当前位置: 仪器信息网 > 行业主题 > >

质谱碎片预测

仪器信息网质谱碎片预测专题为您提供2024年最新质谱碎片预测价格报价、厂家品牌的相关信息, 包括质谱碎片预测参数、型号等,不管是国产,还是进口品牌的质谱碎片预测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱碎片预测相关的耗材配件、试剂标物,还有质谱碎片预测相关的最新资讯、资料,以及质谱碎片预测相关的解决方案。

质谱碎片预测相关的资讯

  • 蛋白质组学研究新成果|解锁紫外光解离(UVPD)质谱产生的内部碎片
    大家好,本周为大家分享一篇2024年发表在Analytical Chemistry上的文章,Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry1。该文章的通讯作者是来自北京蛋白质组学研究中心的常乘研究员以及中国科学院大连化学物理研究所的王方军教授。  在过去的十年里,UVPD (193nm)因其出色的碎裂效率而备受关注。它能够产生a/x, b/y, c/z等多种类型离子,并能够对小于30 kDa的蛋白质提供近乎完整的序列裂解。它是完整蛋白表征的有利工具,能够提供序列、PTM、次级结构等丰富信息。常规的UVPD分析主要依赖于识别N-端或C-端碎片(a/x, b/y, c/z),尽管已经满足大部分的小分子蛋白质(  图2. Panda-UV工作流程  通过在三种模型蛋白质上进行全面基准测试,展示了Panda-UV强大性能(图3)。内部片段的加入使得识别的片段数量提高了26%,并将平均蛋白质序列覆盖率提高到了93%,解锁了模型蛋白质中最大蛋白碳酸酐酶II的隐藏区域。此外,平均65%的内部片段可以在多次重复实验中被识别,展示了Panda-UV识别片段的高置信度。与现有的内部片段匹配软件ClipsMS进行对比,Panda-UV通过对代码框架的优化,搜索模型蛋白的一个质谱数据不超过9分钟,比ClipsMS快50倍。最后,在分析单克隆抗体时,Panda-UV将识别的片段数量翻倍,mAb亚基的序列覆盖率可以提高到86%,并且CDR几乎完全测序,显著提高了mAb的识别准确性(图4)。  图3. A) B)Panda-UV与C) D)Clips MS解析CA、Mb、Ub三种蛋白的UVPD数据对比  图4. Panda-UV在mAb UVPD数据分析中的应用  总的来说,Panda-UV赋予研究人员解锁UVPD数据中内部片段的能力。尽管Panda-UV是专门为UVPD设计开发的,但是用一般解离方法(例如:HCD、ETD)得到的质谱图也是兼容的。Panda-UV揭露了完整蛋白质表征的隐藏深度,为蛋白质组学top-down深度分析提供了帮助。  撰稿:刘蕊洁编辑:李惠琳文章引用:Panda-UV Unlocks Deeper Protein Characterizationwith Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry  参考文献  1. Zhu Y, Liu Z, Liu J, et al. Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2024 96(21): 8474-8483.
  • 中国科学院大连化学物理研究所开发新型多重碎片化碰撞诱导解离技术
    近日,中国科学院大连化学物理研究所所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队在现场检测微型质谱及应用方面取得新进展,基于自主研发的现场快速检测微型质谱(Anal. Chem.,2022),开发了简单易控、高碎片化效率的新型多重碎片化碰撞诱导解离技术,可实现单次进样条件下获得丰富碎片离子信息,对于化学战剂、D品的准确识别,以及新型合成D品的结构解析具有重要意义。  新型D品层出不穷、种类繁多,成为当前D品犯罪案件的突出特点。此外,D品的种类不断翻新,更具伪装性、隐蔽性和迷惑性,使得检测难度大。因此,开发便携式仪器用于新型D品的及早发现,以及传统D品的现场快速准确识别对禁D工作具有重要意义。李海洋团队前期基于微型质谱关键技术,实现了传统D品和新型芬太尼类D品的定性检测(Anal. Chem.,2021;Anal. Chem.,2021;Anal. Chem.,2019;Anal. Chem.,2019),并在云南边境多个检查站开展了推广应用。  传统共振碰撞解离技术需要多次进样才可以获得多重碎片离子信息。本工作中,基于此前构建的现场检测微型质谱,该团队开发了一种简单易控的新型碰撞诱导解离方式技术,可实现单次进样条件下获取多重离子碎片信息。基于对离子阱内微区电场分布的研究,团队还揭示了该技术的微观本质,即增大离子阱质量分析器的直流偏置电压有利于增强径向电场强度,从而驱动离子进入强射频场获得能量、发生碰撞诱导解离。通过调控电场、离子的初始动能和气压等,该碰撞诱导解离技术可实现100%的碎片化率。该技术还可同时获得多个碎片离子,有利于提升识别准确性,实现痕量D品同分异构体的区分、化学战剂的准确识别等。此外,该技术通过分析母离子以及不同碎片离子之间的质量数差异,可实现对D品的结构解析与分类,适用于新型合成D品早期发现预警,在D品稽查、公共安全等领域具有广阔应用前景。  相关研究以“Radial Electric Field Driven Collision-Induced Dissociation in a Miniature Continuous Atmospheric Pressure Interfaced Ion Trap Mass Spectrometer”为题,于近日发表在《美国质谱学会杂志》(Journal of the American Society for Mass Spectrometry)上,并被选为封面文章。该工作的第一作者是我所102组博士研究生阮慧文。上述工作得到国家自然科学基金、我所创新基金等项目的支持。(文/图 王卫国、阮慧文)  文章链接:https://pubs.acs.org/doi/full/10.1021/jasms.3c00324
  • 北极塑料碎片来自世界各地
    德国科学家在最新一期《海洋科学前沿》杂志上撰文指出,在过去5年时间里,他们调查了北极海岸塑料碎片的组成及来源情况。分析显示,其中1/3的塑料碎片仍然带有印记或标签,可对其来源进行追踪,其中大部分来自德国。塑料碎片是一个全球性问题,据观察,有相当数量的塑料碎片漂浮在遥远的北冰洋上,但目前尚不清楚这些碎片从何而来。最近,由亥姆霍兹极地和海洋研究中心(AWI)阿尔弗雷德韦格纳研究所开展的公民科学项目提供了第一个有价值的信息。该研究负责人梅勒妮伯格曼博士说:“从2016年起,我们开始与公民科学家合作,调查北极海岸塑料碎片的组成,期间参与活动的游客收集并记录了斯瓦尔巴群岛海岸上的塑料碎片,到2021年他们共收集了23000件物品,总重量为1620公斤。”伯格曼指出,他们调查了那些仍然带有标记、标签或印记的碎片来自何处,结果发现了来自遥远的巴西和美国的碎片,而欧洲特别是来自德国的塑料碎片占总数的8%。他进一步说:“研究和计算机模型显示,塑料污染来自当地和偏远地区。在当地,塑料碎片从船只和废物管理系统较差的北极地区流向海洋;来自遥远地方的塑料碎片和微塑料则通过河流和洋流从大西洋、北海和北太平洋输送到北冰洋。”专家们指出,为有效解决这些问题,不仅需要改善当地的废物管理,尤其是船舶和渔业的废物管理措施,还需要大规模减少全球塑料产量,特别是在欧洲、北美和亚洲的工业化国家。
  • 福岛核电站发现大范围放射性核燃料碎片!“排放计划不变”
    3月5日,日本共同社报道了一个令人担忧的消息。据报道,日本东京电力公司对福岛第一核电站1号机组反应堆安全壳内部的调查结果显示,来自熔落核燃料(燃料碎片)的物质,当年未全部清理干净,如今很可能仍大范围分布在底部堆积物的表面。随着日本计划在2023年将核废水排放入海,这些核燃料碎片如果随之暴露,将造成何种影响,难以设想……大量放射性核残渣,后患无穷据共同社报道,2022年12月,东电向积水的安全壳内投放了配备辐射检测传感器的水下机器人,向底部堆积物放下传感器。2023年2月根据分析结果发现,检测到燃料碎片散发出的强烈中子射线,以及显示存在燃料碎片所含放射性物质“铕-154”的放射线。此外,东电对支撑装有核燃料的反应堆压力容器的底座外侧进行调查,所有8处均检测到燃料碎片散发出的特有核辐射。据分析,1号机组的燃料碎片冲破压力容器,从正下方的底座开口处流到了安全壳底部。开口处附近出现像是构造物熔化后的堆积物,呈现越远离开口处就越薄的倾向,里面也可能含有燃料碎片。堆积物的厚度、距开口处的距离与测得的铕辐射量等没有相关性,东电认为“堆积物的表面附近存在来自燃料碎片的物质”。燃料碎片是指核燃料和构造物熔化后冷却凝固而成的物体,但也有从碎片上散落的微小粒子,东电认为这些都是“来自燃料碎片的物质”。今后,东电还将使水下机器人进入底座内侧,尝试拍摄内部的损伤情况和压力容器下部等。向太平洋排放核废水,日本“铁了心”虽然福岛核电站真实状况不甚明朗,但近日,日本首相岸田文雄在参院预算委员会会议上,关于东京将核废水排放入海的开始时间明确表示,“预计2023年春季到夏季的这一时间不变”。岸田称,将切实推进反应堆报废工作,并认为“为了实现福岛重建,核废水的处置是无法推迟的课题”。立宪民主党批评称尚未得到渔业相关人士等的理解。事实上,自日本政府早前宣布将核废水排放入太平洋后,日本国内外的反对之声便不绝于耳。对于此事,日本民众首先无法接受。2022年3月,日本福岛县和宫城县的多个民间组织,向东京电力公司和经济产业省提交了一份18万人联合署名、反对将福岛核电站污水排入大海的请愿信,要求采用其他方法处理。日本各界民众还多次自发举行游行集会,质疑政府并未充分听取民意,单方面实行这一决定。日本龙谷大学政策学部教授大岛坚一曾表示,“核污染水排入大海不仅破坏当地渔民赖以生存的渔场,还将影响到周边海域,对全球海洋生态环境造成不良影响”。日方的做法,也引发邻国强烈反对。中国外交部一再重申,福岛核污染水处置关乎全球海洋环境和环太平洋国家公众健康,绝不是日本一家的私事。中方再次敦促日方,切实履行应尽的国际义务,以科学、公开、透明、安全的方式处置核污染水,停止强推排海方案。韩国政府也表示,对日方核监管机构批准排污入海的做法感到忧虑,并将采取应对措施。同时,韩国将就此提升与国际原子能机构合作,加强对国内海洋环境辐射的检测工作。俄罗斯方面也已表示,将关注日方对核废水的处理动向,对其举动表示关切。(完)
  • 新算法助力质谱数据准确高效预测小分子 助力新药研发
    卡内基梅隆大学和俄罗斯圣彼得堡国立大学的研究人员提出一种算法——MolDiscovery,提高了小分子识别的效率和准确性。该算法使用分子的质谱数据来预测未知物质的「身份」,在研究早期告诉科学家他们是偶然发现了新事物,还是仅仅重新发现了已知事物,可节省发现新的天然医药产品的时间和金钱。  该研究于6月17日以「MolDiscovery: learning mass spectrometry fragmentation of small molecules」为题发表在《自然通讯》(Nature Communications)杂志上。 MS 是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物。  质谱图是小分子的指纹,可以用一组质量峰表示,但与指纹不同的是,没有庞大的数据库来匹配它们。尽管已经发现了数十万种天然分子,但科学家们无法获得他们的质谱数据。  目前,已经出现了包含数万个小分子注释质谱的谱库,为开发基于机器学习的方法来提高计算机数据库搜索的灵敏度和特异性铺平了道路。然而,现有方法对于超小分子(1000 Da)在计算上不足。  现在,该研究团队提出一种质谱数据库搜索方法—— MolDiscovery,通过学习概率模型来将小分子与其质谱相匹配,大大提高了小分子识别的准确性,同时使搜索效率提高了一个数量级。  从全球天然产物社会分子网络(GNPS;http://gnps.ucsd.edu) 搜索了 800 万个串联质谱后,MolDiscovery 以 0% 的错误发现率 (FDR) 鉴定了 3185 个独特的小分子,与现有方法相比,增加了 6 倍。在具有已知基因组的 GNPS 存储库的一个子集上,MolDiscovery 正确地将 19 个已知和三个假定的生物合成基因簇与其分子产物联系起来。  MolDiscovery 框架  MolDiscovery 框架主要分两个过程:训练过程和评分过程。具体步骤:  从构建代谢物图和生成碎片图开始。对于后者,MolDiscovery 使用一种新的高效算法来查找代谢物图中的桥接和 2-cuts;  MolDiscovery 继续学习匹配碎裂图和质谱的概率模型;  对小分子光谱对进行评分,计算 FDR。基准测试  MolDiscovery 与其他五种最先进的方法进行了比较,数据库搜索结果显示,MolDiscovery识别效果最好,平均可以正确识别测试 GNPS 和 MoNA 数据中的 43.3% 和 64.3% 的小分子。所有测试方法的最高 K = 1、3、5 和 10 准确度。(来源:论文) MolDiscovery 也是针对 DNP 搜索 GNPS 的最快和最节省内存的方法之一。在预处理阶段,MolDiscovery 比其中一种方法快 300 倍以上。  还根据正确分子匹配的质量范围评估了运行时间。对于质量 1000 Da 的分子光谱,相同质量范围内,MolDiscovery 平均只需 6 分钟和 24 秒。  注释 8 倍多的光谱,识别出 6倍多的独特化合物  从GNPS 搜索了 800 万个串联质谱,在严格的 0% FDR 水平下,MolDiscovery 注释了 8 倍多的光谱,并识别出比 Dereplicator+ (一种从MS中识别小分子的数据库搜索复制器)多6倍的独特化合物。  MolDiscovery 搜索在 10 个线程上花费了 34 天,与单线程上的预测 329 天非常接近。值得注意的是,在搜索如此大规模的光谱数据集时,MolDiscovery 比其他方法要高效得多,只需要对分子数据库进行一次预处理,可以有效地搜索未来的光谱。  节省新药研发时间、成本  「科学家们浪费了大量时间来分离已知的分子。」研究团队成员 Hosein Mohimani 说。「早期检测分子是否已知,可以节省时间和数百万美元,并有望使制药公司和研究人员更好地寻找可能用于新药开发的新型天然产品。」  Mohimani 解释说:「例如,科学家检测出一种在海洋或土壤样本中有望成为潜在药物的分子后,可能需要一年或更长时间才能识别出这种分子,而不能保证该物质是新的。MolDiscovery 使用质谱测量和预测机器学习模型快速准确地识别分子,且无需依赖质谱数据库进行匹配。」  该团队希望 MolDiscovery 将成为实验室发现新型天然产物的有用工具。MolDiscovery 可以与 Mohimani 实验室开发的机器学习平台 NRPminer 协同工作,帮助科学家分离天然产物。
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 质谱新技术丨原位探针离子化质谱仪DPiMS 第三期
    《质谱新技术丨原位探针离子化质谱仪DPiMS 第一期》为大家介绍了DPiMS的技术背景和工作流程;《质谱新技术丨原位探针离子化质谱仪DPiMS 第二期》介绍了DPiMS在食品安全、法医学、临床毒理学和生物学研究中的应用实例。 本期将隆重介绍DPiMS家族新成员——DPiMS QT,进一步拓展这一极具潜力的新型离子源的应用边界。 DPiMS QT 特点 1 前处理简单、操作简便、快速完成测定● 只需简单的前处理即可开始分析。● 与Q-TOF质谱仪联用,实现高分辨质谱分析。● 仅需微量样品即可完成分析,大大降低对于MS离子源的污染。 2 只需简单的前处理即可测定液体或固体样品● 使用传统方法分析血液、尿液和其他生物样品所需的时间减少约 50%。● 可以分析食物、组织切片和其他固体样品。● 样品前处理时间显着减少。3 快速定性分析●DPiMS QT定性筛查分析时,无需等待色谱分离的时间,效率更高。4 无残留的分析系统● 每次进样时,仅几十pL的样品粘附在探针上,无需担心质谱仪内部受到污染。也可以通过更换探针来防止样品残留,在测定浓缩样品和未知浓度的样品时无需担心交叉污染。5 在 DPiMS QT 和 Q-TOF LC/MS 之间轻松切换● 移除 DPiMS QT 装置约仅需15秒,即可重新配置为LC-QTOF系统。通过 DPiMS QT 实施初步筛查和定性分析,可以减少 LC-QTOF 分析所需的资源(溶剂和色谱柱),从而减少需要定量分析的样品数量,提高实验室工作效率。应用实例 对添加曲唑酮(500 ng/mL)的全血样品进行定性分析, MS和MS/MS分析在一个序列中同时进行。LabSolutions Insight Explore 支持组成推测、库搜索和结构解析。 1 MS分析检查色谱峰——通过在化合物表中输入分子式或对应的质量数来提取目标离子的质量色谱图。组成推测——从获得的质谱图中,选择任意 m/z 的质谱,并使用组成推测功能按匹配度分数顺序列出预测的分子式。 2 MS/MS分析碎片归属——使用 LabSolutions Insight Explore 中的结构分析归属功能,根据产物离子质谱图对碎片进行归属。通过谱库检索评分——通过使用 LC-QTOF 创建的质谱库,对使用 DPiMS QT 分析得到的质谱图进行评分。
