及北京科学技术研究院副院长刘清珺先生也先后致辞,他们均对该活动的举办表示了赞赏,“色谱百家讲坛”将为色谱技术的传播、传承建立有效的渠道,同时也希望相关行业人士关注、重视和积极参与其中。   此次色谱百家讲坛——北京站邀请了老一辈色谱专家中石化北京石油化工研究院陆婉珍院士、北京理工大学傅若农教授、中科院化学所竺安研究员分别对色谱发展历史、气相固定相发展历史及毛细管电泳发展历史进行了回顾,并对其未来发展进行了展望。 中石化北京石油化工研究院陆婉珍院士   陆婉珍院士介绍到,从1908年Tswell应用柱色谱法分离了植物色素开始,色谱诞生。此后,1944年Consden发展了纸色谱 1949年Macllean等制作了薄层色谱(TLC) 1950年Martin及Synge提出了气相色谱法 1956年Stahl开发了TLC涂布法 1968年在高压输液泵质量提高下,液相色谱出现 1975年离子色谱出现,并且成为液相色谱发展最快的种类 1979年毛细管电泳(CZE)出现 1980年出现了超临界流体色谱,但发展缓慢 1990年人们开始注意电色谱(CE)的应用。而色谱技术发展速度之快及应用之广是惊人的,其优势在于:分离效率高、各种样品均可用色谱分析、速度快、样品用量少、灵敏度高及可以与其他仪器联用。同时陆婉珍院士还认为仪器厂商对色谱技术的发展起到了不可忽视的作用。   谈到色谱技术发展给我们的启示,陆婉珍院士表示,100年来色谱技术的发展史是按照S曲线在不断发展的,只有当一种新的技术被采用后才进入第二个发展期(第二个S曲线)。以气相色谱发展历史为例,气相色谱经历了4个发展期:第一个发展期的推动技术是填充柱气相色谱 第二个发展期的推动技术是高效毛细管色谱及各种检测器的出现 第三个发展期的推动技术是计算机处理系统的应用 第四个发展期的推动技术是自动进样器的应用。那么对于发展已经较成熟的色谱技术,未来如何发展,陆婉珍院士认为也应遵循这样的规律,期待新的技术的出现。 北京理工大学傅若农教授   傅若农教授在报告中说到,气相色谱(GC)技术历经60余年发展已十分成熟,近几年GC的主要发展方向是新的GC固定相研究、全二维GC、快速/便携/微型GC。而在GC固定相方面,常用的固定相有6种,其中5%苯基二甲基硅氧烷使用最多,据傅若农教授对近几年期刊文章的统计显示,约50%的文章中使用了该种类的固定相。而GC固定相的研究热点是:室温离子液体GC固定相,但还没有商品化的产品 含金属离子的GC固定相,如金属络合物、金属有机框架化合物MOFs 环糊精衍生物GC固定相,用于手性分离,是比较成功的研究,已经有商品化产品 纳米材料做GC固定相,如碳纳米管、金纳米材料等。   傅若农教授认为,尽管研究者还在不断进行GC固定相研究,但趋于冷却,近年这些研究热点都没能最终形成商品化产品,而前20多年的研究热点环糊精衍生物GC固定相近几年衰落。 中科院化学所竺安研究员   竺安研究员是我国较早从事毛细管电泳研究的学者。据竺安研究员介绍:“最初毛细管电泳使用的是不锈钢毛细管,由于60-70年代,中国钢铁紧缺和制造不锈钢毛细管困难,因此该项技术在中国并没有被关注 而后国外展出了使用玻璃毛细管的毛细管色谱仪。而我们之所以关注这项技术是因为当时液相色谱在分离大分子时效率低,于是1979年买了毛细管电泳仪,开始从事毛细管等速电泳研究 但由于毛细管等速电泳峰容量有限,1981年开始了毛细管区带电泳的研究。虽然我本人没有取得很大成就,但是培养了一批从事毛细管电泳研究的人员。” 竺安研究员还强调说,“正如陆婉珍院士所说,学科的发展也是呈现S型曲线,我们在毛细管电泳发展的初期就进行了研究,抓住了好的方向。” 邹汉法研究员 邓玉林教授 邱月明副院长   此外,色谱百家讲坛——北京站还邀请了中青年专家中科院大连化物所邹汉法研究员、北京理工大学邓玉林教授及中国标准化研究院邱月明副院长就生物分离分析新材料和新技术、生命科学中的色谱技术、食品安全和色谱技术标准化等进行了介绍。 曹磊博士 祝立群博士 管振喜博士   此次色谱百家讲坛——北京站还得到了岛津、珀金埃尔默、安捷伦、赛默飞世尔、布鲁克、普析、北京明尼克、利穗等厂商的支持,岛津国际贸易(上海)有限公司曹磊博士、珀金埃尔默祝立群博士、安捷伦科技(中国)有限公司管振喜博士还分别介绍了各自公司在推动色谱技术进步方面所做的贡献及各自公司在色谱方面的新技术、新产品。 厂商展示现场
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 博赛德 |大比武培训首站 如期在福建省环境监测站展开
    2019年4月24日生态环境部办公厅印发了《关于举办第二届全国生态环境监测专业技术人员大比武活动的通知》,这次大比武对于每一个环境监测人员来说都是一个展现能力的好机会,更是对环境监测战线精神面貌与技术水平的一次全面检阅。通过大比武前的早准备早培训,不仅可以提升全站环境监测的整体技术水平,充分调动环境监测工作者学习提高的热情和积极性,同时可以利用这次机会对监测仪器进行一次全面的检查、维护和保养。为了做好本次大比武的技术支持,作为便携式气质联用仪的供应商之一,北京博赛德科技有限公司专门成立了赛前培训小组,配合各省生态环境厅提供大比武中便携式气相色谱-质谱联用仪的专项培训活动。2019年世界环境日主题:蓝天保卫战 ,我是行动者 ,博赛德便携式气相色谱-质谱联用仪的专项培训首站 ,如期在福建省环境监测站展开,为期两天。本次培训由福建省环境监测站组织,并在各地市环境局组织内部选拔2BCT3人参加。培训得到省站领导的大力支持与重视,并全程参与培训。副站长讲话 北京博赛德技术小组的培训讲师BCT便携式气质联用仪基本工作原理 、日常维护和常见故障处理、分析方法的开发、数据查看与谱图解析等方面进行了详细的讲解和实际操作演示。期间,客户积极与培训讲师交流互动,并表示此次培训收获良多,无论是为日后的工作,还是此次生态环境监测专业技术人员大比武活动的准备,都受益匪浅。 现场演示讲解交流博赛德培训讲师与工作人员欢迎用户积极参加博赛德便携式气相色谱-质谱联用仪的专项培训,报名培训可与各区销售负责人联系,期待您的参与与反馈。关注北京博赛德— 更多精彩 —
