当前位置: 仪器信息网 > 行业主题 > >

质谱摩尔质量

仪器信息网质谱摩尔质量专题为您提供2024年最新质谱摩尔质量价格报价、厂家品牌的相关信息, 包括质谱摩尔质量参数、型号等,不管是国产,还是进口品牌的质谱摩尔质量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱摩尔质量相关的耗材配件、试剂标物,还有质谱摩尔质量相关的最新资讯、资料,以及质谱摩尔质量相关的解决方案。

质谱摩尔质量相关的资讯

  • 复旦大学唐惠儒组突破核磁检测的微摩尔瓶颈
    导读 01 复旦大学生命科学学院唐惠儒教授团队在期刊《Journal of the American Chemical Society》上发表了题为“Detecting Submicromolar Analytes in Mixtures with a 5 min Acquisition on 600 MHz NMR Spectrometers”的研究论文,研究人员报告了一种新策略,通过结合探针诱导的灵敏度增强和基于NUS的1H-13C HSQC 2D NMR(PRISE-NUS-HSQC),在经济高效的常规600 MHz光谱仪上进行5分钟采集,即可同时检测复杂混合物中的亚微摩尔氨基化合物。研究背景 02 氨基化合物广泛存在于化学、生物学、医学、食品和环境科学等领域的复杂混合物中,涉及药物杂质、蛋白质代谢、生物系统中的生物胺、神经递质和嘧啶等。核磁共振(NMR)光谱是一种优秀的工具,可以同时鉴定和定量这些混合物中的化合物,但其检测限度(LOD)在几微摩尔以上(5 μM)。研究发现 03 研究人员开发了一种敏感而快速的方法,通过结合探针诱导的灵敏度增强和非均匀采样基于1H-13C HSQC 2D-NMR(PRISE-NUS-HSQC),引入了两个13CH3标记物,分别增加了每个分析物的1H和13C丰度,最多可增加6倍和200倍。这使得能够在5 mm试管中以5分钟采集时间在600 MHz光谱仪上高分辨率检测0.4-0.8μM的分析物混合物。该方法比传统的1H-13C HSQC方法(约50μM,10小时)更敏感且更快。此外,研究人员使用磺胺酸作为单一参考物,建立了一个数据库,涵盖了100多个化合物的化学位移和相对响应因子,从而实现了可靠的鉴定和定量。研究结果 04 综上所述,研究人员通过将探针诱导的灵敏度增强与基于NUS的1H-13C HSQC 2D-NMR相结合,开发出了一种同时定量复杂混合物中氨基化合物的新策略。该方法在多种生物基质中展示了良好的定量线性、准确性、精密度和适用性,为化学、药物、代谢组学、食品和其他混合物的大规模定量分析提供了一种快速而敏感的方法。
  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
  • 中南大学在莫尔超晶格量子器件研究领域取得新成果
    近日, 中南大学物理与电子学院教授刘艳平、何军与美国加州州立大学北岭分校Gang Lu、澳大利亚悉尼大学刘宗文以及湖南大学潘安练、段曦东教授等国内外学者合作,在《先进材料》(Advanced Materials)上发表题为“TMDCs莫尔超晶格层间耦合效应的量子调制”的研究论文。中南大学物理与电子学院为该项研究成果的第一完成单位,博士后郑海红博士为论文第一作者,刘艳平教授为论文的通讯作者。在范德瓦尔斯材料中,层间扭曲或晶格失配可以形成莫尔超晶格(Moiré superlattices),其周期随着扭曲角的变化而连续变化。莫尔超晶格可以产生空间周期性的莫尔势,改变材料的电子和能带结构,从而产生强相关联的量子现象,为研究多体系统的量子模拟提供了可能,促进了量子光学器件的发展。二维莫尔超晶格为探索新的强相关联的物理现象提供了一个强大的平台,这些现象都取决于界面层间耦合相关的莫尔势。目前,莫尔超晶格主要通过机械剥离技术和人工堆叠方法制备。然而,人工转移方法不可避免地造成由不纯界面引发的层间耦合在空间上的不均匀性,阻碍了对周期性莫尔超晶格物理性质及其应用的深入理解。因此,直接生长具有均匀的层间耦合和最小晶格重构的莫尔超晶格仍然是一个挑战,对莫尔超晶格的应用构成严重限制。针对这一难题,该研究创新性通过Sn原子辅助生长克服堆积自由能,并使用CVD生长技术直接制备了不同扭角的WSe2莫尔超晶格。利用低频拉曼散射光谱验证了其均匀性,证明了强的界面耦合。扭曲角为1.5°的CVD生长的莫尔结构的莫尔势比人工堆叠的更深(增加了155%),表明界面耦合可以调节莫尔势的深度。第一性原理模拟揭示了莫尔超晶格中的平带现象,为莫尔激子的产生提供了理论基础。本研究成果提出了一种合成二维莫尔超晶格的新方法,并为设计和优化其莫尔性能提供了策略,这种新策略将有望用于量子计算、量子通讯、新型超导体等领域。研究者通过Sn原子辅助下克服堆积自由能,采用CVD生长技术制备了具有不同扭曲角的WSe2莫尔超晶格。受访者 供图据悉,“低维物理与量子器件”是中南大学物理与电子学院特色研究方向和“十四五”规划重点发展支持方向之一。此项研究得到了国家自然科学基金面上项目、湖南省自然科学基金杰出青年项目、湖南省重点研发项目、湖南省芙蓉学者特聘教授基金、中南大学创新驱动青年团队项目、中南大学高性能复杂制造国家重点实验室自主研究课题、澳大利亚ARC Discovery、博士后面上项目等多个项目的支持,并获得中南大学高性能计算公共平台在材料结构计算等方面提供的有力支持。
  • 卓立汉光专访南京工业大学的王琳教授:后摩尔时代中的二维光电材料
    北京卓立汉光仪器有限公司(以下简称卓立汉光)于8月24日-25日在南京举办第四届“逐梦光电”国产光电分析仪器研制与应用研讨会。来自南京工业大学的王琳教授在会议期间接受卓立汉光《视点前沿》栏目的采访,奇思妙想探索二维光电材料制备与应用王琳教授课题组研究方向是二维光电材料与器件,主要分为三个子方向,即材料、物理、信息。*一个材料方向是关于二维光电材料本身的设计和制备,主要面向有化学材料背景的同学们,同学们可以根据自己的奇思妙想,利用一些比较新奇的制备方法去制备具有优异光物理特性和光电器件性能的材料,这些材料主要是以二维钙钛矿为代表的二维卤化物。第二个是物理方向,需要通过二维卤化物或者二维半导体与其他材料通过范德华异质结进行组装,从而研究由界面、电荷或能量传递引起的发光物理上的特性。这个方向适合具有良好物理知识背景的同学去从事。第三个是信息方向,当课题组制备出性能优异的光电材料并深入了解了其光物理特性之后,需要针对光电器件的应用去开发原型器件,包括存储器、晶体管和光电探测器等。目前王琳老师课题组的学生及老师一共有40余人。二维材料与后摩尔时代(Post-Moore Era)英特尔创始戈登摩尔在60多年前提出摩尔定律,描述电子器件在近几十年来的发展趋势。指的是每18-24个月,电子器件的集成密度会翻倍。随着器件的特征尺寸逐渐逼近了材料和器件的物理极限,大家发现这个摩尔定律失效了,由于后摩尔时代就出现了。王琳老师介绍道:“后摩尔时代有两条常规的发展路径。一是 “More Moore”(延续摩尔),更多的是采用更加激进的方法将器件的特征尺寸更加微缩化,使得集成密度提升到更高水平,主要是从尺寸集成角度来讲,希望材料能有底层的创新。第二是超越摩尔,也就是“More than Moore”。更多的是强调单一的器件功能的丰富化,比如把传感、存储、计算等功能集成在一个单一器件,使得器件功能更加丰富,从而提升集成的密度。这样单位面积上的器件的数量和功能得到很大提升,满足大家对集成器件更高的要求。搭建在显微镜上的圆偏振发光(CPL)王琳老师近年部分研究聚焦在低维材料的圆偏振发光中。课题组近期《NANO LETTERS》上发表了一篇文章(Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites),文章通过二维的范德华力把二维非手性钙钛矿和二维手性钙钛矿连接起来,制备得到的材料在室温下的CPL强度有了数量级的提升。王琳老师分享了课题组在圆偏振显微镜的搭建的经验:“圆偏振发光显微系统的搭建需要用到四分之一玻片,我们可以在谱仪的激发或者发射端通过四分之一玻片的加入实现CPL特性的测量。CPL特性有三种测量方法:激发侧起偏、发射侧检偏和二者的结合。CPL也是表征二维材料如二硫化钼、二硒化钼等材料的一种重要方法。CPL*大应用方向是自旋光电子器件,我们以前主要考虑电荷传输及电荷量,但是经研究发现自旋作为载流子另外一个维度的调控,可以进一步丰富器件的功能,出现很多新奇的特性,而圆偏振光在这个方面是很好的表征手段。”与卓立汉光一起成长的科研历程作为卓立汉光的老朋友,王琳老师提到,她们课题组的发展和卓立汉光是密不可分的。她回忆道:“我在2017年认识了卓立汉光的董磊副总经理,当时我们有一个很好的想法,那就是能不能去集成适合研究二维材料微纳光电系统的全国产化设备,包括荧光、拉曼、光吸收、微纳LED测量,包括低温和磁场环境等。我当年刚回国,怀揣对祖国的热情,对国产仪器也有别样的情怀。董总问我,你敢不敢做*一个吃螃蟹的人,我当时也没有什么犹豫,就和董总达成了这样的协议。”通过六年的发展,王琳老师说,她觉得当初的选择是对的。她在当初选择了国产品牌并与它一起成长,虽然并不是每一台国产仪器都是完美的,但是她也见证国产仪器从不完美或是比较稚嫩的状态走向一个逐渐完美强大的发展过程。“这个过程和我自身的科研经历相似,我也是从一个懵懵懂懂的科研工作者,慢慢看清楚自己想做什么。有些虽然没有做到,但是已经确定了一个非常坚定的目标,我也非常感谢和卓立汉光一起成长的过程。‘’结束语在采访中,王琳老师深入浅出为我们科普了后摩尔时代,也让我们看到了二维光电材料与器件的发展潜力。*后当王琳老师娓娓道来她与卓立汉光一起成长的故事的时候,我们也十分感动并非常荣幸能够参与到这个与科研工作者一起成长的历程中。非常感谢王琳老师对卓立汉光的信任,也希望能与王老师一起见证二维光电器件在后摩尔时代中的巨大魅力。王琳教授简介王琳,南京工业大学教授、博士生导师、国家海外高层次青年人才引进计划入选者。长期从事低维异质集成材料与器件的研究工作。目前已发表学术论文90余篇,以(共同)通讯作者身份在Nat. Mater.、Nat. Commun.、Adv. Mater.、Angew. Chem. Int. Ed.、Nano Lett.、ACS Nano、Light Sci. Appl.、Nano Today等发表论文40余篇。曾荣获国际健康、科学与工程组织*佳研究员奖、国际先进材料学会奖章、欧洲材料学会青年科学家奖、江苏特聘教授、江苏省“六大人才高峰”高层次人才A类等荣誉。当选国际先进材料协会会员、欧洲先进材料大会科学顾问委员、柔性电子材料与器件工信部重点实验室学术委员会委员、InfoMat、中国激光杂志社、Frontier of Physics青年编委等。
  • 台积电副总裁:不在乎摩尔定律存亡,3D芯片封装推动持续进步
    摩尔定律曾指出,半导体市场的经济性完全基于晶体管密度,而很少考虑功率。然而,随着应用的发展,芯片生产商已将重点放在功率、性能和面积(PPA))改进上,以继续稳步前进。在一次采访中,台积电业务开发资深副总裁、工艺技术负责人Kevin Zhang表示,只要整体进步继续,他就不关心摩尔定律的存亡。面对摩尔定律是否已死的提问,Kevin Zhang表示:“我简单的答案是:我不在乎,只要我们能继续驱动技术微缩,我不在乎摩尔定律是生是死。”事实上,台积电的优势在于它每年都能推出一种新的工艺技术,并提供客户寻求的性能、功率和面积(PPA)改进。大约十年来,苹果一直是台积电的最尝鲜客户,这就是为什么台积电工艺技术的演变与苹果处理器的演变非常吻合。然而,当研究台积电在苹果芯片之外的实力时,人们将注意到AMD的Instinct MI300X和Instinct MI300A芯片具有人工智能(AI)和HPC(高性能计算)功能。这两款产品都广泛使用台积电的2.5D和3D先进封装,或许是展现台积电能力的最佳范例。事实上,台积电及其客户专注于3D微缩技术。“观察人士基于平面微缩狭隘地定义了摩尔定律——现在情况已不再如此,我们实际上继续寻找不同的方法将更多功能和能力集成到更小的外形尺寸中。我们继续实现更高的性能和更高的能效。因此从这个角度来看,我认为摩尔定律或微缩技术将继续下去。”当被问及台积电在渐进式工艺节点改进方面的成功时,Kevin Zhang澄清说,我们的进步远非微不足道。台积电强调,该代工厂从5nm到3nm级工艺节点的过渡导致每代PPA改进幅度超过30%。台积电继续在主要节点之间进行较小但持续的增强,以使客户能够从每一代新技术中获益。
  • 仪器新应用!普林斯顿大学通过多种探测设备揭示莫尔材料中的新物理机制!