  • 搭载质谱仪的“卡西尼”号探测器检测到神秘粒子
    p   近日,美国宇航局(NASA)的“卡西尼”号探测器还在继续产生着令人惊讶的发现,而早在一个多月前,这架探测器已经在任务结束后于土星大气中烧毁。来自“卡西尼”号探测器的新数据表明,土星的宏伟光环正在将微小的尘埃颗粒注入到行星的上层大气中,从而形成了一种复杂且意想不到的化学混合物。 /p p   “卡西尼”号探测器上的一台质谱仪检测到这种奇特的化学物质——该探测器在最后的5个月里一直在土星和土星环之间环绕飞行。 /p p   马里兰州劳雷尔市约翰· 霍普金斯大学应用物理实验室行星科学家Mark Perry说:“我们真的是中头彩了。”10月17日,他在犹他州普罗沃市召开的美国天文学会行星科学分部的一次会议上报告了这一发现。 /p p   该项目科学家曾希望“卡西尼”号探测器的质谱仪能够在土星和土星环之间发现水分子的特征。在上世纪七八十年代,NASA的先驱者号探测器和旅行者号探测器在土星的最上层大气中发现了比预期更少的带电粒子。在这些数据的基础上,研究人员在1984年提出,脱离土星环的水分子——主要以冰的形式——起到催化剂的作用,将带电粒子从大气中分离出来。“卡西尼”号探测器的最后几个月给了科学家们第一次直接测试这个想法的机会。 /p p   但吸引卡西尼团队的并不是突然出现的水的证据。质谱仪的数据揭示了一个巫师般存在的化学物质,其中包括甲烷,这种分子可能是一氧化碳和更复杂的分子。这些化学物质的浓度在土星的赤道和高海拔地区是最大的,这表明这些物质正在从土星环中脱落。 /p p   “卡西尼”号探测器进入土星大气层的深度越深,测量值就愈发奇怪。Perry对与会者说,“卡西尼”号探测器以最近距离掠过土星表面揭示了大量的重分子。科学家还没有确定每种分子的类型,但很明显,除了水之外,还有很多其他分子。 /p p   通过分析可能从土星环上脱落的物质的类型,Perry的研究小组得出结论,这些碎片必定是微小的尘埃颗粒的片段,这些颗粒的尺寸仅为1至10纳米,但相对较重。当这些粒子从土星环上落下并撞击“卡西尼”号探测器的质谱仪时,它们被粉碎成小碎片。 /p p   这些粒子究竟是如何从土星环飘落到大气层的还有待观察。“我们有很多工作要做,以了解它们是如何到达那里的。”Perry说,“没有一个模型能预测到这一点。” /p p   在这些最后的俯冲过程中,“卡西尼”号探测器沿着土星的引力牵引,以每秒钟30公里的速度加速,这一速度超过了质谱仪设计所能承受的4倍之多。“这些速度比它所经历的任何时刻都要高。”Linda Spilker说,他是加利福尼亚州帕萨迪纳市喷气推进实验室的行星科学家,也是卡西尼项目科学家。 /p p   在如此巨大的速度下,“卡西尼”号探测器所撞击的任何东西都会分裂成碎片。 /p p   今年9月15日凌晨4时55分,数百名科学家见证了“卡西尼”号探测器在火焰中涅槃。“卡西尼”号探测器在土星的大气层中解体,这样做是为了防止探测器污染土星的卫星,包括土卫六和土卫二,这些卫星上可能存在生命迹象。 /p p   “卡西尼”号探测器1997年10月15日发射升空,沿途造访过金星、地球、月球、小行星和木星,并于2004年抵达环土星轨道。近20年间,“卡西尼”探测任务大幅刷新了人类对土星的认识,包括它的复杂光环、类型多样的卫星体以及磁场环境等。它曾获得一系列重大发现,如土卫二存在全球性海洋、土卫六上存在液态甲烷海洋、在土卫二喷出的羽流中探测到氢等。 /p p   与土星相伴的13年间,“卡西尼”号探测器曾发回大量数据资料,仅图像就差不多40万张。科学家依据这些信息,已发表了约4000篇科学论文。NASA还依据这些信息设计了前往木卫二的探测计划,以及未来十年间的其他太空探测项目。 /p p   尽管“卡西尼”号探测器已经结束了自己的使命,但科学家表示未来仍有可能带来重大发现,例如,来自探测器的数据将有助于确定土星环的实际年龄及其磁场的持久性。 /p p   (原标题:土星大气发现神秘粒子 卡西尼数据显示或来自土星环) /p p /p
  • 2015年度北京质谱年会在北京怀柔召开
    仪器信息网讯 2015年3月27日,由北京理化分析测试技术学会北京质谱学会主办的&ldquo 2015年度北京质谱年会&rdquo 在北京怀柔中国科学院大学国际会议中心召开,300余名来自科研院所、高校、政府实验室及仪器公司等单位的代表参加了此次会议。会议为期两天,包括大会报告、学术沙龙和培训讲座三个板块。 会议现场   北京质谱学会理事长再帕尔· 阿不力孜参加了会议并致开幕辞。北京质谱年会是北京理化分析测试技术学会主办的系列年会,自2005年第一届开始,每年举办一次,本届会议是北京质谱年会十周年大会。十年来,会议规模逐渐扩大,会议内容也越来越丰富,受到了质谱专家、研究学者、学生和质谱厂商的广泛关注。再帕尔教授介绍说:&ldquo 北京质谱年会的宗旨是打造质谱学术交流和学科间交叉交流的平台,更是青年质谱人的大舞台。&rdquo 北京质谱学会理事长再帕尔· 阿不力孜教授致开幕辞   此次质谱年会报告,延续了去年年会的&ldquo 生命科学&rdquo 主题,詹启敏院士、张四纯教授、纪建国教授、聂宗秀教授和徐伟教授给大家带来了有关临床医学、基因组学、蛋白质组学和质谱新技术等方面的精彩报告。除此之外,来自安捷伦、天瑞、赛默飞、岛津和SCIEX公司的资深工程师们为与会代表带来了前沿的质谱技术和解决方案。   中国工程院詹启敏院士为大会做了题为&ldquo 转化医学的需求和实践&rdquo 的报告。报告中詹院士强调了重大疾病防治的迫切性和社会需求,还表示我国健康卫生事业的发展依赖医学技术发展,医药研究和临床都需要质谱平台。转化医学是实践4P医学--预防性(Preventive)、预测性(Predictive)、个体化(Personalized)和参与性(participatory)的重要途径,转化医学的发展需要多学科支持。詹院士还提到,质谱专家和临床专家应该交朋友,这样有利于质谱专家了解临床方面的质谱需求,促进高端质谱仪器应用于临床医学。 中国工程院院士 詹启敏   清华大学化学系张四纯教授分享了&ldquo 介质阻挡放电离子化及质谱成像分析&rdquo 新技术报告。据张教授介绍,介质阻挡离子化技术是与DART类似而又不同的敞开式离子源,它具有常压低温、能耗小和便于小型化等特点。目前,低温等离子探针在有机质谱成像方面已经实现了字画印章的成像分析 在元素质谱成像方面也已获得了瓷器花纹、毛发和动物组织的元素分布。张教授还提到,目前已经与厂商合作生产此技术产品,第一台工程化样机将在近期推出。 清华大学化学系 张四纯   北京大学生命科学院纪建国教授为大会做了题为&ldquo TMPP化学衍生进行多肽高准确度从头测序、定量及磷酸化修饰位点鉴定研究&rdquo 的报告。多肽在质谱中碎片非常复杂,不能被完全定性,采用试剂TMPP对样品衍生后,能够使多肽极性降低,有利于其离子化和产生特定碎片离子。纪教授详细介绍了化学衍生试剂TMPP的优点和在蛋白鉴定中的应用。 北京大学生命科学院 纪建国   中国科学院化学研究所聂宗秀研究员的报告主题为&ldquo 活体质谱与成像&rdquo 。聂教授介绍了活体质谱成像的特点和根据MALDI检测活体样本的难点而展开的研究耐盐小分子新基质过程。并重点讲解了生物活体组织中的质谱成像技术以及碳纳米材料在生物医学中的应用。相关研究结果已经在近期的《自然· 纳米技术》(Nature Nanotech.)上发表。 中国科学院化学研究所 聂宗秀   北京理工大学生命学院徐伟教授分享的报告主题为&ldquo 微型离子阱质谱仪构建与应用&rdquo 。徐教授介绍了微型离子阱质谱的发展背景及应用需求,还讲解了微型毛细管电泳-质谱联用仪、膜喷雾离子源和连续大气压接口微型质谱仪等高性能微型质谱的原理和应用。 北京理工大学生命学院 徐伟   来自厂商的资深工程师们为与会者送上了相关质谱仪器的新技术和应用报告。 安捷伦科技有限公司 马鑫 报告题目:离子淌度质谱:复杂成分表征的革命性技术 江苏天瑞仪器科技有限公司 许少辉 报告题目:电感耦合等离子体质谱技术在水质65种元素监测中的应用 赛默飞世尔科技(中国)有限公司 冉小蓉博士 报告题目:超高分辨质谱在代谢组学全流程分析中的应用 岛津企业管理(中国)有限公司 周佳雨 报告题目:岛津Erexim技术 SCIEX中国公司 王祝伟 报告题目:SCIEX精确质量质谱技术结合新型代谢组学方法用于环境水质监测   在报告会之后,上演了别开生面的学术沙龙互动环节。各沙龙主题分别为&ldquo 食品与环境&rdquo 、&ldquo 医药与生命科学&rdquo 、&ldquo 无机质谱技术及其应用(ICP-MS、同位素)&rdquo 和&ldquo 质谱新方法、新技术&rdquo 。各领域顶级专家主持并参与各主题沙龙的激烈讨论,面对面解答了参加讨论会的研究人员、学生等提出的问题。 部分参展厂商   会场外设有岛津、赛默飞、SCIEX、安捷伦、布鲁克、德祥、珀金埃尔默、天瑞、日立等厂商展位,供与会者咨询相关仪器信息。本次质谱会还安排了多场质谱技术及应用培训讲座,内容包括质谱基本理论、应用技术和分析方法等等,供青年研究者和学生学习交流。 撰稿:郭浩楠
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度
    利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 图2 实验设计和模型开发流程图。【结果】表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。 图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)表2 使用各种光谱分析技术的PLSR模型预测性能。 图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。【结论】红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。请点击如下链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e#rd
  • 院士成果在穗转化精典案例:质谱强国 自主研发EIT质量分析器
    科学仪器被称作科学家的“眼睛”。质谱仪作为国际上最尖端的科学仪器之一,是直接测量物质原子量、分子量的唯一手段,被誉称为“科学仪器皇冠上的明珠”。 十多年前,质谱技术在国内基本还是一片空白。海归博士周振把“做中国人的质谱仪器”作为自己的终身奋斗目标。他创办了广州禾信仪器股份有限公司,并带领公司建成了我国第一个质谱仪器正向研发平台,实现了我国高性能飞行时间质谱仪国产化和产业化,使我国成为世界上少数几个掌握飞行时间质谱核心技术的国家之一。 2021年11月,在同一梦想与追求的驱动下,放射化学家、中国科学院院士柴之芳把院士专家工作站设立在禾信仪器。禾信仪器正联合院士团队向质谱仪的关键核心技术发起攻关。他们的目标是自主研制一款超高分辨率、快速分析的EIT质量分析器,质量分析器正是质谱仪的关键核心零部件。打响国产质谱仪“突围战”科学发现往往离不开新工具的发明与使用。相比于天文望远镜与显微镜,大众对于质谱仪却是陌生的。质谱仪便是最精密、最灵敏的科学分析仪器之一,可以准确测定物质的分子量以及根据碎片特征进行化合物的结构分析。 诺贝尔化学奖得主弗朗西斯威廉阿斯顿曾有一句名言:“要做更多仪器,要多加测量。” 阿斯顿便是质谱仪的发明者。质谱仪让阿斯顿在同位素的研究如虎添翼,他先后发现天然存在的287种核素中的212种,提出同位素的普遍存在性,证实“自然界中某元素实际上是该元素的几种同位素的混合体,因此元素的原子量是依据同位素在自然界的占比而得到的平均原子量。” 鉴于质谱技术对引领科学发展的巨大作用,不仅是弗朗西斯威廉阿斯顿,欧内斯特劳伦斯、沃尔夫冈保罗等多位科学家都曾因对质谱技术作出贡献而获得过诺贝尔奖。 高端科研仪器的创新、制造和应用水平,往往考验着国家科技实力和工业实力。质谱仪涉及精密电子、精密机械、高真空、软件工程、自动化控制、电子离子光学等多项技术及学科,研发难度大、周期长、投入大。而中国每年对质谱仪进口额达到上百亿元,这已成为制约我国自主创新能力提升的一个重要因素。 怀抱着质谱强国梦,海归博士周振2004年来到广州创办了中国第一家专业质谱仪器公司一一禾信仪器。“质谱仪是一项对国家科学水平具有标志性意义的尖端技术,中国发展自己质谱仪刻不容缓,这就是我创办禾信的原因。” 周振说。 禾信创立之时,基本没有人相信中国人能造出质谱仪。但是周振带领团队逐步攻克了单颗粒气溶胶在线电离源、双极飞行时间质谱技术、真空紫外光电离源、膜进样系统等核心技术,研发出单颗粒气溶胶飞行时间质谱仪、VOCs在线监测飞行时间质谱仪、微生物鉴定质谱仪等多款产品。禾信已经成为少数掌握高分辨飞行时间质谱核心技术的企业之一。继续向关键核心技术发起冲击经过十余年的研发积累,禾信仪器已经构建了质谱研发、生产、测试、售后服务、品质控制及应用开发的整套技术创新链条,形成了从基础研究成果向产业化应用转化的技术创新能力体系,包括技术顶层设计能力、产品规划设计能力、产品创新优化能力等。质谱强国梦正逐渐照入现实,但是禾信仪器也面临着挑战。目前国内质谱行业上下游产业发展不成熟,精密电子、精密机械、特殊材料等上游产业的支撑能力还不足。沃特世、丹纳赫、布鲁克、安捷伦、赛默飞、岛津、生物梅里埃等巨头依然合计占据了全球质谱仪市场约90%的份额。“我头脑从来没有发热膨胀的时候。” 周振心里深知,禾信仪器只是打破了完全依赖进口的局面,要发展自己的民族品牌,推动国内质谱仪器行业良性发展,还要靠几代人的努力。为了在这场长跑中实现“反超”,周振正带领团队培育与发展整个质谱产业链,打造质谱生态圈。在2019年于广州举办的首届粤港澳大湾区高端科学仪器产业发展论坛上,禾信及国内科学仪器行业有关单位联合发起的广东粤港澳大湾区高端科学仪器产业促进会进入筹备阶段,禾信更宏大的愿景是推动粤港澳大湾区高端科学仪器创新中心的建立。“我们希望创新中心十年内实现每年培育四五十家仪器制造企业,二三十家核心零部件企业。”周振说,这是一条覆盖“政产学研用金”的完整链条。同样是在这场论坛上,包括柴之芳院士在内的一批行业专家与禾信等产业链企业代表一同发起《关于支持高端科学仪器产业发展的建议书》,共同呼吁将高端科学仪器研发列入广东省各级政府“十四五”和中长期科技发展规划的重点发展领域,培育建立完整的高端科学仪器产业链,制定切实有效的国产科学仪器政府采购政策,支持高端科学仪器创新中心建设。2021年8月广东省政府印发了《广东省制造业高质量发展“十四五”规划》,明确提出,支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克相关关键核心技术。攻克高端科学仪器关键核心技术同样一直是柴之芳院士的梦想。在2011年和2017年,禾信曾牵头承担2项国家专项,柴之芳院士担任项目总体组、技术专家组及用户委员会专家,为项目的应用研究及管理提供技术支持。在柴之芳院士看来,没有先进的仪器和方法,是无法做出重大原创性成果的。我国的科学研究高度依赖国外仪器的情况现在虽然正在改变,但仍十分严重,已成为制约我国攀登科学顶峰的一个瓶颈。自主研发EIT质量分析器柴之芳是著名的放射化学和核分析研究专家,曾在2005年摘得国际放射分析化学和核化学领域的最高奖一一乔治冯海维希奖。他将核技术、核分析和放射化学方法应用于一些交叉学科中,在若干重要元素的分子-中子活化分析、铂族元素丰度特征、金属组学、环境毒理学和纳米安全性、核试验快中子谱等方面取得了一批成果。质谱技术起源于同位素的发现,发展初期主要是为了满足核工业领域同位素丰度比值的测定要求,并伴随着物质组分分析技术的发展而逐渐得到完善。随着核工业的兴起和快速发展,质谱技术被应用于核燃料与核材料中杂质分析、核燃料燃耗的测定以及核反应过程中的裂变产额测定等。质谱测量技术的进步推动了核工业的可持续发展,核工业的发展也对质谱技术提出了更新的要求。铀资源勘查、铀矿治、铀同位素分离、同位素应用、核医学、乏燃料后处理和长寿命核素分离嬗变、核保障监督等都离不开先进的质谱测量技术。柴之芳院士专家工作站的研究项目是《超高分辨率、快速分析的静电离子阱质量分析器的研制》。质量分析器是质谱仪的核心,是决定质谱仪检测精度和准度的关键,但高端质量分析器仍被海外龙头企业垄断。而院士专家工作站要自主研发的静电离子阱质量分析器 (EIT质量分析器) 便是一种具备超高质量分辨率、高质量精度、高灵敏度、快速分析等特点的通用型质量分析器。该项目结合柴之芳院士在放射化学、核化学等研究方向中丰富的质谱应用经验,实现EIT质量分析器性能指标达到国际先进水平,并在核物理、放射化学、环境科学等领域的应用。基于该项目的研究成果,可以进一步开发以EIT质量分析器为核心的有超高分辨率、高精度质量分析需求领域的定制产品,也可以开发用于环境监测、食品检测、生物医疗等领域的通用在线超高分辨率大气压电离质谱产品。目前,院士专家工作站已完成EIT质量分析器的原理研究、质谱整机各模块的设计与制造,研制出原理样机,申请发明专利3项,与院士团队联合发表论文1篇。柴之芳院士常教导弟子,有志于科学研究的人要安心,要清净,要踏实。周振率领的禾信同样是一家愿意“十年磨一剑”的科技企业。如今两支有共同梦想的团队聚在一起,正在以共同步调向质谱强国梦继续进发。
