当前位置: 仪器信息网 > 行业主题 > >

质谱离子透镜

仪器信息网质谱离子透镜专题为您提供2024年最新质谱离子透镜价格报价、厂家品牌的相关信息, 包括质谱离子透镜参数、型号等,不管是国产,还是进口品牌的质谱离子透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱离子透镜相关的耗材配件、试剂标物,还有质谱离子透镜相关的最新资讯、资料,以及质谱离子透镜相关的解决方案。

质谱离子透镜相关的资讯

  • 钢研纳克申请用于三重四极杆ICPMS的聚焦传输透镜装置专利
    2024年1月9日,钢研纳克检测技术股份有限公司公开了“一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置”的发明专利,公开号为CN117373899A。发明人为:沈学静 王雷 李凯 任立志 方哲 王超刚 王立平 王海舟。  发明内容  本发明的目的是提供一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,能够在三重四极质谱仪结构基础上增设三个透镜,通过灵活施加三个透镜的电压使其有助于离子沿离子光轴集中和聚焦,有效提高离子传输效率,从而提高质谱仪的灵敏度。  为实现上述目的,本发明提供了如下方案:  一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,所述电感耦合等离子体质谱仪为三重四极质谱仪,所述聚焦传输透镜装置设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间   所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,所述透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且所述透镜一、透镜二、透镜三的通孔的中心处于同一水平轴 通过直流电压施加装置分别对所述透镜一、透镜二和透镜三施加零电压、正电压或负电压。  专利内容为:本发明涉及电感耦合等离子体质谱仪技术领域,公开了一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,应用于三重四极质谱仪,设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间 所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且通孔的中心处于同一水平轴 通过直流电压施加装置分别对透镜一、透镜二和透镜三施加零电压、正电压或负电压。本发明提供的聚焦传输透镜装置,能够实现对电压的灵活施加,实现离子的有效传输与聚焦,从而提高质谱仪的灵敏度。
  • 基于折叠数字型超构透镜的片上光谱仪
    近日,哈尔滨工业大学(深圳)徐科教授、宋清海教授课题组,提出一种基于像素编码的片上数字型超构透镜,因其灵活的设计自由度而具备强大的光场调控能力。该工作以折叠级联的方式构建了高度紧凑的色散元件,结合重构算法实现了片上集成的高分辨率光谱仪。文章提出的数字型超构透镜可显著提升面内光束聚焦、准直和偏转能力。所设计的级联折叠型超构透镜组能够很好地解决传统色散光谱仪尺寸和分辨率互为矛盾的问题。结合重构算法,该器件以100 μm ×100 μm的紧凑尺寸在近红外波段超过35 nm的波长范围内实现了0.14 nm的分辨率,并且可以完成任意光谱的重构和解析。该光谱仪完全通过标准硅光工艺制造,在系统级集成和CMOS兼容性方面具有优势。所提出的超构透镜结构还可移植到氮化硅或其他光子集成平台,以轻松扩展到可见光或中红外波长等波段,为成像、光学计算等其他应用提供有力的光场调控方案。该研究成果以“Folded digital meta-lenses for on-chip spectrometer”为题于2023年4月11日在线发表在《Nano Letters》上。随着物联网、消费电子等应用领域的不断发展,对光谱仪的小型化提出了更高的要求。近40年里,光谱仪的微型化技术经历了从基于分立器件技术到集成光学技术的发展,逐渐趋于低成本和片上集成化。近年来,受到自由空间超构表面波前调控的启发,基于超构波导的一些平面内衍射光网络正在成为片上光波操纵的有力工具。目前已报道的片上超构系统都是基于各单元长度不等的传输阵列,结构规则简单但设计自由度受限,导致系统集成度和功能的局限性。如何突破设计自由度的限制,是提升片上超构表面光场调控能力以及拓展应用的关键。借助超构表面强大的光学操控能力,有望突破传统片上光谱仪分辨率和器件尺寸相互制约的矛盾。为了解决设计自由度受限的问题,文章提出了一种基于像素编码的数字型超构表面。基本思想为求解超构表面目标相位分布。为降低算力消耗,我们将目标区域划分为多个单元,通过逆向设计对每个单元图案分别进行编码,在平面任意区域实现任意相位响应。与数字型超构波导在局部区域内的原位控制不同,本文提出的数字型超构表面可以整体操纵面内波衍射及其在整个平板区域内的传播。这种特性使该结构能够设计连续大相位梯度的高色散数字型超构透镜,允许光束在紧凑的尺寸内实现聚焦、准直和大角度弯曲等类似几何光学透镜的功能。具体设计原理如图1所示。图1. 基于数字型超构表面的超构透镜逆向设计原理。(a)超构透镜在1550 nm处的光弯曲 (θ=45°)和聚焦(f = 19.5 μm)的射线光学演示。(b)透镜的理想相位轮廓曲线(φ),可视为45°弯曲相位曲线 (φ1)和聚焦相位曲线(φ2)的叠加。I:计算的绝对相位,II:对应的菲涅耳相位。(c)每个单元的优化器件图案和对应的理想相位曲线(φ)。(d) 计算出的理想相位掩模(黑色实线)与所设计超构透镜的模拟相位响应(红色虚线)之间的比较。(e)所设计单个超构透镜的模拟光场分布。(f)模拟超构透镜的焦点AI不同波长下沿x'轴的偏移。插图为不同波长下焦点的横截面光场分布图。要实现更高的波长分辨率,需要累积色差和增加光程。为了验证设计效果,本文设计并制备了一种基于五层折叠超构透镜的光谱仪,器件尺寸仅为100 μm×100 μm。该器件的模拟光场和实测结果如图2所示。图2(a)中的五层超构透镜功能不同,透镜I用于准直扩束输入光同时转折光路,透镜II-IV则承担着累积色散和波长分束的作用。受到读出波导间距的限制,此时该器件直接读出的分辨率约为1 nm (图2(d))。为了进一步提高光谱仪性能以及器件的制备容差,在色散分光的基础上引入了光谱重构算法。图2. 基于五层折叠超构透镜的光谱仪。(a)五层折叠超构透镜光谱仪在1550 nm处的模拟光场分布。(b)器件尺寸为100 μm×100 μm的光谱仪显微镜图像。插图:超构透镜和输出波导阵列的局部电镜图像。(c)器件实测的输出强度与输入波长的映射图。(d)两个相邻输出通道11和12的透射光谱,通道间距约为1 nm。(e)谱相关函数C(δλ)的半高半宽δλ为0.108 nm,与光谱仪的估计分辨率相对应。为了体现光谱仪的性能,构造了几种不同类型的预编程光谱来测试光谱仪的性能。重构光谱见图3。结果表明,结合重构算法后,该光谱仪的光谱分辨率提升至0.14 nm(图3(a)),整体工作带宽覆盖1530 nm-1565 nm,且性能在边带依旧保持稳定(图3(c))。此外,对于同时具有宽高斯背景和窄带单峰特征的复杂频谱(图3(d)),本文提出的片上光谱仪依旧能与商用光谱仪保持良好的一致性。图3. 使用基于五个折叠超构透镜的片上光谱仪进行光谱重建(实线表示重建光谱,虚线表示商用光谱仪测试结果)。(a)两条相隔约0.14 nm的窄光谱线的重建光谱。(b)距离约20.61 nm的双峰重建光谱。(c)在工作带宽上分别重建7处不同波长的窄带光谱。(d)宽带光源入射的重建光谱。此文提出的基于数字型超构透镜的片上光谱仪在超过35 nm的波长范围内实现了0.14 nm的分辨率。整体尺寸仅为100 μm ×100 μm,最小特征尺寸为120 nm,可通过标准硅光工艺大规模制造。该设计方案具有可移植性,使用氮化硅或其他集成平台,基于超构透镜的光谱仪可以扩展到可见光或中红外波长。目前器件的数据读出依赖于片外功率计,可以通过集成片上光电探测器阵列来改善。此外,片上数字型超构透镜作为一种功能强大的片上光场调控器件,在成像、光计算等领域也有应用潜力。
  • 眼内透镜的成分测定
    白内障指眼球内晶状体混浊,眼睛就像蒙上一层霭,致使视力模糊的一种疾病。通常治疗方式会采用外科手术摘除混浊的晶状体,但患者需要佩戴很厚的眼镜或隐形眼镜。近年来,越来越多的白内障手术在摘除晶状体后,会植入直径约6 mm的眼内透镜。眼内透镜会长年保留在眼内,因此,需要严格把控眼内透镜的材质纯度。此次实验测定了常用的丙烯材料眼内透镜中的6种成分。 表1. 成分名称和眼内透镜作用 图1. 混合样品(成分A与成分D浓度为100 mg/L,其他成分为10 mg/L)色谱图 表2. 测定条件 表3. 流动相梯度程序 图2. 样品制备步骤ü 使用梯度分析法,成功实现丙烯材料眼内透镜中的6种成分的分离。 ü 成分D具有宽分子量分布,可检测到3个峰。ü 制备各成分浓度分别为1, 10, 20, 40 mg/L的样品,得到的线性均为1.000。关于日立液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 西安光机所光学超透镜研究取得进展
