当前位置: 仪器信息网 > 行业主题 > >

质谱举例分析

仪器信息网质谱举例分析专题为您提供2024年最新质谱举例分析价格报价、厂家品牌的相关信息, 包括质谱举例分析参数、型号等,不管是国产,还是进口品牌的质谱举例分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱举例分析相关的耗材配件、试剂标物,还有质谱举例分析相关的最新资讯、资料,以及质谱举例分析相关的解决方案。

质谱举例分析相关的资讯

  • 鱼贝类毒素之质谱分析
    导读春季是细菌病毒等滋生的活跃期,对于吃河鲜海鲜来说不是好季节,中毒事件往往会在每年的这段时间频发。那么如何避免吃到有毒海鲜?对吃了染毒的海鲜中毒的病人如何快速检测从而采取有效的救治措施呢?让我们从毒素本身说起。 对人类有毒害的鱼、虾及贝类食品一般是因有毒藻类污染产生的,海洋中的有毒藻类通过食物链传递给藻食性的鱼、虾及贝类等生物,并在其体内蓄积形成的有毒高分子化合物。由于这些毒素最早是从摄食有毒微藻的鱼类和贝类体内发现的,往往被大家习惯性地称为鱼类毒素或贝类毒素。对水体或鱼贝类进行有害物质的监测,或者发生群体性中毒事件后能迅速检测并协助临床进行救治是应对的关键。 鱼类毒素质谱分析 世界上可食用的鱼类约有3万种,其中约有600种鱼类体内含有毒素不可食用。鱼体内含有两大天然毒素,即雪卡毒素和河豚毒素。另外还有一种常见的鱼类过敏物质毒素—组胺,当人体摄入较多组胺时会产生组胺中毒。【1】 ①雪卡毒素雪卡毒素(Ciguatoxin,CTX,亦称西加毒素)是目前赤潮生物产生的主要毒素之一。属神经毒素,是已知的对哺乳动物毒性最强的毒素之一,比河豚毒素强100倍。中国南海诸岛、台湾海峡和香港地区常有雪卡毒素中毒事件发生,【1】已成为影响渔业经济发展和公共卫生的一大障碍。由于毒素在鱼体内含量低,而染毒鱼类在感官、嗅觉、味觉上均没有什么异常,用常规化学分析法很难检测出来,需要使用质谱仪器进行高灵敏度的分析。但是,由于对于雪卡毒素的检测尚缺少相应的检测标准,【2】以及很难购买标准品,有关检测还处于研究阶段。岛津使用液相色谱三重四极杆质谱进行了两种雪卡毒素的分析。【3】 仪器:LCMS-8050色谱柱:L-column 2 ODS (100 mmL. x 2.1 mmI.D., 3μm)流动相:A: 2 mmol/L Ammonium formate aqueous solution;B: Methanol containing 2 mmol/L ammonium formate洗脱梯度:B conc. 70%(0 min)→ 95%(10-20 min)→ 70%(20.01 - 25 min)离子源:ESI+接口电压:+1 kV雾化气流速:2.5 L/min加热气流速:15 L/min样品分析结果:CTX1B 43 ng/mL C60H86O19 单同位素质量 1110.57CTX3C 39 ng/mL C57H82O16 单同位素质量 1022.56 ②河豚毒素春季是河豚鱼产卵季节,此时河豚鱼的毒性最强,是河豚鱼中毒的高危险期,因鱼体内毒素含量高且热稳定性好,不能通过加热烧煮解毒,中毒两三小时就会导致死亡,无快速治疗药物。【4】 仪器:LCMS-8050色谱柱:XBridge Amide column (2.1x100 mm, 1.7 μm)流动相:A-acetonitrile B-water containing 10 mM formic acid / 5 mM ammoniumformate in channel B. 0-5min: 85 %-60 % A 5-8 min: 60 % A 8-8.5 min: 60 %-85 % A离子源:ESI+加热气流量:10 L/min干燥气流量:10 L/min 河豚毒素实际样品检测结果鱼干24 μg/kg织纹螺 387μg/kg ③组胺鱼体不新鲜或腐败时,污染鱼体的细菌如组胺无色杆菌,产生脱羧酶,使组氨酸脱羧生成组胺。在某些罐装食品中也会含有少量的组胺。【5】 岛津开发了液质质的方法应对包含组胺在内的多种生物胺的同时分析技术。 仪器:LCMS-8045色谱柱:HILIC 2.1 mm I.D. × 100 mm L., 1.7 μm流动相:A相:乙酸铵水溶液;B相:乙腈离子源:APCI干燥气流速:5 L/min雾化气流速:3 L/min 实际样品中9个生物胺化合物检测结果,定量限值在2-10 μg/L之间。 贝类毒素质谱分析 每年的4-6月份我国经常发生群体性贝类中毒事件,这类食源性中毒事件大多是由于食用了被污染的贝类食品导致。 贝类毒素按中毒症状分为以下四类:• 麻痹性贝毒(PSP):石房蛤毒素STX、河豚毒素TTX等• 腹泻性贝毒(DSP):软海绵酸OA、鳍藻毒素DTXs等• 神经性贝毒(NSP):Brevetoxin A&B(BTX-A&B)• 失忆性贝毒(ASP):多莫酸(DA) 已发生了群体中毒事件,如何能快速对样本中的微量或痕量目标物进行检测以协助临床进行救治? 