  • 天瑞公司参加第57届美国质谱年会
    2009年5月31日至6月4日,第57届美国质谱年会(57th ASMS Conference on Mass Spectrometry and Allied Topics,简称ASMS)在美国费城Pennylvania Convention Center会议中心举办。    ASMS是全球质谱届前沿学术、技术进展的全球会议,今年到会人数6000余人,其中华人有近1000人,191家厂商参展。会议第一天即5月31日,主要进行的是培训和讲座,并在5月31日下午举办了开幕式。   从6月1日到6月4日开始,每天有不同主题的、7个分会场的报告和Workshop;每天有长达4小时的墙报(poster)交流时间,时间从10:30 ~ 14:30,墙报的作者必须在海报前回答问题和交流。   除了海报交流时间很长以外,在促进交流方面,ASMS还有显著的特色:在展台上,每个展商的展台都同样大小,两排展台之间有宽阔的休息区,交流者不用“走太多的路”,便可以找到自己感兴趣的厂商并交流讨论。进一步感兴趣的,可以参加每天晚上厂商举办的Hospitality Suites,2009年的ASMS有18家厂商集中在Marriott酒店的不同展厅举办Hospitality Suites,专家学者可以在该时间段内,到各个厂商的招待展厅里,体验各厂商推出的新产品和新技术,每个展厅都设有酒水和自助。常常可以看到大家端着啤酒或红酒,边喝边聊,交流气氛非常热烈。每年的ASMS都会颁发几个重要的奖项,今年的获奖情况是:   一、质谱杰出贡献奖(Award for a Distinguished Contribution in Mass Spectrometry)   该奖项用于奖励在质谱领域杰出的贡献,评出在基础或应用质谱领域里或贡献于该领域的、焦点的、独一无二的成果,而不是奖励那些长期的成果。获奖者需在基础理论和/或质谱实践中已经取得显著的成果。获奖者并不限制于ASMS会员,会在ASMS年会会议上获得10,000美元现金奖励和奖牌,提名将延续3年。   2009年质谱杰出贡献奖的获奖者有两位:Simon J. Gaskell和Vicki H.Wysocki,他们自1992年开始,发表了一系列关于“活动的质子模型”(Mobile Proton Model)的文章著述。该模型统一了真实世界中多种多样的碰撞诱导的肽碎裂现象,被广泛地用于多肽测序和蛋白质推断。该模型建立在基础的热动力学理论和大量实验基础上,已经成为理解多肽碎裂谱图的被广泛认可的模型。该模型提供了非常确定的关于碎裂的预测,并使谱图可被解析和模拟。目前该模型还成为以下两方面的基础:在数据库搜索算法中提高完善性;帮助多肽质谱研究领域的研究者建立更先进的碎裂模型。   Gaskell教授是曼彻斯特(Manchester)大学Michael Barber质谱中心的主任和大学主管研究的副校长。   Vicki Wysocki是亚利桑那(Arizona)大学化学系、生物化学和分子生物学、以及BIO5合作研究所的教授。   二、Biemann奖章(Biemann Medal )   该奖章授予个人,在其学术生涯的早期应在基础和应用质谱领域获得显著成就,提名者应该在被提名的15年之内获得了博士学位。该奖项为纪念 Klaus Biemann教授,他在Massachusetts马萨诸塞州技术研究所40年期间培训了大量的学生和博士后。Biemann教授的学生、博士后联合组织和其朋友共同捐赠设立了Biemann奖章。获奖者不限于ASMS会员。ASMS年度会议上颁发奖项,提名者获得5,000元现金奖励,每年提名者将更新。   2009年的获得者是Neil L. Keller教授,他主要贡献于自上而下的蛋白质组学技术(Top-Down proteomics),该技术已成为ASMS成员中家喻户晓的词汇。Neil L. Keller教授从他毕业后就开始top-down的研究并在后来推动了该技术的发展。和从下到上(bottom-up)的蛋白质组学从蛋白质碎片开始研究不同,Top-Down蛋白质组学通过分离和碎裂气相中的完整的蛋白,保留了蛋白异构体和翻译后修饰相互作用的信息。 Keller教授开发了top-down的分析软件ProSight PTM,提供了top-down中需要的电荷、同位素去卷积功能,并已被全世界超过450个实验室广泛使用。 Keller教授用其top-down分析技术分析了大量的重要的生物体系,比如人类染色质的蛋白组分分析,并测定了细胞循环中组蛋白Histone H4的翻译后修饰动力学。他的实验室是拓展串联质谱来分析高质量离子应用的主要驱动力,已发表了超过130篇期刊文章,并已获得了诸多奖项。   Neil Kelleher是伊利诺斯(Illinois)大学(Urbana-Champaign)化学系的教授。   三、研究奖(Research Awards)   该奖项于1986年Robert Finnigan设立,奖励在质谱领域的年轻的研究者,奖励25,000美元现金,2009年的奖金由Thermo Scientific和Waters Corp.公司提供。Thermo Scientific资助的获奖者是普渡大学的Ouyang Zheng,Waters Corp.资助的获奖者是普林斯顿大学的Benjamin A. Carcia。     Ouyang Zheng现为美国普渡大学(Purdue University)电子与计算机工程系和生物医疗工程系的助理教授。郑欧阳1993年和1995年毕业于中国清华大学自动化系并获得其学士和硕士学位。1997年从美国西弗吉尼亚大学(West Virginia University)物理化学硕士学位;2002年从美国普渡大学获得其分析化学的博士学位。目前的研究方向为:质谱小型化;在荷质比基础上制备分离生物分子;离子轨道模拟和数据处理。   四、其它在ASMS上颁发的奖项    除了上述ASMS奖项,JASMS期刊(Journal of the American Society for Mass Spectrometry,美国质谱协会杂志)还在该会上颁发Ron Hites奖。该奖项授予做出卓越的原创性研究的高质量的报告。ASMS评选该奖项的原则是“创新方面、科技质量、可能带来的研究方向、实际应用的影响以及文章的编排质量”。该奖项是为了纪念印第安纳大学Ronald A. Hites教授而命名的,Ronald A. Hites教授于1988年创立JASMS期刊,该期刊覆盖质谱界的所有研究领域包括化学、物理、地质学、环境、生物以及生命科学。来自利兹大学的Alison Ashcroft教授荣获JASMS Ron Hites Prize(杰出期刊研究奖)。Ashcroft教授的论文题目是“应用电喷雾离子迁移谱技术研究蛋白质折叠的结构变化现象”(Monitoring Copopulated Conformational States During Protein Folding Events Using Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry,JASMS 2007,18,2180-2190),Alison Ashcroft教授是利兹大学结构分子生物学Astbury中心的质谱室主任。 华人质谱学会聚会   本届ASMS,主要来自于美国的华人已接近1000人,6月2日晚上,华人质谱学会(CASMS)在费城China Town举行了200余人的联谊会,并进行了理事会换届,到场的华人色谱学会和Agilent公司、AB公司、Thermo Scientific公司、Waters公司、Bruker Donltoncs公司、天瑞仪器公司等公司代表向参会代表表达祝贺外,天瑞仪器的董事长刘召贵博士还向广大华人质谱界学者发出了邀请,表示天瑞仪器将投入研发制造质谱,欢迎国外质谱界专家回国合作。 天瑞董事长刘召贵博士与化学诺贝尔得主Dr.John B.Fenn亲切合影
  • 全信息串联质谱
    全信息串联质谱&mdash &mdash MSE简介 贾伟 沃特世科技(上海)有限公司实验中心 未知物的(一级)母离子与(二级)碎片离子数据是对其进行质谱分析所必须的信息。除了具备DDA串联质谱采集方法外,沃特世质谱更提供了独有的全信息串联质谱(MSE)技术。那么MSE技术是如何获得串联信息,并做到信息收集的最优化与最大化呢? 全信息串联质谱(MSE)能提供什么样的信息? 1. 未知分析物的定性与定量在同一次分析中完成。 2. 同时获得母离子及碎片离子的高分辨、高质量精确数据。 3. MSE普遍适用于各种未知物分析,而且方法设置非常简便。 4. 充分发挥UPLC-MS液质联用的卓越性能。 什么是全信息串联质谱(MSE)? 1. MSE是在一次液质分析中同时获得高精确的母离子及碎片离子信息的串联质谱方法。 2. MSE由&ldquo 无碰撞能&rdquo 与&ldquo 高碰撞能&rdquo 两种扫描交替构成,分别记录母离子及碎片信息。 3. MSE通过母离子与其碎片离子具有相同色谱行为的特性进行母-子离子的关联归属。 全信息串联质谱(MSE)有哪些特点? 1. 全面:所有的离子信息都被记录,定量、定性更加准确。 2. 精准:全部母离子与碎片离子信息都是高精度、高分辨的质谱数据。 3. 简单:方法设置仅需:质量范围、采集时间、碰撞能量三个参数。 4. 灵活:碰撞能量为线性升高的方式,因此不同分析物可在其最佳碰撞能下实现碎裂。 与常规的DDA串联质谱法比较,MSE的优点是什么? 数据依赖型串联质谱法(DDA. Data Dependent Acquisition)是通过选择特定母离子进入碰撞池,从而采集相应的碎片离子。而MSE并不选择特定母离子进行单独碎裂,而是同时采集了所有母离子的碎片离子。这样MSE就避免了由于DDA采集速率的限制而造成的信息采集不全的问题。此外,MSE这种匀速高频的数据采集模式,对每个离子都可以得到其&ldquo 完美&rdquo 色谱图,而用以精准定量。相较之下,DDA由于采集的偶然性问题,其色谱峰往往存在缺陷,而影响定量准确度。 为什么说MSE与UPLC是最佳搭档? UPLC® 在色谱分辨率(选择性)、峰高(灵敏度)和运行时间(速度)方面都较HPLC有了质的飞越。但是UPLC短暂而修长的色谱峰也给质谱分析提出了更高的要求。一方面,MSE质谱方法巧妙地解决了DDA采集频率的限制问题;另一方面,UPLC也为MSE方法实现高准确的母子离子归属提供了坚实的基础。 MSE技术在生物制药分析、蛋白质组学、代谢物鉴定、代谢组学、脂质组学、杂质鉴定、法医毒理学、环境分析、食品检测、化学材料分析等不同的领域已经得到了广泛的应用。 参考文献 (1) Bateman, Carruthers, Hoyes, Jones, Langridge, Millar, Vissers Anovel precursor ion discovery method on a hybrid quadrupoleorthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation, J. Am. Soc. Mass Spectrom., 2002 13, 792-803. (2) Silva, Denny, Dorschel, Gorenstein, Kass, Li, McKenna, Nold, Ric hardson, Young, Geromanos Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005 Apr 1 77(7):2187-200. (3) Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 2010 Jul 2 9(7):3621-37. (4) C ha kra borty AB, Berger SJ, Gebler JC. Use of an integrated MS-multiplexed MS/MS data acquisition strategy for highcoverage peptide mapping studies. Rapid Commun. Mass Spectrom. 2007 21(5):730-44. (5) Tiller PR, Yu S, Castro-Perez J, Fillgrove KL, Baillie TA. Hight hroughput, accurate mass liquid c hromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a &lsquo first-line&rsquo approach for metabolite identification studies. Rapid Commun. Mass Spectrom. 2008 Apr 22(7):1053-61. (6) Simplified approac hes to impurity identification using accurate mass UPLC/MS Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720 03850en.pdf (7) T he utility of MSE for toxicological screening Waters Technology Brief, http://www.waters.com/webassets/cms/library/docs/toxicology_brief_8_2010.pdf (8) A case of pesticide poisoning: T he use of a broad-scope Tof screening approach in wildlife protection Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720003470en.pdf (9) Addressing c hemical diversity and expanding analytical capabilities with APGC Waters White Paper, http://www.waters.com/webassets/cms/library/docs/72003292en.pdf (10) McEwen, McKay A combination atmospheric pressure LC/MS:GC/MS ion source: Advantages of dual AP-LC/MS:GC/MS instrumentation, J. Am. Soc. Mass Spectrom., 2007 16, 1730-1738.
  • 岛津:浅谈质谱在毒品检测领域的技术进展
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文特别邀请来自岛津企业管理(中国)有限公司分析仪器事业部的崔巍经理谈谈她对毒品检测质谱技术进展的看法。仪器信息网:据了解,仅2021-2022年发布并实施的毒品检测国家标准、行业标准已超二十项,您认为我国近两年毒品检测标准频繁颁布的背后有哪些因素在推动?我国毒品检测技术规范及标准的发展历程如何?您认为近些年该领域里程碑式的标准有哪些?崔巍:2022年毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。技术方面最主要的目标就是对全类型精神活性物质的制造、贩运进行有效的管制。毒品检测规范的发展历程也反映了化学分析仪器的变革。1990-2009年GCMS类分析仪器成为毒品检测的主力机种产品;2010-2022年LCMSMS类分析仪器产品开始布局公安司法行业毒品检测领域;按照20年一个产业革命的周期分析,LCMSMS产品的产业布局将在2030年前结束。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。仪器信息网:您如何评价当前质谱技术在毒品检测领域的应用现状?其中质谱技术在该领域的发展将呈现怎样的趋势?贵公司针对毒品检测主推的产品有哪些?基于哪些技术?崔巍:当前质谱技术的难点有:1.痕量毒品及代谢物检测能力提升;2.未知类型毒品的筛查能力提升。这同时也预示着毒品检测将向着高灵敏度质谱技术和智能检测数据库开发这两个方向发展。下面就以岛津质谱技术为例介绍岛津在上述两个个领域的产品及应用技术成果。1.痕量毒品及代谢物检测能力提升样品中目标物浓度极低,在质谱技术灵敏度逐年提升的情况下,无限提升极限检测灵敏度势必将影响质谱仪及实验室数据的长期稳定性。在基质复杂的生物样品或污水检测中直接进样技术成熟度和仪器长期使用的稳定性均有待提升。目前较为成熟的技术是在线自动化样品富集技术,既可以最大程度的去除基质的干扰又可以提升质谱系统灵敏度,视为目前业内最稳定的系统化质谱平台:典型案例岛津AOE-LCMS-8050集在线固相萃取技术于一体化的AOE系统(岛津全自动固相萃取分析系统(Automatic Online Extraction System,简称AOE系统))客户装机实景图2.未知类型毒品的筛查能力提升中国毒品管制体系的建立,要求检测实验室具备大量的毒品及疑似物筛查检测方案。现有的检测方案虽可以满足常见策划类毒品的鉴定需求,但对于新型策划类物质的管理仍无法做到质谱筛查方案完全覆盖的能力。同分异构/同系物的出现更令众多业内专家十分头疼。智能化的数据库检索能力及可通过质谱信息预测检测化学结构的软件技术是毒品检测新技术革命的最新趋势。在传统GCMSMS平台上解决小分子类毒品的种属及结构鉴定是岛津质谱技术为毒品鉴定能力提升量身定制的解决方案。 软件平台:GCMS-TQ8050NX+卡西酮检测方法包智能化方法包检索原理排除同分异构体,1600 余种卡西酮类化合物共产生29种特征碎片离子,可进行产物离子扫描分析此外,结合质谱成像技术可以通过生物组织中毒品及代谢物的分布情况研究吸毒成瘾性及其背后的生物学原理。代表产品:iMScope QT 成像质谱显微镜产品及应用方向特点:1.带有光学显微镜的质谱仪,更加精准地融合光学显微镜图像和质谱成像图2.高空间分辨率、高速、高灵敏、高效成像分析功能3.通过拆装成像单元,使用一台仪器就能实现成像分析和LCMS分析。4.可提供从前处理到数据采集,数据分析的质谱成像整体解决方案应用案例:毛发截面样品中Methoxyphenamine(MOP)Methamphetamine(MA)在质谱显微镜下的分布图