    【科学背景】莫尔材料是通过旋转或晶格错位设计的高度可调的强关联二维材料,因其在拓扑和电子关联效应方面的独特特性成为了研究热点。然而,其存在的主要挑战在于理解和控制这些材料中出现的复杂电子相行为。莫尔材料中的平坦能带结构极大地增强了库仑相互作用,导致一系列集体电子相的产生,包括相关绝缘体、非常规超导体和拓扑相。这些相的微观机制复杂多样,且往往对环境参数(如温度、外磁场和电场)非常敏感,使得实验研究和理论建模都面临巨大挑战。有鉴于此,美国普林斯顿大学Kevin P. Nuckolls & Ali Yazdani教授两人在“Nature Reviews Materials”期刊上发表了题为“A microscopic perspective on moiré materials”的研究论文。科学家们提出了多种局部探测技术以深入研究莫尔材料中的电子相行为。例如,局部光谱学、热力学和电磁探测技术被广泛应用于探测这些材料中的电子态和相变。具体而言,扫描隧道显微镜(STM)和扫描透射电镜(STEM)等局部探测工具能够直接观察到莫尔材料中的局部电子态和结构变化。这些技术帮助科学家揭示了莫尔材料中相关绝缘体、广义Wigner晶体、非常规超导体、莫尔铁电体和拓扑轨道铁磁体等多种电子相的形成机制。通过这些研究,科学家们不仅识别了莫尔材料中的基本物理机制,还发现了一些通过传统全局探测手段无法观察到的脆弱量子相。此外,新开发的局部电荷传感和量子干涉探针技术进一步揭示了莫尔材料中的新物理可观测量。【科学亮点】1. 实验首次通过旋转或晶格失配设计出莫尔材料,产生了高度可调的二维材料平台。&bull 莫尔材料通过相同二维原子晶体的旋转错位或不同二维原子晶体的晶格失配设计而成。&bull 这些材料形成了长波长的干涉图案,导致平坦的电子能带,非常有利于相关的集体物质相的形成。2. 实验揭示了莫尔材料中的电子关联效应和拓扑保护特性。&bull 莫尔材料中,电子之间的库仑相互作用主导系统的动力学,使得相关相得以形成。&bull 这些材料的低能带结构由与六方原子晶格相关的狄拉克物理描述,具有内在的自旋-轨道耦合,有利于拓扑特性。3. 实验通过局部光谱学、热力学和电磁探测技术,发现了多种奇异的电子相态。&bull 这些技术揭示了相关绝缘体、广义Wigner晶体、非常规超导体、莫尔铁电体和拓扑轨道铁磁体等奇异相的基本机制。&bull 局部探针技术,如局部电荷传感和量子干涉探针,揭示了新的物理可观测量,发现了脆弱的量子相态。4. 实验展示了旋转错位和晶格失配设计的多样性及其产生的丰富物理现象。&bull 旋转错位设计涵盖了多种莫尔同质双层和多层结构,包括扭曲单层、双层、三层、四层和五层石墨烯,以及扭曲的过渡金属二硫化物(如WSe2、WS2、WTe2和MoTe2)。&bull 晶格失配设计涵盖了对准的异质双层TMDs(如WSe2/WS2和MoTe2/WSe2)和对准的石墨烯/六方氮化硼(hBN)异质结构。【科学图文】图1:莫尔材料的相图。图2. 在双层魔角石墨烯中,电子跃迁的平坦电子带和级联。图3. 在莫尔石墨烯中的相关绝缘体。图 4:在莫尔过渡金属二硫属元素化物中,相关绝缘体的成像。图5:在莫尔石墨烯中,相关驱动拓扑相的局部传感。图6: 成像轨道铁磁性和莫尔铁电性。图7: 在莫尔石墨烯中,非常规超导电性的光谱探针。【科学结论】本文展示了莫尔材料作为一种新兴材料类别在量子材料领域中的引人注目的研究前景。通过对莫尔材料的局部探测和研究,揭示了其复杂的电子相态和奇异性质,为我们理解强关联量子系统提供了独特的视角。特别是,莫尔材料展现了拓扑和关联效应的独特结合,产生了许多未曾在自然界其他材料中观察到的新奇电子相。本文呼吁进一步发展新的局部探针技术,以解决现有技术的局限性,促进对莫尔材料的更深入理解。同时,强调了继续在莫尔材料中寻找和理解未实现的奇异量子相的重要性,特别是对零磁场下稳定的分数Chern绝缘体(FCIs)的研究。这将推动我们对莫尔材料及其潜在应用的全面认识,为未来量子材料研究和技术应用开辟新的可能性。原文详情:Nuckolls, K.P., Yazdani, A. A microscopic perspective on moiré materials. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00682-1
  • 仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!
    【科学背景】摩尔纹超晶格是指在两个二维材料或层状结构叠加时形成的周期性结构,能够引发出多种量子现象,如超导性和莫特绝缘体。然而,迄今为止,这些研究主要集中在范德华层材料上,其层间相互作用较弱,限制了能量调制的深度和在室温下的应用。具体而言,范德华层材料的摩尔图案受到其相对弱的范德华力的限制,这导致形成的平带对热波动和杂质非常敏感,因此在低温下观察到的平带物理现象远多于室温条件下的观察。为了克服这一限制,科学家们开始寻找更强的层间相互作用,以增加能量调制的深度,从而实现室温下的摩尔纹材料在此背景下,二维卤化物钙钛矿被提出作为一个潜在的解决方案,因其具有离子键合和更强的层间耦合能力。然而,要实现这一概念,必须克服多个技术难题。首先,传统的二维钙钛矿合成方法通常依赖于有机配体,这些配体太过庞大,阻碍了层间的电子耦合,从而不利于摩尔纹超晶格的构建。其次,控制二维钙钛矿的厚度和侧向尺寸,尤其是在特定扭角下的生长,是一项具有挑战性的工程任务。为了解决这些问题,美国普渡大学(Purdue University)Letian Dou & Libai Huang教授、中国科学技术大学张树辰,上海科技大学Yuan Lu等教授携手开发了一种新的合成方法,成功制备出无配体、超薄、大面积的二维卤化物钙钛矿晶体。这些人工扭曲的结构展现了清晰的方形摩尔纹图案,并在扭角约为10°时显示出局域的激子和电荷。通过高分辨透射电子显微镜和瞬态光致发光显微镜等技术手段,研究团队验证了这些摩尔纹超晶格的形成及其在平带物理方面的潜力。【科学亮点】(1)实验首次展示了利用超薄、无配体卤化物钙钛矿构建摩尔纹超晶格的成功尝试。此前,大面积的二维非范德华材料在控制厚度和扭角方面存在挑战,本研究通过合理的合成方法克服了这些难题,成功制备了具有方形摩尔纹图案的扭曲钙钛矿层。(2)实验通过高分辨透射电子显微镜清晰展示了这些超薄钙钛矿层的方形摩尔纹超晶格,这些结构在扭角约为10°时显现出局域的明亮激子和捕获的电荷。(3)通过扭角依赖的瞬态光致发光显微镜和电学特性表征,研究发现摩尔势阱引起的局域激子导致了显著增强的激子发射。这些结果不仅验证了理论预测的平带增加的振子强度,也展示了扭曲钙钛矿结构作为独特的室温摩尔材料平台的潜力。【科学图文】图1: 通过平衡溶液方法和表征,将RP-相二维2D钙钛矿转化为APbX3相。图2. 在钙钛矿转角层twisted perovskite layers,TPLs中的方形莫尔图案。图3. 在MAPbI3 钙钛矿转角层TPLs中,依赖于转角的激子输运和湮灭。图 4. 在MAPbI3 钙钛矿转角层TPLS中,依赖于扭转角的光致发光photoluminescence,PL发射。【科学结论】本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。这不仅拓展了摩尔材料的选择范围,还为光发射、光-物质相互作用等应用(如激子激光和激子极化子)提供了新的探索可能性。激子的增强振子强度不仅为设计能量和电荷传输功能提供了更多机会,还为太阳能电池和LED等领域的应用开发提供了潜在的技术路径。此外,通过调节阳离子和外部压力来控制层间距离,我们展示了钙钛矿结构的高度可调性,这为优化摩尔激子的定域和性质提供了有力工具。未来,进一步研究晶格松弛效应对摩尔平带稳定性的影响,并推动更完善的理论模型和改进的显微镜技术,将有助于深入理解这一新兴领域的基础物理与应用潜力。原文详情:hang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0
  • Small Methods综述:扫描透射莫尔条纹方法(STEM-MF)
    当两套空间频率相近的周期性条纹或点阵相互干涉,就可能形成莫尔条纹(moiré fringe)。莫尔条纹常被应用于光学、机械学等学科进行图像处理、滤波等。在常用的材料学表征方法,如原子力显微镜(AFM)、扫描隧道显微镜(STM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)中,莫尔条纹亦被应用于材料的位错识别、晶格应变分析等。  产生莫尔条纹的周期性结构可以是样品中的两套周期性晶格,也可以是扫描电子束遵循的周期性点阵与晶体的晶格。莫尔条纹概念应用于扫描透射电镜(STEM),可以通过控制扫描电子束的空间频率(即扫描点阵)与被分析的晶格点阵发生干涉,利用这种可控差拍干涉分析材料微结构的方法叫做扫描透射莫尔条纹方法(STEM-moiré fringe,简写为STEM-MF)。该方法由苏东和朱溢眉于2010年最先提出,并得到电子显微学领域的关注与发展。该方法通过获取实空间的干涉图样研究材料微结构,有如下优点:1)具有较大的视野范围 2) 对晶格变化的敏感性高 3) 可显著降低电子束辐照剂量 4) 具有高度可调的扫描策略以适应不同的晶格点阵。  最近,北京工业大学柯小行副教授课题组与中科院物理所苏东研究员课题组合作撰写综述文章,全面介绍了STEM-MF方法的相关理论,并进一步结合几何相位分析(GPA)、环形明场成像(ABF-STEM)、能量色散 X 射线光谱(EDX)和电子能量损失光谱(EELS),深入讨论了该方法的发展。继而通过STEM-MF在应变分析、缺陷研究、二维材料结构分析和电子束敏感材料结构表征上的应用,总结分析了STEM-MF在解决材料表征问题中的优势。最后,文章对STEM-MF的发展趋势进行展望,为STEM-MF应用于材料结构表征提供了崭新的思路。    文章提出STEM-MF方法的主要应用包括:  (1)材料应变分析:莫尔条纹对两套晶格周期及相对旋转角度高度敏感,因此可以利用STEM-MF进行应变分析。该方法已被用于半导体、金属等材料的定量化应变分析,兼具高精度(可达0.05-0.02%)和大视野范围的优点。  (2)材料缺陷研究:利用缺陷产生的应变可实现STEM-MF的缺陷识别,克服了常规 STEM 成像中高分辨条件下视野有限的缺点,能够在较低的放大倍数下快速定位缺陷,并在氧化物异质结、热电材料中得到了应用。  (3) 二维材料的结构表征:STEM-MF方法在快速定位晶界、界面缺陷和晶格扭曲等方面具有独特优势,因此在石墨烯和过渡族金属二硫化物等二维材料的微结构分析中有巨大的应用潜力,已被用于分析二维材料同质结、异质结等结构。  (4)电子束辐照敏感材料的低剂量表征:由于STEM-MF的扫描特点,能够在较大的扫描范围内调节步长,从而可减少高达99%的电子束辐照剂量。因此,该方法在研究电子束辐照敏感的材料方面有诱人的应用前景,目前已被初步应用于有机晶体和部分无机材料的结构表征。鉴于软物质结构表征的重要性,作者期望该方法能够在有机材料、生物材料、Mxenes 和MOF等更多的电子束辐照敏感材料的表征中发挥其应有的潜力。  文章最后讨论了STEM-MF的挑战和机遇,并就样品漂移等STEM不稳定因素的影响、机器学习方法的融入、扫描点阵的设计策略等方面提供了方案和建议。  论文信息:  Moiré Fringe Method via Scanning Transmission Electron Microscopy  Xiaoxing Ke*, Manchen Zhang, Kangning Zhao, Dong Su*  Small Methods  DOI: 10.1002/smtd.202101040
  • 葛炳辉团队:STEM模式下基于扫描莫尔条纹快速测定样品厚度的方法
    ◆第一作者:南鹏飞通讯作者:葛炳辉教授通讯单位:安徽大学论文DOI:10.1016/j.micron.2022.103230近日,安徽大学电镜中心南鹏飞同学关于利用扫描摩尔条纹测定样品厚度的工作被Micron杂志接收。样品厚度是透射电镜(TEM)成像中的重要参数,主要用于图像衬度的解释以及性能和微观结构之间的关系的研究。当前,透射电镜中常用的样品测厚方法主要包括电子能量损失谱(EELS),会聚束电子衍射(CBED)和位置平均会聚束电子衍射 (PACBED)等技术。其中EELS是一种原位测厚技术,主要通过log-ratios方法或K-K求和法则来计算样品的相对厚度或绝对厚度。在准确测得非弹性平均自由程的情况下,EELS测厚的准确度可达± 10%。CBED测厚则主要借助模拟来实现,测厚准确度可达 ± 5%。PACBED是扫描透射模式(STEM)下的一种测厚方法,通过对多个位置的CBED花样取平均,最终获得的PACBED花样中只包含厚度、倾转和极化的影响,精确度优于± 10%。然而,实际使用时,EELS测厚需要昂贵的Gatan成像过滤系统(Gif),而CBED和PACBED测厚则需要复杂且耗时的模拟工作。本工作介绍了一种STEM模式下快速测定样品厚度的方法,主要通过调节focus借助系列离焦的扫描莫尔条纹(SMF)成像来判断。通过将样品倾转至正带轴或强的双束衍射条件,并且适当调整放大倍数和电子束扫描方向就可以在中等放大倍数范围观察到SMF像。通过SMF的形成条件可知,只有电子探针和样品发生相互作用时才能观察到SMF。再通过改变离焦量,就可以控制电子探针相对于样品的位置,从而实现SMF的出现和消失。因此,实际在改变离焦值时电子探针的位置变化 ∆f 就反映了样品厚度。不过,要更准确的获得样品厚度 T 还需要考虑电子探针在深度方向的尺寸 δz 以及样品表面总的非晶层厚度 A, 即 T=∆f-δz+A ,其中δz=1.77λ/α^2,α 为会聚半角,λ 为电子波长。进一步地,本工作还结合EELS测厚方法验证了SMF测厚方法的正确性。该工作强调了系列离焦SMF在快速测定样品厚度方面的应用,能够有效避免STEM模式下的电子束损伤和积碳问题,尤其适用于不耐电子束辐照的样品。赞助国家自然科学基金项目 (Nos. 11874394) 安徽省高校协同创新计划项目 (No. GXXT-2020-003)。论文链接https://doi.org/10.1016/j.micron.2022.103230
  • 后摩尔时代新器件重大研究计划项目指南发布
