当前位置: 仪器信息网 > 行业主题 > >

质谱数据系统

仪器信息网质谱数据系统专题为您提供2024年最新质谱数据系统价格报价、厂家品牌的相关信息, 包括质谱数据系统参数、型号等,不管是国产,还是进口品牌的质谱数据系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱数据系统相关的耗材配件、试剂标物,还有质谱数据系统相关的最新资讯、资料,以及质谱数据系统相关的解决方案。

质谱数据系统相关的论坛

  • 【原创大赛】有机质谱数据系统源程序

    《气相色谱-质谱数据系统的改造》《高分辨质谱数据系统的研制》这两篇文章虽然发表在十来年前,但数据系统技术的核心“源程序”到现在是第一次公开发表,“源程序”的发表主要目的是把编程的方法与思路提供给广大的青年分析工作者参考。 作者职业范围包括色谱、质谱,但更爱好的是色谱特别是液相色谱。所以这次原创论文选择在液相色谱拦目发表。希望能得到大家的欢迎。 如果读者有什么疑问可致电13808004103。 有机质谱数据系统使用说明 一、概论本质谱数据系统系为有机质谱仪而专门设计制作的。数据系统包括高精度、多通道A/D、D/A接口、计算机以及相应软件。本数据系统由戴朝政研究员研制,其特点是操作简便、计算精确、结果可靠、界面美观。曾经获得大西南分析化学会议奖励。是同类型有机质谱仪使用者的好帮手。本质谱数据系统包括以下功能:1.建立标样文件;2.质量校正;3.校正采样;4.数据采集;5.数据处理;6.高分辨数据处理;7.打印报告;8.论文编写。共八部分。可同时用于一般的有机质谱测定和高精度分子量的测定。整个数据系统界面采用中文,特别适于中国质谱工作者使用。 二、 系统的安装将数据接口安装在计算机内,对号接上磁流信号、质谱信号以及扫描触发信号。红色接线柱接正极、黑色接线柱接负极。把光盘上的子目录全部拷贝到C:盘根目录上。按提示运行C:\MSSETUP\SETUP.EXE即可。安装完毕后在C驱上要有C:\MSDATA,C:\MS二个子目录。在C:\MS子目录中需有PFK.DDD,GLYCEROL.DDD文件。在C驱根目录上要有ZHH.EXE可执行程序。以上三个文件在光盘上都可以找到,找到后可直接拷贝到上述指定位置。 三、 数据系统的使用方法开启计算机后双击MS Data Station标识,进入VG7070有机质谱数据系统主页。或在Windows资源管理器里找到数据系统文件夹,双击打开后运行VG7070的应用程序也可进入界面。1. 建立标样文件本数据系统内部包含有

  • 【原创大赛】高分辨质谱数据系统源程序的设计

    响应斑竹的号召,现献上一篇"高分辨质谱数据系统源程序的设计".参加五届原创大赛.谢谢朋友们的青睐,邀请我参加团队.因此这篇文章是以"平凡的独特"团队名义出马的.希望大家喜欢. 高分辨质谱数据系统源程序的设计Daichaozheng 2004年在全国有机质谱会议上与两位同事共同发表了题为“高分辨质谱数据系统的研制”一文。由于篇幅的限制,文章仅对系统的功能作了大致的描述,没有具体解释编写程序的内容。今天在此,借质谱版块宝地将高分辨质谱数据系统的源程序公布出来,希望能与有兴趣的朋友们切磋。高分辨采集采用较慢的磁场扫描速度。首先按常规进行质量校正,为了避免仪器不稳定带来的系统误差,样品与标样同时进入,数据采集前要确认“高分采集” 钮。采集完成后进入“高分数据”处理。从文件目录中选择要处理的高分数据文件。从总离子流图上选择任一次扫描。屏幕上方出现高分连续谱图,中间是中分辨棒图。用鼠标右键在中分辨谱图点击可在连续谱图上标明相应的峰。采用这种方法把高分连续谱图上标样的两个峰识别出来。用鼠标左键划取高分连续谱图局部以放大。在屏幕上方填入标样峰的精确质量,用鼠标右键在高分连续谱图点击两个标样峰。两个标样峰之间各峰的精确质量即可得到。对此工作希望进一步了解的朋友可想法与武汉大学或河北大学联系交流。因为近10年了他们的VG质谱仪一直采用的这套数据系统。VB源程序如下:

  • 【分享】气相色谱-质谱联用仪器国产化中的数据处理系统设计

    数据处理系统是气相色谱-质谱联用仪器(GC-MS)的国产化进程中关键部分之一。而国内对于GC-MS的研究重点往往放在仪器硬件,而忽视数据处理系统的重要性。本文首先论述数据处理系统在GC-MS国产化中的重要性,之后提出一种数据处理系统的整体方案设计。最后,对设计中两大组件进行深入研究。并进行实验,实验结果显示,本文提出的数据处理系统获得的结果与国外商用仪器获得的结果完全一致。

  • 实验室分析仪器--气相色谱质谱联用仪数据处理系统介绍

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术,以其优异的分离定性特点,被广泛地应用于分析复杂混合物中的挥发性组分中。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]的使用过程:将在通常[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]上优化后的色谱条件移植到[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]上,全扫描分析进行定性,然后选取目标化合物的特征质量进行选择性离子扫描,进行定量分析。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪中,采用四极杆作为质量分析器是其中的主流。由于四极杆采用的时域性分辨,因此在定量过程中通常推荐采用选择离子扫描模式(SIM),采用多通道SIM模式可对样本中的多个化合物实现定量检测,其检测灵敏度较全扫描模式可提高10倍以上,同时数据采集频率也可获得极大的提高,更好地匹配高速[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url],对于SIM模式定量检测而言核心是选择目标化合物的特征离子,确保附近的共流出化合物对其没有干扰,在SIM模式下获取的质量色谱图的数据处理与常规的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据处理基本一致,在此不予深入讨论。[b]一、定性谱图的获取[/b][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术的另一个主要应用是复杂混合物中组分的定性,定性的基础是流出物的质谱图。采用全扫描方式获得的总离子流与FID产生的谱图(图1)极为相似(应该注意的是由于响应灵敏度的不同强度有所差异),每一个点的强度相当于该时间段所有离子丰度的总和,根据归一计算每一个点可获得一张对应的质谱图。[img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249047244813.jpg[/img] 图1 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]总离子流图(a)及单点对应的质谱图(b)然而,其质谱图通常会包含一些来自于离子源污染物、柱流失物、基质干扰物、共流出化合物所产生的离子,在分析复杂基质中的痕量物质时,这一现象尤为突出,样本中的基质就会不可避免地被引入检测过程中,对目标化合物的质谱图产生严重的干扰。因此,通过对质谱数据的后处理,将目标化合物的质谱图从原始谱图中提取出来,根据新建的“纯净”的质谱图进行图库检索或标样谱图比对,可使目标化合物的定性结果更加准确系统的背景噪声结构相对比较简单,包含空气中组分的分子离子(18、28、32、40、44等)以及部分色谱固定液的流失(高温条件下),扣除此类干扰较为简单,通常采用从目标化合物的质谱图中减去其周围本底的质谱图。丰度较高的共流出物及复杂基质干扰物的离子,使目标化合物的定性变得更为困难,简单的扣“本底”的方法无能为力。目前大部分[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱软件均不具备重叠峰自动判别以及自动谱图解卷积提取功能,因此在进行谱图提取时不能简单地扣除背景进行谱图检索。对总离子流谱图中的峰进行定性时,首先要判断其是否为重叠峰。判断标准一般为该峰的前肩位置和后肩位置的质谱特征是否一致。如果存在显著差异,表明该峰至少由两个或更多物质重叠而成。如图2所示,图中154号峰峰形基本正常,但前肩和后肩的质谱图存在显著性差异,可认定其为重叠峰。如果发现重叠峰,选择两个谱图中差异大的离子,获取离子谱图,根据谱峰对比确认重叠峰。选择特征离子134和146(图3),可发现两个质量色谱图存在峰错位,进一步验证了上述判断。为获得第一个物质的质谱图,如果选择位置a作为原始数据,那么它的背景应选择在位置b进行扣除。