    p style=" text-indent: 2em text-align: justify " 近期,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室微纳光子集成课题组利用单层超透镜(metalens)实现了左、右旋圆偏振光在三维空间的分离聚焦,打破了以往自旋相关光束聚焦的对称性,超越了传统几何光学透镜的光场聚焦能力,对光学成像研究具有重要意义。 /p p style=" text-indent: 2em text-align: justify " 传统几何光学透镜仅是通过玻璃厚度的变化来调节入射光相位实现聚焦,无法完成矢量光场(如偏振、自旋等)的操控。超透镜是一种二维平面透镜结构,其体积极小,重量轻,易于集成,可实现对入射光振幅、相位、偏振等参量的灵活调控,在超分辨显微成像、全息光学、消色差透镜等方面有重要应用。该研究利用构成超透镜的纳米天线动力学相位与Pancharatnam-Berry几何相位结合的方法,通过巧妙设计超透镜上纳米天线几何结构与空间取向,在单层超透镜上同时实现了左、右旋圆偏振光相位的独立操控,在横向和径向完成了不同自旋态光束的聚焦,提升了超透镜的光束操控及聚焦能力,具有结构紧凑、灵活性强等优点,能够满足光学系统及器件小型化功能多样化的要求。 /p p style=" text-indent: 2em text-align: justify " 该研究得到中科院战略性先导科技专项(B类)“大规模光子集成芯片”和国家自然科学基金项目的大力资助。相关成果发表在《先进光学材料》(Advanced Optical Materials)上。 /p
  • Scientific Report 文章解读:双高斯凸透镜DBR光学微腔
    导 | 读 近期,瑞士IBM苏黎世研发中心的Colin博士和Swisslitho公司的Martin博士利用热扫描探针(T-SPL)纳米加工技术,配合干法蚀刻解决方案实现了相互作用微腔(两个相邻的光学微腔),并对微腔距离进行了控制,实现了两个微腔光场的相互作用。相关工作发表在Nature子刊 Scientific Report。 T-SPL纳米加工技术 热扫描探针(T-SPL)纳米加工技术是一种灰度刻蚀技术。与传统意义上的3D打印技术相比,3D模型以灰度图的形式呈现和加工,技术难度要比3D打印技术要小得多;而且,灰度刻蚀与标准微电子加工工艺,如沉积和蚀刻等直接兼容,因此具有广泛的应用前景。例如,在光学/光子学方面,它可以用来制造任意光学曲面、多模光波导,光子晶体以及高Q值的光学微腔。在量子光子学中,高Q因子意味着光损失小,单位模式中有更多的光量子。在电子光学上,可以用螺旋结构来将轨道角动量传递给自由电子。相比平面结构,三维结构具备更多的功能和更好的性能。 图1 T-SPL的原理 纳米加工技术对比 传统纳米加工技术中,电子束蚀刻(EBL)是目前先进的直写技术,也能够进行这种灰度的光刻。然而,当结构小于1微米时,电子束在光刻胶内的弛豫散射要计算,需要进行三维距离校正。聚焦离子束(FIB)同样可以用于灰度光刻。然而,由入射离子引起的表面注入,深度延伸可以超过数百纳米,并且需要进行复杂的计算实现临近校正。此外,由于事故的电离造成的损害,FIB加工过的表面对进一步处理非常敏感。此时,T-SPL技术的优势就突显出来了。 T-SPL纳米加工技术的应用 Colin博士利用T-SPL技术,制备了正旋波图形(图2a, b),螺旋相位板(图2c, d),凹透镜(图2e, f),16方格棋盘(图2g, h)。图形结果和设计匹配,棋盘实验中,台阶的高度仅为1.5nm。得益于闭环的直写算法,将每一次直写后探测的深度信息反馈并修正下一行的直写, T-SPL技术实现了纳米高精度的3D直写。图2 利用T-SPL技术制备各种微结构,图形结果和设计匹配 光子分子—双高斯凸透镜DBR光学微腔 Colin博士进一步设计了光子分子——双高斯凸透镜DBR光学微腔(图3)。在SiO2上刻蚀两个相邻的凹高斯透镜结构,并以此为模板制作了TaO5/SiO2布拉格反射镜(DBR);利用发光染料作为增益介质制备在DBR中间形成法布里-珀罗(Fabry–Pérot)光学微腔,发光燃料层在结构部分形成高斯凸透镜,相邻两个凸透镜各自约束一路光场在DBR中形成谐振。 图3 光子分子的设计,制备和表征 通过加工多种不同间距的凸透镜对,Colin博士研究了不同距离下,两个谐振光场的耦合作用,以期实现基于交互强度控制的类腔阵列量子计算技术。T-SPL高精度3D纳米加工技术必将推动量子计算的研究向一个关键里程碑迈进。 参考文献:Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Swisslitho公司荣获“瑞士产品奖” 2017年11月13日,Swisslitho公司因NanoFrazor 3D纳米直写设备(采用热扫描探针纳米加工技术)的研发和特优势获得“瑞士产品奖”。该奖项主要奖授予“具有特、高技术、高质量的、的产品创新能力,具有高价值,强大潜力的公司”。 图为Swisslitho公司团队于苏黎世市中心举行的颁奖典礼 相关产品及链接:1、NanoFrazor 3D纳米结构高速直写机:http://www.instrument.com.cn/netshow/SH100980/C226568.htm2、小型台式无掩膜光刻系统:http://www.instrument.com.cn/netshow/SH100980/C197112.htm
  • 钢研纳克申请电感耦合等离子体质谱仪专利,提高质谱仪的灵敏度
    据国家知识产权局公告,钢研纳克检测技术股份有限公司申请一项名为“一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置“,公开号CN117373899A,申请日期为2023年11月。专利摘要显示,本发明涉及电感耦合等离子体质谱仪技术领域,公开了一种用于电感耦合等离子体质谱仪的聚焦传输透镜装置,应用于三重四极质谱仪,设置在所述三重四极质谱仪的第一级四极杆与第二级多极杆之间或第二级多极杆与第三级四极杆之间;所述聚焦传输透镜装置包括:依次设置的透镜一、透镜二、透镜三,透镜一、透镜二、透镜三之间互不接触且相对距离可调节,所述透镜一、透镜二、透镜三的中心均开设有通孔,且通孔的中心处于同一水平轴;通过直流电压施加装置分别对透镜一、透镜二和透镜三施加零电压、正电压或负电压。本发明提供的聚焦传输透镜装置,能够实现对电压的灵活施加,实现离子的有效传输与聚焦,从而提高质谱仪的灵敏度。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 用于X射线的消色差透镜问世 有助微芯片等研发
    瑞士保罗谢勒研究所(PSI)的科学家开发了一种突破性的X射线消色差透镜。这使得X射线束即使具有不同的波长也可以准确地聚焦在一个点上。根据14日发表在《自然通讯》上的论文,新透镜将使利用X射线研究纳米结构变得更加容易,特别有利于微芯片、电池和材料科学等领域的研发工作。要想在摄影和光学显微镜中产生清晰的图像,消色差透镜必不可少。它们可以确保不同颜色,即不同波长的光,能够清晰聚焦,从而消除模糊现象。直到现在才开发出一种用于X射线的消色差透镜,这一事实乍一看可能令人惊讶,毕竟可见光消色差透镜已经存在了200多年。它们通常由两种不同的材料组成。光线穿透第一种材料,分裂成光谱颜色,就像穿过传统的玻璃棱镜一样。然后,它通过第二种材料来逆转这种效果。在物理学中,分离不同波长的过程称为“色散”。然而,PSIX射线纳米科学与技术实验室X射线光学与应用研究组负责人、物理学家克里斯蒂安大卫解释说:“这种适用于可见光范围的基本原理并不适用于X射线范围。”对于X射线来说,没有哪两种材料的光学性质在很大的波长范围内有足够的差异,从而使一种材料可以抵消另一种材料的影响。换句话说,X射线范围内材料的色散太相似了。此次,科学家没有在两种材料的组合中寻找答案,而是将两种不同的光学原理联系在一起。这项新研究的主要作者亚当库贝克说:“诀窍是意识到我们可以在衍射镜前面放置第二个折射镜。”PSI用已有的纳米光刻技术来制造衍射镜,并用微米级的3D打印制造出折射结构,成功开发出用于X射线的消色差透镜,解决了上述问题。为了表征他们的消色差X射线透镜,科学家们在瑞士同步辐射光源使用了一条X射线光束线,还使用光刻技术来描述X射线光束,从而描述消色差透镜。这使得科学家们能够精确地探测到不同波长的X射线焦点的位置。
  • 原理革新!超透镜分辨率提升一个量级
    超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测。然而,超透镜的本征损耗一直是该领域长期存在的关键科学问题,限制了成像分辨率的进一步提升。  近日,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员密切合作,提出了多频率组合复频波激发超透镜成像理论机制,通过虚拟增益来抵消本征损耗,成功提高了超透镜的成像分辨率约一个量级。该研究成果于8月18日在《科学》杂志上在线发表。  “超透镜”概念最早由英国帝国理工学院教授John Pendry于2000年首次提出。根据理论预测,超透镜将具有突破传统光学成像分辨率极限的能力。随后,为实现超透镜构想,中国科学院外籍院士、香港大学教授张翔团队率先提出了新型银-聚合物超透镜的实验方案,极大推动了超透镜技术的发展和应用。此后,各国科学家纷纷加大研究投入,超透镜迅速成为光学领域的热门课题,并被广泛应用于生物医学、光纤通信、光学成像等场景。合成复频波方法提升超透镜成像质量的原理示意图(研究团队供图)  目前,基于极化激元材料和超构材料的超透镜已被广泛验证可以实现亚衍射成像,但其本征损耗的严重限制了其分辨率进一步提升,从而也限制了其应用发展。  为了解决这一重大挑战,由香港大学教授张霜、张翔、国家纳米科学中心研究员戴庆以及John Pendry组成国际科研团队开展联合攻关。  在最新发表的论文中,张霜介绍:“针对光学损耗提出一种实用的解决方案,即借助多频率组合的复频波激发来获得虚拟增益,进而抵消光学体系的本征损耗。”  作为验证,他们把这一方案运用到超透镜成像机制,理论上实现了成像分辨率的显著提升。最后,进一步借助微波频段双曲超构材料的超透镜实验进行了论证,获得与理论预期一致的良好成像效果。  戴庆团队基于长期对原子制造技术下的高动量极化激元的积累,创制了基于合成复频波的碳化硅声子极化激元超透镜。“我们最终实现了超透镜成像分辨率约一个量级的提升,相信这将对光学成像领域产生巨大影响。”戴庆表示。  科研人员介绍,合成复频波技术是一种克服光子学系统本征损耗的实用方法,不仅在超透镜成像领域有卓越的表现,还可以扩展到光学的其他领域,包括极化激元分子传感和波导器件等。该方法还可以针对不同的系统和几何形状进行定制化应用,为提高多频段光学性能、设计高密度集成光子芯片等方向提供了一条潜在的途径。  “这是一个优美而普适的方法,可以拓展到其它波动体系来弥补损耗问题,如声波、弹性波以及量子波等。”张翔说。  香港大学博士后管福鑫、国家纳米科学中心特别研究助理郭相东和香港大学博士生曾可博为本文共同一作。张霜、张翔、戴庆和John Pendry为本文共同通讯作者。