    关于发布后摩尔时代新器件基础研究重大研究计划2023年度项目指南的通告国科金发计〔2023〕8号国家自然科学基金委员会现发布后摩尔时代新器件基础研究重大研究计划2023年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申请。国家自然科学基金委员会2023年2月10日后摩尔时代新器件基础研究重大研究计划2023年度项目指南本重大研究计划面向芯片自主发展的国家重大战略需求,以芯片的基础问题为核心,旨在发展后摩尔时代新器件和计算架构,突破芯片算力瓶颈,促进我国芯片研究水平的提升,支撑我国在芯片领域的科技创新。一、科学目标本重大研究计划面向未来芯片算力问题,聚焦芯片领域发展前沿,拟通过信息、数理、材料、工程、生命等多学科的交叉融合,在超低能耗信息处理新机理、载流子近似弹道输运新机理、具有高迁移率与高态密度的新材料、高密度集成新方法以及非冯计算新架构等方面取得突破,研制出1fJ以下开关能耗的超低功耗器件和超越硅基CMOS载流子输运速度极限的高性能器件,实现算力提升2个数量级以上的非冯架构芯片,发展变革型基础器件、集成方法和计算架构,培养一支有国际影响力的研究队伍,提升我国在芯片领域的自主创新能力和国际地位。二、核心科学问题针对后摩尔时代芯片技术的算力瓶颈,围绕以下三个核心科学问题展开研究:(一)CMOS器件能耗边界及突破机理。需要重点解决以下关键问题:探寻CMOS器件进行单次信息处理的能耗边界,研究突破该边界的新机理,实现超低能耗下数据的计算、存储和传输。(二)突破硅基速度极限的器件机制。需要重点解决以下关键问题:在探索同时具备载流子长自由程和高态密度的新材料体系基础上,研究近似弹道输运的器件机理,实现突破硅基载流子速度极限的高性能器件。(三)超越经典冯?诺依曼架构能效的机制。需要重点解决以下关键问题:探寻计算与存储融合的机制与方法,并结合新型信息编码范式,实现新型计算架构,突破冯?诺依曼架构的能效瓶颈。三、2023年度资助的研究方向(一)培育项目。围绕上述科学问题,以总体科学目标为牵引,2023年度拟资助探索性强、选题新颖、前期研究基础较好的申请项目,研究方向如下:1.超低功耗器件的理论、材料与集成技术。针对1fJ以下的开关能耗目标,研究超越CMOS的新原理逻辑、存储、感知器件及其核心材料与集成技术;研究极端物理条件下的极低功耗信息处理与存储机制及模型。2.高速高性能器件的理论、材料与集成技术。探究弹道输运机制,寻求超越传统硅基沟道自由程和态密度的半导体材料,研究并实现高弹道输运系数的新型场效应器件;探索有限能耗下的信息高速处理、存取与传输新机制及其器件技术。3.高能效计算与存储架构。探寻突破冯?诺伊曼能效瓶颈的新型计算架构和存储架构,研究面向存内计算新架构的设计方法学。(二)重点支持项目。围绕核心科学问题,以总体科学目标为牵引,2023年拟资助前期研究成果积累较好、处于当前研究热点前沿、对总体科学目标有较大贡献的申请项目,研究方向如下:1.原子级沟道P型晶体管。研制高性能低功耗原子级沟道P型晶体管,沟道厚度小于1.5nm,迁移率大于100cm2/V?s,Vds = 1V时开态电流大于600μA/μm、关态电流小于100pA/μm。2.硅基新型神经突触器件。研制硅基新型神经突触器件,探索器件在电和近红外光刺激下多电导态产生的光电协同机理,阐明影响器件及其阵列波动性、重复性的物理机制和突触行为机理,并建立相关模型。实现阵列规模不小于4kbit,单次操作能耗低于1fJ、操作速度达到纳秒量级、权重精度达到3bit以上,并实现基于神经突触阵列的神经形态视觉。3.多元编码融合的张量处理架构。研究随机数、定点数、浮点数等两种或多种新型编码共融的编码机制,以及数字域、时间域、频率域多域融合的计算范式,数据精度可配置、数模计算异步协同的新型架构,探索编码可重构、硬件可复用的电路设计技术,研制高精度的张量处理器芯片,8bit等效精度下的计算密度大于5TOPS/mm2、能效大于50TOPS/W。4.异构融合的高能效存内搜索架构。研究非易失关联存储器及其集成技术、异构融合存内搜索架构以及混合精度能效提升技术,单比特搜索能耗低于1fJ,在多模态信息检索任务验证中实现与软件相当的搜索准确率,8bit等效精度下的能效大于50TOPS/W。四、项目遴选的基本原则(一)紧密围绕核心科学问题,鼓励有价值的前沿探索和创新研究。(二)优先资助能解决芯片中的实际难题、具有应用前景的研究项目。(三)鼓励多学科交叉研究。(四)重点资助具有良好研究基础和前期积累、对总体科学目标有直接贡献的研究项目。五、2023年度资助计划2023年度拟资助培育项目8项,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2024年1月1日—2026年12月31日”;拟资助重点支持项目4项,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2024年1月1日—2027年12月31日”。六、申请要求及注意事项(一)申请条件。本重大研究计划项目申请人应当具备以下条件:1.具有承担基础研究课题的经历;2.具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2023年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2023年度国家自然科学基金项目指南》和《关于2023年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1.本重大研究计划项目实行无纸化申请。申请书提交时间为2023年3月15日-3月20日16时。(1)申请人应当按照科学基金网络信息系统(以下简称信息系统)中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“后摩尔时代新器件基础研究”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。(4)申请人在申请书“立项依据与研究内容”部分,应当首先明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划总体科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2023年3月20日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于3月21日16时前在线提交本单位项目申请清单。3.其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。4.本重大研究计划咨询方式:国家自然科学基金委员会信息科学部四处联系电话:010-62327351
  • 超越摩尔定律?厚度仅0.7 nm!台湾团队成功研发出单原子层二极管
    p   科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度(& lt 1纳米)的晶体管材料。 /p p   芯科技消息,半导体技术蓬勃发展,但面对集成电路微缩化的3纳米制程极限,科学家除改善电路中晶体管基本架构外,也积极寻找具有优异物理特性且能微缩至原子尺度(& lt 1纳米)的晶体管材料。 /p p   成功大学、台湾“科技部”、同步辐射研究中心合作研发出仅有单原子层厚度(0.7纳米)且具优异的逻辑开关特性的二硒化钨(WSe sub 2 /sub )二极管,并在《自然通讯 Nature Communications》杂志上发表研究成果。 /p p style=" text-align: center " img width=" 447" height=" 500" title=" 1.jpg" style=" width: 447px height: 500px " alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/23354494-092f-4f45-a23e-f3f6ab8d514a.jpg" border=" 0" vspace=" 0" / /p p   根据研究团对介绍,二维单原子层二极管的诞生,更轻薄,效率更高,除了可超越摩尔定律进行后硅时代电子元件的开发,以追求元件成本/耗能/速度最佳化的产业价值外,还可满足未来人工智能芯片与机器学习所需大量计算效能的需求。 /p p   二维材料具有许多独特的物理与化学性质,科学家相信这些性质能为计算机和通信等多方领域带来革命性冲击。成大与同步辐射研究中心团队说明,其中与石墨烯(Graphene)同属二维材料的二硒化钨(WSe2),是一种过渡金属二硫族化合物(Transition Metal Dichalcogenides, 简称TMDs),能在单化合原子层的厚度(约0.7纳米)内展现绝佳的半导体传输特性,比以往传统硅半导体材料,除了厚度上已超越3纳米的制程极限外,可完全满足次世代集成电路所需更薄、更小、更快的需求。 /p p   研究团队利用同时兼具高亮度/高能量解析/高显微力的台湾“三高”同步辐射光源,成功观察到可以利用搭载二维材料的铁酸铋(BiFeO3)铁电氧化物基板,能有效地在纳米尺度下改变单原子层二硒化钨半导体不同区域电性。 /p p   指导该计划的成大教授吴忠霖表示,相较以往只能利用元素参杂或加电压电极等改变电性方式,最新发表的研究无需金属电极的加入,是极重大的突破。 /p p   该研究团队也解释,这项研究利用单层二硒化钨半导体与铁酸铋氧化物所组成的二维复合材料,展示调控二维材料电性无需金属电极的加入,就能打开和关闭电流以产生1和0的逻辑信号,这样能大幅降低电路制程与设计的复杂度,以避免短路、漏电、或互相干扰的情况产生。 /p p   由于二维材料极薄,能如同现今先进的晶圆3D堆栈技术一样,透过堆栈不同类型的二维材料展现不同的功能性。研究团对认为,未来若能将此微缩到极限的单原子层二极管组合成各种集成电路,由于负责运算的传输电子被限定在单原子层内,因此能大幅地降低干扰并能增加运算速度。 /p p   研究团对期望,若这项技术持续精进,预期可超过现今计算机的千倍、万倍,而且所需的能量极少,大量运算时也不会耗费太多能量达到节能的效果,其各项优点将对现今数字科技发展带来重大影响,团队也举例,或许未来手机充电一次就能连续使用1个月,以现阶段最火的自动驾驶汽车来说,如果所有的感测、运算速度都比现在快上千、万倍,视频中的未来汽车可能再也不是梦想。 /p p & nbsp /p
  • 蒋尚义:集成芯片将是后摩尔时代的发展趋势
    近日,蒋尚义在回归中芯国际之后首次公开亮相,出席了第二届中国芯创年会,并发表演讲。据科创板日报报道,蒋尚义此次演讲提出了多个观点,如摩尔定律的进展已接近物理极限;后摩尔时代的发展趋势是研发先进封装和电路板技术,即集成芯片;半导体主要芯片已不再掌握在少数厂商;以及中芯国际先进工艺和先进封装都会发展、半导体产业需建立完整的生态环境才能在全球市场竞争中取胜等。蒋尚义指出,先进工艺研发是基石,因应摩尔定律的发展规律,先进工艺长期持续发展是毋庸置疑的。在此摩尔定律趋缓与后摩尔时代逼近的关键时刻,提前布局,先进工艺和先进封装双线并行的发展趋势显得尤为必要。而研发先进封装和电路板技术,目标是使芯片之间连接的紧密度和整体系统性能类似于单一芯片。蒋尚义表示,从系统层面看,重新规划各单元,包括特别情况下把目前极大型芯片折成多个单元,依据个别系统,针对各单元的特殊需求,选择合适的单元,分别制成小芯片,再经由先进封装和电路板技术重新整合,称之为集成芯片,这将是后摩尔时代的发展趋势。蒋尚义指出,要重新定义芯片与芯片间沟通的规格,必须先把整体生态环境和产业链建立起来,整合从设备原料到系统产品产业链,同时,还需要EDA Tools,Standard Cells,IP’s,Testing等配合。这些环节缺一不可,更重要的是,需要彼此之间的配合,保证一致性和完整性,以达到系统性能的最佳化,建立完整的生态环境,才能在全球市场竞争中取胜。2020年12月中旬,中芯国际发布公告,宣布蒋尚义博士获委任为中芯国际董事会副董事长、第二类执行董事及战略委员会成员。据了解,蒋尚义曾于2016年加入中芯国际并开始出任第三类独立非执行董事。不过2019年,中芯国际公告披露称,任期届满三年的蒋尚义因个人原因不再连任独立非执行董事。对于蒋尚义此次回归后,中芯国际未来发展方向成为了业界关注的焦点,对此,蒋尚义表示先进工艺一定会走下去,先进封装是为后摩尔时代布局的,中芯国际先进工艺和先进封装都会发展。此外,蒋尚义还指出,半导体应用市场从主要芯片掌握在少数供应商转变为主要芯片不再掌握在少数厂商。芯片供应链重整,不同的应用需要不同的芯片,芯片的需求成多元化。
  • 后摩尔时代新器件基础研究重大研究计划2022年度项目指南发布
    国家自然科学基金委员会现发布后摩尔时代新器件基础研究重大研究计划2022年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申请。 国家自然科学基金委员会 2022年2月17日 后摩尔时代新器件基础研究重大研究计划2022年度项目指南  “后摩尔时代新器件基础研究”重大研究计划面向芯片自主发展的国家重大战略需求,以芯片的基础问题为核心,旨在发展后摩尔时代新器件和计算架构,突破芯片算力瓶颈,促进我国芯片研究水平的提升,支撑我国在芯片领域的发展与创新。  一、科学目标本重大研究计划面向未来芯片算力问题,聚焦芯片领域发展前沿,拟通过信息、数理、工程材料、生命等多学科的交叉融合,在超低能耗信息处理新机理、载流子近似弹道输运新机理、具有高迁移率与高态密度的新材料、高密度集成新方法以及非冯计算新架构等方面取得突破,研制出1fJ以下开关能耗的超低功耗器件和超越硅基CMOS载流子输运速度极限的高性能器件,实现算力提升2个数量级以上的非冯∙诺伊曼架构芯片,发展变革型基础器件、集成方法和计算架构,培养一支有国际影响力的研究队伍,提升我国在芯片领域的自主创新能力和国际地位。  二、核心科学问题  本计划针对后摩尔时代芯片技术的算力瓶颈,围绕以下三个核心科学问题展开研究:  (一)CMOS器件能耗边界及突破机理。需要重点解决以下关键问题:探寻CMOS器件进行单次信息处理的能耗边界,研究突破该边界的新机理,实现超低能耗下数据的计算、存储和传输。  (二)突破硅基速度极限的器件机制。需要重点解决以下关键问题:在探索同时具备载流子长自由程和高态密度的新材料体系基础上,研究近似弹道输运的器件机理,实现突破硅基载流子速度极限的高性能器件。  (三)超越经典冯∙诺依曼架构能效的机制。需要重点解决以下关键问题:探寻计算与存储融合的机制与方法,并结合新型信息编码范式,实现新型计算架构,突破冯∙诺依曼架构的能效瓶颈。  三、2022年度资助的研究方向  (一)培育项目。  围绕上述科学问题,以总体科学目标为牵引,2022年度拟资助探索性强、选题新颖、前期研究基础较好的申请项目,研究方向如下:  1.新原理超低功耗器件。  针对1fJ以下的开关能耗目标,研究超越CMOS的新原理逻辑、存储、感知器件及其材料、集成技术;研究高传输效率、低能量耗散的芯片级互连技术;研究极端物理条件下的极低功耗信息处理与存储机制及模型。  2.具有长自由程与高态密度的半导体新材料和器件。 探究弹道输运机制,寻求超越传统硅基沟道自由程和高态密度的半导体材料,研究并实现高弹道输运系数的新型场效应器件。  3.新型计算与存储架构。  探寻突破冯∙诺伊曼能效瓶颈的新型计算架构和存储架构,研究面向存内计算新架构的设计方法学。  (二)重点支持项目。  