首先要保存好中毒样品,首选样本如剩余的鱼或者贝类食物、吃剩的残渣、汤汁,中毒后第一次抽的血和留尿等,同时注意保存治疗前后和治疗过程中的血尿样本,样本经前处理后进质谱分析。理化实验室通常使用在线SPE-LCMSMS系统,用于生物样本中微量或痕量目标物的检测。样本经前处理后大体积上样,通过在线固相萃取系统净化以祛除干扰物,从而获得比常规LCMSMS分析灵敏度更高的分析结果。以水溶性麻痹性贝类毒素(PSPs)分析举例。【6】【7】 在线SPE-LCMSMS系统 2mL样品通过样品环实现大体积进样,FCV阀切换使得目标物在SPE柱中捕集,再通过FCV 阀的切换实现SPE柱解析,解析后的样品经色谱柱分离,MS定性定量分析。【8】 仪器:LCMS-8050/60色谱柱:Amide column 2.1 × 100 mm, 1.7 μm或相当色谱柱流动相:A(含6 mmol/L甲酸铵,10 mmol/L甲酸的水溶液);B:乙腈离子源:ESI正负同时扫描方式 经在线SPE-LCMSMS分析的典型阳性样品结果见下图。阳性的是GTX2&3, GTX1&4, NEO和STX。 使用在线SPE-LCMSMS方法进行食品或者血尿样本检测时灵敏度更高,前处理快速,能迅速协助临床医生判断病因,从而进行有效的救治。 微囊藻毒素 水中的微囊藻毒素是鱼贝类毒素产生的罪魁祸首,如何检测水中的多种微囊藻毒素也非常重要。通常使用LCMSMS进行多种微囊藻毒素的分析,如使用岛津的LCMS-8045/50/60检测水中10种微囊藻毒素举例(参数略)。 更多分析数据请登录岛津官网或与岛津相关工作人员联系获取。 注:以上产品仅供科学研究,不用于临床诊断。 参考文献【1】李春媛,周玉,张磊等。雪卡毒素的研究概况[J].上海海洋大学学报,2009,18【2】吕颂辉,李英。我国雪卡鱼毒流行现状研究进展[J].中国公共卫生,2006,22【3】Analysis of Diarrhetic Shellfish ToxinUsing Triple Quadrupole LC/MS/MS (LCMS-8050). LAAN-A-LM-E075, ShimadzuApplication News.【4】Profile differences in tetrodotoxintransfer to skin and liver in the pufferfish Takifugu rubripes [J]. RyoheiTatsuno, Wei Gao, Kotaro Ibi, Tomoka Mine, Kogen Okita, Gregory Naoki Nishhara,Tomohiro Takatani, Osamu Arakawa. Toxicon. 2017【5】崔成祥,于夕娟,曹珊珊食用变质鲐鱼引起急性组胺中毒87例报告[J],预防医学论坛,2012, 18(10):781-782. 【6】Xiao-min Xu?, et al. Fast and quantitativedetermination of saxitoxin and neosaxitoxin in urine by ultra performanceliquid chromatography-triple quadrupole mass spectrometry based on the cleanupof solid phase extraction with hydrophilic interaction mechanism.Journalof Chromatography B 1072 (2018) 267–272.【7】岛津脂溶性和水溶性贝类毒素测定标准操作程序【8】Screening of pesticides in water using SPEon line, PO-CON 1360E, Shimadzu Application News.岛津超快速液相质谱联用仪LCMS-8050
  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • CIOAE 2012在线质谱、色谱分析专题讨论会
    仪器信息网讯 2012年10月29日,由中国仪器仪表学会分析仪器分会和中国仪器仪表行业协会分析仪器分会主办的“第五届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2012)”在北京国际会议中心隆重开幕。根据大会安排,在C报告厅安排了在线质谱、色谱分析专题论坛,部分报告内容摘录如下。    胡少成:在谱在线分析系统对RH精炼炉真空脱气国产的适时动态分析   据钢铁研究总院分析测试研究所胡少成报告,RH精炼工艺的主要功能有真空脱碳、脱氢、脱氧、脱氮、脱硫、脱磷以及的温度的补偿和均匀化。在安钢RH精炼设备上的质谱在线分析系统所用的质谱仪是俄罗斯METTEK公司的飞行时间质谱仪,取样和数据传输系统由钢研纳克检测技术有限公司与METTEK公司共同开发。