  • 质谱新应用:“窃听”微生物分子之间的“交谈”
    除了一张跑步机办公桌,皮特德利斯特恩(Pieter Dorrestein)在加利福尼亚大学圣迭戈分校(UCSD)的办公室并没有什么特别:一张圆形工作台周围摆满了椅子,书架上满是期刊、论文和书籍,还有许多表彰他个人及其工作的奖章。  但一旦他开始给来访者演示他的工作,一切突然就变得神奇了起来。他在电脑上打开一份3D的空间展示画面:画面中有四个人围坐在桌子旁,其中一个就是德利斯特恩本人——他们看起来就像是被溅上了颜色鲜亮的油漆。为了制作这个画面,研究人员将房间的每个平面,甚至包括屋子里的人用棉签擦拭了几百次,然后用质谱技术分析棉签来鉴定其中的化学物质。皮特德利斯特恩的方法能够揭示微生物在复杂群落中的作用与功能  这幅画面揭示了许多关于这个空间和空间里的人的信息。德利斯特恩的两名同事是重度咖啡饮者:在他们的手上和脸上检测到了咖啡因的斑点,同时在地板上也有相当大的一块斑点,那是一片之前残留的咖啡渍。德利斯特恩不喝咖啡,但也在四处留下了踪迹——既有个人护理用品,也有他根本都不记得自己用过的普通甜味剂。他很惊讶,他触碰过的许多地方甚至发现了驱虫剂避蚊胺(DEET),但他至少六个月没有用过这种化学物质了。  画面里也有办公室其他生物的踪迹,比如寄居在人体皮肤上的微生物。德利斯特恩曾用质谱技术观察过这些微生物产生的小分子代谢产物,得到了关于微生物如何形成群落并与其他微生物、人类寄主以及它们寄居的环境互相作用的详细图象。  他分析了来自植物、海水、偏远部落以及人类患病肺部等的微生物群落,想要发现这些化学物质之间的交流方式:它们是怎样告知彼此某个地方是否适合寄居,又是如何为了领地而战斗的呢?这项工作可以鉴定出先前未知的微生物及它们产生的有用物质,比如说抗生素。  “这项研究的应用十分广泛,”加利福尼亚大学旧金山分校(UCSD)格莱斯顿研究所的比较基因组学专家凯蒂波拉德(Katie Pollard)评论道。由于许多微生物都无法直接培养和研究,所以这些原位(in situ)检测方式的出现影响重大。”同时,上个月美国白宫科学技术政策办公室公布的,投资5.21亿美元的国家微生物组计划(National Microbiome Initiative)中的部分研究目标,也可通过这项技术直接实现。该计划公布时,德利斯特恩也在现场。  在这个快速发展的领域,德利斯特恩仍旧潜心于构建实用工具,以及进行富有成效的合作,这使他分外引人注目。“皮特是真的对此感兴趣,并且非常具有创造性。”西北太平洋国家实验室的生物科学主管珍妮特扬松(Janet Jansson)说道。她曾于今年四月到访UCSD,当时德利斯特恩问她,能否擦拭她的一只手用以实验研究。“我说,‘太好了!可以的!我想要参与到这项研究中来!’”扬松回忆道,“他的研究既有趣又激动人心,所有人都非常愿意参与进来。”  攀岩时做出的人生选择  德利斯特恩成长于新西兰。16岁时他到美国亚利桑那州的图森走亲戚,在那里迷上了攀岩这项运动。由于自己家乡地形平坦,根本没有攀岩的场地,他申请到位于弗拉格斯塔夫的北亚利桑那大学读书——这里位于亚利桑那、新墨西哥、科罗拉多和犹他四州的交界处,有大量的石山可以攀登。他的专业是地理和化学,可他仍一心扑在攀岩上。但1998年大学毕业后,攀爬加利福尼亚州约塞米蒂国家公园中一面900米高的岩壁的经历令他开始重新思考人生规划。  当时他的最高一处固定点距离顶端的岩石只有50米,他意识到如果自己这时没抓稳,就会飞速往下掉落100米,直到安全绳索绷紧,把他狠狠砸在花岗岩上。他说,自己当时感到的不是害怕,而宁可说是他的无畏困扰着他。“我当时想,如果我继续攀岩事业,可能不会有什么好结果,”他回忆道,“所以我用绳索降了下去。”  那天,他开车回到位于弗拉格斯塔夫的家,开始填写申请研究生的表格。最后他来到了康奈尔大学研究微生物产生小分子物质(比如维生素B1)的机理。就是在这里,他第一次接触到质谱(mass spectrometry)技术。  通俗地说,质谱技术就是将复杂的分子破碎分离,使其离子化并且测量出碎片分子的质量,从而计算样品分子组成成分的技术。德利斯特恩就是利用这种像条形码一样的质谱技术,为样品中的每种化学物质创造出各自特异的标记。  德利斯特恩对这项技术深感兴趣,因此毕业后来到伊利诺伊大学香槟分校的化学生物学家尼尔凯莱赫(Neil Kelleher)的实验室继续博士后工作。凯莱赫倡导使用“自上而下”的质谱技术,即采用完整的而不是消解过的蛋白质直接放入仪器检测。利用这种方式,研究人员可以鉴定出蛋白质上的微小修饰,但是过程却很耗时。德利斯特恩在刚来到伊利诺伊的前两个月里就发展出一种快捷方式,可以系统地检验相当大分子量的酶。“我们将原本以年计数的工作量压缩到了几十天内完成。”德利斯特恩说道。他在博士后工作的两年内最终联名发表了17篇论文。“皮特不仅具有创造性,同时又干劲十足,而且能够用难以置信的能力来完成课题,这简直太难得了。”凯莱赫评价道。目前凯莱赫在西北大学任职。 两位健康人身上的400处采样揭示了皮肤上的化学物质及微生物名录  2006年,德利斯特恩加入UCSD任职——不过,当该校药理学院院长帕尔梅泰勒(Palmer Taylor)签署了能让他来做质谱成像的MALDI-TOF-MS(基质辅助激光解吸电离飞行时间质谱仪)的采购单时,一切才是真正的开始。“这改变了我的整个世界。”他说。  看到微生物间的“军备竞赛”  质谱成像技术不仅能鉴定样品中分子物质,同时还能提供空间信息。MALDI-TOF利用激光来加热并电离分子物质,研究人员用激光束扫描2D样品,可以捕获样品中不同分子精确位置信息的“图像”。这项技术可应用于鉴定并定位肿瘤切片中的生物标记物,但德利斯特恩感兴趣的是微生物,他想要知道能否直接扫描在皮氏培养皿中培养的微生物菌落并鉴定它们的代谢产物。  没有人做过这种尝试。德利斯特恩觉得这可能是因为大家都担心这会污染昂贵的质谱仪——“但是把微生物直接放到仪器里进行检测也一样会污染仪器。”所以他做了一个简单的实验,让一名本科生萨拉魏茨(Sara Weitz)来扫描芽孢杆菌菌落。  这次实验产生的图像不是最漂亮的,但是他们发现这种流程是可行的。他将图像结果发送给了保罗斯特雷特(Paul Straight),一名刚刚入职得州农工大学的微生物学家。“他当时完全目瞪口呆。”德利斯特恩说道。两组科研团队合作采用质谱成像技术检测了紧邻生长的枯草芽孢杆菌(Bacillus subtilis)和天蓝色链霉菌(Streptomyces coelicolor)的菌落。通过探索两种菌落交界处的空间信息,他们鉴定到了这两种微生物彼此相互竞争所用的分子物质。  德利斯特恩表示,将这场微生物的军备竞赛可视化的过程,令他回想起1928年亚历山大弗莱明(Alexander Fleming)从可以杀死细菌的霉菌中分离出青霉素的故事。质谱成像技术可以快速鉴定到这种互作的化学物质,很有可能加速新型抗生素的筛选。  德利斯特恩决定转移实验室的工作重心,几乎专门来研究这些技术方法。他那是还是一名青年研究员,他认识的所有人都不建议他冒这个险。但院长泰勒鼓励他马上申请终身教职。“皮特在分析和计算领域潜力非常突出,经常能够摆脱思维局限性,”泰勒说,“他之前的研究项目都发展得十分迅速。”  观测不纯净样本的问题在于,其产生的数据会十分混乱。扫描微生物菌落会产生数以千计的条形码,但是其中大部分都不知道与什么有关,相当于一堆没有注释的信息。“这就好像在昏暗的路灯下看东西,”德利斯特恩说,“人们只能‘看到’之前鉴定过的分子物质,但是绝大多数分子都是未知的。”扬松也认为这是这一领域目前的一个大挑战:“用质谱仪来分析特征是可行的,但仅凭这些特征仍很难鉴定分子物质是什么。”  为了分析这些庞大的数据,德利斯特恩与UCSD的计算生物学家努诺班代拉(Nuno Bandeira)合作,根据样品分子与已知分子的关系将条形码和分子物质分类,这使得研究人员开始从计算分析的角度预测上千种代谢物的结构和功能。但是目前依然有大量的数据没有得到注释:尽管世界范围内有数千人从事质谱研究工作,但大部分人只对他们感兴趣的几个分子进行了注释。  因此,2014年起,德利斯特恩与班代拉实验室的研究生王明迅(音,Mingxun Wang)开始尝试众包注释。他们建立了一个网站,取名为“全球天然产物分子互作网络”作为数据库和数据分析工具,使得研究人员们能够揭示相关分子物质的关系、将相似分子归类并比较数据库。“他建立的这个网站给这一领域的发展带来了巨大帮助。”扬松说道。  团队合作  德利斯特恩成功的关键因素之一就是他的合作精神。微生物组DNA及RNA测序专家罗布奈特(Rob Knight)就和德利斯特恩在同一栋建筑里工作,他们将测序与质谱技术相结合来进行研究。去年,德利斯特恩实验室的一位博士后阿米娜布斯利玛尼(Amina Bouslimani)在一位男性志愿者和一位女性志愿者身上选取400个点进行采样,并将实验重复了两次。一组样品送往奈特实验室进行微生物测序,另一组样品则通过质谱仪来鉴定与微生物共存的天然及人工的化学物质。  实验要求志愿者在采样前三天禁止洗澡或使用化妆品,可样品中仍有上百种微生物的化学特征被美容产品和卫生用品中的化学物质遮盖掉了。不过研究人员仍旧发现了微生物群落与局部化学物质之间的一致性:比如说,女性阴道部位的细菌就与炎症分子有关。德利斯特恩表示,这样的联系可用来判断微生物-寄主互作的假说。  布斯利玛尼目前正在分析来自志愿者手部及手机等个人用品上的样品。这项目前还未发表的工作显示,人们会在接触过的物体上留下独特而恒久的化学标记——就像德利斯特恩办公室的那副图像一样。  阿米娜和德利斯特恩认为,这一发现可以在司法科学上有所应用。采自嫌疑人皮肤的样品可用来分析其化学特征是否与犯罪现场相符。在缺乏DNA或指纹证据的情况下,罪犯留下的化学物质也可以提供生活档案:他们用过的物品以及身上携带的微生物都可以合成画像。“或许这些化学特征能够帮助调查者缩小搜查范围。”布斯利玛尼说道。  去年,德利斯特恩与纽约大学的微生物学家玛利亚多明戈斯-贝略(Maria Dominguez-Bello)等人合作,想要了解人类在不穿戴服饰的情况下皮肤情况及其微生物多样性。他们从巴西玛瑙斯、坦桑尼亚哈扎等偏远部落的居民身上采集了样品,并将其与采集地点附近非部落居民的样品相比较。利用德利斯特恩的质谱技术,他们发现部落居民的微生物群落及皮肤化学物质的多样性要高于生活方式较为现代的非部落居民。德利斯特恩说,目前正在进行的工作也有一些惊人的结果:巴西某一村庄的居民皮肤上具有多种药物分子,这说明他们与外来者的接触要比之前预测的多。  德利斯特恩表示,这项技术也可以应用于改善海洋生态环境,或者提高农业效率,以减少温室气体排放。提到这些想法时,他整个人身体前倾,表现得十分激动。但问及他下一步将选择什么样的研究课题时,他首先提到的还是人类健康。“对我们而言,这是显而易见又直截了当的——我们首先还是想要帮助病人。”他说。  德利斯特恩与奈特,还有UCSD的成人囊性纤维化门诊主任道格康拉德(Doug Conrad)等人合作发展了快速微生物诊断测试手段。囊性纤维化会引起肺部粘液的堆积,从而受到细菌周期性的感染。这种感染需要抗生素的积极治疗——但有时候细菌会产生抗药性。德利斯特恩及其同事通过分析来自囊性纤维化患者的粘液样品得到的质谱结果数据,鉴定到了未被标准医药技术发现过的微生物群落。  今年刚刚加入德利斯特恩实验室的博士后路易斯-菲利克斯(Louis-Félix Nothias-Scaglia)目前正在分析牛皮癣患者的皮肤,而牛皮癣通常被认为是免疫系统过度活跃引起的。如果能够在患者皮肤上发现健康皮肤中不存在的某种细菌产生的分子物质,路易斯-菲利克斯解释道,那么就有可能用于开发治疗或者甚至预防牛皮癣的药物。这样的话,利用微生物的改变来预测牛皮癣的发生,就能令患者减少免疫抑制药物的使用。  将这种数据密集型的技术应用到标准的实验室测试中又将是一个挑战。“肯定会有人说这太复杂了,不可能推广开来。”康拉德说。“在某种程度上,我能理解这种看法。但我们现在的发展势头不错,继续按照目前的方法做下去或许就能得到不错的结果。”  但德利斯特恩想要的不仅仅是维持现状继续做下去,他想要改变目前的状况,尤其是正在蓬勃发展的微生物组学研究领域。他认为学科发展就是要经历不同的阶段:第一阶段注重于微生物的鉴定,而第二阶段就是利用质谱等技术探明这些微生物究竟在干什么。  是什么驱动着微生物群落的建立?它们采用怎样的代谢方式?微生物之间、微生物与寄主之间又是如何互相作用的?“如果你能从根本上理解了这些问题,”德利斯特恩说,“那么你就可以开始控制它了。”他认为,第三阶段就是控制微生物。通过操纵微生物群落,是不是就能添加必需成分来改变人体健康、情绪和运动表现了呢?德利斯特恩认为这些问题的答案就摆在他面前,而他只需进一步探索。
  • SYNAPT G2-S为质谱分析开启新篇章
    1996年Waters公司推出了世界上首台商业化Q-TOF质谱,从那时起Waters就成为引领Q-TOF质谱发展的旗手。2007年Waters创造性地将行波离子淌度(T-Wave)嵌入质谱中,推出SYNAPT HDMS&mdash 一举获得了当年PITTCON金奖。从此质谱不仅可提供质量信息,而且可以根据离子的形态进行分离、分辨。加之在液相领域至今所向披靡的UPLC技术,Waters为使用者呈现出了一个由质量、形态、色谱构成的多维分析空间。SYNAPT已帮助科学家在蛋白质复合体四级结构、蛋白单体变化及聚合物分析等领域,在Cell、Nature等期刊发表诸多论文。 SYNAPT没有止步,它带来了越来越多的惊喜。首先是T-Wave与前后两个碰撞池结合的TriWave技术。这个巧妙的设计使Q-TOF质谱具备了三级质谱性能。更令人兴奋的是,此三级远非常见的三级方法:母离子在第一个碰撞池产生的碎片,可在之后的T-Wave迁移腔中根据形态分离,因此当碎片离子按照形态顺序依次进入第二个碰撞室后,最终产生的三级碎片不仅包含质量信息,而且蕴含了结构信息。这种被称为时间排列平行碎裂(TAP,TimeAligned Parallel Fragmentation)的三级质谱技术,在糖肽结构分析中,可巧妙地分别采集糖链及多肽的碎片信息,为蛋白质糖基化及其它化合物分析提供了全新的策略。 T-Wave还可以提高质谱信号强度,提升信噪比!使用两个T-Wave组成的离轴迁移腔被命名为Step-Wave。它在使分析离子&ldquo 上一个台阶&rdquo 进入质谱分析器的同时,让中性干扰物&ldquo 下一个台阶&rdquo 而远离质量分析器。因此采用Step-Wave的SYNAPT G2-S对痕量物质的分析具有了前所未有的分析能力。较前代产品,SYNAPT G2-S的信号检测强度提高了约30倍,信噪比提高了5-6倍,最低检测限也下探了一个数量级。灵敏度的显著提高、无与伦比的选择性和分析能力、以及离子淌度分离等多重优势,使SYNAPT G2-S能够以在低于任何其它高分辨率质谱仪的分析浓度条件下定性、定量分析物。HDMSE是T-Wave技术的又一创新应用,它使沃特世独有的MSE专利技术进一步升华。MSE通过碰撞池在低、高能量匀速高频切换,分别得到全部母离子与所有碎片离子信息。之后通过母离子与其碎片具有一致色谱行为的性质,进行碎片离子归属,从而得到所有母离子的二级碎片信息。MSE的优势在于它不仅采集了最全的离子信息,而且&ldquo 完美&rdquo 地记录了色谱数据。这对于分析物的定性和定量堪称绝佳的解决方案。 HDMSE技术的推出,进一步对色谱行为相近的分析物通过离子淌度区分,极大地改善了数据的信噪比,使定性结果更加准确(图2左)。使用MSE以及HDMSE采集多肽GVIFYESHGK二级图谱的对比实验中可以看到,在MSE数据中有多达254个碎片信号,其中大部分是干扰信号,如果这些信号都被用来检索,将可能影响鉴定的准确性;而通过HDMSE得到的潜在产物离子碎片仅有35个,也就是说绝大多数干扰信号都被去除了,这极大地提升了最终的鉴定可信度(图2右上)。更让人兴奋的是,HDMSE技术在对复杂体系蛋白鉴定的数量上,较MSE也有了近一倍的提升(图2右下),产生了质的飞跃。 配备MALDI离子源的SYNAPT G2-S还可进行MALDI Imaging实验。较常规的MALDI Imaging技术,通过T-Wave技术的使用,科学家可以得到更加丰富、可信的实验数据,因此得到了广泛的应用。此外,ETD(电子传递解离)等丰富的研究手段都可在SYNAPT G2-S上实现。SYNAPT G2-S还具有最广泛的离子源,包括:电喷雾(ESI)、大气压化学电离(APCI)、双电喷雾和APCi(ASCi)、大气压电离(APPI)、常压气相色谱法(APGC)、NanoFlowR(ESI)、基质辅助激光解吸(MALDI)、大气固体分析探头(ASAP)和微控UPLC(T RIZAIC UPLC)等。它还可与包括DESI(Prosalia)、DART(IonSense)、LDTD(Phytronix)和TriVersa nano Mate(Advion)源在内的诸多第三方离子源兼容。 SYNAPT G2-S质谱作为2011年Waters最新发布的尖端质谱,正在融入生命、材料、环境、食品、农业、中药等领域的研究与实践应用中。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 岛津特色质谱技术丨多维液相色谱质谱解决复杂体系分离难点