围绕核心科学问题,以总体科学目标为牵引,2022年拟资助研究基础较好、对总体目标有较大贡献的申请项目,研究方向如下:  1.低功耗新材料DRAM器件技术。  研制出CMOS后道集成工艺兼容的高速低功耗无电容DRAM单元,读写时间小于10ns,动态保持时间1小时以上,实现多bit存储。  2.基于新材料的近似弹道输运器件。  研究超越单晶硅沟道平均自由程,同时具备高态密度的新沟道材料,实现与CMOS工艺兼容且逼近弹道输运极限的新沟道材料互补场效应晶体管。室温下,栅极过驱动电压和漏极电压小于0.75 V时,弹道输运系数大于0.5,注入速度大于5×106cm/s,驱动电流超过500μA/μm。  3.可重构的混合编码计算架构及电路复用技术。  研究包含随机数、时间域、频率域、模拟域等两种或多种新型编码机制、数据精度可配置的混合编码计算架构,以及编码可重构、硬件可复用的电路设计技术,研制基于CMOS或新型非易失器件的混合编码芯片,实现与数字电路相当的计算准确率,完整芯片的能效在低精度和高精度计算任务中分别达到50TOPS/W和5TOPS/W。  4.单片三维集成的存算一体架构及关键技术。  研究近存计算与存内计算融合的单片三维集成架构,高带宽的存储与计算层间数据流,以及硅基关键电路设计技术,实现堆叠3层以上、包含硅基CMOS和多种后段逻辑、存储器件的存算一体芯片,存储阵列规模不小于100Kb,完成复杂计算时的全系统能效大于10TOPS/W。  四、项目遴选的基本原则  围绕核心科学问题,本重大研究计划侧重:  (一)紧密围绕核心科学问题,鼓励有价值的前沿探索和创新研究。  (二)优先资助能解决芯片中的实际难题、具有应用前景的研究项目。  (三)鼓励多学科交叉研究。  (四)资助具有良好研究基础和前期积累、对总体目标有直接贡献的研究项目。  五、2022年度资助计划  2022年度拟资助培育项目8项左右,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”;拟资助重点支持项目4项左右,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”。  六、申请要求及注意事项  (一)申请条件。  本重大研究计划项目申请人应当具备以下条件:  1.具有承担基础研究课题的经历;  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定。  执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。  (三)申请注意事项。  申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。  1.本重大研究计划项目实行无纸化申请。申请书提交日期为2022年3月18日-3月20日16时。  (1)申请人应当按照科学基金网络信息系统(以下简称信息系统)中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。  (2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。  (3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“后摩尔时代新器件基础研究”,根据申请的具体研究内容选择相应的申请代码。  培育项目和重点支持项目的合作研究单位不得超过2个。  (4)申请人在申请书“立项依据与研究内容”部分,应当首先明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。  如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年3月20日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于3月21日16时前在线提交本单位项目申请清单。  3.其他注意事项。  (1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。  (2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。  (四)咨询方式。  国家自然科学基金委员会信息科学部四处  联系电话:010-62327351
  • 莫尔超晶格重大突破发文Nature!低温强磁场纳米位移台扮演关键角色
    背景介绍 载流子之间的相互作用是凝聚态物理学的热门研究和重点关注对象。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子领域非常具体潜力的一个研发平台。莫尔系统通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,可以实现其物理参数的高度可调。进展概述 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而产生WS2/WSe2莫尔超晶格中的铁磁有序。该研究中,作者使用了德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,以确保在低温强磁场环境中精确控制样品位置。文章以《Light-inducedferromagnetism in moirsuperlattices》为题,发表于Nature期刊。 图1显示了丰富的填充因子依赖的磁光响应,在填充因子为&minus 1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在&minus 1/3的填充因子(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 图2a显示了在1.6K温度与填充因子为-1/3时RMCD信号与激光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,最终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为&minus 1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁滞回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW 课题组进一步在填充因子为&minus 1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐方案。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7 值得指出的是,整个实验都是在低温及强磁场中进行的。这其中关键的设备就是德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,该位移台能够在极低温环境下提供纳米级的精确位移,成为整个变温及磁场调控过程中精确控制样品位置的关键设备。 attocube公司生产的位移器设计紧凑,体积小巧,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器,并以稳定而优异的性能,原子级定位精度,纳米位移步长和厘米级位移范围受到科学家的肯定和赞誉。产品广泛应用于普通大气环境和极端环境中,包括超高真空环境(5E-11mbar)、极低温环境(10 mK)和强磁场中(31 T)。图4 attocube低温强磁场位移器,扫描器attocube低温位移台技术特点如下:参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)
  • 安捷伦发布关键质量属性文章第二篇
    关键质量属性(CQA)是生物学特征,会影响安全性和有效性,必须得到密切监测,因此需要使用各种分析技术对分子进行大量测试。定义太空洞?当我们在谈论关键质量属性时我们在谈论什么?今天来谈谈滴度测定和电荷异构体分析。CQA 检测中,除了聚集体分析至关重要之外,滴度测定和电荷异构体分析也分别起到不同的作用。滴度测定滴度测定虽然不直接测量 CQA,但常作为生物治疗蛋白生产的第一步质量检查。异常滴度可反映细胞株或培养基存在的问题,这些问题可能会导致异质性或产品出错而不仅是降低产率。使用 UV 检测的 Protein A 亲和捕获色谱是生物制药中用于单克隆抗体 ( mAb )滴度测定的一种普遍方法。许多实验室选择基因修饰的重组 Protein A 平台,因为重组蛋白质通常更稳定,有更长的色谱柱寿命。天然(纯化)Protein A 的吸引力在于对某些 IgG 具有更紧密的结合亲和性。Protein A 产品可用作预装填柱、整体床柱和供用户填装使用的松散介质。整体床色谱柱具有更大孔径的筛板,因此不易堵塞,对复杂样品基质更加耐用。异常滴度可能需要分析用过的细胞培养基,以排除低产量的原因。氨基酸是培养基的主要成分,可以通过多种技术进行分析,最常见的是利用 LC/UV 分析衍生化氨基酸。衍生化技术的优点是可以广泛应用,并可通过反应化学引入一定程度的特异性,但是人们对分析未衍生化氨基酸以最大限度缩短样品前处理时间也越来越感兴趣。未衍生化氨基酸不具有 UV 吸收,因此需要用到其他检测器,如蒸发光散射( ELSD ) 或质谱 ( MS ) 检测器。然而,ELSD 的灵敏度不够高,仅能达到低纳摩尔水平,而衍生化氨基酸的 UV 检测可以达到低皮摩尔水平。MS 分析检测也能得到更高的灵敏度,在数量级上实现提升。虽然MS 仪器的成本一直是此方法广泛使用的阻碍,但其引发的越来越广泛的关注已经使供应商开始在市场中引入经济实惠且切合实际需求的质谱仪。随着 MS 更广泛的使用,快速有效地分离分子量较小的极性分子成为一个需要克服的挑战。使用反相色谱柱分析离子对可得到非常稳定的结果,但需要专用仪器。过去, 亲水相互作用色谱 ( HILIC ) 一直在努力满足市场对稳定性和重现性的要求,而最近推出的色谱柱在这方面已经有了重大改进。电荷异构体分析使用 UV 检测的离子交换色谱 ( IEX ) 常用于分离由 PTM(如赖氨酸截短、脱酰胺或唾液酸化)产生的电荷异构体。此项分析通常也在完整蛋白质水平上进行,因为这种变化可以被检测到,但无法进行特定的鉴定和定位,IEX 通常使用盐梯度来进行,这些高浓度的非挥发性盐不适用于 MS。因此,一个新的关注点是使用 pH 梯度而非盐梯度,这样便可以使用低浓度且可以有效挥发的缓冲盐流动相,以便和 MS 联用。为了保留样品,IEX 要求样品具有与固定相相反的极性电荷。盐梯度 IEX 使用高浓度盐来破坏这些离子的相互作用并洗脱分析物。pH 梯度必须跨越分析物的等电点 ( pI ),以便蛋白质在电中性时被洗脱。尽管线性 pH 梯度难以重现,但 pH 梯度可以将分析物聚集到较窄的谱带中,从而获得比盐梯度更高的分离度。由于必须非常精确地控制并适当地选择流动相 pH、离子强度和梯度组分,可靠的 IEX 方法开发具有挑战性。通常需要进行大量的方法开发,但可以利用软件来筛选仅由少量储备液制备的复合缓冲系统的梯度,从而简化方法开发。毛细管等电聚焦 ( cIEF ) 也常用于电荷异构体分析。类似于 pH 梯度 IEX,cIEF 也是基于 pI 进行蛋白质异构体分离,是一项验证 IEX 结果的常用技术。
  • 我国科研团队成功研制皮摩尔级小型荧光光谱仪
    作者:孙丹宁 来源:中国科学报利用紫外激发产生特征荧光的原理,用于测试微量物质的含量与成分,是当前最灵敏的痕量检测方法之一,在生命科学、食品安全和环境监测中具有重要应用。但在这一领域,国产高端仪器仍是空白。大连理工大学黄辉教授课题组与范剑超教授、赵剑教授和刘蓬勃副教授合作,发明了一种小型高灵敏度的荧光光谱仪。相关成果发表在《分析化学》。小型荧光光谱仪示意图。大连理工大学供图该小型荧光光谱仪基于发明的导光金属毛细管技术,可大幅提高荧光检测的信噪比,因此能够采用便宜微型的LD或LED作为激发光源,以取代昂贵笨重的氩离子激光器或大功率氙灯。同时,合作团队还发明了荧光光谱的同步校准技术,可克服光源功率波动和样品吸收导致的干扰。目前,研制的光谱仪已通过国家计量院的鉴定,并在国家海洋环境监测中心(大连)进行测试和试用。检测精度超过国外主流高端产品,海洋溢油检测指标处于国际领先水平。其水体有机碳TOC的检测精度达4ng/mL,可媲美大型专业仪器。相关论文信息:https://doi.org/10.1021/acs.analchem.3c02200
  • Science:石墨烯莫尔(moiré )超晶格纳米光子晶体近场光学研究
    光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。 光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说多可减少三个数量。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。 2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。 正常机械解理的双层石墨烯是AB堆叠方式,但是,当把其中的一层相对于另一层旋转一个角度,就会形成AB和BA堆叠方式相间排列的莫尔超晶格结构,AB畴区和BA畴区之间是AA堆叠方式的畴壁,如图例1A所示。如果通过门电压对该双层石墨烯施加一个垂直电场,会在AB畴区和BA畴区打开一个带隙,从AB畴区到BA畴区堆叠次序的反转连同能带结构的反转则会在畴壁上形成拓扑保护的一维边界态,如图例1C。一维边界态的存在会使得畴壁上光学跃迁更加容易,表现为畴壁上增强的光导能力。研究者通过德国neaspec公司的neaSNOM高分辨率散射式近场红外光学显微镜对样品进行近场纳米光学成像,在近场光学振幅成像中观察到了转角双层石墨烯上六重简并的周期性亮线图案,成功可视化了这种光导增强的孤子超晶格网络。从近场光学振幅成像上可以看到孤子超晶格周期长度大约为260nm,据此,研究者推断对应的转角大约为0.06°。 图例1:散射式近场光学显微镜(neaSNOM)对转角双层石墨烯(TGB)进行近场纳米光学成像研究的结果。A:实验示意图(AB,BA,和AA表示石墨烯不同堆叠类型);B:近场纳米光学振幅成像及TEM图;C:畴壁上电子能带结构。 不仅孤子超晶格的周期性和等离激元的波长相匹配,而且之前的研究表明,双层石墨烯中的孤子对SPP具有散射行为,转角双层石墨烯中规律的孤子结构所形成的周期性散射源恰好满足了作为纳米光子晶体的条件。接下来研究孤子超晶格对SPP的光子晶体效应,实验中研究者利用neaSNOM近场光学显微镜的针作为SPP发射源,并通过改变门电压和入射光波长改变SPP的波长,在该器件上同时得到了两组近场光学振幅图和相位图(如图例2B和2C)。