  • 为离子色谱固定相提供新方案新方法——访郑州轻工业大学刘军伟
    近日,第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会在海南省海口市成功召开,本次大会为期3天,共邀请超过20位专家做大会报告并开设主题为离子色谱柱、离子色谱检测器、离子色谱抑制器和淋洗液发生器、离子色谱应用、离子色谱样品前处理的沙龙研讨会。本次会议,吸引150多位国内外著名专家、学者,就离子色谱及相关技术领域的新成就、新进展进行了学术交流并展开了专题讨论。仪器信息网作为大会合作媒体出席了本次离子色谱学术报告会。大会现场,仪器信息网有幸采访到了郑州轻工业大学刘军伟老师,不仅请他讲述了自己近期的一些研究成果,也对离子色谱未来的发展领域进行了交流。以下为采访视频详情:刘军伟老师在采访中讲到未来离子色谱固定相的种类会越来越丰富,他也将持续研究新材料在固定相中的应用,将来会为大家提供多种新的固定相方案。刘老师也提到,这是他第三次参加离子色谱大会,深刻的感受到离子色谱的蓬勃发展,同时此次会议也凸显出离子色谱行业的凝聚力,感受到了“离子色谱大家庭”的热情。刘军伟,郑州轻工业大学,材料与化学工程学院,讲师。2010年本科毕业于郑州大学化学系,2013年硕士毕业于郑州大学化学系,2017年博士毕业于浙江大学,2019-2022年郑州烟草研究院、上海有机化学研究所博士后。主要从事高效液相色谱、离子固定相制备,固相萃取/微萃取等方面研究。在J. Chromatogr. A, Talanta, J. Sep. Sci., Microchem. J.,色谱等期刊发表论文二十余篇,授权国家发明专利2项。
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p   4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。 /p p   其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。 /p p   仪器信息网摘录如下: br/ /p table width=" 567" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 469" align=" center" valign=" middle" p style=" text-align: center " strong 标准名称 /strong /p /td td width=" 55" p style=" text-align: center " strong 性质 /strong /p /td td width=" 43" p style=" text-align: center " strong 状态 /strong /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫酸二甲酯和硫酸二乙酯的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种萘二酚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中二氯苯甲醇和氯苯甘醚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中38种限用着色剂的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种4-羟基苯甲酸酯的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中5种限用防腐剂的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中8-羟喹啉和硝羟喹啉的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中10种二元醇醚及其酯类化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫柳汞和苯基汞的测定 & nbsp & nbsp 高效液相色谱-电感耦合等离子质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中荧光增白剂367和荧光增白剂393的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 唇用化妆品中对位红的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中11种生物碱的检测 & nbsp & nbsp 液相色谱质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第21部分:砷量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第22部分:锑量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 锑矿石化学物相分析方法 & nbsp & nbsp 锑华 辉锑矿和锑酸盐的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 镍(钴)矿石化学物相分析方法 & nbsp & nbsp 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁矿石 & nbsp & nbsp 多种微量元素含量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁合金产品粒度的取样和检测方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料比表面积的测定 & nbsp & nbsp 亚甲基蓝吸附法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料电导率测试方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料表面含氧官能团含量的测定 & nbsp & nbsp 化学滴定法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 数字印刷版材中残留溶剂的检测 & nbsp & nbsp 顶空-气相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 & nbsp & nbsp 红外光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 光学遥感器在轨成像辐射性能评价方法 & nbsp & nbsp 可见光-短波红外 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 甲基乙烯基硅橡胶 & nbsp & nbsp 乙烯基含量的测定 & nbsp & nbsp 近红外法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中致敏染料的限量和测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中4-氨基偶氮苯的限量及测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中苯胺类化合物的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中甲醛的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 氦质谱真空检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 四极质谱检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铸钢铸铁件射线照相检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 铸件的工业计算机层析成像(CT)检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 耐火材料导热系数试验方法(铂电阻温度计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 隔热耐火材料导热系数试验方法(量热计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr /tbody /table p br/ /p
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。   许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。 中国科学院大连化学物理研究所 许国旺研究员   近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。   基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。   随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 慕尼黑国际博览集团与《中国法医学杂志》携手展开合作
    由中国法医学会主办的权威学术性期刊《中国法医学杂志》与德国慕尼黑国际博览集团展开合作,共同邀请中国法医学界专家、学者及业内人士参观analytica China 2010。   analytica China 2010,即第五届中国国际分析、生化技术、诊断和实验室技术博览会暨analytica China国际研讨会将于2010年9月15-17日在上海新国际博览中心的W1和W2馆举办。   本届大会将有超过400余家国内外企业参展,德国,英国,澳大利亚及日本将组成大规模的国家展团,带来当今尖端的潮流与领先技术。法医鉴定中的分析仪器、显微分析法与常用显微镜、色谱分析法和色谱分析仪器、分子光谱分析技术和光谱分析仪器、原子光谱分析技术和原子光谱分析仪器、质谱分析技术和质谱仪、活化分析技术和X射线荧光谱仪、联用技术、DNA溯源及检测、痕量样本提取及检测等等都将是此次展会的重点展示范围。Agilent、PerkinElmer、GE医疗集团生命科学部、Hamilton、Eppendorf、帝肯、岛津、戴安、博奥生物等国内外企业也将展示其在法医病理鉴定、法医临床鉴定、法医物证鉴定和法医毒物鉴定等领域的产品和技术。   此外,国际化高规格的同期学术研讨会将再次与精彩的现场展示交相辉映,包括与中国化学会联合主办的“第五届上海国际分析化学研讨会”、由CNHUPO主办的“蛋白质组学与疾病”专题研讨会、色谱技术中德论坛及一系列由德国专家主持的教学与研习班,主题涵盖样品前处理技术、代谢组学方法和实验室认证等。总计约有130场学术讲演,百余名来自国际国内知名学者专家的莅临,将为中国分析生化领域提供高级别的学术交流平台。   相信本届慕尼黑上海分析生化展将吸引更多刑侦司法系统的相关人士的关注和到场参观!详情请登陆www.a-c.cn.