  • Nanoscribes3D微纳加工技术 - 光谱学3D非球面微透镜研发
    近日,一个由华沙大学物理系,日本筑波物质材料研究所以及法国格勒诺布尔国家科学研究中心所组成的国际科研团队的科学家们通过运用Nanoscribe的3D微纳加工技术设计出了如头发丝般细小的纳米级3D非球面微透镜组。此款具有3D形状的微透镜组可以更大程度从半导体样品导入光源,并将射出部分光源重整为超窄光束。这一突破性的研究成果可替代用于光学测量的实验装置中笨重的显微镜物镜。该微透镜增加了两个数量级的可用工作距离(即透镜前端到样品表面之间的距离),为各种光学实验开辟了全新视角。此外,该3D微透镜也可以在不同材料(包括易碎的石墨烯类材料)上进行3D打印制作。图片来自华沙大学Aleksander Bogucki教授:使用Nanoscribe双光子微纳3D打印设备Photonic Professional系列在短时间内制作的3D非球面微透镜阵列。微透镜的优点透镜是一种人们非常熟悉的光学元件,它属于被动光学元件,在光学系统中用来会聚、发散光辐射。随着科学技术的进步,传统方法制造出来的光学元件已经不能满足当今科技发展的需要了。而利用微光学技术所制造出的微透镜和微透镜阵列以其体积小、重量轻、便于集成化、降低制造和包装成本等优点,已然成为新的科研发展方向。微透镜用处广泛,可用于例如照明,显示器,传感器和医疗设备等领域。有效地进行光的传输和收集,对于微光学系统的性能和潜能有着至关重要的作用。通常,我们会运用不同的方式来增加全内反射临界角或减少界面处的菲涅尔反射,例如在光源发射器下方放置镜子,在防放射层上覆盖基材表面以减少内部反射等。在对于半导体纳米结构,通常会使用半球形的固体浸没透镜(SIL)来解决问题。通过三维减材制造制造的SIL可以增加23%甚至40%的光子提取。但是,这些方法都不能达到令人满意的效果,仍然需要借助使用具有高数值孔径的聚光光学器件。而科学家们此次通过使用Nanoscribe3D激光直写技术(DWL)制造的椭圆微透镜(μ透镜)适用于光谱测量中的点光源发射器。基于菲涅耳反射的减少和全内反射的临界角的增加的原理,该非球面透镜成倍提高了光的提取效率。此外,还将收集的光源重整为超低发散光束(测得的光束发散半角小于1°)。因此,发出的光可以直接以约600-700 mm的有效WD引入聚光光学器件,这是标准的高NA长WD显微镜物镜的70倍。在传统实验中,科学家们通常会将重达半公斤,几乎手掌大小的重型显微镜物镜放置在距离分析样品几毫米的位置上。显而易见,这会限制很多现代实验的操作和可行性,例如在脉冲高磁场,低温或微波腔中的测量实验。而这款基于Nanoscribe3D微纳加工技术具有微型化和轻便特性的非球面微透镜则可以轻松解决这类问题。科学家们对该非球面微透镜阵列在两种类型的半导体发射器上的性能已得到验证:自组装量子点(QDs)和新型准二维材料制成的范德华异质结构(van der Waals heterostructures)。3D微纳加工技术应用于微透镜阵列Nanoscribe的双光子微纳3D打印设备具有极大设计自由度的特点,因此可以轻松制作出具有光学质量表面的各种光学元件,例如球形,非球形甚至自由曲面的微透镜。此外,Nanoscribe的3D微纳打印设备速度很快,在短时间内即可以实现在样品上打印数百个微透镜,并按规则或随机排列阵列,用来实现微透镜阵列的不同新功能及应用。相关文献:"Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses" - Nature :Light:Science & Applicationshttps://www.nature.com/articles/s41377-020-0284-1更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 双光子灰度光刻微纳打印设备
  • 赛默飞世尔科技新一代离子阱和轨道阱质谱仪
    美国佛罗里达奥兰多(2010年3月1日)—全球科学服务领域的领导者赛默飞世尔科技今天宣布,LTQ Velos和LTQ Orbitrap Velos质谱仪将于2010年匹兹堡展览会首次亮相。LTQ Velos™ 具有全新的双压离子阱和先进的离子透镜,是世界上最快速和最灵敏的离子阱质谱仪。LTQ Orbitrap Velos™ 结合了业界领先的Orbitrap™ 质量分析器、全新的高能碰撞解离(HCD)池和双压离子阱技术,可提供具有极高分辨率和精确度的质谱数据。于2010年2月28日至3月5日在奥兰多举行的匹兹堡展会期间,赛默飞世尔科技将在2757号展位展示LTQ Velos和LTQ Orbitrap Velos质谱仪。   LTQ Velos:彻底革新的离子阱技术   在蛋白质组学应用中,分析速度和灵敏度的提高可以增加复杂肽混合物分析的覆盖率,从而提高低浓度样品鉴定的可靠性。LTQ Velos所具有的多种碎裂模式使得序列测定和翻译后修饰(PTM)鉴定更加可靠。更快的扫描速度减少了50%的循环时间,使所鉴定蛋白质和肽的数量增加一倍。   在代谢应用中,双压离子阱技术提高了碎裂效率,从而能更快、更准确地完成结构鉴定。更快的速度、更高的灵敏度与多级质谱分析能力相结合,最大化分析通量并保持高水平的数据质量,这是鉴定和定量复杂的共洗脱化合物所必需的。   LTQ Velos可升级为LTQ Orbitrap Velos,因此实验室可以扩展最初的投资,在不牺牲分析速度和灵敏度的情况下,升级为具有更精确质量数和超高分辨率的系统。   LTQ Velos离子阱液相色谱/质谱(LC/MS)系统被《仪器市场展望》评选为2009美国质谱年会的“明星产品”。   LTQ Orbitrap Velos:秉承强大的Orbitrap技术   LTQ Orbitrap Velos将具有高质量精确度和超高分辨率的Orbitrap质量分析器与具有更高灵敏度和更短循环时间的LTQ Velos相结合,提供了高性能的组合质谱。   LTQ Orbitrap Velos具有高质量精确度,提高了复杂样品中蛋白质鉴定的速度和可靠性,最大程度地降低了假阳性率。超高分辨率使得完整蛋白质的分子量测定和同分子量物质的深入分析成为可能,并获得可靠分析结果。这些性能确保研究者能以更高的序列覆盖率、更为可靠地鉴定更多蛋白质。   LTQ Orbitrap Velos的全新高能碰撞(HCD)池效率更高,有利于同质量标记肽的定量分析,包括那些需要串联质量标签(TMT)的应用。电子转移解离(ETD)可为高度灵敏的翻译后修饰和从头测序分析提供补充信息。   在代谢应用中,LTQ Orbitrap Velos为研究者提供了高分辨率和高精确度的质谱数据,使结构鉴定更加可靠。   由于具有以上特点,Thermo Scientific LTQ Orbitrap技术成为最全面的结构鉴定质谱仪,也是蛋白质和代谢物的鉴定、表征和定量最可靠的选择。   这两款LTQ Velos质谱仪的分析速度使其非常适合与超高效液相色谱系统(U-HPLC)联合使用,研究者能在更短时间内鉴定更多化合物。   若需关于Thermo Scientific LTQ Velos和LTQ Orbitrap Velos的详细资料,请访问2010年匹兹堡展会赛默飞世尔科技2757号展位。也可以访问www.thermo.com/ms,致电(800) 532-4752,或发邮件至analyze@thermofisher.com。   若需要了解赛默飞世尔科技与2010年匹兹堡展会有关的新闻和产品图片,请访问在线网络媒体室www.thermofisher.com/pittcon10.   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工35,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn(中文)。
  • 安捷伦科技LC/MS家族新成员离子阱质谱闪亮登场
    安捷伦科技LC/MS家族新成员离子阱质谱闪亮登场 2010年11月11日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日推出Agilent 500离子阱液质联用系统,该系统是应用于化学分析、食品产品安全测试以及其他行业的经济型、高精度MS/MS解决方案。 Agilent 500 lon Trap LC/MS 500离子阱液质联用系统是一款稳定可靠的分析仪器,让您以合理的价格享受MS、MS/MS甚至MSn的高性能。该系统接受订购,可兼容安捷伦所有的液相色谱产品。新的500离子阱系统具有多种离子化模式和扫描技术,只需一次实验便可对化合物进行筛查、鉴定和确认。 该离子阱系统具有以下多种高级功能,是常规分析应用的绝佳选择: * 易于使用的ESI和APCI接口; * 耐用设计减少了清洁离子源所需的次数及时间; * 即使分析复杂基质样品也能获得准确且可重现的结果; * &ldquo 金盾&rdquo (专利申请中)防护离子透镜技术提高了分析灵敏度、仪器耐用性和样品通量; * 最高的灵敏度。 植物群研究实验室主任James Neal-Kababick谈到:&ldquo 要想更快、更可靠地进行分析鉴定,就必须具有抓住瞬间即逝的质谱实验数据的能力,而Agilent 500离子阱系统就以合理的价格提供其他仪器无法比拟的强大功能和通用性。&rdquo 安捷伦LC/MS市场总监Ken Miller说:&ldquo 500离子阱液质联用系统非常完美地融入到安捷伦LC/MS产品系列。它灵活性极高,能用于常规化合物鉴定和定量,并且价格合理,是众多实验室的理想选择。&rdquo Agilent 500离子阱LC/MS系统是功能强大的LC/MS仪器系列的新成员。今年年初,安捷伦推出了使用iFunnel技术的6490三重串联四极杆液质联用系统。iFunnel技术彻底变革了大气压离子采样的过程,极大地提高了大多数应用的检测灵敏度。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18500 名员工在 110 多个国家为客户服务。在 2009 财政年度,安捷伦的业务净收入为 45 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 使用标准积分球和全积分球测试透镜