从图中可以看到,λp=135 nm和λp=282 nm的情况下,近场光学振幅图和相位图表现出截然不同的周期性明暗图案,这种周期性明暗分布正是SPP在孤子超晶格传播过程中干涉效应的显现,近场光学振幅图、相位图和理论计算结果显示出的吻合性。对近场光学成像的傅里叶变换使得研究者可以进入动量空间研究其光子能带结构,结合模拟计算,对光子能带结构的研究表明,虽然孤子对SPP的散射较弱,还不足以形成纳米光学带隙,但是转角双层石墨烯中SPP的传播毫无疑问符合纳米光子能带色散行为。 图例2:散射式近场光学显微镜(neaSNOM)研究石墨烯超晶格中等离激元(SPP)传播近场光学成像结果。A,C: 通过改变门电压和入射光波长,λp分别为135nm和282nm下近场光学成像结果(同时获得近场光学振幅成像和相位成像);B,D: 模拟计算结果。 在该项工作中,研究者利用转角双层石墨烯设计实现了石墨烯SPP纳米光子晶体,并利用德国neaspec散射式近场光学显微镜从几个途径进行了研究。先,畴壁区域增强的光导响应来源于孤子的一维拓扑边界态,neaSNOM近场光学显微镜以高的分辨率可视化了孤子超晶格网络。其次,双层石墨烯纳米光子晶体的主要参数(周期性、能带结构)可以通过改变转角角度和静电场等实现连续调控,这可以突破标准top-down或光刻等技术来构筑纳米光子晶体的限制和挑战。在电中性点附近,孤子被预言具有拓扑保护的一维等离激元模式,此时,双层石墨烯纳米光子晶体作为一维等离激元的二维网络载体,可能会展现出很有意思的光学现象。 特别值得指出的两点是:1. 即使研究者通过0.06°的超小转角制造了高达260nm的孤子超晶格周期长度,如果没有neaSNOM近场光学显微镜高的空间分辨率(取决于针曲率半径,高可达10nm),清晰地看到孤子超晶格网络依然是非常困难的。2. neaSNOM近场光学显微镜具有的伪外差相位解调模块,可以同时实现高信噪比下的近场光学信号振幅成像和相位成像。该项工作中实验结果和模拟计算结果的吻合很好地证明了这一点。作为二维材料纳米光学领域为专业的研究工具,neaspec近场光学显微镜已经助力国际和国内多个研究机构在为的杂志发表了诸多研究成果。不仅是在纳米光学成像领域,neaspec开放兼容的设计使得它在纳米傅里叶红外光谱(nano-FTIR)、太赫兹(THz)、拉曼、荧光、超快、光诱导等多个领域均有广泛应用。
  • 沃特世推出质谱新品—— XevoTM TQ质谱系统
    沃特世揭示质谱和分离科学方面的重大研究进展, 帮助实验室加快探索、提高效率和生产力 新产品包括更先进的定量质谱分析仪Xevo TQ 质谱   2008年6月2日, 科罗拉多州丹佛市–沃特世公司(NYSE:WAT)在第56届美国质谱协会召开的关于质谱分析及相关主题的会议上公布了几项创新的质谱技术,包括一款先进的四级串联质谱仪--Waters® XevoTM TQ质谱系统,能让具备不同质谱(MS)技术水平的科学家们快速而自信地得出最高质量的数据。   此外,沃特世正展望其新的TRIZAICTM UPLC® 系统,它带有nanoTileTM技术,是一种新的超高效LCTM分离平台,大分子和小分子的分析均适用。当与沃特世SYNAPTTM高分辨率质谱(HSMSTM)和SYNAPT MS系统联合使用时,可以进行信息丰富的高灵敏度分析。其他在会上宣布的产品还包括VERIFYETM高分辨率蛋白质组学系统,带2D技术的nanoACQUITY UPLC® 系统和大气压固相分析探头(ASAP® )。   "质谱在很多领域的应用中都是一种非常重要的分析工具--药物、生物技术、食品安全和环境",沃特世分部的执行副总裁和总裁Art Caputo说道:"沃特世通过将技术带入市场来满足客户的需求,让实验室工作效率和产率得以提高并让各个学科的科学家能使用高性能的分析技术"。   Xevo TQ质谱--使高端质谱的性能更容易达到   Xevo TQ MS System是先进的四级串联质谱仪,具有无与伦比的性能和功能。它采用创新的IntelliStartTM和ScanWaveTM技术实现了功能的多样性和先进的定量分析能力,适用于科学家进行范围更广的研究。IntelliStart是一种新的技术,可以简化仪器设置和解决耗时问题。它通过质量校正、设置质谱分辨率、生成化合物专一的质谱分析方法(SIR或MRM)以及针对分析条件和其他更多因素优化API离子源条件来确保系统处于备用状态。   在MassLynxTM软件下运行Xevo TQ质谱系统需配一台能在传统T-WaveTM1-启动模式或新的ScanWave启动模式下运行的独特碰撞室。ScanWave创造性地采用了T-Wave碰撞室技术,改善了工作负载循环并明显提高了全波段扫描的能力,以满足当今复杂分析的需要。这让科学家更容易确认目标分析物的身份和结构。   为蛋白质组学研究提供新的分离平台   同样在美国质谱协会召开的会议(ASMS)上,沃特世展望了其带有nanoTile技术的新TRIZAIC超高效液相色谱系统,此项创新首次联合采用新TRIZAIC超高效液相色谱系统与nanoTile技术,旨在为样品量有限的直流纳米级蛋白分离进行灵敏度非常高的检测。对于沃特世SYNAPT HDMS和SYNAPT MS系统联合使用,它结合了适用于大小分子分析的新型微流体分离技术、沃特世亚二微米   色谱柱化学、独特的溶剂配方和全面数据管理。TRIZAIC 代表了分离科学的一种高智能的集成系统方法,即沃特世公司无与伦比的超高效液相色谱技术。   "TRIZAIC对我们而言是一种应用纳米分离技术进行复杂蛋白表征分析的方式。这种专有技术针对于那些科学家正期待的增强解决方案,即想直接通过纳米流超高效液相色谱进行蛋白表征,并达到所需要的灵敏度和重现性",沃特世分部高级产品市场经理Patricia Young博士说道:"我们希望这样的平台将显著简化可重复鉴定和表征蛋白的工作流程"。   从发现到假设-人心鼓舞的蛋白质组学:VerifyE高分辨蛋白质组学   沃特世正在论证采用新VERIFYE System方案进行分子标记鉴定的高分辨蛋白质组学研究策略。VERIFYE实现了从全球探索到目标蛋白质组研究的最快转变,通过优化多反应监测(MRM)的参数熟练地选择肽段进行蛋白质定量的分析。它通过获取已存档的全球探索数据对照常用硅藻土分析蛋白肽的适用性,特别开发了目标超高效液相色谱/质谱/质谱方法。   VERIFYE系统解决方案可与沃特世TRIZAIC UPLC和Xevo TQ MS技术联合使用而进行优化。Xevo TQMS具有增强产物离子扫描的能力,能获得高灵敏性确证的质谱/质谱的蛋白肽光谱以及同时获取MRM数据进行无懈可击的蛋白定量分析。   沃特世VERIFYE系统为假设推动的蛋白质组学完成了沃特世高分辨蛋白质组学研究策略--完善了先前介绍的全球探索的蛋白质学研究系统--IDENTITYETM和EXPRESSIONETM。   改进蛋白质二维液相色谱分离技术   带有2D技术的沃特世nanoACQUITY超高效液相色谱系统扩充了亚二微米离子使用的范围,使其能进行高峰容量的分离。沃特世2D方法采用了反向色谱技术,第1维的pH设为10,接着采用反相色谱,pH设为2。通过研究肽段的各种离子和疏水结构,这种新的方法第一维用强阳离子交换色谱,然后在第二维用反相色谱,较传统一维或二维技术等提供了更好的蛋白鉴定、定量分析和序列分析方式。   为质谱分析提供新的直接离子化界面   大气压固相分析探头(ASAP)采用沃特世质谱仪Z-SprayTM大气压离子源(API)使样品直接离子化。ASAP探针通过API探针所释放热的脱溶剂气体使样品蒸发可以对固体、液体、组织或比如聚合物样品等物质进行快速分析。该技术相对其它大气压离子化技术而言,成本较低并且是对其它方法很难分析非极性化合物进行分析的理想之选。它的适用范围包括食品和饮料、法医鉴定、药品和石油样品等。作为SYNAPT HDMS和SYNAPT MS系统的备选,这是唯一进行ASAP探针与高效离子迁移质谱实验兼容的办法。   沃特世和罗赛塔生物软件(Rosetta Biosoftware)展示协作成果   罗赛塔生物软件(www.rosettabio.com)与沃特世合作使其Rosetta Elucidator® 系统应用在沃特世UPLC/MSE,高带宽,蛋白质组学探索的数据并结合了沃特世IdentityE搜索引擎以保证蛋白质的鉴定。该方案已经在公司共有的客户中在使用。   "沃特世UPLC/MSE 数据采集方案和Elucidator系统能力的整合对复杂蛋白混合物进行表征为我们蛋白质组学研究的客户创造了一个功能强大的解决方案",沃特世分部医药商务营运副总裁和管理董事Tim Riley说到。   生物医药领域所应用的SYNAPT技术的进步   2006年,沃特世引入了SYNAPT高分辨率质谱系统,这是第一台兼顾高效离子迁移测量和分离的质谱系统,能通过样品的大小和形状以及质量进行区分。在今年的ASMS会上,沃特世将在领奖台上展现所取得的技术进步,致力于为生物医药应用方面提高产率。   在今年ASMS会上,初次亮相的有沃特世高分辨成像(HDTM)MALDI系统,它是基于双离子化MALDI SYNAPT HDMS系统。今年早期,沃特世和范德比尔特大学医学中心(田纳西州纳什维尔市)联合宣布在范德比尔特质谱研究中心采用MALDI SYNAPT HDMS System对肿瘤学研究中组织成像能力进行合作研究。范德比尔特大学医学中心的研究人员关注新型质谱分析方法对细胞从正常状态转化成各种癌细胞状态时细胞中蛋白质表达变化进行识别和显现。   Mobility Data Directed AnalysisTM(Mobility DDATM)是SYNAPT HDMS System上新采用的一种技术,它提供了对数量有限样品进行增强质谱/质谱分析方法。Mobility DDA使用该系统独特高效离子迁移功能来提供低水平的检测限和高质量的质谱/质谱光谱图,进而帮助10-15摩尔和10-18摩尔级的蛋白进行自动化明确的鉴定。这种新的Mobility DDA 技术是沃特世IdentityE、ExpressionE和VERIFYE等系统的最佳补充,它主要对蛋白质组学和生物标记物方面的复杂样品进行分析。   同样对ASMS来说的新技术SYNAPT MS系统,它是沃特世Q-TofTM Premier产品的替代,它可以升级进行高清质谱分析实验。SYNAPT MS系统在2008年1月上市,是新一代混合四极正交加速飞行时间质谱仪,主要提高健康和生命科学的研究信心和产率。它独具特色地将UPLC/MSE技术和‘化学智能'MassLynx信息学组合,对实验室的工作效率具有明显的影响。例如在默克实验室最近发表文章所报道的在早期药物发现与开发阶段首次西安形代谢物鉴定(Rapid Commun. Mass Spectrom.2008 22:1053-1061)。   ABI/MDS SCIEX 质谱仪用ACQUITY UPLC® v. 1.31仪器控制软件   随着ACQUITY UPLC v 1.31仪器控制软件的发布,沃特世现为沃特世ACQUITY UPLC System与ABI/MDS SCIEX质谱仪分析以及Analyst QS质谱软件之间提供更强大的整合和关联性。沃特世将在六月发售该软件.   当用作前端质谱分析时,与ACQUITY UPLC相关的渐进峰收缩和减少色谱分散等技术促进了离子源的工作效率并极大地促进了质谱的灵敏度和光谱图的质量。为此,科学家了解到使用其为实验室所购买的ACQUITY UPLC进行质谱分析的价值,它能提高他们的业绩并且使他们原始资本投入一直保值。针对不断增长的需求,沃特世与质谱仪器厂家进行合作提供无缝直接整合。科学家们凭借这种新水平的兼容可期望其液相色谱/质谱分析物有更高的效率和产率。   盛情套间和展位向与会者开放   所有沃特世产品将在Sheraton Denver宾馆二号宴会厅沃特世盛情套间展示。沃特世代表也将在该会议中心的第50号展位每天为您提供咨询。会后,科学家们要求上网www.waters.com/posters查看沃特世ASMS海报介绍。   关于沃特世公司   沃特世公司(NYSE:WAT)为基于实验室机构创造商业优势条件已有50年的历史,通过实际可持续的创新使其在很多领域都能取得重大的研究进步,比如医疗卫生服务、环境管理、食品安全和全球水质等。   实验室信息管理、质谱分析和热分析等领先分离科学的联合,沃特世在技术上的突破和实验室解决方案为全球的客户提供了经久不衰的平台。   沃特世2007年年收入为14.7亿美元,拥有5000名员工。它不断进行科学探索,为全球客户提供卓越的操作方法。   沃特世科技(上海)有限公司   谢迎锋 小姐   电话:+86 21 68794051   传真:+86 21 68794588   Email:xie_ying_feng@waters.com   网址:www.waters.com
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(下)-北京博赛德
    在固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)我们介绍样品的采集与稀释、空白测试以及样品分析工作过程,今天我们来介绍结果计算、设备附件以及该方案的优势。5、结果计算标准状态下目标化合物浓度按照公式(2)计算: ρ=ρx×M/22.4×f/1000 公式(2)式中:ρ——标准状态下样品中目标化合物的浓度,mg/m3;ρx——经校准曲线计算得到的目标化合物的浓度,nmol/mol;M——目标化合物的摩尔质量,g/mol;22.4——标准状态下(273.15 K,101.325 kPa)下气体的摩尔体积,L/mol;f——稀释倍数,无量纲。6.附件针对污染源VOCs采样、分析的种种难题,博赛德推出一套污染源采样稀释系统。采样杆自带加热功能,可以避免污染源废气样品冷凝而导致样品组分丢失;管路采用熔融硅涂覆,系统不易污染或残留,也大大增加了分析数据的真实性;高精度的数字稀释系统,稀释比例易于控制,稀释范围大,单次BCT大稀释倍数100倍,BCT大可稀释BCT500倍。 7.方案优势7.1 样品预调查和预检测时,样品直接进入质谱系统,不经过色谱柱,避免了色谱柱的污染,耐污染能力强。7.2 对于预调查浓度高的样品,采用样品稀释的方式,稀释方式相对于小体积进样,样品的代表性更强,可更有效的评估固定源的排放浓度。7.3 样品稀释过程可任意控制稀释比例,扩大了检测样品浓度范围。7.4结果定性采用国际标准和技术研究所(NIST)与(AMDIS)的质谱库,不采用自定义的其它普库,提高定性结果的准确性和可靠性。7.5 采样袋采样和真空瓶采样两种方式可选择,真空瓶采样方式,整个采样过程无工具连接,真空瓶材质惰性比采样袋更好,耐污染程度高。7.6 真空瓶可重复利用,使用成本低。7.7 真空瓶可提高样品的存储时间,可用于样品备份。BCT此,固定污染源废气中的挥发性有机物现场测试方案介绍完毕,更多精彩,请持续关注我们吧。
  • 中国制造,中国质量——赛默飞色谱质谱业务本土化生产