类似于双波长光谱的背景扣除,因为位置a所包含的第二个物质的量与位置b相等。图3(I,Ⅱ)给出了准确减扣后的两个物质质谱图,相互之间的干扰被完全去除,定性结果更加准确。 [img=Compress_2.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249049364498.jpg[/img] 图2 总离子流图及重叠峰前肩和后肩质谱图 [img=Compress_3.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249051332596.jpg[/img] 图3 重叠峰干扰扣除及对应的两个物质的质谱图为了能够达到更好的重叠峰拆分效果,化学计量学的方法被应用于质谱数据后处理中通过数学计算对质谱数据进行去卷积处理,以提取“干净”的质谱图。目前己商品化的去卷积谱图拆分软件有美国国家标准技术研究院(NIST)开发的一套软件 AMDIS( Automated MassSpectral Deconvolution& Identification System)、美国Leco公司色质谱工作站内含的去卷积算法等。图9-9显示了Leco工作站对一段总离子流谱图的重叠峰拆分结果,根据算法在一个前肩峰中拆分出5个物质。其中A为该时间点的质谱图,B为去卷积拆分后6号物质的谱图,C为NIST谱图库中的标准谱图。该结果表明,采用去卷积算法可以有效地获取准确的谱图,解决复杂物质分离分析时共流出物质的干扰。 [img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249053444127.jpg[/img] 图4 去卷积分法拆分重叠峰结果显示去卷积谱图分析算法一般包括以下部分。(1)噪声分析:排除噪声对后期数据分析的影响。(2)特征离子提取:全谱图分析,确定化合物的特征离子及其峰形。(3)谱图去卷积:根据特征离子及其峰形将这段时间范围内的离子进行相关性归属,获得纯净的谱图。当两个共流出化合物的保留时间偏差大于2个以上数据采集点时,才能获得准确的拆分如果流出时间完全一致,无法获得拆分,定性结果往往只能显示丰度较高物质,同时匹配度有所降低。[b]二、谱图的定性分析[/b]通常在获取化合物纯净的质谱图后,通过检索的方法进行定性分析。谱图检索是一项比较成熟的技术。NIST等积累了大量的实验数据并形成了标准质谱谱图库,这些数据库被安装在各种[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]工作站上,极大地简化了定性的过程。但在检索的基础上,人工解析[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]得到的质谱图,有时也是非常必要的,尤其对于同分异构体、同系物以及未知化合物的定性分析[b]1.分子离子峰的确定[/b]EI质谱图中有分子离子的话,它应该出现在谱图的最高质荷比区,但是,质谱图上质荷比最高的离子不一定就是分子离子,仍需进一步检验确定,以便排除各种干扰。一个分子离子必要的但非充分的条件是:(1)一般是最高荷质比的离子,但是,某些含氧含氮的化合物,如醚、酯、胺、酰胺氨基酸酯、氯化物等,往往在比母峰多一个质量单位处出现一个峰(M+1),同样,有些分子,如芳醛、某些醇和含氮化合物易失去一个氢而生成M-1离子(2)分子离子必须能够通过丢失合理的中性碎片,产生谱图中高质量区的重要离子。通常,分子离子不可能失去质量为4~14和21~25的中性碎片而产生重要的峰。(3)分子离子对应的分子式应符合“氮规则”。假若一个化合物含有偶数个氮原子,则分子离子的质量为偶数,含奇数个氮原子的化合物,分子离子的质量为奇数,其他有机化合物,分子离子的质量一般为偶数。(4)分子簇丰度分布符合同位素峰规律:同位素峰分布强度分布规律符合(aX+bY)n展开式。其中n为该元素的个数,a,b分别为不同同位素的分布比率,如C为3:1,Br为1:1分子离子峰的强、弱甚至消失取决于分子离子的稳定性,也就是和化合物的结构类型密切相关。一般而言,相似结构或分子量情况下,分子离子峰的强度:芳香族共轭烯烃脂环化合物烯烃直链烷烃硫醇胺→酸支链烷烃醇。[b]2.碎片离子解析[/b](1)研究高质量端离子峰。质谱高质量端离子峰是由分子离子失去中性碎片形成的。从分子离子失去的碎片,可以确定化合物中含有哪些取代基。常见的离子失去碎片如表91所示。(2)研究低质量端离子峰。寻找不同化合物断裂后生成的特征离子和特征离子系列。应该注意的是上述离子系列在不同化合物的质谱中可能表现出的离子丰度相差比较大,另外有些离子系列在谱图中只出现其中的几个离子,芳基对应的离子丰度一般比较低。