成套系统功能是通过对RH脱气产物中CO、CO2、H2等含量的适时在线分析,结合温度测定系统,利用“炉气分析+测温”监测技术对RH工艺冶炼过程进行控制。在安钢第二炼轧厂RH工艺中应用的质谱炉气分析系统,对真空脱气过程中气体成分的测定快速、准确,各成分的变化同工艺的实际情况完全吻合。    Jian Wei:Extrel在线四极杆质谱仪在煤制气工艺中的应用   据来自Extrel CMS,LLC公司Jian Wei报告,气化工艺是将原材料和副产品,如煤炭、石油、或生物燃料等,通过气化反应,转化成各种不同化工产品。为了保证产品质量,有效地利用能源和识别未知或不需要的副产品,控制这些过程的不同阶段非常重要,使用在线质谱仪可以实时分析所有类型的气化工艺。Extrel的MAX300-IG在线四极杆质谱仪,用于监控合成气气化炉的多种组份,其分析速度、测试进度和检测的灵活性均表明其应用在合成气工艺的重要价值。Jian Wei通过举例介绍使用MAX300-IG在线质谱仪控制煤合成氨气工艺的多流路监测。    黎路:在线质谱仪在催化剂研究中的应用   据上海舜宇恒平科学仪器有限公司黎路报告,催化过程中的在线检测在各类催化研究中一直备受关注,其中,逸出气体中各种气体的组份及浓度变化能为过程研究提供有效信息。在线质谱技术分子选择性强,准确度、稳定性好、灵敏度高、动态范围宽,一台机器可以实现多点、多组份连续监测,准确快速反映动态过程。黎路通过“金属镍为前体负载型磷化镍催化剂的制备及其加氢性能”、“FeOx负载单原子Ir催化剂上CO水汽变化反应研究”等应用实例说明SHP8400PMS系列在反应机理研究方面的应用。    程平:在线挥发性有机物质谱仪的研制与应用   据广州禾信分析仪器有限公司程平报告,挥发性有机物(VOCs)具有浓度低、活性强、危害大等特点,而且具有“三致”作用。传统的VOCs检测手段有GC-MS、NDIR、FTIR、DOAS和TDLAS等,各有优缺点。如:GC-MS需要取样、预处理、富集、解吸附等处理,但是响应慢,耗时长 NDIR响应快、系统简单,但是选择性差 FTIR可以多组分同时检测,响应快,但是体积大,有运动部件,对环境震动敏感 DOAS和TDLAS也各自存在灵敏度差和不能同时测量多种气体等缺点。广州禾信研制的SPI-TOFMS采用SPI/PEI复合离子源,是一种软电离技术,基本无碎片,接飞行时间质量分析器 可以气体或者等灵活进样方式。SPI-TOFMS的灵敏度达到ppb量级,可以对大部分VOCs进行在线检测。在应用方面,对机动车尾气、汽车内饰、烟草和白酒等中的VOCs成分进行了初步分析和研究。    彭永强:Prima PRO在线质谱仪在合成氨过程分析中的应用   据赛默飞世尔科技彭永强报告,Prima PRO在线质谱仪采用封闭式双灯丝离子源,质量分析器采用扫描磁扇式,其质量范围在1000eV离子加速电压下为1-150amu,微通道电子倍增管测量范围为10ppb-1000ppm。彭永强通过Prima PRO在典型氮肥生产过程中应用实例,展示了Prima PRO在整个合成流程中的采样点,为合成氨生产过程提供精确的过程优化,如:转化炉中气体混合和燃烧的控制、天然气进料中的H2S、氢/氮比、蒸汽/甲烷比以及甲烷滑脱等,为企业降低了分析成本。    郭东华:安塞LNG项目色谱仪的通讯系统   据中国寰球工程公司的郭东华报告,天然气(NG)是从自然气田中开采出来的可燃气体,主要成分又甲烷组成。LNG是在常压下将气态的天然NG冷却至-162摄氏度,使之凝结成的液体,是一种情结、高效的能源。在从NG到LNG的过程中,色谱分析仪对工艺流程各个关键点的组分控制起到了非常重要的作用,为了工艺操作方便,各点的色谱测量数据通过色谱分析网络传至中心控制室,此次技术为安塞LNG流程的开发成功起到了重要的作用。   目前石油化工在建项目多采用在线色谱仪的网路系统,实现在线分析仪数据的采集、分析,并记录在线分析仪的工作状态。在线分析仪的网络协议宜采用Modbus,OPC等标准通讯协议。这样的分析系统网络解决方案在实际使用中表现良好。    张英涛:聚乙烯循环气在线色谱的应用   据中国石化广州分公司检验中心张英涛报告,气相流化床发是当今世界上生产聚乙烯的主要方法。聚乙烯产品质量的两个重要指标是产品的密度和融熔指数。通过连续调节反应循环气气相组成来实现密度和融熔指数质量控制。在线色谱仪用来分析循环气中各种组分(N2、乙烯、丁烯-1等)的含量,并调节原料乙烯、共聚单体等比例,以控制产品质量。
  • 江桂斌研究员:高分辨色谱/高分辨质谱方法在持久性有机污染物分析中的应用