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 873项标准废止 含大量色谱、光谱等仪器方法标准
    p   12月15日,国标委、国家质检总局联合发布“关于废止《发文稿纸格式》等873项推荐性国家标准的公告”。通知显示,被废止的标准涉及钢铁、船舶、电子电器、通讯、化工、饲料、烟草、汽车等行业。 br/ /p p   统计发现,本批废止的标准中约有200项仪器方法,主要为色谱、光谱、气质联用分析方法,且以汽车行业车间空气检测为主。汇总如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:center " strong 国家标准编号 /strong /p /td td width=" 512" p style=" text-align:center " strong 国家标准名称 /strong /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.16-1991 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 变色酸光度法测定钛量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.48-1985 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 223.55-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 碲含量的测定 示波极谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.57-1987 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 萃取分离-吸附催化极谱法测定镉量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 257-1964 /p /td td width=" 512" p style=" text-align:left " 发动机燃料饱和蒸气压测定法 (雷德法) /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 2900.82-2008 /p /td td width=" 512" p style=" text-align:left " 电工术语 核仪器 仪器、系统、设备和探测器 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 4298-1984 /p /td td width=" 512" p style=" text-align:left " 半导体硅材料中杂质元素的活化分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6098.2-1985 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6155-2008 /p /td td width=" 512" p style=" text-align:left " 炭素材料真密度和真气孔率测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6014-1999 /p /td td width=" 512" p style=" text-align:left " 工业用丁二烯中不挥发残留物质的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.1-2008 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第1部分:碳酸氢铵含量 酸碱滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.2-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第2部分:氯化物含量 电位滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.3-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第3部分:硫化物含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.4-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第4部分:硫酸盐含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.5-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第5部分:灰分含量 重量法 /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.6-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第6部分:铁含量 邻菲啰啉分光光度法 /span /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.7-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第7部分:砷含量 二乙基二硫代氨基甲酸银分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.8-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第8部分:砷含量 砷斑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.9-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第9部分:重金属含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.10-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝中硫量的测定 X 射线荧光光谱分析法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.1-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 重量法测定湿存水量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.2-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 电量法测定水分含量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.3-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 蒸馏-硝酸钍容量法测定氟量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.4-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 EDTA容量法测定铝量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.5-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝化学分析方法 火焰发射光度法测定钠量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.6-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定硅量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.7-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 邻二氮杂菲光度法测定铁量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.8-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 硫酸钡重量法测定硫酸根量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.9-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定磷量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中黄曲霉毒素B1的测定 & nbsp & nbsp 半定量薄层色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8381.5-2005 /p /td td width=" 512" p style=" text-align:left " 饲料中北里霉素的测定 /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381.8-2005 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中多氯联苯的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8432-1987 /p /td td width=" 512" p style=" text-align:left " 耐光色牢度试验仪用湿度控制标样 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 10470-2008 /p /td td width=" 512" p style=" text-align:left " 速冻水果和蔬菜 矿物杂质测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11113-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体中杂质的分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11114-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体位错的X 射线形貌检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12688.6-1990 /p /td td width=" 512" p style=" text-align:left " 工业用苯乙烯中微量硫的测定 氧化微库仑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12700-1990 /p /td td width=" 512" p style=" text-align:left " 石油产品和烃类化合物 硫含量的测定 Wickbold燃烧法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13080.2-2005 /p /td td width=" 512" p style=" text-align:left " 饲料添加剂 蛋氨酸铁(铜、锰、锌)螯合率的测定 凝胶过滤色谱法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13595-2004 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 拟除虫菊酯杀虫剂、有机磷杀虫剂、含氮农药残留量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 13596-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草和烟草制品 有机氯农药残留量的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13780-1992 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 自动光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13784-2008 /p /td td width=" 512" p style=" text-align:left " 棉花颜色试验方法 测色仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 14454.15-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 黄樟油 黄樟素和异黄樟素含量的测定 填充柱气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 14634.4-2002 /p /td td width=" 512" p style=" text-align:left " 灯用稀土三基色荧光粉试验方法 电传感法粒度分布测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15000.5-1994 /p /td td width=" 512" p style=" text-align:left " 标准样品工作导则(5) & nbsp & nbsp 化学成分标准样品技术通则 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15245-2002 /p /td td width=" 512" p style=" text-align:left " 稀土氧化物的电子探针定量分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.2-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 铜、锌、铅、镉的测定 原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.6-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 总铬的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.9-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 镍的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.1-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钐、钴量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.2-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 铁量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.3-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钙量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.4-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 氧量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16008-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的石墨炉原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16009-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16010-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16011-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫化铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16012-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的冷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16013-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16014-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16015-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的火焰原子吸收光谱测定方法 /span /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16016-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化镉的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16017-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的磷酸-高碘酸钾分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16018-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16019-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬、铬酸盐、重铬酸盐的二苯碳酰二肼分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16020-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16021-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中镍及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16022-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钴及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16023-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铍的桑色素荧光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16024-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中臭氧的丁子香酚-盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16025-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氧化硫的盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16026-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫酸及三氧化硫的氯化钡比浊测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16027-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫化氢的硝酸银比色测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16028-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硫化碳的二乙胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16029-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯的甲基橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16030-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氟化氢及氟化物的离子选择电极测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16031-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氨的纳氏试剂分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16032-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化氮的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16033-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氰化氢及氢氰酸盐的异菸酸钠-巴比妥酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16034-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷及五氧化二砷的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16035-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中砷化氢的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16036-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二磷的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16037-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中磷化氢的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16038-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16039-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16040-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16041-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16042-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16043-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16044-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16045-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16046-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16047-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16048-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16049-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16050-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16051-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16052-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16053-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16054-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16055-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中联苯-苯醚的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16056-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中萘的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16057-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醛的酚试剂(MBTH)分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16058-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16059-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16060-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16062-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16063-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16064-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16065-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16066-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16067-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16068-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16069-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16070-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16071-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醚的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16072-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的4-氨基安替比林分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16073-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16074-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16075-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16076-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧氯丙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16077-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中光气的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16078-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16079-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16080-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16081-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16082-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16083-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16084-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溴甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16085-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法(Apiezon L) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16086-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法 (PEG 20M) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16087-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16088-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (PEG 6000) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16089-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的热解吸气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16090-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16091-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16092-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中滴滴涕的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16093-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中六六六的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16094-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氟乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16095-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16096-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16097-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16098-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16099-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16100-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯胺的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16101-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化苦的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16102-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16103-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼及其化合物的硫氰酸盐分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16104-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钨或碳化钨的硫氰酸钾-三氯化钛分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16105-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二钒的N-肉桂酰-邻-甲苯羟胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16106-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氢氧化钠的酸碱滴定测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16107-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氢氧化钠的火焰光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16108-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锆及其化合物的二甲酚橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16109-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化氢及盐酸的硫氰酸汞分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16110-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中黄磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16111-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲基甲酰胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16112-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16113-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基甲苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16114-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中一硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16115-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16116-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中吡啶的巴比妥酸分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16117-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲基对硫磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16118-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16119-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16120-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中敌敌畏的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16121-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硫磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16122-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲拌磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16123-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中碘甲烷的1,2-萘醌-4-磺酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16480.3-1996 /p /td td width=" 512" p style=" text-align:left " 金属钇及氧化钇化学分析方法 氟量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16481-1996 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 稀土元素微波等离子体炬发射光谱(MPT-AES)标准谱表 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17062-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锡及其无机化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17063-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锑及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17064-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲硫醇的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17065-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中偏二甲基肼的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17066-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二乙胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17067-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17068-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17069-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17070-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17071-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氰的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17072-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硝基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17073-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17074-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醛的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17075-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17076-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中异丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17077-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫酸二甲酯的溶剂解吸液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17078-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基苯酚的高效液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17079-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17080-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17081-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17082-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17083-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17084-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-甲氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17086-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-丁氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17087-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼的等离子体发射光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17088-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N-甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17089-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N,N-二甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17090-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯乙烯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17092-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 19611-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 抑芽丹残留量的测定 紫外分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.6-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第6部分:没食子酸-示波极谱法测定锗含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.7-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第7部分:示波极谱法测定铅含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 20288-2006 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中有害物质检测样品拆分通用要求 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20396-2006 /p /td td width=" 512" p style=" text-align:left " 三系杂交水稻及亲本 真实性和品种纯度鉴定 DNA分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20899.11-2007 /p /td td width=" 512" p style=" text-align:left " 金矿石化学分析方法 第11部分:砷量和铋量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21131-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 环境烟草烟气 可吸入悬浮颗粒物的估测 用紫外吸收法和荧光法测定粒相物 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21132-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 二硫代氨基甲酸酯农药残留量的测定 分子吸收光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21133-2007 /p /td td width=" 512" p style=" text-align:left " 环境烟草烟气 可吸入悬浮颗粒物的估测 茄呢醇法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21134-2007 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 不溶于盐酸的硅酸盐残留物的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21135-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 空气中气相烟碱的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21198.2-2007 /p /td td width=" 512" p style=" text-align:left " 贵金属合金首饰中贵金属含量的测定 ICP光谱法 第2部分:铂合金首饰 铂含量的测定 采用所有微量元素与铂强度比值法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21274-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质铅、汞、镉检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21275-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质六价铬检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21276-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质多溴联苯(PBBs)、多溴二苯醚(PBDEs)检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/Z 21277-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 电子电气产品中限用物质铅、汞、铬、镉和溴的快速筛选 X射线荧光光谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23203.2-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中水分的测定 第2部分:卡尔.费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23225-2008 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23226-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23241-2009 /p /td td width=" 512" p style=" text-align:left " 灌溉用塑料管材和管件基本参数及技术条件 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23354-2009 /p /td td width=" 512" p style=" text-align:left " 卷烟 滤嘴总植物碱截留量的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23357-2009 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 水分的测定 卡尔费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 23358-2009 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气总粒相物中主要芳香胺的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 27410-2010 /p /td td width=" 512" p style=" text-align:left " 消费类产品中有毒有害物质检测实验室技术规范 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27523-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中挥发性有机化合物(1,3-丁二烯、异戊二烯、丙烯腈、苯、甲苯)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27524-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27525-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中苯并[a]芘的测定 & nbsp & nbsp 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 28971-2012 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中烟草特有N-亚硝胺的测定 气相色谱-热能分析仪法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29566-2013 /p /td td width=" 512" p style=" text-align:left " 蚊类对杀虫剂抗药性的生物学测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29567-2013 /p /td td width=" 512" p style=" text-align:left " 蝇类对杀虫剂抗药性的生物学测定方法 微量点滴法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29592-2013 /p /td td width=" 512" p style=" text-align:left " 建筑胶粘剂挥发性有机化合物(VOC)及醛类化合物释放量的测定方法 /p /td /tr /tbody /table p br/ /p
  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 最强实用攻略 | 方法开发时,如何选择 C18 色谱柱?