  • 【分享】质谱数据库查询软件的应用与评价

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=138077]质谱数据库查询软件的应用与评价[/url]摘要:最近的蛋白质组学研究进展表明以质谱为核心的蛋白质组学在分子生物学,细胞生物学乃至将来的系统生物学中都扮演着一个举足轻重的角色。毫无疑问,在质谱鉴定过程中,质谱仪本身的精度对实验结果有着至关重要的作用;除此之外,质谱结果数据库查询软件的准确性直接影响了查询结果的准确性。本文就目前常用的质谱数据库查询软件的工作原理,统计结果评价等方面做一简要综述。

  • 与大家分享好的工作机会——质谱系统管理

    与大家分享一个非常好的工作机会,国家蛋白质科学中心(上海)(筹)目前正在筹建期,需要各方面的技术管理人员,发展平台非常好!质谱方面的话,现在在招质谱系统主管、质谱数据分析主管和研究助理岗位。大家感兴趣的话,可以看一下上海生命科学院人才招聘网页http://www.sibs.cas.cn/rcjy/rczp/201204/t20120418_3557813.html。同时在招聘的还有规模化蛋白质制备系统、电镜系统、分子影像系统、复合激光显微镜系统、上海光源技术维护等等。大家看中国科学院上海生科院的网页吧!

  • 质谱不采集数据

    5975质谱,质谱不采集数据了,运行时灯丝也不亮,但做调谐都是好的。联机都能连上。质谱,电脑都重启过,不行,质谱关机过再开也这样。然后重新配置了仪器,在空白方法下重新编辑方法再做样也是没有数据采集,连基线都没有,请教大家怎么回事呢?

  • 有办法在MS的质谱数据库加入自己样品的质谱图吗

    使用PE claurs 500 GCMS仪器,请问有办法在MS的质谱数据库加入自己样品的质谱图吗,以方便之后进行搜寻比对。即A样品是原本MS数据库里所没有的,我们打入A样品的标准品后得到MS图,想建立到MS数据库中,下次再有其它样品含有A样品时就可以从图库中搜寻到,得知是含有A样品。

  • 【转帖】变色龙(Chromeleon)网络化色谱数据系统的特点

    转自LIMS论坛(http://www.limsforum.net)1. 戴安(Dionex)德国公司开发的当今世界上功能最强大的色谱软件2. 基于客户/服务器(C/S)结构的网络化色谱数据系统3. 采用Microsoft Windows操作系统4. 采用Oracle或SQL Server数据库5. 全面控制25个色谱仪器厂家的260多种色谱仪6. 全面控制包括自动进样器、二极管阵列检测器(DAD)、顶空进样器和质谱仪等部件7. 同时控制数台到数百台不同厂家的色谱仪8. 包括电子签名在内的完善的数据安全机制9. 强大的网络或服务器失败数据保护功能10. 服务器或网络失败不会影响正在采集的色谱数据11. 支持手机短信等功能12. 全面支持中文并带有完善的中文界面13. 每个操作者可以自由定制操作界面。[~55135~]