    1. 前言  使用紫外分光光度计测定固体样品时,会用到积分球。积分球的种类繁多,有不同的尺寸、形状、涂层材质。日立紫外可见近红外分光光度计UH4150具有多种积分球检测器,可以满足不同样品的测量需求。图1 日立UH4150及其丰富附件这里以透镜测定为例,介绍标准积分球和全积分球。 2. 积分球结构标准积分球的内壁涂层为BaSO4,副白板的材质为Al2O3。它不但可以测定透过率,还可以测定全反射率和漫反射率。全积分球的副白板位置处无开孔,其内层材质同样为BaSO4。因此,全积分球不能测定全反射率和漫反射率。图2 标准积分球和全积分球的结构 3. 透镜的测定实例当测定如透镜类的样品时,其透射光束会在积分球内发生较大变化,若使用标准积分球时,透射光会从积分球背面的副白板溢出,并由副白板和积分球内壁反射。如图3所示,由于Al2O3和积分球内层BaSO4的反射率不同,因此基线校正(仅通过副白板反射校正)和样品测定时的光学条件不同,无法得到正确的测光值。图3 Al2O3和BaSO4的反射光谱详细信息请点击:https://www.instrument.com.cn/netshow/SH102446/s930350.htm 4. 总结 日立提供多种积分球,包括全积分球和标准积分球,以及开口倾角不同的标准积分球等,满足多种样品的精确测定。拨打400-830-5821,联系我们。
  • 德国将研制新太赫兹透镜
    2011年9月7日报道 德国马尔堡大学将与德国塑料中心合作研究用于太赫兹和亚毫米波的新聚合物透镜。这种透镜可以改进图像质量,并降低材料和生产成本。 太赫兹和微波系统在过去二十年发展迅速,相关技术已经逐渐成熟,近年来更出现了一些创新性技术,如低成本塑料光学技术。新项目将开发以聚合物和二氧化钛或氧化铝粉末等添加物的混合物为基础的太赫兹透镜。
  • Nature Communications | 主动变焦超透镜研究取得进展
    超透镜是实现透镜成像功能的光学超表面,它基于亚波长的人工结构单元对入射光的相位与振幅等参量进行调控,实现透镜聚焦或成像的功能。超透镜具有超轻超薄的平面结构,可以组成高集成度的成像系统,有望替代传统光学系统中繁琐的透镜组。但利用超透镜实现可见光波段的主动变焦成像仍面临挑战。光子轨道角动量(OAM)是一种新颖的光场调控维度,携带OAM的涡旋光束具有螺旋型相位波前,中心相位存在奇点,同时不同拓扑荷之间保持本征正交无串扰的物理属性,为主动调控提供全新的技术手段,在微粒操控、超分辨显微成像、大容量光通信等领域应用前景广阔。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心微加工实验室的李俊杰研究组和纳米物理与器件实验室的顾长志研究组(N10)一起,提出了一种基于轨道角动量(OAM)的多波段选择解码方法,通过全介质TiO2超表面结构的独特设计,实现了可见光频段多路复用的主动变焦超透镜。他们设计了具有面内C2旋转对称性和螺旋排布的TiO2高深宽比纳米鳍阵列结构,成功实现了较高转极化率的圆偏振光调制,同时利用附加的Pancharatnam Berry (PB)相位实现了2π范围的有效螺旋相位调控(图1)。超透镜中包含了四个OAM通道,对应四个焦距深度的聚焦。当入射光携带的OAM拓扑荷数l与超透镜中通道设计的螺旋相位模式l’互为相反数时( l=l' ),该通道获得解码。因此,四种OAM入射可以实现超透镜在四个焦距位置上的聚焦,通过切换入射光携带OAM的模式即可实现主动切换焦距的功能,在532 nm处获得了5-35 mm的四个焦点(图2)。这种主动变焦的超透镜显示出在非机械转换成像和三维成像等领域具有重要应用潜力。该研究成果以“Active Multiband Varifocal Metalenses Based on Orbital Angular Momentum Division Multiplexing”为题,于2022年07月25日在线发表在《Nature Communications》上。N10组的博士研究生郑睿瑄为第一作者,顾长志和李俊杰为通讯作者,北京理工大学的黄玲玲教授和蒋强博士在测试方面提供了支持。该研究得到了科技部、国家自然科学基金委员会、中国科学院和北京市科委的项目资助。文章链接:https://www.nature.com/articles/s41467-022-32044-2 图1. 主动变焦超透镜的功能示意图图2.主动变焦超透镜在532nm处的聚焦光斑强度、半径及景深
  • 哈佛大学联合阿尔贡国家实验室开发出基于MEMS芯片的超级透镜
    p   将超表面透镜和MEMS技术相结合,或能为光学系统带来高速扫描和增强的聚焦能力。 /p p   目前,透镜技术在各个领域都获得了长足的发展,从数码相机到高带宽光纤,再到激光干涉仪引力波天文台 LIGO的仪器设备等。现在,利用标准的计算机芯片制造技术开发出了一种新的透镜技术,或将替代传统曲面透镜复杂的多层结构和几何结构。 /p center img alt=" " src=" http://07.imgmini.eastday.com/mobile/20180226/20180226155844_edbff27bad1f96d86a071f94afa52e29_1.jpeg" height=" 249" width=" 533" / /center p   集成在MEMS扫描器上的基于超表面技术的平面透镜(超级透镜),左图为扫描电镜图片,右图为光学显微成像图片。在MEMS器件上集成超级透镜,将有助于整合高速动态控制和精确波阵面空间控制优势,打造光控制新模型 /p p   与传统曲面透镜不同,基于超表面光学纳米材料的平面透镜相对更轻。当超表面亚波长纳米结构形成某种重复图纹时,它们便可以模仿能够折射光线的复杂曲度,但是体积更小,聚光能力更强,同时还能减少失真。不过,大部分这种纳米结构器件都是静态的,功能性有限。 /p p   据麦姆斯咨询报道,超级透镜技术开拓者——美国哈佛大学应用物理学家Federico Capasso,和MEMS技术早期开发者——美国阿尔贡国家实验室纳米制造和器件小组负责人Daniel Lopez,他们俩来了一番头脑风暴,为超级透镜增加了运动控制能力,例如快速扫描和光束控制能力,或将开辟超级透镜新应用。 /p p   Capasso和Lopez联手开发了一款器件,在MEMS上集成了中红外光谱超级透镜。他们将该研究成果发表在了本周的《APL Photonics》期刊上。 /p p   MEMS是一种结合微电子和微机械的半导体技术,在计算机和智能手机中可以找到,包括传感器、执行器和微齿轮等机械微结构。MEMS现在几乎无处不在,从智能手机到汽车安全气囊、生物传感器件以及光学器件等,MEMS可以借助典型计算机芯片中的半导体技术完成制造。 /p
  • Nature Communications | 用于X射线的消色差透镜问世
    要想在摄影和光学显微镜中产生清晰的图像,消色差透镜必不可少。它们可以确保不同颜色,即不同波长的光,能够清晰聚焦,从而消除模糊现象。直到现在才开发出一种用于X射线的消色差透镜,这一事实乍一看可能令人惊讶,毕竟可见光消色差透镜已经存在了200多年。它们通常由两种不同的材料组成。光线穿透第一种材料,分裂成光谱颜色,就像穿过传统的玻璃棱镜一样。然后,它通过第二种材料来逆转这种效果。在物理学中,分离不同波长的过程称为“色散”。然而,瑞士保罗谢勒研究所(PSI)X射线纳米科学与技术实验室X射线光学与应用研究组负责人、物理学家克里斯蒂安大卫解释说:“这种适用于可见光范围的基本原理并不适用于X射线范围。”对于X射线来说,没有哪两种材料的光学性质在很大的波长范围内有足够的差异,从而使一种材料可以抵消另一种材料的影响。换句话说,X射线范围内材料的色散太相似了。此次,科学家没有在两种材料的组合中寻找答案,而是将两种不同的光学原理联系在一起。这项新研究的主要作者亚当库贝克说:“诀窍是意识到我们可以在衍射镜前面放置第二个折射镜。”PSI用已有的纳米光刻技术来制造衍射镜,并用微米级的3D打印制造出折射结构,成功开发出用于X射线的消色差透镜,解决了上述问题。X射线消色差仪的概念和试验装置为了表征他们的消色差X射线透镜,科学家们在瑞士同步辐射光源使用了一条X射线光束线,还使用光刻技术来描述X射线光束,从而描述消色差透镜。这使得科学家们能够精确地探测到不同波长的X射线焦点的位置。他们还使用一种方法对新透镜进行了测试,这种方法将样品以小光栅步移过X射线束的焦点。当X射线束的波长改变时,用传统X射线透镜产生的图像变得非常模糊。然而,当使用新的消色差透镜时,这种情况就不会发生。使用消色差仪演示不同能量的STXM成像X射线束轮廓的演变,其能量用X射线照相术测量消色差透镜和单个FZP(能量范围从5.6keV到6.8keV)多色X射线聚焦模拟该研究成果已发表在近期的《自然通讯》上。文献链接:https://www.nature.com/articles/s41467-022-28902-8DOI: https://doi.org/10.1038/s41467-022-28902-8
  • 上海天文台等在弱引力透镜宇宙学研究中获进展