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   中国科学院生态环境研究中心的江桂斌研究员一直从事持久性有机污染物的研究,并且首次发现了一些新的持久性有机污染物。此次江桂斌研究员就有机质谱在持久性有机污染物分析中的应用研究进行了介绍。 中国科学院生态环境研究中心的江桂斌研究员   持久性有机污染物(POPs)是一类半挥发性的物质,如二恶英(Dioxin)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)等,其具有在环境中难降解、长距离迁移、具有生物累积和放大效应、毒性大等特点。基于以上原因,POPs已成为各国最为关注的环境问题之一,并且中国于2004年底正式加入《斯德哥尔摩公约》,履约工作对中国POPs研究提出了更多的挑战。   目前,在POPs的分析研究中,由于POPs物质分子量差别很小、含量非常低、基体复杂等,必须使用高分辨质谱进行研究。中国已经颁布的涉及高分辨质谱分析方法的国标有三项:GB/T 5009.205-2007、 HJ/T 365-2007 、HJ77.1-2008,分别适用于食品、危险性废弃物焚烧排放废气、水和废水中POPs检测。国内拥有高分辨质谱分析POPs的机构有13家:中科院水生生物研究所、深圳疾病预防控制中心、北京大学、上海疾病预防控制中心、中科院生态环境研究中心、中科院大连化物所、中科院广州地球化学研究所、浙江疾病预防控制中心、国家环境分析中心、中国检验检疫科学院、浙江大学、清华大学。江桂斌研究员表示,未来中国还将配备30个持久性有机污染物相关实验室,而其中的关键不在于资金,而在于此方面的人才。   在报告中,江桂斌研究员详细介绍了其实验室建立的高分辨色谱/质谱分析POPs的方法用于青藏高原POPs冷凝效应研究实例,证明了持久性有机污染物的长距离迁移性。   江桂斌研究员认为,在POPs的分析方面,今后的研究将集中在利用光谱、色谱、质谱等技术发现更多的污染物、复杂基体的分离、化合物不同结构/手性的分离鉴定、污染物小分子与生物分子的作用,污染源追踪等方面。
  • 食品农残新标实施 | 谱育科技“三重四极杆质谱”双剑合璧,助力食品农残检测分析
    日前,农业农村部会同国家卫生健康委、市场监管总局发布新版《食品安全国家标准 食品中农药最大残留限量》。标准规定了564种农药在376种(类)食品中10092项最大残留限量,完成了国务院批准的《加快完善我国农药残留标准体系的工作方案》中农药残留标准达到1万项的目标任务。新版标准涵盖农药品种和限量数量大幅增加,其中一个特点是农药残留限量配套检测方法标准进一步完善,本次三部门还同步发布了GB 23200.121-2021《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》等4项农药残留检测方法标准,有效解决了部分农药残留标准“有限量、无方法“的问题。标准解读GB 23200.121标准采用QuEChERS前处理方法、液相色谱-三重四极杆串联质谱一次进样正负源切换同时测定331种农药及44种农药代谢物,解决了现行液质标准适用农产品基质种类少、农药及代谢物品种不全、前处理操作复杂、部分农药方法定量限高于最大残留限量等诸多问题。同时,将GB 23200.121与GB 23200.113标准配合使用,能够显著提高检测效率。共可覆盖GB 2763-2021农药品种的60%、2021版国抽农药品种的89%、例行监测农药品种的96%,适用范围广。标准特点解决方案新农残标准对农药残留限量规定严格、品种剧增,为准确定性定量分析带来巨大挑战。谱育科技针对新国标GB 23200.121 和2018版的GB 23200.113两大农药残留方法标准建立了从前处理到仪器分析方法的匹配全套解决方案,对该两种标准涉及的多种农药及其代谢物进行合理分段,正负离子同时采集,对国标规定不同基质前处理方法进行实验,满足国标灵敏度及准确度要求,助力食品农残的检测分析。检测仪器方案谱育科技EXPEC 5210 LC-MS/MS和EXPEC 5230 GC-MS/MS三重四极杆质谱性能优异,具有出色的灵敏度、较佳的抗污染离子源设计、优异的稳定性以及全中文的Mass Expert质谱工作站,“双剑合璧”轻松应对复杂的植物源性食品基质样品。谱育科技质谱应用服务团队第一时间根据新标准方法验证,解决实验中各种问题,为食品用户提供农残解决方案。部分代表性农药在基质中的图谱举例(浓度为5ng/ml)部分代表性农药的基质标准曲线(浓度范围为10ug/kg-200 ug/kg)
  • SHP8400 PMS过程气体质谱分析仪荣获BCEIA金奖