  • 安捷伦2款质谱联用系统闪耀ASMS 2012

    安捷伦2款质谱联用系统闪耀ASMS 2012  在ASMS 2012上,安捷伦科技公司展出了其最新的8800三重四极杆ICP-MS(ICP/QQQ)与干血斑自动分析液质联用系统(AACE LC/MS)。8800 ICP-MS/MS  8800 ICP-MS/MS是世界首款电感耦合等离子体串联质谱仪,与单四极杆ICP-MS的相比,ICP-QQQ系统能够提供更高性能,并在反应模式中提供了MS/MS的操作,使消除干扰具有可控性和一致性,为客户高端研究和复杂分析难题带来变革。  8800 ICP-MS/MS主要由两个四极杆和位于它们之间的碰撞反应池(ORS3)组成,也就是说在ORS3前面加了个四极杆(Q1),同时相应地增加了分子涡轮泵。Q1通过精确质量分离,选择控制进入ORS3的离子,因此即使样品组成有所不同,也能保持一致、可预见的反应。ICP-MS/MS不仅具有ORS3氦碰撞动能歧视消干扰的性能,其MS/MS功能还有效解决了原先传统反应池在使用反应性气体测定复杂基体时因共存基体或元素易形成新的干扰离子或共存离子导致用mass-shift 法难以获得准确的痕量定量结果等难点。  8800 ICP-MS/MS 的碰撞/反应池工作方式主要有两种:(1) 通入惰性气体He气,以碰撞动能歧视或碰撞解离方式消除干扰;(2) 通入各类反应性气体,以反应方式并通过MRM功能有效地消除等离子体与基体产生的质谱干扰,并完全避免反应过程中产生的副产物离子与样品基体中的共存离子。新型反应模式中提供一键式运行,其标配的四路反应气之间的切换,只需10-15秒即可达到稳定。同时,安捷伦 8800亦能如单四极杆ICP-MS 一样运行,确保复制现有方法和类似方法的安全性。  8800 ICP-MS/MS的灵敏度与背景噪音比7700系列更为优异,同时,其大部分关键部件、耗材,如锥、雾化器等皆可与7700系列共享。  8800 ICP-MS/MS进一步颠覆了复杂基体分析的瓶颈,将在半导体、材料、临床医学以及科研领域中发挥巨大作用,极适合于复杂基质中易受干扰元素的超痕量分析,以及定量分析 DNA/核苷酸和蛋白/多肽中的硫磷元素并与色谱联用分析其化合物等。AACE LC/MS  AACE LC/MS则是一款用于干血斑和其他干介质分析的完全集成仪器。作为制药和临床研究实验室的理想工具,AACE LC/MS 可提供集成的自动工作流程解决方案,显著提高效率,使样品处理到数据分析一气呵成。  通过干血斑分析,制药公司以及其他机构只需使用很少的血液量(通常 10 到 20 μl)便可获得动物和人体内待测化合物的详细定量数据。血斑的稳定性通常优于冷冻的血浆或血清样品。  安捷伦已经有针对干血斑分析的打孔方法,该款新产品提供了用于直接进行液质分析的全自动在线系统。  安捷伦液质部门营销总监 Lester Taylor 说:“这个新系统是与我们的合作伙伴 Prolab Gmbh 共同开发而成,进一步扩展了我们现有的高级液质联用系统的功能。药物的高灵敏度定量分析是制药和临床研究的重要组成部分,而安捷伦 AACE 液质联用系统为用户带来了全自动解决方案。”  AACE 液质系统使用 Agilent 6400 系列三重四极杆液质系统进行定量分析。该系统使用安捷伦 MassHunter 软件进行数据处理,为使用其他安捷伦液质系统的研究实验室提供一致的用户界面。  该产品还具有其他功能:一套软件系统同时控制分析设置和样品分析;用于获取血斑图像并记录条形码的摄像头,便于样品追踪;通过将提取步骤和分析周期重叠,缩短从一次进样到下次进样的总周期时间。

  • 质谱数据分析

    哪位大侠有质谱原始数据包括[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url],[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]都行。求质谱原始数据方便在自己电脑里学习。谢谢!!!