    药物分析方法开发共性难点岛津技术团队在与行业用户专家和用户交流中,收集以下共性难点反馈:1、基质化合物组成极性范围宽,色谱峰容量不够。2、中药基质复杂,在对特征峰鉴定时可能受到目标物附近其他峰干扰,影响鉴定准确度。3、聚合物杂质检测通常采用排阻色谱法,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。4、采用HPLC-UV法进行杂质测定,但该方法无法将HPLC中使用的不挥发性流动相直接应用到LC/MS分析中,或者流动相与质谱不匹配。针对以上行业分析难点,岛津多年来持续致力于多维色谱质谱联用解决方案开发,将多类型色谱分离优势和质谱分析优势进行结合。岛津多维液相色谱质谱解决方案全二维液质联用系统&中心切割1二维液质联用系统Nexera-e 全二维液相色谱仪《中国药典》0512高效液相色谱法通则:二维液相色谱可以分为差异显著的两种主要类型:中心切割式二维色谱和全二维色谱。中心切割式二维色谱是通过接口将前一级色谱中某一(些)组分传递到后一级色谱中继续分离,面对复杂基质环境时,将一维目标峰切到二维进行更好的分析。全二维色谱是通过接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离,如此两个独立的分离模式正交组合可实现尽可能高的峰容量。二维色谱可以是相同的分离模式和类型,也可以是不同的分离模式和类型,二维色谱可以和质谱联用。详情参考:https://www.shimadzu.com/an/products/liquid-chromatography/hplc-system/nexera-e/index.html2全谱二维液质联用系统极性覆盖范围宽:可一针实现宽极性多目标物的同时分析,可以胜任绝大多数分析项目中宽极性、多组分分析的要求。该系统和岛津最新推出的LCMS-9050高分辨质谱正负极离子同时采集功能结合,能得到4in1技术优势--相比岛津前一代方案,可以节省3/4的样品、分析时间,并减少3/4的质谱污染。3 SEC-RPLC-QTOF二维液相色谱-高分辨质谱为了解决前述聚合物杂质鉴定难题,岛津与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。详情参考:https://mp.weixin.qq.com/s/etytDIXLjrICzsNfHOKgAw。4 Trap-Free 二维液质联用系统Trap-Free 2DLC系统是一套支持在线流动相转换的二维液相与色谱-质谱联用仪的组合系统,系统结构示意图见图 1。本系统的第一维液相色谱系统,可使用非挥发性流动相或者与质谱分析不匹配的流动相体系,通过系统中切换阀、程序命令的组合,对第一维液相色谱系统分离的组分进行分馏。本系统的第二维液相色谱系统,可以采用适合 LCMS 分析的液相色谱条件,针对分馏的组分,进行针对性的质量分析。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf全谱二维液相色谱与四极杆飞行时间质谱联用分析不同产地当归的活性成分a) 正模式火山图结果 b)负模式火山图结果根据多元统计分析OPLS-DA 结果的 VP 值,可以初步筛选出甘肃产当归和云南产当归的差异活性物质,进一步筛选则通过结合单变量统计火山图结果(P-value 与Fold change) 进行。最终正模式下筛选得到 1351 个差异物质,负模式下筛选得到1716 个差异物质。通过 MSDIAL软件,对化合物进行鉴定,共鉴定出 43种差异性化合物,包括藁苯内酯类有机酸类等天然活性物质,下表为部分差异性化合物鉴定结果表。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-073.pdf岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式图1 头孢西丁钠破坏样品检测色谱图本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)详情参考:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378二维液相色谱联用四极杆飞行时间质谱仪对赤芍配方颗粒特征图谱2号峰鉴定配方颗粒特征图谱(1D) 配方颗粒特征图谱(2D)一维液相特征图谱中的2号特征峰切入至 50 μL定量环进行收集,再由二维流动相进行洗脱,该组分在二维液相上的保留时间为 35.267 min。采用岛津 2DLC+LCMS-QTOF对赤芍配方颗粒特征图谱中2号特征峰进行了高分辨质谱定性研究。经 MS1、MS2质谱图信息、相关文献信息以及标准品确认,最终鉴定2号特征峰为原花青素 B1。本研究为中药配方颗粒特征成分研究提供了思路,为赤芍中药配方颗粒特征图谱标准制定提供参考依据。Trap-Free 2D LC Q-TOF 定性分析宫缩抑制剂阿托西班中的多聚体杂质阿托西班二聚体的[M+3H]3+峰分子式预测结果 阿托西班二聚体解卷积分析结果阿托西班三聚体的[M+2H]2+峰分子式预测结果 阿托西班三聚体解卷积分析结果针对多肽药物中的由两个或多个多肽组成的稳定的多聚体杂质,可利用体积排阻色谱法(SEC)分离相关杂质。本案例采用岛津Trap-free 2DLC+LCMS-9030,既能避免SEC的色谱条件与质谱离子源不匹配,也能有效解决液相色谱分析浓度过高而导致的质谱信号饱的问题。结果显示阿托西班二聚体和三聚体的 MS1的离子质荷比同理论值均小于1mDa。使用 Insight Explore 软件中解卷积功能预测目标物的分子量,预测分子量和理论分子量的误差小于3ppm。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf注:本文中所用数据均为岛津实验室特定条件下的测试数据,结果可能随实际情况变动文中涉及最佳、最低类描述,限于实验组别对比结果。本文内容非商业广告,仅供专业人士参考。
  • 步锐科技:呼气质谱检测临床应用处于行业爆发前夜
    呼气检测作为新兴的体外诊断POCT 领域的一种新技术,从NMPA批准上市算起,目前市场规模最大的幽门螺杆菌呼气检测的历史不足25年,市场发展潜力最大的炎症NO呼气检测的发展约10年。随着临床对呼气检测需求不断发展,基于质谱的呼气检测技术应运而生。在此背景下,仪器信息网特别策划建立“呼气质谱技术与疾病诊断”主题约稿,聚焦呼出气检测质谱技术在疾病诊断领域的最新应用,以增强业界质谱专家和技术人员、医疗诊断行业工作者之间的信息交流,同时向仪器用户提供质谱在医疗诊断领域更丰富的产品、技术解决方案。本期我们与深圳市步锐生物科技有限公司(以下简称:步锐科技)就呼气质谱检测技术的发展、现状、挑战以及未来的发展趋势等进行了深入的交流。步锐科技人体呼气中含有大量高浓度的氮气(78%)、氧气(16%)、二氧化碳(4~5%)、氢气(5%)、惰性气体(0.9%)和水蒸气。此外,还含有一氧化氮、一氧化二氮、氨、一氧化碳和硫化氢等少数低浓度(ppm~ppb)无机气体,丙酮、乙醇、异戊二烯、乙烷和戊烷等种类繁多的超低浓度(大多在ppb~ppt)挥发性有机化合物(VOCs),以及一些蛋白质、核酸、微生物和细胞颗粒或碎片等。这些呼气检测研究的目标物质,都是疾病生物标志物的潜在来源。但就检测便捷性和病种覆盖范围来说,当前呼气VOCs吸引了临床研究和产业技术界的最多关注。最新数据显示,目前呼气中含有的挥发性有机化合物(VOCs)已高达1488种(2021年),比2014年时新增了70%。而且随着研究将更精准的检测技术应用于更多病种和临床场景,这一数字预期还将不断增长。粗略统计,目前经过GC-MS鉴定与疾病相关的VOCs标记物超过200种,其中绝大部分相对分子量位于0~500之间。例如,多项研究发现,丁酮、1-丙醇和异戊二烯等170余种呼气VOCs标记物与肺癌有关;萘,庚酮,庚烷,苯和癸烷等化合物被发现是结核感染的可能标志物;目前,各类疾病发现的标志物均在数十种以内,其中,乳腺癌相关联的呼气VOCs也高达62种。随着研究的深入,以多种特征VOCs的成分和浓度差异组合作为疾病精细检测的“标记物组合”逐渐成为趋势,以单一的标记物指标异常简单判别疾病的传统操作或将成为过去。然而,目前疾病呼气VOC标记物的发现与关联病种、临床应用(如健康筛查,鉴别诊断,治疗评估等)和呼气检测分析方法等多种因素有关,不同病种常有交叠。标志物的确定还需要更多更对基础研究的进一步探索,从代谢通路的角度夯实呼气代谢组学的基础,通过多中心队列研究验证其可靠性。仪器信息网:: 针对呼气质谱检测与疾病诊断,目前共建立了哪些技术方法?不同的质谱技术分别拥有什么特点?步锐科技:质谱技术作为化学物质定性分析的金标准,在小分子化合物的快速定性定量检测中具有明显优势,适用于人体呼出气体中VOCs的检测分析。目前用于呼出气VOCs检测的主要技术包括:气相色谱(GC)和气相色谱-质谱联用(GC-MS),选择离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等。其中,GC-MS是呼出气疾病诊断研究领域使用最为广泛的呼出气质谱检查技术,其具有很好的定性和定量能力,也是目前最为可靠的呼出气化合物检测分析方法。但由于呼出气组分的种类繁多、性质各异,通常需要使用不同类型的预分离色谱柱,结合痕量气相组分的预浓缩和富集方法进行分析,这极大增加了操作复杂性、样品分析时间和检测成本。这也成为GC-MS技术从科研向临床应用的转化的最大障碍。目前临床应用研究中,常采用呼出气检测质谱技术主要包括选择离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等的直接质谱检测技术,他们可以支持呼出气的快速检测。其中,(1)SIFT-MS与PTR-MS主要利用试剂离子H3O+、NO+或O2+与有机物分子进行化学电离反应,目前研究最多、应用最广泛的PTR-MS通常以H3O+为试剂离子。可根据产物的谱图特征进行检测分析,适合用于能与试剂离子发生反应的样品分子检测,如质子亲和势高于H2O的VOCs。(2)SESI-MS技术主要依赖于电喷雾电离(ESI)带电粒子与中性气体样品分子之间的气相相互作用,其电离过程非常柔软,适合极性化合物检测,再联合高分辨质谱如Orbitrap,可得到分子量稍大些的化合物信息。其余的直接质谱检测技术则多以获得小分子代谢物信息为主。(3)PI-MS技术则是通过使电离能低于光子能量的待测物分子吸收单个VUV光子能量后直接离子化,其分子离子产率高、碎片化程度低,可用于非极性/弱极性到强极性化合物分析的电离,是一种高效的直接质谱电离技术。仪器信息网:在疾病诊断的应用场景下,对呼气质谱技术提出了哪些要求?当前的应用有什么困难点?步锐科技:呼气质谱检测技术作为新兴的呼气代谢组学的基础,近年在疾病诊断领域取得了巨大的发展,呼气疾病诊断技术呼之欲出。然而呼气作为代谢链路的最末端,其复杂程度也是前所未有的,因此呼气质谱从科学研究走向临床应用,在呼气质谱技术在临床研究有效的基础上,还亟需更好地解决如下问题:1)受试者呼出气样品采集的精准化与规范化。人体呼出气样本具有复杂且不稳定的特点。受试者呼吸的方式,采集的时间,采集的装置等都直接影响采集到样本中包含代谢化合物的浓度。采集后的存储同样也极具挑战,呼出气采集后会随着温度的变化,存储环境的不同而发生不同程度的物理变化。因此呼出气检测技术应用临床亟需探索确定稳定可靠的呼出气采集流程、呼气存储装置和方法。2)高覆盖、高灵敏、高通量、高稳定的质谱分析方法和仪器开发。呼出气组分复杂,约包含数百种VOCs,且属于痕量级,通常在ppm~ppt量级,对呼出气检测设备的检测灵敏度、电离覆盖度等提出了较高的要求。这部分的技术参数直接决定对应的检测技术的应用范围。此外,临床应用也对呼气检测技术的通量和稳定性有较高的要求。这部分的技术参数决定对应的检测技术能面临长期大量的临床需求。因此,呼出气分析方法的效率和可靠的质量控制方法也是各质谱技术向临床应用转化需要考虑和解决的技术问题。3)疾病呼气代谢标志物发现和多中心、大规模验证。人体呼出气中VOCs来自于两个方面:一方面是外源性VOCs,与我们所处的环境等相关;另一方面是内源性VOCs,除了因疾病导致的变化外,还一定程度上受到年龄、性别、吸烟、饮食、药物摄入、基础疾病、微生物等因素的影响。寻找具有普遍认可以及专家共识的明确疾病相关生物标志物,是质谱分析方法应用临床的生物学基础。其发现依赖于基础研究和临床研究的有机结合,而其验证则需要多中心、大规模呼出气临床队列研究。仪器信息网: 贵团队/贵司重点关注哪种呼气质谱技术?当前有哪些具有代表性的应用进展?步锐科技:我司深圳市步锐生物科技有限公司(以下简称:步锐科技)是国内最早布局呼出气VOCs检测的企业之一。步锐科技依托与中国科学院大连化学物理研究所李海洋研究员团队合作开发的高气压光电离-飞行时间质谱(HPPI-TOFMS)技术进行呼出气检测用于疾病诊断的探索与研究工作。团队基于10.6 eV的VUV-Kr灯开发了高气压光电离源,结合高效射频离子传输系统,在相对湿度100%条件下可以实现酮、醇、酸、含硫化合物、含氮化合物等痕量小分子挥发性有机代谢物的检测,是近年来用于人体呼出气研究的新技术。HPPI-TOFMS可以实现呼出气样本直接进样快速检测,省去吸附富集过程,无需样本分离纯化预处理,使得呼出气检测产品化及大规模进入临床应用成为可能。目前,步锐科技申报的人体呼出气检测质谱仪,已获得中国药品监督管理局(NMPA)审批的二类医疗器械注册认证(CFDA Ⅱ)(湘械注准20212221412),主要研究管线集中在感染性疾病和肿瘤领域,已经在结核病、肺癌、食管癌、阿尔茨海默症等病种中展开了多项前瞻性临床研究,在JAMA Network Open、Eclinicalmedicine、Alzheimer's & Dementia、J. Breath Res、Biosci Trends等期刊发表多篇高水平学术论文。此外,步锐科技自主开发的基于呼出气的肺结核诊断技术,在临床队列和肺结核入学筛查项目开展了大规模实践验证研究,均具有良好的准确度,灵敏度和特异性超过90%。仪器信息网:: 您如何看待当前呼气质谱检测技术在疾病诊断应用的发展现状?未来其在疾病诊断领域将有哪些热点应用?步锐科技:目前,呼气质谱检测研究已探明的疾病谱较为广泛,已涉及数十种疾病,包括肿瘤、感染性疾病、呼吸系统和消化系统疾病,以及其他代谢显著变化的重大疾病(慢性代谢/心血管/神经/精神疾病等),如肺癌、肺癌、乳腺癌、结直肠癌、胃癌、头颈癌、卵巢癌、前列腺癌、肾癌、膀胱癌和肝癌等恶性肿瘤,新冠肺炎、结核、铜绿菌感染、流感、曲霉菌感染、疟疾、幽门螺杆菌感染和肝炎等多种病毒、细菌、真菌和寄生虫感染病,以及食管炎、胃炎、胃溃疡、炎性肠病、肠应激、肝硬化、肝衰竭、糖尿病、心绞痛、阿兹海默病、帕金森症、精神分裂症和肌萎缩侧索硬化症等。呼气代谢研究广泛涉及健康筛查、鉴别诊断、治疗评估、预后管理及发展预测等临床全病程场景,其中以疾病筛查诊断最为热门。近年来,气相色谱质谱(GC-MS)、离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等相对较新设备也在不断创新和改进,并不断投入到相关探索和验证研究中,相应的采样检测分析标准和流程也在不断规范和标准化。大量高水平研究论文的发表,更多呼气代谢研究平台和(产学研联合)实验室的构建,以及研究基金支持和厂商的积极参与,正在推动呼气质谱检测研究和产业发展渐入佳境。呼气检测以其简单无创和低成本的特征,对比常规体液和影像检查,在日常健康体检和大规模疾病筛查领域具有绝对优势,未来可满足家庭、社区和特定单位等精准度要求不高的POCT健康检查和持续监控要求。高精简且操作简便新型质谱可用于医疗和科研机构的多病种全周期临床检测和研究中。仪器信息网:当前呼气质谱检测技术在疾病诊断领域的发展处于哪个阶段?未来将如何发展?步锐科技:中国的呼气检测市场在全球范围内的发展较快且覆盖面较广,且聚集了国外几乎所有的呼气检测产品。以广谱VOC检测为基础的产品技术,在心脏移植和新冠检测等领域的产品已获FDA和EMA等各国药监部门批准临床应用/紧急授权外,并有大量企业和医疗卫生中心合作开展大量的临床应用研究。总体而言,目前出呼气检测临床应用正处于行业爆发的前夜,呼气检测技术在肺结核、新冠等呼吸道传染病领域的应用已得到广泛证实,在乳腺癌和肺癌等癌症早筛领域的应用也备受关注。步锐科技呼气结核辅助诊断产品即将完成注册临床前研究,目前阶段性结果符合预期。临床应用指日可待。而在其他疾病领域,呼气质谱检测正处于多病种全周期医学科研火热开展阶段。以步锐科技和英国Owlstone Medical为代表的国内外领先呼气质谱检测公司均以自身呼气代谢组学科研平台为基础,与合计近百家顶级医疗机构开展多病种科研合作和服务。因此,呼气检测技术在未来医疗领域将有广阔的临床应用,具有发展成为常规临床检测手段的潜力,将为未来精准快速医疗提供重要力量。