    上海舜宇恒平科学仪器有限公司自主研发的SHP8400 PMS过程气体质谱分析仪从众多参赛产品中脱颖而出,荣获2011年BCEIA金奖。 SHP8400 PMS过程气体质谱分析仪 颁奖现场 SHP8400 PMS过程气体质谱分析系统由在线气体前处理、过程质谱仪以及信号采集与数据处理等组成。 创新的多通道样气处理技术,具备除尘、除湿、除泡沫、加热及调压等功能,确保了整个在线分析系统长期运行的可靠性和安全性。而多通道的过程质谱仪无需预分离,快速、准确、在线地进行多通道全组分气体分析,同时提供多种有机无机气体的定性定量结果,非常适用于反应过程的监控和产物成分的实时检测,准确反映动态过程。 上海舜宇恒平科学仪器有限公司拥有强大的技术支持团队,能够为客户提供有力的技术支持和全方位的培训,解决用户的应用问题。同时根据不同客户、不同行业应用而提供针对性的设计和配置,满足客户个性化需求。 正是由于一系列先进的设计理念以及优良的产品性能,使得该产品在食品、生物制药、半导体、石油化工、金属冶炼和环境监测等领域具有广阔的应用前景。目前该系统已成功应用于生物制药、石油化工以及环境监测等领域,为提高用户的工作效率做出了积极的贡献。 ______________________________________________________________________________________________________ 关于上海舜宇恒平科学仪器有限公司 上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,专业致力于各类科学仪器的研发、制造和销售。公司继获得&ldquo 上海市著名商标&rdquo 后,又获得&ldquo 上海市创新型企业&rdquo 称号。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成色谱仪器、光谱仪器、质谱仪器、天平仪器等一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。 联系方式:上海舜宇恒平科学仪器有限公司 地址:上海市虹漕路456号8号楼5~6楼 邮编:200233 电话:021-64959872 E-mail:info@hengping.com http://www.hengping.com
  • 质谱国产替代之路是否存在换道超车?——皖仪分析事业部总经理程小卫
    “或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。”——程小卫 皖仪分析事业部 总经理继上期《聚浪成潮 以待花开|质谱国产替代之路有多长?》(点击查看),本文皖仪分析事业部总经理程小卫将围绕质谱流式技术展开阐述。 7. Q-TOF了解一下 7.1 基本原理和结构TOF飞行时间质谱,是原理最简单的质谱。就是施加到离子的电势能转化为动能,基本公式就是m为离子的质量;z为离子所带的电荷数目;V为施加到离子的电势,脉冲电压,它对于所有质量的离子是相同的;v为离子的飞行线速度,离子质量越大,飞行速度就越慢。离子飞行的线速度v等于飞行距离L除以飞行时间tL为由仪器的飞行管所决定的常数。所以,上述基本公式可以转化为m/z=2Vt2/L2因而离子质荷比正比于飞行时间的平方。比如,m/z为3000的分子,飞行时间才1微秒。图:系统结构图示意图(资料来源:安捷伦用户培训资料)离子源:产生离子化,并将产生的离子在电场的作用下进入毛细管。毛细管/锥孔:离子导入通道,将离子源产生的离子传输进入质谱。同时,隔离外部的常压与质谱内部的高真空。离子光学组件:包括Skimmer 1,八极杆以及Lens 1 和Lens 2。进一步除去溶剂和中性分子,高效的离子传输组件,并聚焦随机运动的离子进入四极杆。四极杆:质量过滤器,双曲线的四极杆优化离子传输和质谱分辨率。可以选择让某些质荷比的离子依次通过或者所有的离子全通过。碰撞池:线性加速的高压碰撞池。优化质谱/质谱分裂,从而在一个短的停留时间仍可消除交叉干扰。六极杆设计有助于捕获碎片离子。离子束整形器:将随机运动的离子压缩为一个薄层,进入脉冲发生器。减少离子在纵向的扩散,提高分辨率。脉冲发生器:以一定的频率在纵向施加高压,将从离子束整形器过来的离子快速抛入飞行管。飞行管:离子在飞行管内纵向飞行,不同质荷比的离子通过飞行管的时间不同。检测器:包括微通路板、闪烁器和光电倍增器。高增益,寿命长,线性范围宽。Q-TOF 的真空系统由一个前级真空泵(机械油泵)和两个分子涡轮泵组成。前级真空一般在 1.8-2.5 Torr 之间,不同型号的 Q-TOF,高真空的范围不同。 7.2 Q-TOF的工作方式 Q-TOF 有三种不同的工作方式:• TOF 模式:这种模式下,可以得到离子的一级质谱图。四极杆处于离子全通过状态(TTI, Total Transmission Ion),所有的带电离子都会通过四极杆,碰撞池不施加碰撞能量,带电离子不会裂解,TOF 工作在扫描模式下,直接检测得到一级质谱图。这种操作模式下Q-TOF 的行为与单TOF 类似。• 自动 MS/MS (Auto MS/MS) 模式:这种模式下,根据用户设定的条件,对符合条件的离子自动做二级质谱。当某个或某些离子满足用户的预设条件时,四极杆处于 SIM(选择离子监测)模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到符合设定条件的离子的二级谱图。当没有离子满足用户预设的条件时,Q-TOF 仍工作在TOF 模式下。这种工作模式比较常用于方法开发,未知物质鉴定以及结构解析。