  • PerkinElmer在ASMS 2012上推出质谱直接分析系统DAS

    PerkinElmer在ASMS 2012上推出质谱直接分析系统DAS  2012年5月20-24日,第60届美国质谱会(ASMS 2012) 在加拿大温哥华召开,专注于提高人类及其生存环境安全的全球领先公司 PerkinElmer在此次会议上展示创新性的质谱解决方案,该方案是通过减少样品前处理步骤实现了分析时间从25分钟减少到25秒。http://bimg.instrument.com.cn/lib/editor/UploadFile/20125/2012522112147864.jpg  AxION® 直接样品分析系统(DAS)  AxION® 直接样品分析系统(DAS)是为实现与AxION® 2飞行时间质谱仪进行无缝链接而设计制造的。该技术的突破性在于可以消除对前端气相和液相分离的需求,使科学家可以在几秒内获得质谱分析结果。使用这套系统,样品分析时间可以减少近99%,并可显著节约成本,由于无需色谱分析过程,在快速获得结果的同时加快了实验室工作流程。http://bimg.instrument.com.cn/lib/editor/UploadFile/20125/2012522112355933.jpg  AxION eDoor™ 开放式读取软件  为了进一步精简实验室操作,PerkinElmer还发布易用的、基于网络的AxION eDoor™ 开放式读取软件。AxION eDoor™ 兼容所有类型LC/MS实验室的工作流程,为样品的引入提供一个“(访问路径)Walk up access”,可以管理和控制包含多家质谱仪器厂商和用户的整个网络。该系统的特点是:有一个现代化和直观的界面,支持通过网页、email和任一PDA快速、便捷的得到访问结果。  “虽然质谱技术可以提供样品最本质的性质,但是各实验室面临着样品前处理时间长和软件操作系统复杂等问题,而这些都是比较耗时并且需要熟练的人员进行操作。”PerkinElmer质谱副总裁Silverio (Sal) Iacono说到,“除了减少样品前处理步骤和无需前端色谱分离外,我们的新质谱解决方案还易于使用,操作人员只需要经过简单培训或者无需培训。在ASMS上,我们将会演示这些创新方案如何简化实验室工作流程和控制,并且同时确保好的质谱数据和结果。”  加入PerkinElmer,你会了解更多关于公司的质谱产品及其在细分市场间的广泛用途。5月21日~23日,上午8:00至下午11:00(PDT),PerkinElmer公司的分析仪器、软件和服务产品会在110号接待室展示。除上述产品外,PerkinElmer还将展出以下产品及服务:  AxION® 2飞行时间质谱硬件和软件平台、Flexar™ FX-15 UHPLC超高压液相色谱系统、Clarus® SQ 8 GC/MS气相色谱/质谱仪、NexION® 300 ICP-MS、OneSource实验室服务。

  • AMDIS自动化质谱图解卷积和鉴定软件在GC/MS数据处理的初步应用 (8)—数据处理一些问题交流(1)