  • 北京妇产医院曹正临床质谱团队新成果:发现无症状分娩预测关键标志物
    近日,首都医科大学附属北京妇产医院曹正临床质谱团队在JCR Q1区内科权威期刊《Annals of Medicine》在线发表题为“Delivery prediction by quantitative analysis of four steroid metabolites with liquid chromatography tandem mass spectrometry in asymptomatic pregnant women”的研究论文,第一作者为2020级检验专业研究生孟兰兰,该研究通过应用液相色谱串联质谱(LC-MS/MS)平台建立了四种类固醇代谢物(E3-16-Gluc、17-OHP、THDOC、A-3,17-Diol)的方法学并进行了一系列的方法验证,证实E3-16-Gluc 和 17-OHP 的类固醇代谢物组对于预测没有任何临产临床迹象的单胎妊娠妇女(简称无症状孕妇)一周内的分娩具有极大价值。早产机制尚不明确标志物发现推动早产预测根据世界卫生组织统计,全球每年出生的早产儿有1500多万,我国的早产儿出生率约为10%,早产是造成围产儿及5岁以下儿童死亡的最主要原因。但目前早产发病机制尚不明确,作为早产临床诊疗中的重要环节,此前临床亦无可靠的短期早产预测标志物。分娩预测对评估预产期、提供充分产前护理建议,以及早产和过期妊娠干预诊疗都具有重要意义。而随着三胎政策的落地,高龄、高危以及有妊娠并发症或合并症者孕妇比例逐渐增高,早产预测的临床意义和必要性也进一步提高。首都医科大学附属北京妇产医院曹正、翟燕红临床质谱团队,联合产科刘晓巍团队以及美国康纳尔大学医学院赵贞团队,利用自建LC-MS/MS方法,对招募的585名30孕周(GW)及以上无症状单胎自然分娩孕妇进行血浆中的四种类固醇代谢物的定量检测,评估其在分娩预测中的临床价值,在采集血浆后 7 天内分娩为阳性组,在采样后 7天内未分娩的为阴性组。实验结果表明,THDOC和A-3,17-Diol的浓度在阳性组和阴性组之间没有显著差异。相比之下,阳性组的血浆E3-16-Gluc 和 17-OHP水平显着高于阴性组,具有统计学差异。根据ROC分析确定的临界值,E3-16-Gluc和17-OHP组合测量的阴性预测值(NPV)高达95.7%。本论文对E3-16-Gluc 和 17-OHP 的类固醇代谢物在相对较短的窗口(即7天)内准确排除自然分娩能力的发现,对推动开发简单而准确的早产诊断检测手段有着重大意义,能够为无症状孕妇住院与门诊监测以及门诊强度的临床决策提供重要参考。主要作者介绍 曹正,主任技师,副教授,硕士生导师,首都医科大学附属北京妇产医院临床质谱检验中心主任、检验科副主任。博士毕业于美国马里兰大学帕克分校,随后进入美国休斯敦卫理公会医院进行检验住院医师培训,并取得美国临床化学医师执照。主要社会任职:首都医科大学临床检验诊断学系青年委员会副主任委员,北京市临床检验中心临床质谱规范化应用专家委员会副主任委员,北京内分泌代谢病学会检验医学专业委员会副主任委员等。
  • 利用质谱即可检测未知新型人造毒品!已投入实战
    据公安部新闻中心,公安部治安管理局官方微博:“禁毒民警是公安队伍里最危险、牺牲最多的警种之一,2017 年以来全国有 30 余名禁毒民警牺牲、60 余名禁毒民警负伤。与毒贩交锋中,受伤、流血是家常便饭,这些伤痕,成为一道道无法抹去的‘勋章’。”如果能快速识别疑似人造毒品,无疑会给禁毒警察的工作带来帮助。近日,正在国外读博的南京青年汪飞,联合团队成员研发出一款新方法,只需利用质谱,即可获得未知新型精神药物即人造毒品的化学结构。图 | 汪飞(来源:Linkedin)11 月 15 日,相关论文以《一个深入的生成模型可以自动阐明新的精神活性物质的结构》(A deep generative model enables automated structure elucidation of novel psychoactive substances)为题发表在Nature Machine Intelligence 上。图 | 相关论文(来源:Nature Machine Intelligence)这是一种自动化、生成式的机器学习方法,了解人造毒品的化学结构后,即可帮助相关人员更快识别出疑似人造毒品。此前需要数周到数月,才可明确一款全新人造毒品的结构据悉,全球每年有大量新型精神药物在非法市场上冒出来,它们往往会带来和已知非法药物相似的精神效果。但是,鉴于这些物质的合成方式不同,因此其化学表现也有所不同。正因此,它们多数不在现有毒品法规的管辖范围之内,从而导致很难被侦测。通常,人造毒品的检测由相关法医实验室完成,检测时一般是从被查封药片或粉末中采样,并使用质谱分析法进行识别。这并不是一件容易事,要想弄清楚一款全新人造毒品的结构,化学专家们往往需要持续数周甚至数月的埋头工作,并且还得借助其他类型的实验技术。(来源:Nature Machine Intelligence)研究中,汪飞和团队,从世界各地的法医实验室众包的保密数据中,训练出这款机器学习模型,它能从结构和性质上生成和近期人造毒品相似的分子。该研究主要针对一类叫做 NPS(novel psychoactive substances)的药品,也就是新型精神药品。这类新型精神药品通常由“街头化学家”所创造,它们和大麻、海洛因等毒品一样,都具有致幻效果。为了逃避法律的制裁,新型精神药品的化学结构通常不为人所知。当前,执法部门和医疗部门存在的痛点,是如何去检测它们。比如执法部门在机场截获一批粉末,需要知道这是什么,或者医疗部门今天有一个服用过量的病人,那就需要知道病人到底服用了什么。(来源:Nature Machine Intelligence)该问题的难点在于,首先要知道它可能是什么?以及它可能的结构是什么。目前,要想获取结构比较常见的实验室手段有 2 个:一个是通过核磁共振(NMR);另外是通过质谱(MS)。也就是当获取样本之后,要先得到它的核磁共振图谱或者质谱图,拿到图谱之后去一个数据库里做对比。如果数据库里有现成数据,即可知道需要检测的样本是什么。但是在大家从未见过该物质的结构的情况下,很难确认它是什么。而该研究主要是使用深度学习的方法来研究检测新型精神药品。(来源:Nature Machine Intelligence)生成大约 900 万个可能存在的致幻剂的分子结构研究中该团队用大约 1700 多个新型致幻剂的结构训练了化学语言模型模型(DarkNPS)。这个模型使用SMILES(multiple simplified molecular-input line-entry system)文本来表示分子结构。从概念上来看,这模型非常类似 OpenAI 的 GPT-3,只不过 GPT-3 的输入是人类语言文本,而该模型的输入是一个分子的文本表达。这个模型可以生成大量的分子表达文本。通过改模型他们获得了大约 10 亿个不同的输出。由于分子的 SMILES 可以是重复的。即同样的分子结构可有不同的文本表达,再去除了不合格的表达式之后,最终得出 890 万个的潜在新型精神药品的分子结构。接下来,该团队使用了一个现有的质谱预测模型(CFM-ID,给每一个分子结构计算了 MS / MS 质谱。在测试种该系统实现 68 % 的 Top-3 检测准确率。为了进一步验证该系统的检测能力,该团队和欧洲的检测机构进行了合作,后者提供了一些今年刚刚收集到的样本。在这些样本里面,他们检测到了一个之前尚未被发现的新型毒品(DMXE)。(来源:Nature Machine Intelligence)已经正式投入应用汪飞表示,毒品检测的功能是该成果目前的主要可行应用,它已经被包括美国缉毒局、德国联邦警察还有欧洲的一些执法机构使用。此外,将人工智能的分子生成结构的模型和质谱生成的模型组合在一起使用的方法它会对于小分子识别,尤其生物检测样本提供一个新的思路。另外一些比较有意思的应用前景可能包括检测兴奋剂,相同的方法也可用在医疗相关的一些检测项目上面。而对于生成模型本身,它可以用在药物研发、以及检测环境污染物上。(来源:Nature Machine Intelligence)汪飞回忆自己的研究方侧重于为化学和分子生物学提供更适用的机器学习方法。在他就读的阿尔伯塔大学(University of Alberta),他在硕士研究生第二年开始去选择导师做课题。开始他其实对强化学习更感兴趣的,但在当时该方向的竞争比较激烈,很多厉害的导师都没有名额。有一天他遇到了现在的导师,然后他问导师:“您这有什么有意思的项目吗?”他导师看着他并问了一句:“你觉得去把分子炸掉这件事情你喜不喜欢?”他非常强调的是把它给爆破掉这么一个动作,汪飞当时觉得非常有意思,想都没想就答应了。他认为,至少把分子炸成碎片,听起来比做其他研究好玩很多。更有意思的一件事情,就是在本次研究中,他和团队其实是先把分子用一个一个原子给它拼装了起来,之后再把它给炸掉(质谱)。图 | 汪飞的导师之一尼罗素 格林(Russell Greiner)(来源:资料图)本科时,汪飞在在美国和加拿大边境的一个学校读本科,当时读的是计算机专业。学校非常的小,但是它的机会非常多,本科时他就使用人工机器学习做数学公式的识别。汪飞回忆称,那会大家还在使用支撑向量机(support vector machine, SVM),深度学习在当时还没有现在这么流行。本科毕业之后,他去做了几年电子游戏的开发。但是游戏开发本身是一个挺枯燥的过程,因为总是在重复做一样的事情。所以,后来他决定继续深造,目前,他已经拿到了硕士学位,现在在开展博士课题的研究,并打算在该成果的基础之上继续做研究。
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • Advion推出高性价比质谱系统“TIDES EXPRESS”
    近日,Advion公司在佛罗里达ABRF 2016年会上发布了一款蛋白质和多肽分析系统,“TIDES EXPRESS”,该系统结合了Advion公司小型台式质谱Expression CMS (L型)。新的工作平台提升了化学家在多肽合成过程中的每一步反应及最终成品的质量分析工作流程。它是固相多肽合成监测反应的理想工具。此外,碎片分析和电荷去卷积工具也为其在蛋白表征方面增强了性能。 固相多肽合成(SPPS)可以快速、平行的合成各种长度的氨基酸肽链,甚至有些氨基酸肽链是超出30到40的长度。尽管固相合成(SPPS)具有高度的自动化,但是一些肽链的合成仍具有挑战性,而且在一个大规模蛋白合成过程中若出现任何小瑕疵,都将会花费巨大的成本来修补,若是用快速分析就能防止这些错误出现。质谱通过分析氨基酸主链上特殊得或者选择性的分子碎片就可以提供分子质量和氨基酸序列信息。“TIDES EXPRESS”包含简单易用的HPLC梯度系统和手动进样器,Expression CMS (L型),碎片分析和电荷去卷积软件工具。 “蛋白质和多肽分析的复杂性要求一个有效的,低成本的分析工具来快速做出监测”市场部副总裁Simon Prosser说到。“它的简单易用和小型紧凑使得“TIDES EXPRESS”成为固相合成(SPPS)监测的理想工具,而现在很多分析都只被限制在紫外或者是红外来进行监测分析。”
  • 使用非数据依赖采集法实现氢/氘交换质谱数据自动化分析
    HDX-MS是一种基于蛋白质主链酰胺氢原子与氘水中氘原子交换而获取有关蛋白质高阶结构和动态信息的方法。该技术可以帮助研究蛋白质折叠机制、发现配体结合位点、突出变构效应,在生物医药行业中发挥重要作用。尽管HDX-MS在蛋白质分析中频繁使用,但它通常无法进行高通量分析,且受限于大于150 kDa蛋白的分析。此外,HDX-MS生成复杂的同位素峰型常伴有谱图重叠现象,导致氘代值被错误计算。随着样品复杂性的增加,这一问题会更加加剧。目前,数据处理的方法涉及到手动检查原始数据以筛选谱图,并丢弃有任何信号问题的肽段图谱。然而这种方法随着样品分子量和复杂程度的增加变得难以执行,且容易受到人为错误的干扰(图1)。因此迫切需要一种可以消除手动筛选数据的负担,同时能够兼容更复杂的谱图(来自复杂混合物或整个细胞裂解液样品的谱图)。本文作者使用了一种自动化HDX数据分析的方法,利用data independent acquisition(DIA)采集方法同时从MS1和MS2领域获取氘代数据,并开发了AutoHX软件来挖掘和分析HDX数据。图1.传统HDX-MS数据采集与分析流程和本文使用的数据采集和分析流程比较。针对使用HDX-MS时,碰撞诱导解离(CID)碎裂模式产生的肽段碎片会伴随着气相中的氘重组现象(即scrambling现象),会影响残基水平氘代值的准确测量这一问题,作者定量研究了HDX-MS2数据的特性。作者发现,scrambling与离子传输和碎裂能量有关,且在高传输效率的条件下scrambling较严重,因此首先使用较为温和的离子传输参数和碎裂能量能够降低scrambling程度。随后作者建立了可描述碎片氘代值与该肽段可碎裂位点数量之间的线性关系(图2)。随着碎片离子长度的增加,相应的碎片离子氘代值会线性增加,因此通过回归计算可以计算出整个肽段的氘代率。这种方法不仅利用了CID产生的碎片信息,同时更为准确的计算出肽段的氘代值,排除了肽段谱图重叠对计算氘代值的干扰。图2.在一条给定肽段中,HD scrambling中,氘代值与碎片长度的关系。接着作者提出使用DIA方法来获取HX-MS2实验中MS1和MS2域的氘化数据,以实现在不同质谱平台采集数据、采集复杂样品的信息、分析自动化数据,且使得通过CID产生的MS2中提取肽段氘代值成为可能。首先作者设置了尽可能小的DIA窗口,并使用了较大的窗口重叠区域,以最小化MS2谱图的复杂性并确保每条氘代肽段至少有一个窗口(图3)。同时,作者开发了一个名为AutoHX的软件(作为Mass Spec Studio中的插件),该软件自动选择理想的DIA窗口,并从MS1数据计算前体肽段的氘代值,以及从MS2数据计算所有碎片的氘代值。同时改进了HX-PIPE(为HDX-MS量身定制的搜索引擎),使其搜库结果直接应用于AutoHX的分析。随后AutoHX使用了一系列过滤器来从数据集中解析低质量信号,然后使用基于RANSAC的谱图分析器,为所有肽段及其碎片匹配最佳同位素集合,并绘制动力学曲线图。该方法显著提高了肽段序列覆盖的冗余度(图4),从而提高了测量质量。图3. DIA窗口设计示意。图4. 基于DIA采集模式得到的序列覆盖(糖原磷酸化酶B,phosphorylase B)与基于传统HDX-MS中MS1采集模式的结果比对。接着,软件会通过MS1和MS2数据收集到的肽段前体离子和肽段碎片离子的信息,计算出相应的氘代值,同时将所有重复组计算出的氘化值集合成一个分布(通常为正态分布),并从该正态分布中,选择最接近平均值的组合,即为精确的氘代值,利用每个时间点的氘代值生成HDX动力学曲线(图5)。作者将手动筛选检查的数据与自动分析法获得的氘代数据进行了比对,结果具有一致性,验证了自动化方法的准确性和可靠性(图6)。同时在做同一样本不同状态HDX比较实验时,AutoHX可以生成氘代差异的显著性差异分析图(Woods plot)(图7),用于比较不同状态下的蛋白结构和构象差异。图5. 氘代曲线的组合方式。图6.手动MS1数据分析和AutoHX自动计算的氘代率对比。图7.氘代差异分析流程示意图。最后作者用两个蛋白体系验证了该方法的实用性和可靠性。第一个体系为DNA聚合酶ϴ (Pol ϴ )与其抗生素药物novobiocin结合的结构变化。通过比较手动处理与自动化处理的数据,作者发现生成的氘代差异图结果相似,提示该方法具有较好的准确性,并能够定位结合带来的氘代上升和下降区域(图8)。第二个体系是DNA依赖性蛋白激酶(DNA-PKcs)与选择性抑制剂AZD7648的结合。使用AutoHX软件处理了六个HDX-MS实验的数据,快速生成了Woods图,发现大部分可检测到的稳定性增加集中在FAT和激酶结构域(图9b),还包括药物结合位点的铰链环区域(图9c),揭示了药物结合位点及其引起的动态性变化。这部分研究结果展示了自动化数据分析在药物结合研究中的有效性,特别是在分析大型蛋白质复合物和难以纯化的蛋白质时,为药物开发和疾病治疗提供了有价值的信息。图8.手动处理与自动处理的Pol ϴ 与novobiocin-bound Pol ϴ 的HDX数据作差对比。图9. DNA-PKcs+AZD7648的自动化HDX分析流程结果。总的来说,该研究开发了AutoHX软件,通过自动化数据分析和基于DIA的HX-MS2工作流程,显著提高了氢/氘交换质谱技术在蛋白质结构和药物结合分析中的效率与应用范围,使得这一领域技术更加易于使用并可供更广泛的科研社区应用。该工作的亮点,从实验设计上:考虑到了目前HDX-MS流程——数据采集、数据分析——中存在的瓶颈与局限。从方法学考察层面:方法验证科学严谨、周到。从技术上:大大降低了人工处理HDX-MS数据的成本,提高了检测能力,有提高检测通量的潜力。从科学思维上:利用了scrambling的规律,将普遍的问题转化成了机遇。HX-DIA提供了一个概念上的转变,降低了该技术的使用门槛,使该技术“平民化”。本文发表在Nat. Commun.上,题目为“Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology”,作者是加拿大卡尔加里大学的David C. Schriemer。