    长期以来,伴随着国家科技创新利好政策以及“十四五”规划的重大机遇,赛默飞以自主科研实力、本土创新技术、中国制造及中国定制产品和解决方案助力本土科学服务领域发展。  其中,赛默飞中国色谱质谱业务正快速扩张在中国的生产制造能力,继续推进国产化进程。截止2022年,赛默飞色谱质谱业务的国产仪器大家族已经扩大到10余个产品,包括液相色谱仪Vanquish™ Core和Vanquish Flex UHPLC 、气相色谱仪Trace 1600、单四极杆气相色谱质谱联用仪ISQ 7610 、三重四极杆气相色谱质谱联用仪TSQ 9610(同步实现了国产化)、离子色谱仪ICS-600、Dionex™ ICS-6000 HPIC高压离子色谱系统(旗舰产品)、原子吸收光谱仪 iCE 3000、电感耦合等离子体光谱仪iCAP PRO 以及电感耦合等离子体质谱仪iCAP RQ,三重四极杆液相质谱联用仪TSQ Altis Plus,加速溶剂萃取浓缩仪EXTREVA™ASE™(中国自行设计、研发、生产)。这些国产仪器已经在食品、环境、工业、制药与生物制药等垂直市场全面开花,赢得业界客户赞誉。  以液相色谱仪为例,一年多前,赛默飞开始在苏州工厂生产高效液相色谱 (HPLC) 仪器/模块。源于首次本土化的成功,赛默飞在中国的生产基地增加了更多的液相色谱投资。2021年4月,赛默飞苏州工厂再次增设HPLC装配产线。HPLC产品线由德国工厂转移到中国,据赛默飞苏州工厂的人介绍,以往类似的项目,通常需要1年半的时间。而且按照惯例,我们应该去德国工厂接受现场培训,德国工程师也会到中国现场指导。由于项目初期正值疫情爆发,都没能成行。“当时看来,这次的项目是一个不可能完成的任务。”  因为疫情,物料进海关的物流方案要推翻重来 德国工程师无法到现场,最终只能通过远程视频指进行导 然而,无论是中国工程师还是德国工程师,对于非现场教学都没有任何经验。时间紧,任务重!但是,即使期间经历了1个月的疫情干扰,赛默飞苏州工厂还是仅用9个月就实现了高质量交付,完美体现了中国速度,中国质量!  赛默飞中国人是如何交出了这一份满意的答卷的呢?在产线组装测试过程中,发生过哪些令人印象深刻的小故事呢?  为“消灭”0.1%误差而战  工厂每年都会制定年度改进项目,目的是为了不断提高成品率、提升质量。“一次有一个指标一直不能达标,我们做了各种检查,意料之外地发现,竟然是由于德国工厂和中国苏州两地的海拔不同造成的。”一位工程师讲述到,“苏州属于平原地区,德国工厂所在区域海拔要高于苏州,这导致了两地空气浮力有细微差异,进而影响到最终0.1%的微小分析误差。而这0.1%可能对于结果来说不会有本质影响,但是源于对中国质量的承诺,我们还是会寻找问题根源,逐步优化,直至最终解决。”  据了解,在赛默飞苏州工厂,每年这样大大小小的改进项目有很多个,并且,工厂积极鼓励产线上的员工提建议,因为他们更加贴近生产第一线,熟知各种质量提升小细节以及生产安全隐患等。积跬步以至千里  赛默飞对质量控制的严谨,体现在每一个细节上。比如,一个一次成型模具,其生产过程中有需要工人进行“压”的动作。压一下、按一下,感觉是一个非常简单的动作而已,但是,关于如何正确地“压”,德国工程师特别开视频远程进行了示范。每个人的力气不一样,德国员工与中国员工的体型也存在差异,那么如何衡量压得好不好,到不到位呢?“这一点不用担心,在那个模具上有一个明确高度的刻度线,你只有压到线才算合格,而不是你压了就可以。”工程师介绍到。  这样的细节很多,例如,组装用到的螺丝,哪怕是相同口径的螺丝,用在不同的位置上,都规定了不同扭具。检测室的温度,工厂严格要求在一小时内的波动不能超过一度。这已经可以说是一种“苛求”了,但正是这一步步,才走出了中国质量之路。   后记  一个仪器中有成千上万的零部件,赛默飞的仪器走向全球时,也带着这些零部件供应商达到“中国制造”水准,走向世界。它们除了赛默飞,未来还可以供应其他厂商,这必然带来中国整个产业链价值的提升。
  • 赛默飞推出世界首款三种质量分析器杂交质谱
    2013年6月10日,赛默飞世尔科技公司在正在美国召开的ASMS 2013上推出融合三种类型质量分析器的创新&ldquo 三合一(Tribird)&rdquo 质谱系统Orbitrap Fusion LC-MS。该质谱系统集成了四极杆、轨道阱(Orbitrap)及线性离子阱(LIT),其可以为复杂生物样品分析提供前所未有的深度。 Orbitrap Fusion LC-MS系统   &ldquo 我们的使命是创造最高性能的商业化质谱仪&rdquo ,赛默飞世尔科技色谱质谱部首席技术官Ian Jardine博士如是说,&ldquo 此外,我们希望这一有力工具能够广泛应用到科学界且确保该仪器易于使用。在设计Orbitrap Fusion时,我们在一个灵活的研究级质谱系统中组合了四极杆、线性离子阱和Orbitrap技术并提高了其性能&mdash 以获得可能革新客户研究的新一代质谱仪。&rdquo   &ldquo 我们最大的挑战是灵敏度和分析通量,&rdquo 哈佛医学院细胞生物学教授Steven Gygi博士如是说,&ldquo Orbitrap Fusion仪器的革新性,允许我们以大大超过以往的定量准确度获得更宽广的蛋白质组学覆盖范围。&rdquo   Orbitrap Fusion系统解决通量问题的一个方法是通过串联质量标签(TMT)。该技术能够使质谱仪同时对多个样品中的蛋白质进行相对定量研究。与先前的工具相比,Orbitrap Fusion仪器显著改善了数据的深度和质量,从而获得更为出色的TMT结果。新平台借助 MS3 选择性的优势提高定量准确度,而且较之以往的分析系统,在单位时间内可获取两倍的MS3扫描次数,且灵敏度也获得显著提升。用户也可以从赛默飞世尔科技处订购全新TMT试剂,最多可同时对10个样品进行全面分析。   Orbitrap Fusion LC-MS的核心是配置三个不同的质量分析器,这些分析器共同协作,将分析性能提升至全新的高度,从而实现全新的实验方法:   (1)四极杆用于进行母离子选择,分辨率最低可达0.4amu,具有出色的灵敏度和选择性   (2) 超高场Orbitrap提供超过450,000的分辨率和高达15 Hz的扫描速率,具有无法逾越的分析选择性和速度   (3)多级杆离子回旋通道及双压线性离子阱提供 MSn HCD、CID 和 ETD 裂解,可在最高达20 Hz的扫描速度下进行快速、灵敏的质量数分析。同步的母离子选择增强了仪器的信噪比。   三合一配置使用户能够以比现有的商业化仪器更快的速度识别更多的低丰度蛋白质。其独特的结构能够在Orbitrap和线性离子阱质量分析器中实现同时的母离子隔离、裂解和数据采集。与已有仪器相比,所采集得到的数据质量更高,扩展了可能的实验范围。   可在任意MSn分析阶段选择不同裂解模式并以Orbitrap或线性离子阱分析器检测的能力使得一系列新型实验成为可能,从而能够获取来自代谢物、多聚糖、翻译后修饰和序列多态性方面的全新水平的结构信息。   在典型代谢组学实验中,科研人员经常会面临未知物和目标化合物。为了识别未知物,必须在LC-线性离子阱仪器上重新运行样品以获取MSn数据,但在第二次运行时匹配色谱保留时间会比较困难,进而导致了不确定性。利用其独特的三合一质量分析器配置,新型Orbitrap Fusion Tribrid LC-MS克服了这一问题,通过确凿的未知物鉴定结果为用户提供革新众多小分子实验方法的能力。   性能易于实现   Orbitrap Fusion LC-MS的新型智能软件提供了动态扫描管理(Dynamic Scan Management,DSM),具有随实验自动调整扫描参数以获得最佳结果的能力。   Orbitrap Fusion系统集成了一个新型、易于使用的拖放式方法编辑器,避免在创建复杂方法过程中需要花费大量时间进行参数的猜测和尝试。该编辑器是MS软件套件中的一部分,支持该平台无可比拟的适用性。其包括:   (1) Thermo Scientific Freestyle软件,一个新型数据可视化工具,也有助于进行快速方法开发和数据质量评估。   (2) Thermo Scientific Proteome Discoverer,一个用于蛋白质识别的综合性软件程序。   (3)Thermo Scientific Compound Discoverer软件,用于在大量应用中执行小分子结构识别。   (4) Thermo Scientific SIEVE软件用于蛋白质组学和小分子样品的差异定量分析。   (5)mzCloud软件,一个支持未知物识别和结构解析的新型质谱库。(编译:杨娟)
  • 珀金埃尔默:质谱业务发展迅猛
    p style=" text-align: left "    strong 仪 /strong strong 器信息网讯 /strong 2016年10月10-12日,第八届慕尼黑上海分析生化展(analytica China 2016)在新国际博览中心召开。珀金埃尔默非常重视此次展览会,不但重装出席,还在展会期间举办了两款质谱新产品的全球首发发布会。 /p p style=" text-align: center " img title=" PE展位.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/0f041f86-36ea-4c1a-83af-d7976d04e2ce.jpg" / & nbsp /p p style=" text-align: center " strong 珀金埃尔默展位 /strong /p p    strong 参展亮点——关注食品安全 /strong /p p   首先关于此次参展的亮点,珀金埃尔默中国区市场部经理薛萍介绍到,在珀金埃尔默的展台上设置了一块专门区域——食品安全区域,这个区域主要展示了公司收购的波通和Delta的仪器,其应用领域为乳制品、谷物、粮油等的检测。还有此次发布的新品三重四极杆液质联用仪QSight,其可用于农残检测。 /p p   在展会主办方的展出区域,珀金埃尔默展出了一台配备了顶空的GC系统。展会赞助的奖品——百威啤酒是珀金埃尔默在中国的一个非常大的客户,而针对啤酒检测,珀金埃尔默可以提供啤酒检测的全面解决方案,不光可以进行啤酒风味检测,还可以检测啤酒中的有害物质。 /p p   另外,此次会展的主办方推出了一个食品安全参观路线,珀金埃尔默也参与其中。 /p p    strong 业务重新规划后的首次亮相 /strong /p p   出席新品发布会以及接受媒体采访的珀金埃尔默高层,皆是来自珀金埃尔默Discovery & amp Analytical Solutions(DAS)事业部。 /p p style=" text-align: center " img title=" JimCorbett.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/f8e63d31-e056-47fe-968a-53901107c4be.jpg" / /p p style=" text-align: center " 珀金埃尔默DAS事业部执行副总裁JimCorbett先生 /p p   对此,JimCorbett先生介绍,就在10月3日,珀金埃尔默的一项业务重新规划计划正式生效,具体包括:专注于生殖健康、新兴市场诊断解决方案和应用基因组学的Diagnostics business,从Human Health部门中拆分出来成为一个独立业务部门,以便更好地满足以临床为导向的客户在市场监管方面的需求。 /p p   同时,Human Health部门中的Life Science Solutions业务与另一部门Environmental Health整合成为Discovery & amp Analytical Solutions(DAS),这种结合将推动珀金埃尔默以应用为导向的客户,在食品、环境、工业和生命科学市场服务和的创新上的成功。 /p p   当然,任何的战略都是为了提升核心产品的市场份额,并为公司在有吸引力的终端市场增长提供更有利地位。 /p p    strong 现场分析是发展趋势 /strong /p p   珀金埃尔默DAS事业部亚太区副总裁兼总经理金南勳先生在接受采访中说到,“现场分析是未来的一个发展趋势,我们非常认同这个观点,未来珀金埃尔默会加大投入。此次推出的新品之一Torion T-9,正是这样一款可以拿到现场进行检测的便携式GC-MS。” /p p style=" text-align: center " img title=" 金南勳.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/47fa2c0f-26e0-4d0e-92be-ddd9764dc935.jpg" / /p p style=" text-align: center " 珀金埃尔默DAS事业部亚太区副总裁兼总经理金南勳先生 /p p   珀金埃尔默2015年收购了Torion公司,收购之后按照珀金埃尔默的理念进行技术上的改进推出了新品Torion T-9。珀金埃尔默DAS事业部亚太区战略业务发展总监谢永明博士补充到,“Torion的技术非常好,得到了广泛的认可,但是他缺乏一个强大的应用支持团队、维修团队,而珀金埃尔默在中国有一个很强大的团队。两者相结合,随着新产品的推出,通过我们雄厚的客户支持系统,我们跟环保、应急检测的合作经验,相信新产品在中国会得到很广泛的应用,有着非常光明的未来。” /p p   前两周在敦煌召开了文博会,珀金埃尔默跟甘肃省公安厅、食药监、疾控合作,两台Torion T-9在现场为会议召开做保障服务,保障食品、空气质量安全。 /p p    strong 质谱业务发展迅猛 /strong /p p   珀金埃尔默在展会期间举办了两款质谱新产品的全球首发发布会,珀金埃尔默DAS事业部执行副总裁JimCorbett、珀金埃尔默DAS事业部亚太区副总裁兼总经理金南勳等均有出席,由此可见珀金埃尔默对中国市场的重视程度,以及对质谱产品的重视。 /p p style=" text-align: center " img title=" 揭幕.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/a6d44d01-f6ad-4ff9-a235-fb9698f688b3.jpg" / /p p style=" text-align: center " 新品揭幕 /p p   金南勳谈到,珀金埃尔默产品在中国的主要应用领域分别是食品、环境、工业,在各个领域有机质谱发展非常的迅猛,所以中国有很多有机质谱的机会。而且,珀金埃尔默不仅提供液质联用产品技术,还有其他的如材料分析、光谱等产品技术,珀金埃尔默致力于为客户提供全套解决方案。 /p p   另外,珀金埃尔默还有很多很好的联用技术,例如,热重与GC联用,通过热重进行分离,GC进行检测。另外一个三联机技术,热重、红外、GC/MS联用进行检测。所以无论从传统意义上的有机质谱、无机质谱,还是联用技术,珀金埃尔默都是走在了技术领先的位置。 /p p   珀金埃尔默DAS事业部中国区总经理朱兵博士指出,“我们的液质联用产品是比较成熟的技术,操作简单、实用,可以定性、定量分析,我们希望在这个市场中占有一席之地。”此次重点推出的一款质谱新产品是业内不多见的立式三重四极杆液质产品QSight。据介绍,该技术是珀金埃尔默收购了多伦多一家质谱公司IONICS所获得的技术,收购后,在其原有产品基础上进行了很大的技术创新,性能指标等都获得了较大提升。 /p p style=" text-align: center " img title=" 合影.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/50f66e86-a188-4ae7-92da-8d781bca4e93.jpg" / /p p style=" text-align: right " 编辑:刘丰秋 /p