    在色谱方法开发过程中,分离度、柱效、峰形是考察色谱柱选择性是否合适的主要性能指标。方法开发中的分离度根据分离度(Rs)公式,分离度的影响因素主要有柱效(N)、选择性(α)和保留因子(或称容量因子,k):(公式 1)公式1作为分离度改善的理论基础。通常,方法开发过程中,通过提高化合物保留 (k)、提高柱效 (N)、以及提升选择性 (α) 来达到分离度的改善。选择性因子(α):(公式 2)式中 k1 和 k2 分别是第一个峰和第二个峰的保留因子。根据公式 1 和公式 2,当选择性因子提高 0.1 时,对分离度的贡献是 Rs 大约为原来的 1.8 倍。因此选择性的改变对分离度的改善效果显著,如图 1 所示。图 1. 分离度与柱效、选择性、保留因子的关系与选择性有关的因素:固定相:选择不同化学修饰的键合相(不同的 C18 柱或其它键合类型色谱柱)流动相:调整有机相的类型、pH 值、盐浓度、两相比例等柱温方法开发中的色谱柱选择在色谱固定相的选择和使用中,最常用的键合相类型是十八烷基硅烷键合硅胶(C18)。不过,由于固定相物理特性与化学修饰的差异,使得不同的 C18 选择性不尽相同。选择色谱柱时,如果一种类型的 C18 柱分离度不足,就可以选择与之选择性差异较大的 C18 柱来进行优化。以 Agilent InfinityLab Poroshell 系列中的 C18 液相色谱柱为例:Poroshell 120 EC-C18 为封端的碳十八固定相,对酸性、碱性、中性化合物都有良好的选择性,已经成为方法开发的首选,也是在 Agilent 1260 Infinity II 四元泵液相色谱系统中标配的色谱柱。与 EC-C18 柱不同,Poroshell 120 SB-C18 柱却是不封端的碳十八固定相。由于裸漏的硅醇基存在,可与待分离物发生氢键、离子间作用等,因此 SB-C18 的选择性与封端的 C18 柱存在显著差异。可以利用这个特点,在方法开发时 SB-C18 和 EC-C18 通常可以作为方法开发的起始色谱柱。另外,SB 的全称是 StableBond,顾名思义意为“稳定的键合相”,这里说的稳定,主要是在C18硅烷长链的两侧采用异丁基进行立体的保护,使得 SB-C18 在低 pH 下有较好的耐受性能。同样采用 Poroshell 120 的硅胶,HPH-C18 与 EC-C18 和 SB-C18 又有所不同。在进行键合之前,在 Poroshell 硅胶的表面多孔层,先进行了有机杂化处理,再进行 C18 键合和封端修饰,得到的 HPH-C18 色谱柱具有了高 pH 耐受的特点。因此,表面化学结构的差异,三种常用的 Poroshell C18 柱,在选择性上具有显著区别。表 1 列出了以 EC-C18 为基准,HPH-C18 与 SB-C18 的相似度因子 Fs。当 Fs 因子大于 3.0 时,固定相选择性存在差异。表 1. 三种固定相选择性差异比较(以 EC-C18 为基准)问渠哪得清如许,为有源头活水来,新产品 Poroshell CS-C18 上市!Poroshell 色谱系列在色谱分析行业已经得到了广泛的认可,安捷伦也一直在拓展 Poroshell 系列色谱柱的产品线。2020 年 11 月,安捷伦推出了新产品 Poroshell CS-C18 柱,进一步拓展了 C18 固定相的类型。该固定相是在 Poroshell实心核颗粒的表面多孔层在进行高 pH 耐受的杂化处理之后,再进行 C18 键合、封端和正电荷修饰,其中使用的键合相还进行了侧立基的保护。这样 CS-C18 固定相的表面,不仅具有 C18 提供的疏水作用、而且还具有正电荷的离子作用,选择性也与其它的 C18 键合相有显著差异。同时,硅烷链侧立基保护、多孔硅胶表面杂化处理,使得固定相pH耐受范围得到了拓宽。