  • ASMS第59届美国质谱会即将召开 众奖项已公布
    第59届美国质谱会(ASMS 2011)将于2011年6月5-9日在美国科罗拉多会展中心(丹佛市)举行,届时将有来自世界各地的从事与质谱领域相关的学生、科研人员以及仪器厂商参加此次盛会。在本届质谱会上获奖的各位科学家已经提前公布。   杰出贡献奖(The Award for a Distinguished Contribution in Mass Spectrometry)   该奖项用于奖励在质谱基础和应用研究领域做出独一无二的成果,并且在质谱领域有重要影响的科学家。获奖者并不限制于ASMS会员,获奖者会在ASMS年会上获得一万美元奖励和奖牌。2011年杰出贡献获得者是约翰斯霍普金斯大学医学院药理与分子科学教授Robert J. Cotter。 约翰斯霍普金斯大学Robert J. Cotter教授   在分子结构鉴定过程中,串联质谱(MS/ MS)是非常关键的工具。Robert J. Cotter利用高能量碰撞(达20keV)进行诱导解离,并在1993年率先发明和成功设计了第一个串联飞行质谱(TOF/TOF)。该质谱使用了两个双级反射器(rTOF/ rTOF)。为了在更广的质量范围内聚焦更多的离子,这种设计后来被单级反射器取代,之后又发展了出了弯曲场反射器,可以同时聚焦产生的所有离子。弯曲的场反射器后来在源后衰变质谱仪器中有广泛应用,克雷斯托公司(被岛津公司收购)获得了该技术的授权,然后推出了Kompact IV, AXIMA CFR和AXIMA CFR+质谱,之后岛津公司推出了AXIMA Confidence质谱仪。2004年,克雷斯托推出了简约化商品仪器Kratos AXIMA TOF2,然后是岛津公司推出了Performance质谱仪。总共有超过400台弯曲场反射器质谱被生产和出售。高能碰撞(20keV)的潜在的好处现在已经被认可,最令人兴奋的是在MALDI TOF质谱上进行“Top-Down”或者“Middle-Down”蛋白质分析。   Biemann奖(The Biemann Medal)   该奖项授予那些长期在质谱基础和应用领域做出突出贡献的个人,提名者应该在被提名的15年之内获得博士学位。该奖项是为纪念 Klaus Biemann教授而以他的名字命名的,Klaus Biemann教授在马萨诸塞州技术研究所工作的40年间培训了大量的学生和博士后,他与学生、博士后联合组织和其朋友共同捐赠设立了Biemann奖。获奖者不限于ASMS会员。获奖者会得到5,000美元奖励。2011年Biemann奖得者是德国癌症研究中心气相肽化学组负责人Bela Paizs博士。 德国癌症研究中心Bela Paizs博士   肽是蛋白质分解的中间产物,用串联质谱分析肽需要对在质谱中在进行的复杂的碎裂反应有深刻的理解。Bela Paizs在工作中详细对肽的结构、解离机理进行了详细的研究,使碰撞诱导解离图谱可以用基本的物理和化学原理来解释。Paizs还将各种实验技术(如:MS/MS,红外多光子解离,离子迁移谱,气相H / D交换)与先进的理论方法结合在一起进行研究。借助先进的数学模型,对“原始”实验室数据(碎片模式,红外光谱,碰撞截面等)进行处理,获得了宝贵的碎片离子的结构、热动力学方面的数据。除此之外,Paizs研究了b、y和a碎片离子的裂解途径,b碎片离子的干扰化学 最近他提出了通过重排反应来得到a碎片离子。Paizs将各种碎裂机理统一成一个综合的肽碎裂模型,这些成果大大推动了肽的表征,为在主流蛋白质组学领域发展先进的生物信息学工具打下了坚实的基础。   Ron Hites奖(RON A. HITES AWARD FOR OUTSTANDING RESEARCH PUBLICATION IN JASMS)   Ron Hites奖是办法给高质量的原创性论文。该奖项强调论文的创新性、技术质量、是否会促进未来的研究和应用、文章的编排质量等。印第安纳大学Ronald A. Hites教授于1988年创立JASMS期刊,该奖项是为了纪念他而命名的,奖金是2000美元。 普渡大学化学系Scott A. McLuckey教授   2011 Ron Hites奖获得者是普渡大学化学系Scott A. McLuckey教授,获奖的论文题目是:“Top-Down Tandem Mass Spectrometry of tRNA via Ion Trap Collision-induced Dissociation”,Huang, T.-Y., Liu, J.,&McLuckey, S. A. JASMS 2010, Vol. 21(6), 890-898. Scott A. McLuckey教授将奖金捐献给了来参会学生作为旅途费用。   研究奖( RESEARCH AWARDS)   研究奖是Robert Finnigan于1985年设立的,为了鼓励年轻年科学家推动质谱科学的研究。奖金是由赛默飞世尔科技和沃特世公司提供,本年度每位获奖者的奖金增加到了35000美元。赛默飞世尔科技资助的是华盛顿大学的Judit Villen女士,沃特世支助的是密西根大学Brandon Ruotolo先生。 华盛顿大学的Judit Villen女士 密西根大学Brandon Ruotolo先生     点击进入ASMS官方网站
  • 临床前沿合作 |岛津成像质谱显微镜助力肺癌临床病理研究
    背景介绍肺癌是发病率和死亡率增长最快、对人群健康和生命威胁最大的恶性肿瘤之一。根据报道,近50年来许多国家肺癌的发病率和死亡率均明显增高,男性肺癌发病率和死亡率均占所有恶性肿瘤的第一位,女性发病率和死亡率占第二位。肺癌的病理类型主要包括非小细胞性肺癌和小细胞性肺癌两类。非小细胞性肺癌约占肺癌的80%-85%左右,包括腺癌、鳞癌等。而小细胞肺癌约占肺癌的15%-20%左右。对肺癌进行准确病理分型对有效治疗肺癌和研究肺癌发病发展的机制机理具有极其重要的作用和意义,近年来已经成为相关领域的研究热点和重点之一。 图1 肺组织示意图 目前临床领域对肺癌的良恶性判断和亚型分型主要依赖HE染色、免疫组化等形态学病理手段,结合NGS(下一代测序技术)分子病理指标进行,这些方法不仅需要涉及多种类型的仪器,耗时长,前处理复杂,且在诊断中十分依赖医生的个人经验和判断,缺乏指标化标准。 借助岛津公司成像质谱显微镜iMScope平台,岛津中国创新中心与北京某知名三甲医院病理科合作开发了多角度肺癌分型病理诊断的新方法。该方法一方面从统计学角度实现对腺癌和鳞状细胞癌两种非小细胞肺癌亚型进行非靶向分型,另一方面通过发现的多种小分子空间标志物实现对癌症中心和癌旁组织分区,小细胞癌和非小细胞癌分型,以及腺癌和鳞状细胞癌亚型分型的直接判断,从而开辟出一条单独依赖于质谱成像手段即可实现肺癌全流程分型的新路径。 腺癌和鳞状细胞癌非靶向统计学分型利用iMScope对人腺癌与鳞状细胞癌临床样本进行质谱成像数据采集后,使用岛津IMAGEREVEAL软件对数据进行处理。分别在已知腺癌与鳞状细胞癌癌症中心组织的质谱成像对应的显微图像中圈出5个ROI(感兴趣区域)区域(红圈和蓝圈对应区域),每个ROI区域包含大约300个采集点,然后使用IMAGEREVEAL软件中Differential Analysis模块进行PCA(主成分分析)运算,比较二者统计学差异和分类情况。图2 基于PCA的非小细胞肺癌临床统计学分型 由综合质谱对比结果可见,人非小细胞肺癌的腺癌与鳞癌两个亚型存在大量小分子特征物质和差异物质,直接对综合质谱图中的所有碎片进行非靶向的统计学分析,有助于减少分析工作量,同时可提高统计学分型的直观性和准确性。根据PCA分类图,通过对10个ROI区域(红色点代表腺癌ROI区域,蓝色点代表鳞癌ROI区域)直接进行PCA分析,可以获得两组直接对应腺癌和鳞癌的统计学分类(红色大圈代表腺癌分组,蓝色大圈代表鳞癌分组),该方法不需进行复杂的标志物分析即可直接获得不同类型分型的结果,简单快捷而准确。 肺癌全流程靶向分型利用iMScope对人肺癌临床样本进行质谱成像数据进行采集后,使用Imaging MS Solution Postrun Analysis软件同时对肺癌临床样本的质谱成像数据进行处理。分别定向提取m/z 775.55, m/z 885.55,m/z 861.55和m/z 673.48等4个碎片的图像,其中m/z 775.55作为癌症中心与癌旁的空间特征标志物,m/z 885.55和m/z 861.55组合作为小细胞癌(SCLC)和非小细胞癌(NSCLC)的空间特征标志物,m/z 673.48作为非小细胞癌亚型腺癌(AC)和鳞状细胞癌(SCC)的空间特征标志物。 图3 肺癌全流程靶向分型分析流程 通过提取m/z 775.55的质谱成像图,可以清晰观察到其在癌症中心和癌旁组织中呈现不同的分布:该碎片在癌症中心低表达,而在癌旁组织中高表达。通过m/z 775.55,可以实现直接对同一来源肺癌组织的癌症中心区域的精确划分和位置界定,并可以以此为依据,直接指导下一步具体分型研究的实施。 通过提取m/z 885.55和m/z 861.55两种碎片的质谱成像图,可以清晰观察到这两种碎片在癌症中心区域中的不同类型的分型中具有完全不同的分布:当二者均在癌症中心组织中高表达而在癌旁组织中低表达时,为非小细胞癌;当m/z 885.55在癌症组织高表达而m/z 861.55在癌旁组织高表达时,为小细胞癌。 通过提取m/z 673.48的质谱成像图,可以清晰观察到其在非小细胞癌的两种亚型中呈现完全不同的分布:该碎片在腺癌(AC)中呈现癌症中心和癌旁组织的均匀表达,而在鳞状细胞癌(SCC)中,仅在癌旁组织中呈现高表达,在癌症中心组织呈低表达。值得注意的是,整个分型判断流程是在同一个临床样本内进行比较,有效排除了不同来源样本的涉及不同年龄、性别、地域、职业等干扰因素造成的组间对比的干扰,避免出现假阳性和假阴性的问题。 小 结借助岛津成像质谱显微镜iMScope,岛津中国创新中心与北京某知名三甲医院病理科合作开发的多角度肺癌分型病理诊断的新方法,实现了在基于统计学的非靶向层面和基于多种空间标志物的靶向层面的肺癌多角度病理分型,在目前传统临床手段之外,开辟出一条操作简单且更易于指标化的新路径。成像质谱技术为肺癌等重大疾病在分子水平上进行病理分型研究提供了准确的物质定位定性和定量信息,未来有望为临床病理研究和应用等多个领域提供更多更可靠的实验数据和基础信息。
  • 聚浪成潮 以待花开|质谱国产替代之路有多长?——皖仪分析事业部总经理程小卫
    1.质谱应用广泛成长性高 科研分析仪器是生命科学及医药医疗产业的重要基石,其中质谱仪是市场占比最大,均价最贵,技术壁垒最高的主要领域之一。质谱仪作为高端的检测仪器,在环境监测、食品安全、工业过程分析等领域有着广泛的应用,同时这些下游应用需求带动上游质谱仪市场迅速成长。2021 年全球质谱市场大约450 亿元,预计 2026 年全球质谱仪市场规模可达700亿元。2021年国内质谱仪市场大约150 亿元,占全球市场的30%,年复合增长率高达 20%左右,国产化率大约10%。 2.质谱成为国产替代的首要阵地 在精准医学发展的大趋势下,质谱检验以其高通量、高灵敏度、高精度、高分辨率等诸多优势,在生命科学、生物医药、临床诊断、半导体、环保、食品安全等多领域的检测应用中发挥着越来越重要的作用,但目前国内的市场被赛默飞、SCIEX(丹纳赫)、布鲁克、安捷伦、沃特世、岛津等国外巨头垄断,2020年我国进口质谱规模为105.3亿元,国外厂商在中国质谱市场占有率为74.05%。中美贸易冲突以来,进口质谱的技术限制风险加大,国家陆续出台多项政策支持高端科学仪器的国产化,“十四五”、科技部、工信部相关政策均指出供应链设备需要稳定可控的重要方针,并明确仪器的硬性国产采购比例,同时随着一批国内企业在某些质谱仪产品性能上逐渐达到国际水平,加速了开启国产质谱进口替代的进程。根据海关进口数据,我国质谱的进口依赖度由2014年的94.7%降至2020年的74.05%。 3.质谱应用多元渗透,市场空间可观 美国科研端和生物医药医疗端质谱市场占比约70%,国内对标领域由于下游行业标准及市场空间存在客观差距,应用端渗透仍有较大空间,叠加半导体、环保领域的存量市场,未来国产质谱的市场份额可期。随着生物制药、医疗检测、临床诊断、科研院所的质谱应用多元化渗透,2026年对应质谱仪市场有望达到135亿元,叠加其它赛道国内质谱市场有望达到240亿元。质谱流式细胞仪等新兴领域有望带来质谱市场更大增量空间。表 1:质谱的应用领域广阔 4.质谱仪技术原理介绍 质谱仪是一种通过分析待测物质量获取其结构信息的仪器,基本原理为将分析 样品(气体、液体、固相)电离为带电离子,这些离子被检测器检测后即可得到质荷比与相对强度的质谱图,进而推算出分析物中分子的质量。通过质谱图及分子量测量可以对分析物进行定性分析,利用检测到的离子强度可以进行精确的定量分析。质谱仪器主要由五部分组成:样品导入系统、离子源、质量分析器、检测器、数据处理系统。样品导入系统通过合适的进样装置将样品引入并气化,气化后的样品引入到离子源,在离子源的作用下被转换为气态的阳离子(带正电)或阴离子(带负电),电离后的离子通过适量的加速后进入质量分析器,在质量分析器里磁场与电场的共同作用下,会产生不同的运动轨迹,按不同的质荷比分离,到达检测器上,进而由检测器将其转换为不同的电信号,再由计算机将信号转换为质谱图,质谱图为离子信号与质荷比的函数曲线图,对其进行分析,获得结果。质谱仪器中重要的两个部分是离子源和质量分析器。图 1:质谱仪系统结构示意图4.1离子源随着各种离子化方法不断发展,质谱分析技术广泛地应用于许多领域。多种离子化方法在分析应用价值上各具独特之处,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光致电离(APPI),以及基质辅助光解吸离子化(MALDI)等等技术,还包括新型的这些技术除了有宽广的样品适用范围与高灵敏度,还可与色谱仪联用以降低干扰。使用者可根据样品与被分析物的物理化学特性选用适当的离子化方法。表 2:不同离子源原理对比4.2质量分析器不同的质量分析器均有其不同特性,质量分析器分为磁场式与电场式。磁场式分析器有扇形磁场质量分析器与傅里叶变换离子回旋共振质量分析器,电场式分析器有飞行时间、四极杆、轨道阱等质量分析器,每种质量分析器都具有不同的特性与功能。表 3:不同质量分析器原理对比 5.质谱组合方式——串联质谱 串联质谱(MS/MS)通常是指两个以上的质谱分析器借由空间或时间上联结在 一起所组成的分析方式,常以英文缩写 MS/MS 表示。在常见的串联质谱技术 中,第一个质量分析器的功能通常为选择与分离前体离子,分离出的前体离子 碎裂可产生离子群,传送至串接的第二个质量分析器中进行分析,这些产物离子的质荷比信号在第二个质量分析器中被扫描检测后,即可获得串联质谱图以进一步分析。目前串联质谱技术有两大主流应用,其一为应用于蛋白质组学中以自下而上的方式对酶水解后的多肽进行氨基酸的序列分析。另一主要应用在于对特定化合物进行定量分析。 一般而言,串联质谱分析法有两种不同的串联方式:一种为连接两个实体的不同的质量分析器,为空间上的串联方式,另一种则是在同一子储存装置内进行一系列的离子选择、裂解与质量分析步骤,依时间先后顺序进行不同分析步骤,为时间上的串联。• 空间串联质谱:三重四极杆质谱仪(QqQ)是目前最广泛使用的空间串联质谱仪,由三重四极杆质量分析器组成。其中第一与第三重四极杆质量分析器具有质量分析功能, 第二重四极杆作为碰撞室,仅以射频电位方式操作。 由于三重四极杆的碰撞室中的气体压力十倍高于磁场分析器的碰撞室中的气体压力,在三重四极杆中离子束与中性气体分子具有较高的碰撞次数,用于定量分析具有较高灵敏度,因此这是目前串联质谱最广泛使用的形式。另一种常用的是飞行时间串联质谱仪(TOF/TOF),具有为高能量碰撞解离的优点。• 时间串联质谱:串联质谱法也能在某些具离子储存功能的质量分析器上进行时间串联,其离子在不同时间点可分别进行前体离子选择后储存、离子活化、产物离子分离、扫描后排出等模式,反复进行离子选择、储存与解离的步骤,即可在此类具有离子储存功能的串联质谱仪上得到不同阶段的MS结果。目前具有离子储存及活化解离功能的质谱仪,以傅里叶变换离子回旋共振分析器与离子阱为主。• 杂合质谱仪:在串联质谱仪中,如果不同种类的质量分析器串接,则称为杂合质谱仪。杂合的主要目的是撷取各式不同质量分析器的特点,经组合后可获得更佳的串联质 谱分析结果。 四极杆飞行时间杂合质谱仪(Q-TOF)是杂合质谱仪的主流形式,因为其结合了四极杆分析器具有较高碰撞裂解效率的特点,以及飞行时间分析器具有高质荷比分辨率、非扫描式及高灵敏等优势,具有高解析与高灵敏度的优点,被广 泛应用于蛋白质组定性分析。此外还有离子阱飞行时间(IT-TOF)杂合质谱仪等各类杂合类型。 6.三重四极杆质谱仪(QqQ)知多少?目前主流质谱仪品类已实现商业化,包括单四极杆、离子阱、飞行时间质谱,并能实现三重四极杆的自主可控生产,对应市场端覆盖率超过80%。2019年7月,国家重大科学仪器设备开发专项 2011年首批启动项目——“三重四极杆串联质谱系统的研制及其在痕量有机物分析中的应用(2011YQ060084)”完成综合 验收。