在自动 MS/MS 模式中,仪器根据操作者设定的规则自动决定哪些质荷比的母离子通过四极杆,在碰撞池中被打碎然后由 TOF 进行全扫描分析。Q-TOF 首先进行 TOF 模式扫描出一级质谱,然后根据离子的强度和设置的其他规则参数来选择母离子,进行MS/MS 分析。对于自动MS/MS 模式,仪器用下列的逻辑程序判断是否对某离子进行MS/MS 分析。• 目标 MS/MS (Targeted MS/MS)模式: 在这种操作模式下,只有用户指定的离子,可以得到二级质谱图。仪器只对操作者输入的目标离子进行MS/MS分析。对于用户选定的目标离子,四极杆进行选择离子监测,运行 SIM 模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到选定离子的二级质谱图。这种工作模式比较常用于定量分析,已知物质的鉴定和结构阐明。目标 MS/MS 模式通常用于已知物的分析。操作者需要预先知道它们的母离子以及各自的保留时间 。对于目标 MS/MS 模式,仪器使用以下程序来判断是否对离子进行 MS/MS 分析。• 软件的重要性前面提及Q-TOF是原理最简单的质谱,受限于计算机的发展,言即表达的是软件的重要性。QqQ和Q-TOF质谱软件除了基本的数据采集、控制仪器、定性分析、定量分析,还有锦上添花的小工具软件为的是更友好更方便更智能。比如:安捷伦的Optimizer 标配给QqQ,优化质谱参数,优化好的参数放在一个dMRM database里;Study Manager for QqQ and TOF/Q-TOF 小工具,编样品信息和序列,适用于大批量样品处理;Dynamic MRM database Kit wl method for QQQ;Easy-Access 软件(岛津公司称为Open Solution软件),用于插队样品,合成实验室的样品多的情况;个性化定制化合物库软件personal compound database library(e.g. PCDL) 作为高分辨定性质谱Q-TOF在定性相关的软件需求上更加突出:比如:分子特征提取软件(MFE, Molecular Feature Extractor) 外源代谢物鉴别软件(Metabolite ID)用于药物代谢物鉴定 蛋白质分析软件,用于大分子,计算分子量和序列匹配;代谢组学软件,区别于外源性代谢物,鉴定内源性代谢变化;数学统计学软件,比如PCA主成分分析,方差分析等等。以及各种数据库软件,比如毒物、滥用药物数据库;农药、兽药数据库;内源/外源代谢物数据库等等。• 不得不提到的OrbitrapOrbitrap(静电场轨道阱)是一种拥有超高分辨率的质量分析器,由俄罗斯科学家 Makarov 于 2000 年发明。该发明专利被赛默飞公司收购,目前是赛默飞专利独有的高分辨质谱技术。Orbitrap 是继磁质谱质量分析器、飞行时间质量分析器(TOF)、傅里叶变换离子回旋共振质量分析器(FT-ICR)这些高分辨质谱技术之后,发明原理完全创新的高分辨质谱技术,克服了既往高分辨质谱技术的诸多不足,是具有划时代意义的新一代高分辨质谱技术。从 2005 年 LTQ Orbitrap 推出以来,随着 Makarov 团队不断优化,Orbitrap 系列产品凭借其卓越的分辨率、灵敏度、多项创新技术,逐渐成为高端质谱领域的代表者。图:Orbitrap 系列产品的核心优势图(资料来源:赛默飞世尔官网)因为Orbitrap是赛默飞的独家技术且因作者水平有限,所以不做过多阐述。 8. 流式质谱要知道 无论称作流式质谱,还是叫作质谱流式,其中质谱是检测手段,流式是方法学,一种细胞定量分析和分选技术。无论是低分辨的离子阱、四极杆质谱,还是Q-TOF、IM-QTOF、Orbitrap等高分辨质谱技术上,无论是无机质谱还是有机质谱,要想突破质谱的卡脖子技术,都有很大挑战和难度。但,或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。8.1 传统流式和流式质谱的区别在学习了解流式质谱前,简单温习一下流式荧光技术和光谱流式的概念。流式荧光技术:是基于编码微球和流式技术的一种临床应用型的高通量发光检测技术。相较于传统化学发光法,流式荧光技术能够支持多指标检测,具有通量高、速度快、操作简便等特点,但存在荧光标签的串色问题、受限于稀有荧光素的供应。光谱流式:每个荧光染料的发射光谱在定义的波长范围内被一组检测器所捕获,这样每个荧光染料的流式荧光光谱都可以被识别、记录其光谱特征,并在多色实验中充分使用。流式细胞仪的检测器可以检测到每个细胞或颗粒的散射光信息和多个荧光信号,最终分析细胞或颗粒上的信息。光谱流式通过光谱拆分技术部分解决了荧光补偿问题,但需要难度较大的配色方案,试剂成本高,通道数量较流式质谱相比较少。鉴于此,流式质谱应需而生。流式质谱:是结合传统流式和质谱两个平台的技术,能够同时获得单个细胞的多种参数。流式质谱作为定量手段的优势在于其高分辨率,并且克服了传统流式荧光发射基团光谱重叠的问题。