    ( 本文只是一种探讨交流,可能有不足不妥之处,欢迎批评指正。未经同意,请勿转载。多谢合作!)AMDIS自动化质谱图解卷积和鉴定软件在GC/MS数据处理的初步应用(8)—数据处理一些问题交流(1) 先回顾一下AMDIS的基本概念对于AMDIS有的网友可能比较熟悉,特别是农残,环境,有害物,香精香料等领域的朋友可能属于高级使用者。本人以初学者的身份初步介绍一下AMDIS。如有不妥,请批评指正。未经许可,不得转载,请谅解。一般来说,目标化合物的分析要求检测目标离子和确认离子的比例。然而,对于高基体背景的样品,大峰后面的痕量组分或流出时间很接近的成分,离子比例会受到基体的影响很难符合要求。为了确保分析结果可靠,一般采用背景扣除及手动积分。因此,对于复杂基体的样品数据处理,需要耗费大量的时间。为了提高分析效率,谱图可以利用一种称为“解卷积”的数学计算来将目标化合物从背景中分离出来。美国国家标准和技术院(NIST)开发了功能强大的解卷积软件,即自动质谱解卷积和鉴定系统(AMDIS)。下面简单介绍一下AMDIS:AMDIS软件由美国国家标准技术研究院(NIST)(National Institute ofStandards and Technology)提供。The Automatic Mass Spectral Deconvolutionand Identification System (AMDIS)自动质谱图解卷积和鉴定系统软件(AMDIS)让您从GC/MS数据文件自动找到目标化合物。软件先对GC/MS数据文件解卷积寻找所有分离组分。每一组分与目标化合物的谱库进行对比。如果以上的用户设定值,然后报告出目标图谱和解卷了组分的图谱的匹配因子。什么是解卷积(Deconvolution)?NIST AMDIS的定义:“这里所用的术语在广义上是指从一个复杂的混合物中提取信号。 解卷积的过程包括处理噪音、校正漂移、从紧密相邻的共洗脱峰中提取出单个峰等。” (简单讲就是去复杂化)用下面的简图可以解释解卷积过程:在GC/MS 中,Deconvolution是一种数学技术,它可以将重叠的质谱图“分开”成为“清晰”的单个组分的谱图。图1 是这个过程的简单示意图。这里分别是总离子流色谱图(TIC)和质谱图。与常见的情况一样,这个色谱峰包含了多个重叠在一起的组分,而最高点质谱图实际上也是这些组分的组合图。质谱谱库检索只可能给出一个较差的匹配,而且不能识别所有构成这种组合谱图的单个化合物组分。http://ng1.17img.cn/bbsfiles/images/2016/12/201612301125_01_1615838_3.jpg图1 解卷积过程的简单示意图****************************************其它相关内容请参考我以前的帖子。

  • 质谱数据处理

    [color=#444444]有哪位大神知道分析质谱数据的时候,find by AUTO MS/MS和find by formula这两种模式有什么区别,哪一种更准确?[/color]