该专项围绕国家“十二五”科学和技术发展规划,针对复杂体系中痕量有 机物高通量、高灵敏度和自动化检测需求,研制三重四极杆串联质谱系统产品和配套自动化前处理装置及其它关键部件,开发基于三重四极杆串联质谱系统的痕 量有机物分析平台,在蛋白组学、代谢组学、环境及生态毒理学、食品安全等领域开展分析技术研究与应用示范,实现三重四极杆串联质谱系统的国产化和产业化。当前中国每年10,000台的质谱销量中,无论是台套数还是金额,占比最大的就是液相色谱串联四极杆联用仪(LC-QqQ),每年销量达3000台。随着农兽药残留、药典等新国标的出台,气质联用仪也将会更多地被GC-QqQ取代。LC-QqQ同样也是临床质谱最受关注的技术。据预测,2030年,我国的质谱年市场销量将达到20,000台,LC-QqQ将达到6000-8000台,随着优秀的国产厂商加入,未来将有2000台的新增国产LC-QqQ。这其中包括两大利好因素,首先是政策释放老市场:随着国产设备的稳定性和可用性提高, 2~3年内会出现市场选择和政府扶植的双重增长,年增长率约50%。其次是专用设备的新市场:低竞争、高毛利,配合国内高检测量、实时在线、政府监管的需求,将产生一批过亿的细分市场。因此,国产质谱的未来都是光明的。6.1四极杆质谱仪的几个关键指标解读• 分辨率是指分开两个峰的能力,刚刚分开时两峰之间的质量距离是DM,分辨率英文的原义是Resolution,常用简写R表示,计算公式:R=M/DM,M可理解为两个刚刚分开的峰的平均质量。最严格的分辨率定义是磁质谱的,要求相邻两峰10%峰谷分开才算真正分开,磁质谱的分辨率(即M/DM)不随质量变化,所以磁质谱都用R=M/DM来表示分辨率,磁质谱中,R不变,DM是变化的,质量M越大,DM越大。所以,磁质谱表示分辨率都用R,常常可以见到R=10,000的说法。今天我们讨论的四极杆质谱,都是要求50%峰谷刚刚分开就算分开,这个定义没有磁质谱严格。同时,这个分辨率R随质量变化,而DM不变,即M越小,R越大。所以有机质谱并不用R来表示分辨率,而用DM表示。因为实际工作中很难找到恰好在50%峰谷分开的峰,所以又简化为用单峰法表示,即测定一个峰的半峰高处的全峰宽Full width half Maximum(简写为FWHM),FWHM应近似等于DM。由于采用原始定义,即R=M/DM,DM 不变,M在变,所以R在变,为方便起见还可以用R表示,所以又简化为用FWHM的倒数表示R,R=1/DM。若采用单峰法,则认为R=1/FWHM。这个值也不变化。我们一般称FWHM=0.5为单位质量分辨率;定义宽松一点时,认为FWHM=0.7称单位分辨率;严格一些时,说FWHM=0.4为单位分辨率。反正,不管是0.7、0.5、0.4,一般都认为是指单位质量分辨率。换算下来,R=2M或R=2.5M也都指单位质量分辨率。这些都是我们常见的分辨率的表示方法。所以,我们又常常看到有机质谱用FWHM来表示,比如FWHM=0.25。• 质量准确度是非常重要的指标,代表质量是否准确称量,测定值和理论值之间的误差。随着质谱的长期使用,室温的变化、灰尘的累积、电子元件的老化……这些因素均会导致电学参数发生变化,进而影响到仪器正常运行。四极杆质谱因为其独有的筛选机制 — 固定的RF与DC电压能允许固定质荷比的离子通过,故微小的电压偏差就可能造成质量轴的偏移。由于质荷比大的离子需要较高的RF与DC电压方可通过四极杆,会将漂移的结果放大。同为0.1%的漂移,可能只会造成100 Da的离子峰出现在99.9 Da处,但2000 Da的离子峰则可能会出现在1998 Da处。因此对于大分子分析来说,保证质量准确性就变得更加重要。当质量轴发生明显漂移时,对于使用Scan模式的定性分析,会出现目标峰与理论值偏差增大;对于使用SIR/MRM的定量分析,则是MS1/MS2放行的质荷比与实际离子的质荷比不匹配,导致离子通过率减小,灵敏度下降。所以,我们建议您每隔3~6个月使用已知的标准品进样,质谱通过Scan模式采集信号,检查标准品m/z与实际采集到质谱峰的峰顶处m/z的偏差,如果超过0.2 Da,就需要考虑进行质量轴校正了。如果仪器使用的环境发生较大变化,如一场秋雨让室温从夏天的25度降到秋天的18度,最好立刻检查质量轴漂移情况。• 灵敏度/信噪比。常用的信噪比计算方法有两种:均方根(RMS),峰峰比(S/N)。均方根(RMS)计算方法信噪比最高,峰峰比方法信噪比最低。均方根(RMS)计算方法信噪比最高,对质谱公司的宣传有利;峰峰比方法信噪比最低,对满足用户的要求不利• 滞留时间。Duty Cycle中的两部分Scan1和ISD(恢复原有状态)两部分组成;Dwell time滞留时间,指Scan 1和ISD两部分时间。Dwell Time越长,Duty Cycle越少,扫描越慢,灵敏度越高,数据点越少,分辨率越低!反之依然!• 扫描型仪器(QqQ/Ion Trap)性能制约的黄金三角规则:提高分辨率就会降低扫描速度和灵敏度;提高灵敏度就会降低分辨率和扫描速度;提高扫描速度就会降低灵敏度和分辨率。但,非扫描型仪器(TOF)性能不受黄金三角规则制约,可以同时提高分辨率、扫描速度、灵敏度。6.2三重四极杆质谱仪的几种工作模式解读三重四极杆质谱仪作为目前最灵敏的MS定量技术,可用结构标志物进行选择性测定 ,比如母离子扫描、子离子扫描、中性丢失扫描等。• Q1 MS 全扫描Q1 全扫描 (开始 – 停止),Q1 永远 作为单级 MS 分析器,主要用来鉴定母离子 ,Q1 采用RF-only模式。Q1 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses• Q3 MS 全扫描Q3 全扫描 (开始 – 停止):Q3 永远 作为单级 MS 分析器,主要用来鉴定母离子或用做IDA, Q3 采用RF-only模式。Q3 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses。• MS/MS – 子离子扫描: 选择特定化合物鉴定碎片离子。Q-1设定 , Q-2碰撞活化 , Q-3扫描• MS/MS – 母离子扫描: 发现能产生特定子离子的所有母离子。Q-1扫描 ,Q-2碰撞活化 , Q-3设定(寻找特征离子的来源),应用于化合物筛选,代谢产物鉴定,蛋白质修饰分析。• MS/MS – 中性丢失扫描:发现能丢失中性分子的所有母离子。Q-1扫描,Q-2碰撞活化, Q-3扫描,同时保持Q-1和 Q-3的差值不变 (丢失同一质量的中性碎片),应用于检测失去H2O,H3PO4,HCl,NO2,CO2,SO3,糖分子等的离子。• MS/MS – MRM多反应监测:快速筛查(定性)和定量。Q-1设定,Q-2碰撞活化, Q-3设定(常用于定量)综上所述,三重四极杆质量仪具有超高的 NCI灵敏度;超高的MRM MS/MS 灵敏度;同时检测更多的 MRM离子对(100);工作模式丰富包括SIM、NCI/SIM、NCI/MS/MS、LC/MS/MS、PI,PR,NL,MRM。(未完待续)
  • 赛默飞世尔科技色谱质谱:人参提取物中人参皂甙的高分辨多级质谱分析
    赛默飞世尔科技色谱质谱应用经理王勇为博士   人参皂甙是人参的主要成分,具有提高动物体机能、抗衰老等多种药理作用。人参皂甙种类繁多,还有各种异构体,从人参中已经分离出39种人参皂甙单体。质谱技术的发展,尤其是高分辨多级质谱技术的使用能够更多、更快地发现人参皂甙可能的新成分。本文用LTQ-Orbitrap高分辨组合质谱仪对东北人参提取物进行了液质联用的5级高分辨质谱分析,得到了近30个人参皂甙成份的母离子和各级碎片离子的精确分子量,质量准确度在1ppm内,由此得到了唯一的分子式。通过和已报道的人参皂甙相比较,可以确定各种皂甙的甙元和糖组成。
  • 站在质谱新时代前端,中国质谱学术大会上看岛津(2)
    (续前) “2018年中国质谱学术大会”在广州东方宾馆如火如荼地进行,岛津公司在本次大会上为与会者带来了质谱领域最新的解决方案,并于11月25日中午举办午餐会。 在25日上午的生命科学与医学分会场报告上,岛津公司分析测试仪器市场部的韩美英博士做了题为“成像质谱显微镜在医药研究领域的应用及新进展”的报告,她在报告中说到岛津成像质谱显微镜,前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源,后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO拥有世界领先水平的5 μm高空间分辨率,可进行高精度MSn结构分析,为未知物的结构鉴定提供丰富的碎片信息。另外,全新开发的IMAGEREVEAL MS成像质谱数据分析软件,专门为成像质谱的大容量数据和多组分同时分析而设计,具有丰富的统计学功能和搜库功能,也可分析非岛津质谱仪采集的数据。 iMScope TRIO作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注,为成像分析提供全新的工具,并提高研究水平。岛津公司分析测试仪器市场部的韩美英博士做了题为“成像质谱显微镜在医药研究领域的应用及新进展”的报告 在质谱新方法新技术分会场上,岛津公司分析测试仪器市场部的潘晨松博士做了题为“创新高分辨液质联用Q-TOF助力多农残高通量检测和未知物鉴定”的分会场报告,他在报告中介绍高分辨液质联用四极杆飞行时间质谱(LC-QTOF)对农残/兽残等多目标物的高通量靶向检测在食品质量安全风险控制中正发挥越来越大的作用。基于准确的色谱保留时间,ppm级的质量准确度,真实同位素峰形和高分辨MRM特征碎片离子检测,LC-QTOF农残高通量筛查具有可靠性高,灵敏,快速高通量的特点,同时具有未知物定性和数据溯源的能力。岛津LCMS-9030具有稳定性好,准确度高,灵敏度高和速度快等特点,非常适合于多农残的高通量检测和未知物鉴定。岛津公司分析分析测试仪器市场部的潘晨松博士做了题为“创新高分辨液质联用Q-TOF助力多农残高通量检测和未知物鉴定”的分会场报告 25日中午,岛津公司为参会的专家,学者举办了午餐会,来自岛津质谱中心的董静博士,刘佳琪博士和郭彦丽博士分别在午餐会上介绍了岛津公司最新热点的应用方案。分析测试仪器市场部姜啸龙经理主持午餐会。分析测试仪器市场部姜啸龙经理主持岛津午餐会 在岛津午餐会上,来自岛津公司质谱中心的董静博士做了题为’从观察到分析:成像质谱技术及相关应用简介“的报告,她在报告中强调成像质谱技术是近些年来的热点技术之一,在药学、医学、食品安全、农业、环境等领域中均有广泛的应用。岛津iMScope结合显微镜与质谱于一体, 提供完整的质谱成像检测平台,可在无需标记、无需构键抗体的条件下,对植物、动物切片中多种分子同时进行分析,一次实验即可获得多种物质的高空间分辨率质谱图像,并与光学图像的精确重合,准确定位目标化合物在组织中的存在位置,为各领域中目标物质作用机理,代谢途径、位置分布、变化过程、毒理学评价等提供有力、可靠、丰富的数据信息。岛津公司质谱中心的董静博士做了题为’从观察到分析:成像质谱技术及相关应用简介“的报告 岛津公司质谱中心的刘佳琪博士做了题为“岛津全自动前处理系统在水质检测中的应用”的报告,她在报告中指出液相色谱串联质谱联用(LC-MS/MS)技术是痕量分析的利器。有机污染物随着水体的流动扩散、稀释,浓度极低,甚至无法使用LC-MS/MS技术直接分析检测。岛津推出全自动固相萃取分析系统(AOE系统)将在线固相萃取技术与LC-MS/MS技术联用,可允许“mL”级水样品直接进样分析,利用软件自动控制,将样品前处理、超高效液相色谱分离、质谱或光谱检测、数据处理等高度集成,轻松实现自动化分析,有效提升实验效率,同时大大减少了人为操作的不可控因素,降低样品分析成本,非常适用于痕量有机污染物的分析。报告中介绍岛津全自动固相萃取分析系统(AOE系统)的硬件、原理和特点,及其在水质检测中的应用。岛津公司质谱中心的刘佳琪女士做了题为“岛津全自动前处理系统在水质检测中的应用”的报告 岛津公司质谱中心的郭彦丽博士做了题为“超临界流体色谱在油脂样品检测中的应用”的报告,她在报告中说到针对油脂分析,通常需要先在正相色谱下进行净化,再使用反相色谱进行分析。前处理过程繁琐,耗时,且回收率不稳定。为解决以上问题,本实验室开发了超临界流体色谱(SFC)与反相液相(LC)/液质质(LCMSMS)联用的多维柱切换系统。利用SFC对油脂样品在线净化后,将待测组分导入第二维的反相系统,实现进一步的分离和检测。使用该系统大大简化了油脂样品的前处理过程,实现了快速自动化分析。并且,通过超临界CO2的使用,大大减少有机溶剂的消耗,为油脂样品的检测提供了一种安全环保的解决方案。岛津公司质谱中心的郭彦丽博士做了题为“超临界流体色谱在油脂样品检测中的应用”的报告(未完待续)关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 质子传递反应质谱电离技术重大突破—新型1,4-二氟苯前驱体研发与应用
    质谱法是利用带电粒子在磁场或电场中的运动规律,然后按照质量或荷质比实现分离分析的技术。早在1898年,W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素。阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用以测定同位素的相对丰度,成功鉴定了多种同位素。质谱计的发展也从只用于气体分析和测定化学元素的稳定同位素到后来用于对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。 图1. 图左为英国物理学家J.J.汤姆孙,图右为诺贝尔化学奖获得者F.W.阿斯顿 质子传递反应质谱(Proton Transfer Reaction- Mass Spectrometry)是分析挥发性有机物(VOCs)的一种新的先进分析手段。该技术具有检测速度快、灵敏度高、无需内标定量测量等优点,特别适合挥发性有机物的实时在线监测与预警。基于多年挥发性有机物在线分析质谱研究经验,法国AlyXan公司研发的质子传递反应-傅里叶变换离子回旋共振质谱(BTrap)通过运用先进的傅里叶变换离子回旋共振质谱技术,使仪器的质量分辨率高达10000,成为质量分辨率高的质子传递反应质谱。BTrap具有高质量分辨率,高度与稳定性、低离子碎片、高灵敏度高、低检测限等诸多优势,可用于材料,环境,汽车工业,化工等多领域的气体组分在线监测分析,适应各种复杂实验气候与环境。 质子传递反应质谱一般采用质子(H3O+ )作为电离源,该技术的原理是大多数VOCs的质子亲和能高于水而低于高聚水,可以跟质子反应而被电离。但对醇,醛与长链烷烃类化合物,该方法的应用会受到很大限制。如正丁醇在正常测试条件下,不能测到分子离子峰,只能测到脱去羟基的丁烯的峰,为正丁醇的测试带来的很大困难。针对此类问题,法国AlyXan公司研发了一种全新的前驱体——1,4-二氟苯(C6H4F2)[1]。1,4-二氟苯的质子亲合能为718.7 kJ/mol,介于691到750 kJ/mol。因此C6H5F2+可以与大多数VOCs反应,同时产生更少的碎片,可以作为更加温和的质子转移试剂。同时1,4-二氟苯分子非常稳定,生成离子只会发生质子转移反应,不会参与其他反应。分子量比质子大,具有更小的质量歧视效应。 如图2所示,以正丙醇分子为例。在1.26×10-5 mbar的压力下,(a)采用C6H5F2+作为电离源,分子离子(C3H7OH2+)强度非常高,而脱羟基产物(C3H7+)的峰浓度一直维持再非常低的浓度;(b)采用H3O+作为电离源,脱羟基产物将为主要离子,分子离子峰为次要离子。说明有大量分子离子峰发生脱羟基反应,生成C3H7+离子。(c) 在更高的压力7.34×10-5 mbar下, 采用C6H5F2+作为电离源,分子离子峰(C3H7OH2+)依然为主要离子,脱羟基产物,水合离子及高聚水离子的含量非常少;(d) 采用H3O+作为电离源, 脱羟基产物为主要离子,分子离子峰为次要离子,同时有大量水合离子及高聚水离子生成。 图2. 以正丙醇为样品,离子相对强度图 1.26×10-5 mbar压力下, (a)C6H5F2+作为电离源,(b)H3O+作为电离源 7.34×10-5mbar压力下 (c)C6H5F2+作为电离源,(d)H3O+作为电离源。 从下表数据中可以发现,在其他有机物中可以有效重复试验结果,新型前躯体产生的C6H5F2+可以与大多数VOCs反应,并产生少的碎片信号。 除此之外,很多测试实例也证实了质子传递反应-傅里叶变换离子回旋共振质谱技术的先进性和可靠性,1,4-二氟苯作为一种新型的前驱体,有效解决了醇、醛及长链脂肪烃的测定难题,为质子传递反应质谱分析提供了突破性的解决方案。参考文献:[1] Latappy, H. Lemaire, J. Heninger, M. Louarn, E. Bauchard, E. Mestdagh, H. International Journal of Mass Spectrometry 2016, 405, 13.质子传递反应质谱;1,4-二氟苯;VOCs;高分辨率;少碎片相关产品:法国Alyxan公司高分辨质子传递反应质谱(BTrap):http://www.instrument.com.cn/netshow/C247308.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制