    近期,中国科学院上海天文台陕欢源课题组和上海交通大学物理与天文学院张鹏杰课题组合作,基于目前国际上最先进的千平方度巡天(Kilo-Degree Survey,KiDS)数据和Planck卫星宇宙微波背景辐射弱引力透镜(CMB lensing)数据,探究了利用二者的交叉关联限制宇宙学,并首次在这一结果中完整考虑扣除来自星系内秉指向性(intrinsic alignment,IA)带来的污染。5月16日,相关研究成果发表在《天文学与天体物理学》(Astronomy & Astrophysics)上。弱引力透镜是暗物质宇宙演化的唯一无偏探针,在限制宇宙学、大尺度结构演化、暗能量模型等方面具有其他观测手段无法替代的优势。弱引力透镜描述了光线因相对论效应在弱引力场中产生偏折,而对应光源即会在观测者眼中发生形变而偏离原本形状。通过对这一形变效应的观测,即可推测出光源和观测者之间的引力场分布或物质分布,从而更深入地理解宇宙成分性质和宇宙大尺度结构的演化规律(图1)。天文学家认为,使用星系形状因弱引力透镜的形变(剪切场,shear)和CMB光子因弱引力透镜的形变(汇聚场,convergence)的交叉关联,可以有效避免一些系统误差的影响,更好地提取出宇宙学信息。这一交叉关联自2015年首次被观测到以来,已被多项研究工作使用不同数据得以验证。然而,这一信号的处理仍存在一些简单的假设,而这些假设在未来的观测中可能会被打破。上海天文台博士姚骥提出,星系内秉指向性IA即星系在被弱引力透镜扭曲之前的形状,对这一交叉关联信号的影响一般均基于一些假设,而这些假设的正确性值得更深入探讨。本研究总结了过去八年对这一信号所有的处理方法(图2),其中忽略IA的处理方法以橙色线段标注,考虑了IA的影响但对IA的模型和参数进行了很强的假设的工作以绿色线段标注。为了弥补这方面探索的缺失,研究利用星系内秉指向性和弱引力透镜信号在光路上是否具有对称性这一特征,使用自修正的方法分离并扣除KiDS数据中星系内秉指向性(IA)的影响,并验证了IA导致的这一系统误差在如今的数据中已拥有一定的影响,约合0.5σ,超出无偏宇宙学0.31σ的要求。而这一影响在即将到来的第四代弱引力透镜巡天中将会随着统计误差的缩小而极速放大。本研究所使用的全新的IA自修正方法是在弱引力透镜宇宙学的首次应用。这一新方法为宇宙学研究提供了除模型拟合、模拟数据验证等传统的手段之外,直接从测光巡天数据中提取IA并消除其宇宙学影响的方法,也是目前唯一基于对称性的IA修正手段。研究显示,通过大量的基于模拟数据和观测数据的自洽性检验,自修正方法能够很好的减少IA对宇宙学信号的污染,且通过打破简并现象,保持了观测对宇宙学的限制力。上海天文台研究员陕欢源表示,本研究的重要意义体现在通过大量验证、完善了扣除方法的方式对IA进行了更为翔实的研究,同时本研究使用了独立于其他方法的、全新的自修正扣除方法,首次在测光巡天数据中从对称性的角度提取并扣除IA污染。这种全新的扣除方法也可以扩展到许多其他宇宙学研究上。陕欢源还补充道,本次从星表到宇宙学的研究,在工程实现方面也具有重要意义,期望后续在我国自主研发的空间站工程巡天望远镜(CSST)上开展相关的应用研究。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.弱引力透镜示意图。左上角的星系发出的光线如果沿蓝色直线传播到望远镜处被我们观察到,则呈现出左下蓝色框中的图景。而实际上光线的传播会被途经的物质的(中上部)引力场所扭曲,以黄色光路传播。对应地,观测到的星系形状也会呈现相应的扭曲,如右下黄色框中所示。从蓝色框到黄色框中星系图像发生的形变,可以用来研究光路经过的物质分布。图2.使用IA自修正方法与之前结果获得的引力透镜幅度的对比(幅度为1表示和Planck宇宙学吻合)。本研究的三个主要结果:使用IA自修正方法扣除IA、完全忽略IA的存在、不使用IA自修正也不对IA进行强的假设,在图中以蓝色呈现。本研究中和IA的物理本质无关的一些对数据、模型、处理方式的选择所造成的差异,以红色呈现。对之前工作的总结以橙色(忽略IA)和绿色(对IA有强假设)呈现,其中橙色做法对应蓝色“ignore IA”,未能扣除IA的污染,绿色做法如果不对IA进行强假设,则误差棒会像蓝色“IA w/o SC”的情况一样显著增大。
  • 美研究人员发明新型超薄光学透镜 可用于多种仪器
    据美国航空航天局(NASA)官网报道,NASA喷气推进实验室(JPL)与加州理工学院研究人员合作开发了一种超薄光学透镜,通过“元表面”(metasurface)技术实现对光路的控制,可应用于先进显微镜、显示器材、传感器、摄像机等多种仪器,使光学系统集成度大大提高,并使透镜制造方式产生革命性变化。  这种透镜的“元表面”由硅晶阵列组成,单个硅晶的横截面为椭圆形。通过改变硅晶的半径与轴向,可以改变通过光线的相位与偏振性,从而使光路弯曲,实现聚焦。传统的光学系统由多组玻璃镜片组成,每个镜片都要求非常精密的制造工艺 而这一新技术可以采用标准的半导体制造工艺,将厚度仅为微米级的“元表面”相互叠加,即可获得所需的光学系统,可以像半导体芯片一样实现大规模批量化自动制造。  该研究团队正与企业伙伴进行合作,使这一技术进一步商业化。这一项目还获得了美国能源部与国防部高等研究计划局(DARPA)的资助。
  • 成果:大气常压磁约束微型直流辉光放电质谱离子源
    p style=" text-align: justify "   近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室与四川大学开展联合研究,发现在大气常压环境中磁场有效约束离子传播特性,并基于此研发出一种大气常压高效痕量检测磁约束微型质谱离子源。相关研究工作以通讯的形式发表在国际期刊Chemical Communications上。 /p p style=" text-align: justify "   直流辉光放电微型等离子体源,凭借其放电的稳定性和等离子体的非平衡特性,在化学分析和环境监测等领域有着独特的技术优势和广阔的应用前景。具有高灵敏度、高选择性和快速响应等特点的质谱法,已成为分析化学领域的核心技术之一,在痕量物种定性和定量检测中发挥着巨大作用。长期以来人们一直致力于提高质谱仪的分析性能。常压离子源,作为质谱仪的核心部件,主要作用是将样品解吸和电离,产生气态样品离子。能否有效将样品离子化和把离子化的待测物传输到检测入口,在很大程度上决定了整个质谱仪分析的灵敏度。 /p p style=" text-align: justify "   在大气环境中,一般通过气流将离子化的待测物输运到质谱仪检测入口。该种传输方式使得很大一部分离子逃逸到环境大气中损失掉,导致传输效率低下。为提高离子传输效率,该研究团队基于常压磁约束离子传播特性,提出一种大气环境中纵向磁场约束离子传输的新方法,研发出一种用于痕量物种检测与分析的大气常压磁约束微型直流辉光放电质谱离子源。该方法关键在于:1)在弱电场中,气流和洛伦兹力共同作用离子,使之做螺旋运动,降低逃逸概率 2)利用离子与环境氮气和氧气等分子的集体碰撞效应,进一步减少约束半径,使得更多的离子传输到检测入口,增加离子传输效率。通过质谱分析,该方法成功地将样品质谱信号强度提高到原来的10倍,检测限可降低到原有的1/10,使得部分有机物待测样品的检测限达到几十PPt的水平。该项工作为化学分析和环境监测等领域提供了更为可靠的检测手段,为低温等离子体的应用拓展了新的研究方向。该工作受到科技部、国家自然科学基金委和中科院“西部青年学者”项目的资助。 /p p style=" text-align: justify "   近几年来,瞬态光学与光子技术国家重点实验室在等离子体基础研究领域实现了一次又一次原理上的创新和技术上的突破,取得了一系列原创科研成果。研究团队曾首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,该项工作以封面和亮点文章发表于国际应用物理类学术期刊JAP (2017)。此外,在低温等离子体领域已连续8篇论文发表于国际学术期刊APL。上述成果为西安光机所等离子体学科的发展奠定了坚实的基础。 /p p style=" text-align: center " img title=" 大气常压质谱离子源.webp.jpg" alt=" 大气常压质谱离子源.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7631dd7f-9436-45d8-b144-ba3c9e5173cc.jpg" / /p p style=" text-align: center "   大气常压磁场约束离子运动轨迹及样品阿司匹林溶液质谱检测 /p p style=" text-align: justify "  文章链接: a href=" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract" target=" _blank" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract /a /p p style=" text-align: justify " & nbsp /p
  • 中科院研制成功高端电镜重要部件-高温超导磁透镜
    2016年1月7日,由中国科学院高能物理研究所为上海交通大学研制的高温超导磁透镜在上海完成了磁场测量,磁场分布结果满足设计要求,将用于电子显微镜的总装调试。  电子显微镜是用于原子尺度超高时空分辨兆伏特电子衍射与成像系统,利用电子与物质作用所产生的讯号来鉴定微区域晶体结构、微细组织、化学成分、化学键结和电子分布情况的电子光学装置。用超导磁体做成的磁透镜来聚焦电子,是电子显微镜镜筒中的重要部件。  互相支持高端科研仪器的研制是高能所与上海交大签订的战略合作内容之一,实验物理中心的超导磁体工程中心承担了具体工作。  高温超导磁透镜是国际上首次用高温超导磁体作为电子显微镜的磁透镜,使用国产的高温超导带材绕制磁体,不用液氦或者液氮等低温介质,用一台脉管制冷机采取传导冷却的方式对磁体降温,最高工作温度约50K。采用高温超导技术,将提高电子显微镜的分辨率,减少整个设备的体积和重量,提高集成度。  高温超导磁透镜也是高能所研制的第一台高温超导磁体,相关技术将促进我国高端电子显微镜仪器的研制。高温超导磁透镜磁场测量沿磁体轴线的磁场分布