流式质谱仪可提供过百个检测通道,可以同时对更多的细胞特征进行分析。通过标记稳定的金属标签,流式质谱仪可以在不同的通道生成信号,识别不同靶向蛋白的标记,并且各参数之间几乎没有重叠。相较于传统流式,流式质谱是采用金属元素对抗体进行标记,因此通道数量会受限于金属标签的供应;另一方面,受采样速度的影响,流式质谱对样本的处理速度相较于传统流式而言较慢。图源:宸安生物包括经典流式和光谱流式在内的荧光流式利用荧光基团标记抗体,再利用抗体结合抗原的方法标记细胞,用激光激发荧光基团,通过检测发射出的荧光信号的波长和强弱实现参数的定量检测。而质量流式用稳定的金属标签代替荧光基团来标记抗体,通过质谱检测细胞上金属元素的含量实现参数的定量检测。这也是质谱流式的这个名称的由来。图源:宸安生物我们可以看到在荧光流式中,不同荧光素的发射光谱存在大量重叠,不仅限制了检测通道的数量,而且为配色和后续的数据分析带来了困难,不同荧光信号之间的串扰,必须在数据分析过程中调补偿的方式来消除,这样的操作非常依赖于操作人员的经验,也为不同的设备、实验室数据之间的标准化带来了很大的难度。另外,一些生物样本中的自发荧光作为背景也会干扰数据的分析。而质谱流式极大程度地解决了这些问题,在质谱流式检测范围内的金属元素信号几乎没有重叠,不需要为此调补偿,并且这些金属元素正常情况下在生物体内极少存在,因此质谱流式信号几乎没有背景。这些特点带来的直接优势是检测通道数量的提升和数据分析上的便捷,更多参数的同时检测也可以为我们提供更高维度的数据结构和信息。8.2流式质谱的基本原理流式质谱技术 (Cytometry Mass)结合了传统流式技术高效的单细胞研究能力和飞行时间质谱的全谱高分辨率优势,采用金属标记抗体与待测抗原结合,理论上可提供140个检测通道,并且克服了传统流式荧光发射基团光谱重叠的问题,实现了单细胞水平的高通量分析。图源:宸安生物质谱流式技术采用金属标记的抗体识别细胞表面或胞內的抗原,标记后的细胞经雾化后进入电感耦合等离子体矩管中进行离子化,离子云随后被传输至飞行时间质量分析器中,在飞行时间质谱分析器中,金属离子质量越大,飞行时间越长,检测器依次记录各种金属离子到达的时间,检测出细胞中各种标签金属的含量,最终形成不同的金属离子信号峰。检测产生的高维数据通过分类、聚类和降维算法进行处理,结果可以反映基于靶蛋白丰度的各种细胞群体的表型和功能。金属离子的信号强度可以代表蛋白分子的表达丰度。可以实现对目标蛋白的全面覆盖和批量分析。单个样本中可以实现细胞表面蛋白,胞内蛋白,和分泌型分子的同步检测。对样本单细胞水平的深度解析可以提供从未被挖掘的信息,作为伴随诊断参考,揭示新的分子机制。图源:宸安生物这张图描述了质谱流式的样本从金属抗体染色到上机检测的流程。细胞被染上金属抗体后会经历雾化、电离形成一团离子云、离子云在经过过滤和筛选之后只剩下抗体上的金属离子,随后这些离子通过飞行时间质谱依据质荷比不同形成分散的离子峰,结合金属元素和抗体及抗原一一对应的信息,我们最终得到不同抗原在细胞上的丰度。这些数据会经过处理转化成荧光流式通用的FCS格式的流式标准文件,可以使用一些熟悉的流式数据分析软件,比如FCS express, Flowjo等对数据进行传统的圈门分析,或者使用聚类降维等高维数据分析方法挖掘更多的信息。图源:宸安生物质谱流式的上样形式与荧光流式一样,都是处理好的单细胞悬液。在开始检测后,质谱流式首先通过雾化将样本转换为大量的微小液滴,细胞悬液以30uL每分钟左右的速度被压入如图所示的雾化器中,雾化器中央是一根水平悬空的毛细管,毛细管外是用于辅助雾化的氩气,当样本流出右侧毛细管末端时,会被周围喷出的雾化气散成大量呈雾状的小液滴,细胞被包裹在这些小液滴当中。图源:宸安生物接下来这些小液滴会被180℃的雾化室中,随后液滴蒸发,尺寸缩小,被氩气携带进入离子源进行电离,在离子源位置氩气在高频切换电磁场作用下被加热产生温度极高的等离子体火焰,而细胞在等离子体中经历去溶剂、解离、原子化和电离等一系列变化,最终变成一团离子云。图源:宸安生物这些在等离子体外生成的离子云通过金属锥,从低真空度进入高真空度的环境,随后在四极杆质量选择器中经历引导和筛选,排除低质量的背景离子,只留下抗体上高质量金属离子进入后续的检测器。图源:宸安生物质谱流式使用TOF作为检测器。检测离子云时,所有离子被正交加速电场施加一个相同的初始动能,随后在反射场中作回返运动,由于不同离子的质荷比不同,在加速之后获得的初速度不同,这导致不同离子回返到达检测器的时间不同,检测器通过到达的时间差别区分不同的离子,在这里有两个质谱流式中很重要的概念:Push和Event Length。Push是指每次正交加速电场将离子加速进入回返场的时间间隔,即TOF的检测周期。Event Length是指一个细胞产生的完整离子云被检测完所需要的Push个数。可以表达成“检测一个细胞经历的Push数量=Event Length”这也是一个在之后的圈门过程中很重要的一个参数。 