在 Poroshell C18 的四种 C18 键合相中,涵盖了 RPLC 模式下的主要作用力,选择性彼此之间有显著差异,见图 2。利用这些固定相的选择性差异,可以方便地进行方法开发中的色谱柱选择。图 2. Poroshell 的 4种 C18 固定相应用实例碱性条件下选择性差异在 pH=10 的体系下,耐碱的 CS-C18 与 HPH-C18 选择性存在显著差异。图 3. 农药组分在碱性体系下 LC-MSMS 色谱图结果比较酸性条件下选择性差异在酸性体系下,不同 Poroshell C18 柱的保留、分离度有显著差异。图片图 4. 阿片类药物在酸性体系下 HPLC 分析色谱图比较峰形及载样量比较在酸性体系下,在碱性药物阿米替林的杂质分析时,采用 CS-C18 与传统封端的 C18 柱进行比较,CS-C18 柱对碱性组分具有更好的峰形、载样量和分离度。图 5. 不同色谱柱对阿米替林及杂质(0.25%)不同进样量分析结果比较酸性体系下 LC/MS 灵敏度比较在甲酸体系下,在进行液质联用分析时,CS-C18 柱提供可更好的灵敏度、响应和峰形。图 6. 甲酸体系中低浓度标样(50ng/ml) 在 LC/MS/MS 中灵敏度比较安捷伦 &bull 618618 活动期间2024 年 6 月 3 日 ~ 30 日Agilent Poroshell 120 2.7um 全线 6 折!参考文献:1. L. R. SNYDER , J. J.KIRKLAND, J. W. DOLAN. Introduction to Modern Liquid Chromatography, ThirdEdition.2. 液相色谱手册-液相色谱柱与方法开发指南. 安捷伦科技.5990-7595CHCN3. Agilent InfinityLabPoroshell 120 CS-C18 助您将 pH 值用作方法开发工具. 安捷伦科技. 5994-2274ZHCN4. 使用 Agilent InfinityLab Poroshell 120 CS-C18 色谱柱改善碱性分析物的峰形. 安捷伦科技. 5994-2094ZHCN
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 多个化妆品相关检测方法公布 涉光谱、色谱、质谱等仪器
    近日,CFDA发布化妆品中巯基乙酸、二噁烷、利多卡因、汞、地氯雷他定等多中禁用物质的检测方法,涉及离子色谱法、液相色谱-质谱联用法、汞分析仪法、气相色谱法、原子吸收法、ICP-MS检测方法等。本次公布的检测方法共9项,方法中检测物质、检测方法、检测仪器等信息统计如下:附表1:附表2:附表3:  原通知如下:国家食品药品监督管理总局关于发布化妆品中巯基乙酸等禁限用物质检测方法的通告(2015年第69号)  为规范化妆品中禁限用物质检测技术要求,提高化妆品质量安全,化妆品中巯基乙酸的检测方法(离子色谱法)等9种化妆品相关检测方法(见附件1—9)已由化妆品标准专家委员会审议通过,现予发布。  特此通告。  附件:  1.化妆品中巯基乙酸的检测方法(离子色谱法).doc  2.化妆品中二噁烷的检测方法.doc  3.化妆品中利多卡因等7种物质的检测方法.doc  4.化妆品中汞的检测方法(汞分析仪法).doc  5.化妆品中甲醇的检测方法(气相色谱法).doc  6.化妆品中地氯雷他定等15种物质的检测方法.docx  7.化妆品中挥发性有机溶剂通用检测方法.doc  8.化妆品中铅的检测方法(原子吸收法).doc  9.化妆品中多元素ICP-MS检测方法.doc  食品药品监管总局  2015年9月28日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制