  • 瑞士科学家开发X 射线消色差透镜 将很快实现X 射线显微镜商业应用
    仪器信息网讯 近日,瑞士保罗谢尔研究所(Paul Scherrer Institute,简称PSI) 的科学家开发了一种X射线显微镜的突破性光学元件——X 射线消色差透镜。这使得 X 射线束即使具有不同的波长也可以准确地聚焦在一个点上。对应成果于3月14日发表在科学杂志Nature Communications上,成果表示,新型X射线镜头将使使用 X 射线研究纳米结构变得更加容易;这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。DOI: 10.1038/s41467-022-28902-8用于在微纳米尺度上无损研究物质内部结构和元素组成的X射线技术需要高性能的X射线光学系统。为此,在过去的十年中,人们开发了各种类型的反射、折射和衍射光学元件。衍射和折射光学元件已成为大多数高分辨率X射线显微镜的组成部分。然而,始终遭受固有色差的影响。到目前为止,这限制了它们在窄带辐射中的使用,从本质上说,这类高分辨率X射线显微镜仅限于高亮度同步辐射源。与可见光光学类似,解决色差的一种方法是将具有不同色散功率的聚焦光学和散焦光学结合起来。在这次新成果中,PSI科学实现了X射线消色差仪的首次成功实验,该消色差仪由电子束光刻和镀镍制作的聚焦衍射菲涅耳波带片(FZP)和3D打印双光子聚合制作的散焦折射透镜(RL)组成。利用扫描透射X射线显微镜(STXM)和光学显微镜,科学家演示了在宽能量范围内的亚微米消色差聚焦,而无需任何焦距调整。这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。消色差镜头对于在摄影和光学显微镜中产生清晰的图像至关重要。它们确保不同颜色(即不同波长的光)具有共同的焦点。然而,迄今为止,X 射线还没有消色差透镜,因此只有单色 X 射线才能实现高分辨率 X 射线显微镜。在实践中,这意味着必须从 X 射线光束光谱中滤除所有其他波长,因此只能有效使用一小部分光,从而导致相对低效的图像捕获过程。由 3D 打印机创建的微结构:由 PSI 科学家开发的创新折射结构与衍射元件相结合,形成一个消色差 X 射线镜头,约一毫米长(或高,如图所示)。打开它的末端,就像一个微型火箭。它是由 3D 打印机使用特殊类型的聚合物创建的。该结构的图像由扫描电子显微镜拍摄。图片来源:Paul Scherrer Institute/Umut SanliPSI 科学家团队已通过成功开发用于 X 射线的消色差 X 射线透镜解决了以上问题。由于 X 射线可以揭示比可见光小得多的结构,创新的镜头将特别有利于微芯片、电池和材料科学等领域的研发工作。比可见光消色差更加复杂对于可见光,消色差透镜的应用已经超过200多年。但对于X 射线的消色差透镜直到现在才被开发出来,这一事实乍一看似乎令人惊讶。可见光的消色差透镜是由一对不同的材料组成,当可见光穿透第一种材料时,分散成不同光谱颜色(就像穿过传统的玻璃棱镜时一样),然后这些光谱再通过第二种材料时就会逆转这种分散效果,聚焦在一个点上。(在物理学中,分散不同波长的过程称为“色散”)消色差聚焦原理:散焦折射透镜(RL)的色度作为聚焦菲涅耳波带片(FZP)色度特性的校正器。b扫描电子显微镜(SEM)显示了通过电子束光刻和镍电镀制作的镍FZP,用于对比测量。c由四个堆叠抛物面组成的RL的SEM图像,使用双光子聚合光刻技术进行3D打印。d使用消色差作为聚焦光学元件的扫描透射X射线显微镜(STXM)和光学成像实验装置的草图。PSI 的X 射线纳米科学与技术实验室 X 射线光学与应用研究组负责人、物理学家 Christian David 解释说:“这种适用于可见光范围的基本原理在 X 射线范围内不再起作用。对于 X 射线,没有任何两种材料的光学特性能够在很宽的波长范围内足以抵消另一种材料的影响。换句话说,材料在 X 射线范围内的色散是太相似了。”两个原理而不是两种材料因此,科学家们没有将寻找答案放在在两种材料的组合中,而是探索将两种不同的光学原理联系在一起。“诀窍是要意识到我们可以在衍射透镜前面放置第二个折射透镜,”新研究的主要作者Adam Kubec说。Kubec 目前是 Christian David 小组的研究员,现在为 XRnanotech 工作,XRnanotech 是 PSI 在 X 射线光学研究过程中的一个衍生公司。“多年来,PSI 一直是 X 射线镜片生产的世界领导者,”David 说,“我们为全球同步加速器光源的 X 射线显微镜提供专门的透镜,称为菲涅耳波带片。” David 的研究小组使用已建立的纳米光刻方法来生产衍射透镜。然而,对于消色差透镜中的第二个元素——折射结构——需要一种新方法,这种方法最近才得以实现:微米级的 3D 打印。这最终使 Kubec 能够制作出一种类似于微型火箭的形状。使用消色差仪演示在不同能量下的 STXM 成像。a)使用消色差获得的图b 中所示的Siemens star样品的 STXM 图像,表明在最佳能量约 6.4 keV 的附近,消色差范围 1 keV。b) Siemens star 测试样品的 SEM 图像,外圈和内圈的径向线和间距 (L/S) 的宽度分别为 400 nm 和 200 nm,见红色箭头。c) STXM 的比较结果是使用消色差 (上) 和传统 FZP (下) 获得的能量范围为 6.0 keV 至 6.4 keV。虽然 FZP 图像的对比度随能量快速变化,但使用消色差获得的图像质量变化很小。潜在的商业应用新开发的镜头使得X射线显微镜实现了从研究应用到商业应用(例如工业)的飞跃。“同步加速器源产生如此高强度的 X 射线,以至于可以滤除除单个波长以外的所有波长,同时仍保留足够的光来产生图像,”Kubec 解释说。然而,同步加速器是大型研究设施。迄今为止,在工业界工作的研发人员被分配了固定的光束时间,在研究机构的同步加速器上进行实验,包括 PSI 的瑞士同步辐射光源 SLS。这种光束时间极其有限、昂贵,且需要长期规划。“行业希望在他们的研发过程中拥有更快的响应循环,”Kubec 说,“我们的消色差 X 射线镜头将在这方面提供巨大帮助:它将使工业公司可以在自己的实验室内操作紧凑型 X 射线显微镜。”PSI 计划与 XRnanotech 一起将这种新型镜头推向市场。Kubec 表示,他们已经与专门在实验室规模上建造 X 射线显微镜设施的公司建立了适当的联系。作为元件安装在瑞士同步辐射光源SLS上进行测试为了测试他们的消色差仪的性能,科学家们在将其作为聚焦光学元件安装在瑞士同步辐射光源SLS的cSAXS光束线上。其中一种方法是非常先进的 X 射线显微镜技术,称为 ptychography。“这种技术通常用于检测未知样本,”该研究的第二作者、Christine David 研究小组的物理学家、X 射线成像专家 Marie-Christine Zdora 说,“另一方面,我们使用 ptychography 来表征 X 射线束,从而表征我们的消色差透镜。” 这使科学家能够精确检测不同波长的 X 射线焦点的位置。他们还使用一种方法对新镜头进行了测试,该方法使样品以小光栅步长穿过 X 射线束的焦点。当改变 X 射线束的波长时,使用传统 X 射线镜头产生的图像会变得非常模糊。但是,在使用新的消色差镜头时不会发生这种情况。“当我们最终在广泛的波长范围内获得测试样品的清晰图像时,我们知道我们的镜头正在发挥作用,” Zdora高兴地说道。David 补充说:“我们能够在 PSI 开发这种消色差 X 射线镜头,并且很快将与 XRnanotech 一起将其推向市场,这一事实表明,我们在这里所做的这类研究将在很短的时间内实现实际应用。”
  • 德国斯派克SPECTRO MS等离子质谱仪荣膺“2010年度科学仪器优秀新产品”
    2011年4月26日,由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网联合主办的“2011年中国科学仪器发展年会(ACCSI 2011)”在北京京仪大酒店隆重召开,德国斯派克分析仪器公司的SPECTRO MS全谱同时测量等离子质谱仪喜获“2010年度科学仪器优秀新产品”这一殊荣。另外SPECTRO xSORT 手持式X荧光仪和SPECTROLAB直读光谱仪也入围“2010年度绿色仪器”。 SPECTRO MS创新特点: 所有的ICP-MS仪器都是基于时序测量的技术,每一瞬间仅能检测一种离子,不能实现实时内标,也难于对脉冲信号作全谱测量。最新推出的SPECTRO MS是目前市场上唯一的从6Li到238U质量范围同时测量的ICP质谱仪,它实现了从时序扫描测量到全谱同时测量的新飞跃。其革命性技术的核心是双聚焦Mattauch-Herzog扇形场质谱仪与全新的能同时俘获全部离子的检测器,及其创新设计的离子透镜系统。离子透镜采用一个127°扇形静电场,使离子按圆形路径飞行,而光子和其他非带电粒子仍直线飞行而被抛离。双聚焦扇形场质量分析器由入射狭缝、静电场分析器(ESA)、能量狭缝和900扇形磁场所组成,其磁场强度和静电场电压均固定不变,它把所有的离子按质量分离并分别聚焦到同一个焦平面上。新型的长120mm有4800个通道的DCD检测器安装在磁场的焦平面上,同时复盖全部无机质谱范围,实现全谱同时检测。它分析速度快,实时内标,并可对脉冲信号作全质谱的测量。 有关SPECTRO MS的详细信息敬请浏览:http://www.instrument.com.cn/netshow/SH100429/C103510.htm 欲了解更多,点击进入该公司展位
  • 科学家研发蜘蛛丝透镜 可使显微镜分辨率提升2至3倍