  • Gilson推出全新质谱VERITY 1910扩大检测质量范围
    p style=" line-height: 1.5em text-align: justify "    strong 仪器信息网讯 /strong Gilson近日宣布推出全新VERITY 1910 质谱检测器,在现有的VERITY 1900质谱检测器的基础上提供了多种增强,包括将检测的质量范围扩大到50-1400 m/z。这一更广泛的质量范围解决了许多制药和生物技术科学家对多肽和小蛋白进行制备色谱纯化的检测需求。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C273199.htm" target=" _blank" img src=" https://img1.17img.cn/17img/images/201903/uepic/4188404c-05d6-4429-a6eb-35614c2663c6.jpg" title=" 6b9b5154-811f-46e6-92a7-d21e25e102a6.jpg!w300x300.jpg" alt=" 6b9b5154-811f-46e6-92a7-d21e25e102a6.jpg!w300x300.jpg" / /a /p p style=" text-align: center line-height: 1.5em " a href=" https://www.instrument.com.cn/netshow/C273199.htm" target=" _blank" VERITY 1900质谱检测器 /a /p p style=" line-height: 1.5em text-align: justify "   增强的VERITY 1910质谱检测器允许用户基于目标质量收集样本,通过减少需要进一步处理和分析的碎片总数,节省了时间。该探测器能够同时收集完整的扫描信号和多达四个选定的SIM通道。 /p p style=" line-height: 1.5em text-align: justify "   VERITY 1910质谱检测器依靠基于芯片的技术,通过减少维护(例如,更换泵油)来降低成本。与传统的单四极杆质谱仪相比,VERITY 1910 质谱检测器可提供非常安静的操作,并且产生的热量显著减少。这些优点再加上占地面积小的特点,使VERITY 1910质谱检测器可以适用于各种实验室环境。 /p p style=" line-height: 1.5em text-align: justify "   ”除了扩大了质量范围,VERITY 1910 质谱检测器还具有一个可减少维护停机时间的离轴真空芯片法兰,并采用了一种新的全金属真空芯片设计,延长了其使用寿命。该检测器使用更少的溶剂、氮气和电力,降低了运营成本,并为质量检测提供了更环保的解决方案。“ /p p style=" line-height: 1.5em text-align: justify "   价格实惠的VERITY 1910 质谱检测器配备了所有必需的配件,包括MiDas 模块,该模块由一个集成的补给泵、分流器和直接取样阀组成,可为VERITY 1910提供一致的流量。该检测器可与Gilson的VERITY HPLC系统和PLC净化系统配套使用。 /p p br/ /p
  • B族维生素质谱检测技术令叶酸补充不再盲目
    记者从西湖大学获悉,该校生命科学学院独立实验室负责人施红军带领团队研发的红细胞B族维生素精准质谱检测技术,近日完成数千万元的Pre-A轮融资。B族维生素是人体不可或缺的水溶性营养元素,叶酸是B族维生素的一种。相关科学研究表明,怀孕前增补叶酸能降低神经管缺陷、先天性心脏病等出生缺陷的风险。应用该技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。增补叶酸可预防出生缺陷已有研究表明,B族维生素的缺乏与出生缺陷、妊娠期高血压、子痫前期等问题相关。如今,增补叶酸作为预防出生缺陷的重要方法,已被多国专业组织写入医学指南。日常生活中,叶酸广泛存在于动植物类食品中,尤其在绿叶蔬菜中含量较多。但天然叶酸极不稳定,人体真正能从食物中获得的叶酸并不多,并且人体不能自行合成叶酸,只能依赖摄入补充。“根据大样本数据统计,目前建议孕前女性的叶酸摄入量是0.4—0.8毫克/天。但摄入相同剂量的叶酸,是否会让有些人用药过量,有些人却补充不足?” 施红军介绍,遗传因素不同、饮食习惯不同、生活方式不同,都会影响个人体内的叶酸水平。叶酸的快速精准检测,是临床上的一个难题。叶酸临床检测主要分为血清检测和红细胞检测两种。尽管血清检测技术比较成熟,但它主要反映的是人近期的叶酸摄入量,因此检测结果很容易受到饮食的影响,波动性较大。“相对于血清叶酸,红细胞叶酸反映了人体内叶酸的长期存储水平,被公认为是更好的叶酸指标。”施红军表示,与检测游离态的血清叶酸不同,检测细胞内的叶酸需要经过细胞纯化和裂解,叶酸多谷氨酸态的水解,以及抗氧化保护等多个步骤,技术难度较大。此外,B2、烟酸、B6等B族维生素辅酶的不足也可能会影响叶酸的代谢效率,因此想要完整评价叶酸水平及其代谢功能,得同时检测这些B族维生素在人体内的含量。抽血检测让剂量补充更精确“每一个小分子都有一个特定的质荷比(质量和电荷的比重),知道了质荷比就可以知道这是什么物质。”施红军说,团队创新性地将质谱检测技术运用到红细胞叶酸检测中。B族维生素在人体内有着不同的形态,而质谱设备可以清晰地分辨出不同形态的B族维生素的质荷比,从而精准地测量出其在人体内的含量。红细胞内很多B族维生素以辅酶小分子的形式存在,极不稳定。检测前需要用特殊的保护剂和提取剂,将细胞裂解,同时立即保护好释放出来的所有辅酶小分子,去除蛋白质和细胞碎片后再上机检测。施红军团队成功开发出一种全新的红细胞B族维生素的稳定提取方法,实现在30分钟内将红细胞中B2、烟酸、B6和叶酸同步提取、同步检测。“团队在国际上首次实现了红细胞B族维生素综合代谢能力的精准质谱检测。”施红军说,团队目前已经完成了来自全国各地的上万例样本的完全叶酸功能检测(CFT),检测结果可溯源至世界卫生组织(WHO)全血叶酸国际质控标准95/528,进一步证实了该方法的准确性。通过样本分析,研究团队发现,我国孕妇的叶酸平均水平与美国在强制添加叶酸之前的650纳摩尔/升的孕妇叶酸平均水平相当,但与他们目前1150纳摩尔/升的水平相去甚远。2017年,国务院办公厅出台的《国民营养计划(2017—2030)》中写道,要把育龄女性的叶酸缺乏率下降到5%以下。施红军介绍,根据团队的检测结果显示,现在我国10%—30%的孕妇叶酸缺乏,并且叶酸缺乏率从南方到北方再到西部地区呈现逐渐递增趋势。“团队之前在一项研究中发现,烟酸的缺乏也会导致包括先天性心脏病等在内的多器官出生缺陷。因此,烟酸已被我们列入了检测开发的研究计划。”施红军表示,这项研究的实验目前还停留在小鼠模型上,他们将尝试与更多医院合作,探明烟酸的缺乏与相关出生疾病的内在关联。
  • 赛默飞推出超高质量范围质谱Q Exactive UHMR
    p   2018年6月4日起,结构生物学家和生物制药科学家可以使用超高质量范围(UHMR)质谱仪(MS),用于执行高质量的非变性质谱(Native MS)和自上而下的分析,并可以提供蛋白质结构和蛋白质 - 蛋白质相互作用的新见解。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/0878dba6-0bdb-4428-81eb-8600ce9e9c59.jpg" title=" 1528134406086.jpg" / /p p   Thermo Scientific Q Exactive UHMR混合四极杆 - 轨道阱质谱仪是赛默飞第一个结合高分辨率、高灵敏度、MS2和pseudo-MS3功能的平台。这个新系统克服了先前的技术限制,这些限制妨碍了Native MS发挥其全部潜力,并为蛋白质和复合物的结构分析创建了一个工作流。赛默飞将在第66届美国质谱学会(ASMS)会议上展示新仪器。 /p p   “凭借Q Exactive UHMR平台的高灵敏度和高分辨率,研究人员可以更好地了解蛋白质结构和相互作用,”赛默飞组学以及色质谱部门副总裁Ken Miller说。“我们期望通过这个新系统获得更详细的结构信息,以加深我们对蛋白质功能、疾病机制、潜在药物靶点和生物治疗化合物的理解。” /p p   “为了更好地了解蛋白质及其相互作用,我们需要在高m / z的条件下大幅提高灵敏度和质量分辨率,” 乌德勒支大学生物分子质谱和蛋白质组学教授Albert Heck说。“该仪器能够对完整的核糖体颗粒进行高保真、无假设的质量分析,揭示甚至难以捉摸的微小蛋白质的亚化学计量关联。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/bdafd49e-d0df-4ce8-85da-71f9d8f43941.jpg" title=" 1528134406205.jpg" / /p p   Q Exactive UHMR质谱仪旨在解决表征完整生物分子组件和其他大分子复合物所需的微小质量差异。新质谱仪可以验证样品质量,并确定样品组成和均匀性,以成功实现低温电子显微镜(冷冻电镜)分析。 /p p br/ /p
  • 许晓栋最新Nature正刊!低震动无液氦磁体与恒温器助力莫尔超晶格中的光诱导铁磁性研究取得重要进展
    载流子之间的多体相互作用是相关物理学的核心。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子工程的一个前景研发平台。莫尔系统的功能在于通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,实现其物理参数的高可调性。由半导体过渡金属双卤化合物(TMDs)形成的莫尔超晶格是一个新兴的平台,可探索高可调性相关效应。结合强库仑相互作用、三角摩尔几何、强自旋轨道耦合和孤立的平坦电子带,TMD异质分子层是测试可调多体哈密顿数的理想平台。事实上,在整数和分数莫尔微带填充下的相关缘状态已经被实验证明了。理论上,TMD莫尔平台提供了一个机会来研究具有三角形或六边形几何形状的经典模型,以探索强相关的物理。通过改变现场库仑相互作用U和近邻跳变参数t,预测了具有各种缘态、金属态和奇异磁态和拓扑态的多体相图。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而导致WS2/WSe2莫尔超晶格中的铁磁顺序。图1显示了丰富的填充因子依赖的磁光响应,在填充因子为−1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在−1/3的填充因子附近(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW。图2a显示了在1.6K温度与填充因子为-1/3的时RMCD信号与激励光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为−1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7. 课题组进一步在填充因子为−1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。 作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐旋钮。 以上的结果是借助于attoDRY2100低震动无液氦磁体恒温器获得的,该低温恒温器可以与拉曼光谱、磁圆二色性、磁光克尔效应和偏振荧光测量等多种实验技术结合使用。图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。 attoDRY2100低恒温器温主要技术特点:☛ 应用范围广泛: PL/EL/ Raman/RMCD/MOKE等光谱测量☛ 变温范围:1.8K - 300K☛ 空间分辨率:☛ 无液氦闭环恒温器☛ 工作磁场范围:0...9T (12T, 9T-3T,9T-1T-1T矢量磁体可选)☛ 低温消色差物镜NA=0.82☛ 精细定位范围: 5mm X 5mm X 5mm @ 4K☛ 精细扫描范围:30 μm X 30 μm@4K☛ 可进行电学测量,配备标准chip carrier☛ 可升到AFM/MFM、PFM、ct-AFM、KPFM、SHPM等功能 参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1. Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 赛默飞色质谱农产品质量安全综合解决方案