  • 质谱数据库

    请问各位有推荐的免费质谱数据库吗?麻烦附网址,谢谢~

  • 质谱数据解析求解

    请教一下各位大佬,检测出来的质谱数据正负离子数据相差1应该是什么原因,该怎么解释呢?还有负离子出现M+62的峰应该是加合了什么离子呢?望指教,谢谢。

  • AMDIS自动化质谱图解卷积和鉴定软件在GC/MS数据处理的初步应用 (5)-数据处理的一些问题探讨

    AMDIS自动化质谱图解卷积和鉴定软件在GC/MS数据处理的初步应用 (5)-数据处理的一些问题探讨

    AMDIS自动化质谱图解卷积和鉴定软件在GC/MS数据处理的初步应用(5)-数据处理的一些问题探讨 先回顾一下AMDIS的基本概念对于AMDIS有的网友可能比较熟悉,特别是农残,环境,有害物,香精香料等领域的朋友可能属于高级使用者。本人以初学者的身份初步介绍一下AMDIS。如有不妥,请批评指正。未经许可,不得转载,请谅解。一般来说,目标化合物的分析要求检测目标离子和确认离子的比例。然而,对于高基体背景的样品,大峰后面的痕量组分或流出时间很接近的成分,离子比例会受到基体的影响很难符合要求。为了确保分析结果可靠,一般采用背景扣除及手动积分。因此,对于复杂基体的样品数据处理,需要耗费大量的时间。为了提高分析效率,谱图可以利用一种称为“解卷积”的数学计算来将目标化合物从背景中分离出来。美国国家标准和技术院(NIST)开发了功能强大的解卷积软件,即自动质谱解卷积和鉴定系统(AMDIS)。下面简单介绍一下AMDIS:AMDIS软件由美国国家标准技术研究院(NIST)(National Institute of Standards andTechnology)提供。The Automatic MassSpectral Deconvolution and Identification System (AMDIS)自动质谱图解卷积和鉴定系统软件(AMDIS)让您从GC/MS数据文件自动找到目标化合物。软件先对GC/MS数据文件解卷积寻找所有分离组分。每一组分与目标化合物的谱库进行对比。如果以上的用户设定值,然后报告出目标图谱和解卷了组分的图谱的匹配因子。什么是解卷积(Deconvolution)?NIST AMDIS的定义:“这里所用的术语在广义上是指从一个复杂的混合物中提取信号。解卷积的过程包括处理噪音、校正漂移、从紧密相邻的共洗脱峰中提取出单个峰等。” (简单讲就是去复杂化)用下面的简图可以解释解卷积过程:在GC/MS 中,Deconvolution是一种数学技术,它可以将重叠的质谱图“分开”成为“清晰”的单个组分的谱图。图1 是这个过程的简单示意图。这里分别是总离子流色谱图(TIC)和质谱图。与常见的情况一样,这个色谱峰包含了多个重叠在一起的组分,而最高点质谱图实际上也是这些组分的组合图。质谱谱库检索只可能给出一个较差的匹配,而且不能识别所有构成这种组合谱图的单个化合物组分。http://ng1.17img.cn/bbsfiles/images/2016/11/201611302155_01_1615838_3.jpg图1 解卷积过程示意图左边是TIC上某一峰的质谱图。右边是经过解卷积处理后,让目标化合物从基质和干扰物分离出来。得到3张质谱图。很明显,这样干净而纯的质谱图非常有利于PBM质谱谱库检索或其它谱图检索解析工具。这样对共流出的度组分,大峰中小成分,基质掩盖的痕量组分分析度很有利。下面是Amdis的主界面。http://ng1.17img.cn/bbsfiles/images/2016/11/201611302155_02_1615838_3.jpg图2 Amdis主界面具体的使用运行请参考我以前的帖子。

  • 质谱数据处理

    masslynx或mzmine可以处理不进液相直接进质谱后测得的数据吗?比如解卷积峰、导出峰面积什么的

  • 质谱数据处理问题

    请问: 我用的是bruker离子阱质谱,但是bruker默认的原始数据是Analysis.yep格式,现在我想用MaxQuant或是MSQuant软件来分析数据,请问有什么方法转化格式吗?我找了一圈都没找到? MSQuant软件里面好像带有PTM Score打分方法,这个方法有没有独立的程序可用啊?或是源代码也行啊? 恳请各位专家指教!

  • 质谱数据库原理是什么?!

    质谱数据库依据的原理是什么?!保留时间,质谱m/Z准确度,同位素丰度和比例各自贡献多少?还是有其他参考依据?

  • 【疑问】四极杆质谱的数据采集

    《色谱质谱联用技术》中讲的四极杆质谱数据采集,控制四极杆电压以“步长”0.1质量单位的电压变化值进行扫描,对应截图中(b)是离子强度随时间的变化,想不明白为什么相邻相差0.1的质量单位都会有离子,离子碎片不是都差好几个质量单位数的吗?

  • 求助拟合质谱数据

    求助拟合质谱数据

    [color=#444444]我想拟合一个数据,大体上弄到如下图所示,想问下大神如何拟合质谱数据。[/color][color=#444444]谢谢![/color][color=#444444][img=,301,328]https://ng1.17img.cn/bbsfiles/images/2019/05/201905131540551793_4347_1847709_3.png!w301x328.jpg[/img][/color]

  • 气相质谱数据库下载

    请问有哪些可以下载的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]质谱数据库,或者挥发性化合物数据库?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制