    新一期美国《纳米通讯》杂志发表的一项研究显示,自然界的蜘蛛丝是一种天然的超级透镜,可以有效帮助常规光学显微镜突破“视力”极限。这是生物超级透镜首次登上科技舞台,为超级透镜研究开辟了全新的发展方向。  这项研究由英国班戈大学电子工程系的王增波主持,并与牛津大学弗里茨沃尔拉特教授等人合作完成。  王增波对记者说:“这项研究的漂亮之处就在于它的简单性,超级透镜设计和制备一直是个比较复杂的课题,需要专业的知识和设备。但天然的蜘蛛丝居然可以实现超级透镜的功能,根本不需要加工,就能使显微镜分辨率提升2至3倍。”  观测时,研究人员首先利用透明胶带把蜘蛛丝放置于样品上,并在样品和蛛丝的缝隙之间注入无水酒精以提高成像质量,然后利用普通白光显微镜进行观测。由于蜘蛛丝对光的折射,原有“看不见”的纳米结构被放大2到3倍,从而把传统光学显微镜的分辨极限由200纳米提高到至少100纳米。  王增波说,他们利用蜘蛛丝透镜直接观察到了蓝光光盘上的线槽。蓝光光盘线槽最细只有100纳米,使用普通显微镜原本是看不见的。下一步,他们将探索利用蜘蛛丝透镜来观测亚细胞结构和细菌病毒。  蜘蛛丝透镜的发现纯属偶然。“一天我跟我家小孩在后院玩儿,看到了好几个新结的蜘蛛网,细细长长的丝,比头发丝还细,突然产生了用蜘蛛丝成像的想法。很快,我们就在实验上得到了证实。”王增波回忆道。
  • 新进展!中波红外大尺寸、高效率超透镜
    日常生活中人们通过颜色与明暗差异来识别物体,感知空间维度上的物质信息。与人类的眼睛只能感知可见光不同,一些生物能够接收到人类看不到的图像信息,例如虾姑能够感知紫外与红外波段而乌贼可以通过独特的眼睛构造识别偏振信息。  从描述光子本征属性的维度出发,光子除了具有强度维度外,还具有波长、偏振、拓扑荷等多种维度属性,其中一组正交的物理量可以作为无串扰的图像信息通道从而携带不同的外部信息。如虾姑与乌贼,其独特的图像感知能力使其能够看到人眼所看不到的信息,帮助其更好地完成捕猎、躲避危险、与同伴交流等活动,从而获得生存优势。  人类利用光学器件同样能够获得更卓越的“人工视觉”。如常用于地球遥感的红外偏振相机,通过波长与偏振的调制能够筛选识别出复杂环境下的具有红外与偏振特征的目标物。然而现阶段传统器件依然存在的问题是,为了实现多维度的感知功能,往往需要多种光学元件进行级联组合,导致器件体积、重量庞大,同时也引起了能量的损失与图像信息的误差累计。因此,可以说虽然人们制造的“人工视觉”光子器件已经实现了远超自然界的绝对性能,但在体积与集成性方面,相对于虾姑与乌贼精巧的视觉器官,传统器件依然没有超越自然界数十亿年的进化。  中国科学院上海技术物理研究所李冠海、陈效双、陆卫课题组与澳大利亚新南威尔士大学Andrey Miroshnichenko教授合作利用超构单元像素级的光场多维度调控能力,基于与传统硅基半导体工艺兼容的全硅双折射超表面体系在中波红外范围实现了色散调控模式下的波片式偏振解耦宽带中红外成像光子器件,能够实现比昆虫复眼更小尺寸下的光场调控与成像。  经过设计的光子成像器件由于像素级单元在波长-偏振维度的双重衍射效果设计,能够将正交偏振通道上的不同图像汇聚到不同的深度上,从而为后续级联的光处理器件与电处理器件提供了直接的物理接口。同时,研究团队也实现了消色差与消偏振的微型中红外光子成像器件,实现了集成的宽谱消偏振成像。值得注意的是,其不仅能够在工作波段内同时采集两个正交通道上的图像信息,同时其单元的结构排布角度,能够消除大入射角下的偏振效应,从而提升图像的准确度。  研究者相信,该研究成果将会为研究相对比较匮乏、难度较大但具有广泛应用前景的中波红外光电探测领域提供新的契机,该研究成果有望在自由空间量子通信、三维激光雷达、航空遥感等领域得到应用。  该研究得到了科技部重点研发计划量子调控和量子信息专项、纳米专项、国家自然科学基金委、上海市科委启明星项目、中国科学院青年创新促进会等项目的支持。图1 (a)不同正交偏振通道的消色差超透镜示意图;(b)用于不同偏振态调控的单元数据图;(c)超表面单元在不同波长及偏振下的等效折射率、透过率与相位分布示意图;
  • 日本电子发布场发射电镜JSM-IT800半透镜版本(i)/(is):适用观测半导体器件
    仪器信息网讯 2021年8月31日,日本电子株式会社(JEOL Ltd.)总裁兼首席运营官Izumi Oi宣布已经开发出肖特基场发射电子显微镜 JSM-IT800(2020年5月推出)用于观测半导体器件的最佳半透镜版本(i)/(is)——JSM-IT800(i)/(is),并已于 2021 年 8 月开始销售。产品开发背景扫描电子显微镜(SEM)被广泛应用于纳米技术、金属、半导体、陶瓷、医学和生物学等领域。随着SEM的应用范围不断扩大,不仅包括研究和开发,还包括生产现场的质量控制和产品检验,SEM用户需要快速高质量的数据采集,以及简单的成分信息确认和无缝的分析操作。为了满足这些需求,JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。此外,JSM-IT800 允许以模块形式更换物镜,提供不同版本物镜以满足不同用户的需求。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHL/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。JSM-IT800 还可以配备全新的闪烁体背散射电子探测器 (SBED)。 SBED 能够以高响应性轻松观察实时图像,即使在低加速电压下也能产生清晰的材料对比度。主要特点透镜内肖特基 Plus 场发射电子枪电子枪和低像差聚光透镜的增强集成提供了更高的亮度。在低加速电压(5 kV 时为 100 nA)下可获得充足的探针电流。独特的透镜内肖特基 Plus 系统适用于各种应用,从高分辨率成像到快速元素分析,以及电子背散射衍射 (EBSD) 分析。Neo Engine(新电子光学引擎)Neo Engine 是一种尖端电子光学系统,它积累了 JEOL 多年的核心技术。即使改变不同的观察或分析条件,用户也可以进行稳定的观察。自动功能的高可操作性大大增强。SEM 中心 / EDS 集成GUI“SEM 中心”、 SEM 成像和 EDS 分析完全集成,以提供无缝和直观的操作。 JSM-IT800 可以通过结合可选的软件插件来增强,例如 SMILENAVI 为新手用户提供学习路径, LIVE-AI 过滤器(Live Image Visual Enhancer– AI)以获得更高质量的实时图像.半透镜版本(i/is)半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。上电子探测器(UED)上电子探测器可以安装在物镜上方。该系统的优点是能够采集背向散射电子图像,并结合试样偏压采集二次电子图像。从样品发射的电子由物镜内的 UID 过滤器选择。 UED 和 UIT 允许在一次扫描中获取多个信息。新型背散射电子探测器闪烁体背散射电子检测器(SBED,可选)具有高响应性,适用于在低加速电压下获取材料对比图像。主要参数JSM-IT800i versionJSM-IT800is versionResolution (1 kV)0.7 nm1.0 nmResolution (15 kV)0.5 nm0.6 nmAccelerating voltage0.01 - 30 kVStandard detectorSecondary Electron Detector (SED)Upper In-lens Detector (UID)Upper Electron Detector (UED)Secondary Electron Detector (SED)Upper In-lens Detector (UID)Electron gunIn-lens Schottky Plus field emission electron gunProbe currentA few pA to 500 nA (30 kV)A few pA to 300 nA (30 kV)A few pA to 100 nA (5 kV)Objective lensSemi-in-lensSpecimen stageFull eucentric goniometer stageStage movementType1(standard) X 70 mm Y 50 mm Z 1 to 41 mmType2 (optional) X 100 mm Y 100 mm Z 1 to 50 mmType3 (optional) X 140 mm Y 80 mm Z 1 to 41 mmTilt -5 to 70° Rotation 360°EDS detectorEnergy resolution: 133 eV or betterDetectable elements Be to UDetection area: 60 mm2新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接】
  • 南京理工研制无透镜显微镜 成本降百倍 已开展商业化合作