    食物主要来源于农产品,在我们的餐桌上,人们日常食品中有70% 左右直接来源于农产品,农产品质量安全是食品安全的重要组成部分,是食品安全的源头。在国家提出树立&ldquo 大农业观、大食物观&rdquo 的要求下;农产品的安全也由保障&ldquo 粮食安全&rdquo 扩展到确保肉类、蔬菜、水果、水产品等全面安全保障,在安全保障的前提下,人民更为注重食品营养健康。赛默飞色质谱产品线平台为农产品质量安全提供全流程的解决方案,从农产品质量控制,农产品安全保障,到营养及组学研究,风险预警,提供全面先进的技术支撑。(点击查看大图)种植业种植业农产品的监督抽查和风险监测、高通量风险预警项目主要包含农药残留、真菌毒素和重金属的测定;当今背景下对营养品质的评价鉴定也更为关注。农残方案:对于非极性、弱极性以及热稳定农药如有机氯和菊酯类等,采用气相色谱-质谱分析;对于极性、水溶性以及热不稳定农药如除草剂、杀菌剂等采用液相色谱-质谱分析;而对于强极性、离子型农药(如百草枯、草甘膦)残留,可采用离子色谱与质谱联用技术分析。 (点击查看大图)养殖业养殖业农产品的监督抽查和风险监测、高通量风险预警和筛查项目主要包含常规用药、禁用药的兽药残留、抗生素、重金属的测定等。重金属形态分析方案:某些砷化合物如硝苯砷酸、阿散酸、卡巴胂、洛克沙胂被广泛作为家禽的生长促进剂与抗菌剂添加到饲料中;砷的毒性与生物活性很大程度上取决于其形态;对各种砷形态进行灵敏、快速、准确的分离分析,从而提供更为准确的毒性风险评估非常必要。采用离子色谱和ICP-MS 联机快速测定10种砷形态;分离效果好,能在900s完成10种砷的快速准确分析。IC-ICP-MS 联机测定动物源食品中的10 种砷形态 (点击查看大图)农业投入品污染防控农业投入品是农业生产必不可少的物质,是关系食用农产品安全问题的重要因素,我国食品安全国家标准中对农药残留、兽药残留、重金属等污染物质的限量值有明确的规定,食用农产品生产者在种植、养殖过程中使用农药、肥料、兽药、饲料和饲料添加剂等农业投入品,应当按照食品安全国家标准的相关规定使用。饲料检测:农业农村部组织发布的《2022 年饲料质量安全监管工作方案》中对于饲料的质量安全监督抽查、饲料和饲料添加剂产品风险监测、饲料质量安全风险预警等方面做了明确的要求和规定。赛默飞色质谱产品可为饲料及添加剂的常规检测到风险预警提供全面解决方案。 (点击查看大图)农产品营养品质评价向&lsquo 吃得健康、吃得营养&rsquo 迈进,还须从食品全产业链的源头农产品着手,农产品营养品质将成为食物营养领域的热点和重点。农产品营养质量成分包括蛋白质、脂肪、碳水化合物、矿物质、维生素、水和纤维素等七大类主要营养元素,另外还包括具有保健作用的功能活性成分。随着对农产品品质和营养分析的重视,高端仪器分析技术(高分辨质谱等)的使用将会更为普遍。赛默飞在满足客户的基本需求基础上,根据客户的特殊需求而设计高效、实用的解决方案。方案推荐:固相萃取- Vanquish Core在线二维液相色谱同时测定维生素A、D和四种维生素E生育酚异构体含量通过优化色谱条件,使用固相萃取前处理方法,在实现维生素A、维生素D2和D3以及维生素E的四种生育酚异构体同时分析的基础上,简化样品前处理过程,缩短样品分析时间,进一步提高了检测灵敏度和样品分析效率。 (点击查看大图)结语农产品定义宽,范围广,农产品安全质量检测涉及的品种多,项目复杂, 除农药残留、兽药残留,重金属元素等基本安全指标分析,同时对于质量控制,食品添加剂的超限量和超范围使用,营养成分的检测,溯源分析、食品种类鉴别、风险预警等都有广泛需求;赛默飞愿意携手用户在大食物观理念下,打造满足用户需求的农产品检测解决方案。
  • 西湖大学施红军团队实现红细胞B族维生素的质谱检测
    应用红细胞B族维生素精准质谱检测技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。记者从西湖大学获悉,该校生命科学学院独立实验室负责人施红军带领团队研发的红细胞B族维生素精准质谱检测技术,近日完成数千万元的Pre-A轮融资。  B族维生素是人体不可或缺的水溶性营养元素,叶酸是B族维生素的一种。相关科学研究表明,怀孕前增补叶酸能降低神经管缺陷、先天性心脏病等出生缺陷的风险。应用该技术,备孕阶段的女性只需到医院抽一管血,即可得到一份可信赖的叶酸水平检测报告,再由医生据此提供个性化的用药指导。  增补叶酸可预防出生缺陷  已有研究表明,B族维生素的缺乏与出生缺陷、妊娠期高血压、子痫前期等问题相关。如今,增补叶酸作为预防出生缺陷的重要方法,已被多国专业组织写入医学指南。  日常生活中,叶酸广泛存在于动植物类食品中,尤其在绿叶蔬菜中含量较多。但天然叶酸极不稳定,人体真正能从食物中获得的叶酸并不多,并且人体不能自行合成叶酸,只能依赖摄入补充。  “根据大样本数据统计,目前建议孕前女性的叶酸摄入量是0.4—0.8毫克/天。但摄入相同剂量的叶酸,是否会让有些人用药过量,有些人却补充不足?” 施红军介绍,遗传因素不同、饮食习惯不同、生活方式不同,都会影响个人体内的叶酸水平。  叶酸的快速精准检测,是临床上的一个难题。叶酸临床检测主要分为血清检测和红细胞检测两种。尽管血清检测技术比较成熟,但它主要反映的是人近期的叶酸摄入量,因此检测结果很容易受到饮食的影响,波动性较大。  “相对于血清叶酸,红细胞叶酸反映了人体内叶酸的长期存储水平,被公认为是更好的叶酸指标。”施红军表示,与检测游离态的血清叶酸不同,检测细胞内的叶酸需要经过细胞纯化和裂解,叶酸多谷氨酸态的水解,以及抗氧化保护等多个步骤,技术难度较大。  此外,B2、烟酸、B6等B族维生素辅酶的不足也可能会影响叶酸的代谢效率,因此想要完整评价叶酸水平及其代谢功能,得同时检测这些B族维生素在人体内的含量。  抽血检测让剂量补充更精确  “每一个小分子都有一个特定的质荷比(质量和电荷的比重),知道了质荷比就可以知道这是什么物质。”施红军说,团队创新性地将质谱检测技术运用到红细胞叶酸检测中。B族维生素在人体内有着不同的形态,而质谱设备可以清晰地分辨出不同形态的B族维生素的质荷比,从而精准地测量出其在人体内的含量。  红细胞内很多B族维生素以辅酶小分子的形式存在,极不稳定。检测前需要用特殊的保护剂和提取剂,将细胞裂解,同时立即保护好释放出来的所有辅酶小分子,去除蛋白质和细胞碎片后再上机检测。施红军团队成功开发出一种全新的红细胞B族维生素的稳定提取方法,实现在30分钟内将红细胞中B2、烟酸、B6和叶酸同步提取、同步检测。  “团队在国际上首次实现了红细胞B族维生素综合代谢能力的精准质谱检测。”施红军说,团队目前已经完成了来自全国各地的上万例样本的完全叶酸功能检测(CFT),检测结果可溯源至世界卫生组织(WHO)全血叶酸国际质控标准95/528,进一步证实了该方法的准确性。  通过样本分析,研究团队发现,我国孕妇的叶酸平均水平与美国在强制添加叶酸之前的650纳摩尔/升的孕妇叶酸平均水平相当,但与他们目前1150纳摩尔/升的水平相去甚远。  2017年,国务院办公厅出台的《国民营养计划(2017—2030)》中写道,要把育龄女性的叶酸缺乏率下降到5%以下。施红军介绍,根据团队的检测结果显示,现在我国10%—30%的孕妇叶酸缺乏,并且叶酸缺乏率从南方到北方再到西部地区呈现逐渐递增趋势。  “团队之前在一项研究中发现,烟酸的缺乏也会导致包括先天性心脏病等在内的多器官出生缺陷。因此,烟酸已被我们列入了检测开发的研究计划。”施红军表示,这项研究的实验目前还停留在小鼠模型上,他们将尝试与更多医院合作,探明烟酸的缺乏与相关出生疾病的内在关联。
  • 珀金埃尔默倾情参加天津质谱学术交流会
    2017年7月1日,由天津市色谱研究会、天津市分析测试协会主办的“2017天津市质谱技术学术交流会”举办,来自天津分析测试领域的专业人士近80人参加了会议。会议现场天津市色谱研究会理事长范国樑致辞会议开始,首先由天津市色谱研究会理事长范国樑致欢迎辞,范理事长在致辞中表示,天津市质谱学术交流会已举办四次,规模越来越大,期望今后能办得更好。赞助企业代表,珀金埃尔默区域销售经理袁汉华致辞接着是赞助企业代表珀金埃尔默区域销售经理袁汉华致辞,在致辞中袁经理对2017天津市质谱技术学术交流会的召开表示祝贺,并表示珀金埃尔默是历届会议的忠实支持者,并将继续支持。会议正式开始后,学术报告精彩纷呈。天津医科大学教授张锴的报告是“生物质谱蛋白质深度解析”。张锴在报告中介绍了在蛋白质研究中所做的相关工作。他从蛋白质修饰的解析、蛋白质互作的解析和蛋白质结构的解析三个方面介绍了团队丰富的研究成果和经验,工作的目的是揭示蛋白质功能,发现蛋白质的生物学意义。中国检验检疫科学研究院研究员张峰的报告是“食品中有害物质软电离裂解规律研究”。张峰多年来从事食品中化学有害物筛查工作。他结合自己的工作实践,介绍了利用质谱技术筛查食品、药品中有害物质的技术。质谱技术可以准确地对食品、药品中有害物质进行筛查并验证,在此基础上,采取相应的快检技术,可以实现在实际应用中廉价、有效的应用。质谱有强大的检测能力、分离能力,其不仅仅是强大的检测器,同时也具备了良好的分离功能。根据其检测能力以及分离能力,张峰团队在各种有害物分析,包括同分异构体分析中,使用软电离裂解方式进行研究,取得了大量成果。天津医科大学教授刘照胜的报告是“利用分子印迹固相萃取-液相-质谱法分离检测毛菊苣中秦皮乙素的方法学研究”。刘照胜在报告中介绍了分子印迹对聚合物的制备方法前处理情况,结合液相色谱-质谱联用仪,对毛菊苣中秦皮乙素进行测定,取得了良好的效果。天津出入境检验检疫局动植物与食品检测中心赵宏博士的报告是“基质辅助激光解析电离飞行时间质谱方法对乳粉中致病菌的鉴定”。赵宏长时间从事出入境食品中致病菌的检测。在报告中,赵宏介绍了MALDI-TOF-MS在致病菌检测中的应用情况。赵胜还介绍了MALDI-TOF已经进入国家标准,并将于今年底实施天津出入境检验检疫局动植物与食品检测中心李淑静博士的报告是“离子迁移谱技术应用于橄榄油中挥发组分的检测分析”。报告人介绍了离子迁移谱仪在食品检测方面的应用情况。李淑静着重介绍了利用离子迁移谱仪从前处理到最后测试,分析橄榄油中挥发组分的应用开发情况。方法可以很好地区分不同橄榄油。在其他食用油类的分析中,也有不错的表现。天津市出入境检验检疫局王利强博士的报告是“在线凝胶渗透色谱-气相色谱串联质谱法测定猪肉中5种农药残留”。近年来,我国猪肉进口量不断增长,这对边境口岸对猪肉质量进行检测提出了要求。对于猪肉中可能混入的农药残留的鉴定,王利强利用在线凝胶色谱净化榈,再通过气相色谱串联质谱联用仪对猪肉中狄氏剂、艾氏剂、敌敌畏、马拉硫磷和溴氰菊酯等五种农药残留鉴定,该方法方便快速,灵敏度高。期间,珀金埃尔默两位资深技术支持经理带来最新技术及应用。珀金埃尔默色谱质谱产品技术支持经理 韩志强首先是色谱质谱产品技术支持经理韩志强的报告:“珀金埃尔默液质质新技术及应用”。珀金埃尔默收购了新兴质谱企业IONICS之后,于2016年慕尼黑上海生化展上,全球首发立式三重四极杆液质QSight。韩志强介绍了QSight的一些独特优势。比如其为立式三重四极杆质谱,占地面积小;具有同轴高温加热离子源,最大离子化效率;专利的加热诱导脱落剂和层流离子传输技术,提高灵敏度的同时免于频繁维护;超快的正负模式切换时间,大幅提高工作效率等。其具备高可靠性、高效率,非常适合于复杂基质分析和样品量较大的应用环境。韩志强还介绍了QSight在实际应用中的情况。2016年,珀金埃尔默还发布了便携气质Torion T9。韩志强介绍了T9的特点。T9是轻便、快速及便携的毛细管气相色谱质谱联用仪,拥有可与实验室色谱媲美的色谱分离效果,可在野外严酷环境下使用,仪器启动快速且分析速度快,每小时可分析12个样品。珀金埃尔默原子光谱产品技术支持经理 王娟之后,珀金埃尔默原子光谱产品技术支持经理王娟带来 “单颗粒ICP-MS分析方法及应用”的报告。王娟介绍,ICP-MS不仅可用于元素分析,通过独特的计算方式,在面向纳米材料时,单颗粒ICP-MS还可以分析纳米材料的粒径、结构以及浓度等。王娟介绍了珀金埃尔默在单颗粒ICP-MS方面的技术特点,并介绍了单颗粒ICP-MS在检测纳米银颗粒等应用中的情况。在细胞分析方面,珀金埃尔默提供了专用的细胞进样系统和专用软件,有效地促进了ICP-MS在细胞分析中发挥重要作用。 当日下午,来自天津市各高校及研究所研究生带来相关课题研究报告:南开大学研究生王奕允报告是“激光溅射石默烯产生HomC+2n(m=3,4)”。报告人通过FT-ICR MS,意图寻找到一种新型的多金属大尺寸富勒烯并表征,在此方面进行了一定的研究工作。南开大学学生石莹莹的报告是 “Pt2Cln团簇离子的产生和解离通路的研究”。报告介绍了寻找一种全新的团簇,通过FT-ICR MS,利用MALDI源研究,观察到了Pt2Cln团簇结构的产生,进行计算,并得到其构型,研究了不同类型团簇的超卤素性能。南开大学研究生任娟的报告是“基于电喷雾质谱-红外解离光谱技术的苯丙氨取代的丝氨酸八聚体的手性分析中的应用”。在报告中,任娟介绍了红外解离激光技术。通过课题组以FT-ICR为核心搭建的IRPD系统,进行了不同氨基酸丝氨酸八聚体手性区分的研究。八聚体团簇离子表现出显著的同手性优势。天津医科大学基础学院学生董瀚阳的报告是“赖氨酸2-羟基异丁酰化蛋白的质谱鉴定”。报告介绍了通过质谱对赖氨酸2-羟基异丁酰化蛋白进行鉴定的情况。实验鉴定到了赖氨酸2-羟基异丁酰化蛋白酰化修饰的存在。天津医科大学学生田姗姗的报告是“基于质谱技术的马来酸酐二次衍生标记和质谱分析定量蛋白质组”。报告人介绍了利用稳定同位素对多肽标记等方法,用质谱技术对马来酸酐二次衍生的标记和定量分析的情况。天津医科大学学生郭振昌的报告是“利用基于质谱定量的多组学方法研究食管鳞癌细胞的侵袭机制”。报告介绍了利用质谱对食管癌细胞蛋白的研究情况,初步确定琥珀酰化修饰的下调对相应代谢酶的活性、食管鳞癌细胞的迁移及侵袭均有明显的促进作用。天津医科大学学生柏雪的报告是“组蛋白H3K4me3结合蛋白的鉴定研究”。利用光交联技术,研究了基于DNA模板化学与光交联技术的组蛋白修饰结合蛋白的鉴定策略。农业部环境保护科研监测所(天津)研究生王济世的报告是“应用QuEChERS前处理方法GC-MS/MS检测花生油中的240种农药残留”。报告人介绍了QuEChERS这种简单的固相萃提取前处理方法,并对花生油中的农药残留进行分析,该方法灵敏度高,操作简单快捷,重现性好且回收率高,符合花生油中农药多残留检测的要求。农业部环境保护科研监测所(天津)研究生谭冬飞的报告是“应用QuEChERS前处理方法LC-MS/MS检测蔬菜中的全氟化合物”。报告人介绍了利用QuEChERS前处理方法检测蔬菜中全氟化合物的分析过程,认为该方法具有很好的重现性。天津出入境检验检疫局张敏博士的报告是“猪肉中甲基睾酮残留量检测的通量化提取方法研究”。我国的肉类进口量巨大,甲基睾酮是重要的检测项。国内目前的液相色谱-串联质谱检测标准方法效率较低,报告人通过对前处理的优化,极大地提高了检测效率。天津商业大学学生沈雅萍的报告题目是“利用GC-MS技术测定反复冻融后鸡肉中胆固醇及其氧化物的含量变化”。通过选择使用GC -MS分析鸡肉中的胆固醇及其氧化物,分析认为,该方法仪器的精密度较高,有利于定量分析。南开大学学生边申的报告是“Infrared Spectra of (M2O3)m(H2O)n(MO)+(M=La,Y,Sc) in the gas phase”。基于课题组于2012年以FT-ICR MS搭建的平台,进行了相应的研究。另外,来自云检的代表还介绍了MProbe平台,该平台基于健康大数据,以质谱平台为检测手段,以期对健康实现“未病先治”,发现用户的患病隐患,向用户提供健康建议。天津市色谱研究会秘书长 许泓学术报告之后,天津市色谱研究会秘书长许泓对会议作了简短的总结。他表示,本次学术报告会以年轻人为主,内容精彩,涉及到多种质谱技术,说明天津市质谱技术人才正茁壮成长。注:PerkinElmer作为主要协同单位,全程参加了会议,并有两篇论文入选本届交流会的论文集。如需会议论文集请联系我们!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制