    p   南京理工大学学生团队研制出新型无透镜全息显微镜,这种中国人自己的新一代显微镜打破国外在该领域的垄断,成本仅为同类产品的百分之一! br/ /p p   据南京理工大学官微消息,在第五届“互联网+”大学生创新创业比赛获金奖的队伍中,一支来自南京理工大学电光学院的学生团队 strong 研 /strong strong 制出的新一代无透镜全息显微镜 /strong 。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 386px " src=" https://img1.17img.cn/17img/images/201911/uepic/3524107b-4ffc-4b28-8fb9-e5101b28a382.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 386" border=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201911/uepic/d4ba7539-616b-4805-8650-15fd7cc1ca01.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 254" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 450px height: 254px " / /p p style=" text-align: left " span    /span 观察细胞通常需要染色标记,无法同时实现大视场、高分辨观测,体积庞大、成本高昂,是当今显微镜存在的三大痛点。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201911/uepic/14ee853c-da52-4067-98d2-5a3836d97902.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 485" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 450px height: 485px " / /p p   该团队则突破痛点 ,创造出中国人自己的新一代显微镜。 span style=" text-align: center "   /span span style=" text-align: center "   /span /p p   新华社报道称,这种新一代无透镜全息显微镜打破国外在该领域的垄断,成本仅为同类产品的百分之一 。 /p p    strong 中国人自己的新一代显微镜 /strong /p p    strong 有多厉害? /strong /p p   “CyteLive”是该团队研发出的新一代无透镜全息显微镜,不仅可以内置于培养箱,还是目前唯一 能够同时实现非染色、大视场、高分辨、长时间连续观察的显微镜产品,且售价远低于 进口产品。 /p p   “由于细胞是无色透明的,所以通常需要将细胞染色标记再观察。然而,这将损害甚至是杀死细胞,难以实现长时间连续观测。”团队负责人、电光学院博士研究生卢林芃说道。 /p p   团队利用定量相位成像技术,使CyteLive可以在无需对细胞进行任何染色标记的前提下,实现长达数天的连续观测,不仅细胞细节清晰可见,还能准确还原其三维影像,可谓“360度全方位无死角” 。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201911/uepic/1d944d2e-2443-4b71-ba19-7e2c61d0addb.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 273" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 450px height: 273px " / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 卢林芃在全国三强争夺赛 /span /p p   卢林芃介绍,传统显微镜镜头受到“物镜比例法则”的制约,大视场和高分辨率不可兼得。“CyteLive”抛弃了传统显微镜的光学镜头,只保留光源和传感器,实现了小型化和轻量化,单手即可托起 。 /p p   “ strong 它的体积仅有传统显微镜的0.8% , /strong 可直接放在细胞培养箱里进行活细胞箱内观察。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/44074baf-fcc5-4c06-9933-d1a65b7cc0de.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 卢林芃在全国三强争夺赛前一个人练习 /span /p p   CyteLive去除了复杂的机械调焦装置,通过先进的计算成像算法,把样品聚焦图像“算”出来,借助自适应超分辨成像技术,成像分辨率可突破至像素尺寸的三分之一,没有物镜却可以实现20倍物镜的成像水平。 /p p    strong 无透镜成像技术造就了CyteLive超大的成像视场 ,单幅图像高达一亿像素,视场是传统显微镜的200倍 ,可同时观测10万个血细胞。 /strong /p p style=" text-align: center " img alt=" " src=" http://pic.rmb.bdstatic.com/5e074dcd0acc8950670a98d073aaf4109893.gif" width=" 600" height=" 427" / /p p   这是CyteLive观测到的海拉细胞(宫颈癌细胞),单幅图像一亿像素,获得的视场是传统显微镜的200倍 /p p   strong  据了解,目前,该型显微镜已经应用于江苏省人民医院、先声药业等机构。团队也与苏州飞时曼、江南永新等国内显微镜企业达成合作,实现商业化落地。 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8d0a923b-73bc-4212-b530-f6b45502acea.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p   对未来市场的进一步探索,团队满怀信心:“我们坚信,通过我们的不懈努力,不远的将来,中国制造的高科技显微镜也能在全世界大放异彩! ” br/ /p
  • 沈阳自动化所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。  在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。  为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合,实现了三种成像模式——微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。  实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了新的技术手段。  研究工作得到国家自然科学基金国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的支持。AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 沈阳自动所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像方面取得新进展,提出一种将AFM与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法,相关成果以论文的形式(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在国际顶级学术期刊Advanced Science (中科院一区,IF= 16.806)。在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合起来,实现了三种成像模式:微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了一种新的技术手段。该研究得到了国家自然科学基金委国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的大力支持。(机器人学国家重点实验室)AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 上海理工大学:基于Pμ SL 3D打印技术的多焦距微透镜阵列制造
    微透镜阵列是由微米级或亚毫米级透镜按一定规律排列而成的阵列,被广泛应用于光学和光子学领域,包括立体显示、光均匀化、光束整形和三维成像等。与单个透镜相比,微透镜阵列可以收集每一点上的信息,如入射光线的强度和角度。在集成成像系统中,微透镜阵列上的透镜从不同的观察角度在不同的空间位置捕捉一组子图像,而这些图像可以被重建在一起以提供一个伪视觉。此外,在光场成像系统中,位于物镜和图像传感器之间的微透镜阵列能够在单次摄影曝光下收集空间和方向信息,无需聚焦于3D物体。大多数的微透镜阵列中,所有透镜的焦距都是相同的,这导致景深狭窄、深度感知能力有限。因此,这些微透镜阵列不能直接获取距离不同的物体的清晰图像。近日,上海理工大学张大伟教授课题组提出了一种多焦距微透镜阵列的制作方法。该微透镜阵列制造过程具体如下:首先,利用摩方精密面投影微立体光刻3D打印技术(nanoArch P140,BMF Precision,Shenzhen, China)制备出孔壁呈不同倾斜角度的微孔阵列,再采用旋涂的方法使微孔中残留部分光敏树脂并得到不同曲率的液面,最后经过PDMS翻模即可得到多焦距微透镜阵列。该多焦距透镜阵列能够扩展成像景深,具有感知物体深度的能力。该成果以“Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls”为题发表在光学期刊Optics Express上。图一 多焦距微透镜阵列制作原理图图二 (a) 多焦距微透镜阵列设计,(b) 3D打印的微孔阵列,(c) 复刻的多焦距微透镜阵列,(d) 多焦距微透镜阵列局部显微图。图三 利用多焦距微透镜阵列拍摄不同物距情况下的物体,物距为(a) 14.3mm,(b) 28.5mm,(c) 45.5mm时拍摄的图像。当物距为14.3mm时,中心区域的透镜可呈现清晰图像;当物体移离微透镜阵列时,外圈的透镜可以呈现清晰的图像。文章链接:https://doi.org/10.1364/OE.425333官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制