8.3 流式质谱的主要应用领域 新药开发是一项复杂、昂贵、耗时的工作,需要解决来自各领域的技术难题。流式质谱技术可以在管线的各个阶段协助做出以数据为导向的决策,从而将安全有效的疗法成功地推向市场。药物发现阶段:提供免疫分型深度分析,信号通路检测、细胞因子检测、T细胞激活\耗竭分析和新生抗原筛选。临床前开发阶段:提供免疫分型、细胞因子、PK/PD动态分析。临床试验阶段:单细胞水平的蛋白组学可对患者精准分群,进行免疫治疗反应的监测。批准和上市后:作为辅助诊断的工具,实现高效快速检测、指导治疗方案的选择和进行疗效监测。在血液系统疾病、基于高维免疫评估的感染性疾病、自身免疫性疾病、肿瘤免疫、基于高维免疫评估的细胞治疗等皆是流式质谱的用武之地。
  • 中国化学会首届全国质谱分析研讨会召开
    仪器信息网讯 2014年4月26-27日,由中国化学会、国家自然科学基金委员会主办,中国化学会质谱分析专业委员会(以下简称为:质谱分析专业委员会)、清华大学化学系/分析中心承办的&ldquo 中国化学会首届全国质谱分析学术研讨会&rdquo 在北京西郊宾馆召开,来自全国各地79个单位的代表约420人参加了此次会议,汇集了院士、杰青、千人、百人等一批优秀人才。 会议现场 清华大学林金明教授主持开幕式   研讨会由质谱分析专业委员会秘书长、清华大学林金明教授主持。质谱分析专业委员会主任、南京大学陈洪渊院士,国家自然科学基金委化学部分析化学学科主任庄乾坤教授分别致开幕辞。 质谱分析专业委员会主任、南京大学陈洪渊院士 国家自然科学基金委化学部 分析化学学科主任庄乾坤教授   据陈洪渊院士介绍,随着质谱的快速发展和普及,中国化学会2013年批准成立质谱分析专业委员会,而此次研讨会是专业委员会成立后举办的首个全国性学术活动。为了迎接本次会议的召开,质谱分析专业委员会与《中国科学· 化学》共同推出了质谱分析专刊,专刊共收录22篇评述报告,集中展示中国学者在质谱分析领域的研究进展。   本次研讨会设大会报告、分会报告、墙报展,并由岛津公司赞助了优秀论文奖,内容涵盖质谱仪器研制与新技术、新方法,以及质谱在环境、食品、生命科学、医药等领域的应用。   从15个大会报告内容来看,生命科学研究仍然是中国学者研究的重点,15个大会报告中8个与生命科学有关,蛋白质组学更是热点,有4个报告涉及此。 中科院大连化物所张玉奎院士 复旦大学杨芃原教授   据中科院大连化物所张玉奎院士介绍,其所在的中科院分离分析化学重点实验室拥有各类质谱仪器76台套。复旦大学杨芃原教授也在报告中表示,中国用于蛋白质研究的质谱数量很大,如:蛋白质科学基础设施(北京)质谱规模在50台,蛋白质科学基础设施(上海)30台,华大基因(深圳)100台,复旦大学生物医学研究院30台。可见,对于蛋白质组学研究,质谱已经成为不可或缺的工具。 军事医学科学院钱小红研究员 中科院大连化物所叶明亮研究员   凭借先进高端的质谱设备,蛋白质组学的研究已经有了飞速的发展,目前中国科学家鉴定到的蛋白质数量已达到12000个左右,但专家们也提出,蛋白质组学研究仍然面临巨大挑战。人类蛋白质丰度范围很广,目前可鉴定到的蛋白大多数为高丰度蛋白,对于低丰度蛋白的鉴定还缺乏有效的方法。此外,对于蛋白质大规模、非标记的绝对定量也是难题。在本次研讨会上,张玉奎院士、杨芃原教授、中科院大连化物所叶明亮研究员、军事医学科学院钱小红研究员分别介绍了应对上述挑战的一些新方法和新技术,如改变样品前处理的方式,使用新的富集及分离材料 使用新的质谱数据处理方法,以及搭建集成化的蛋白质质谱分析平台等。 中科院高能物理研究所柴之芳院士 清华大学张新荣教授 安捷伦公司杜伟博士   此外,中科院高能物理研究所柴之芳院士介绍了利用质谱研究金属组学和金属蛋白质组学,并将此方法用于阿尔茨海默病的病因研究。清华大学张新荣教授介绍了&ldquo 单细胞质谱分析&rdquo ,据其介绍,2014年,美国《科学》杂志将单细胞生物学列为值得特别关注的领域,单细胞质谱分析可以给科学家提供许多新的生物学信息,不仅可以验证过去的经典方法的结论,而且可以发现许多未曾意料或被掩盖的规律,质谱工作者应该关注,可以将其作为一个新的研究方向。安捷伦公司杜伟博士介绍了安捷伦在系统生物学中的最新技术及应用。 北京大学刘虎威教授 中国医学科学院药物研究所再帕尔· 阿不力孜研究员 岛津公司端裕树博士 中科院化学所陈义研究员   质谱离子化新方法研究则是大会报告中居于第二热度的内容,15个报告中有5个报告与此相关。敞开式离子源(AIM)是2004年才出现的一种新型的离子源,其具有快速、可直接分析等优势,由此也得到了科学家们的亲睐。北京大学刘虎威教授介绍实时直接分析离子源DART离子化的新技术&mdash &mdash 等离子体辅助激光解吸附离子化及敞开式表面辅助解吸附离子化,以提高DART的灵敏度。中国医学科学院药物研究所再帕尔· 阿不力孜研究员介绍了其课题组研制的敞开式质谱分子成像装置及应用,据其介绍,相比于现有的质谱成像技术,空气动力辅助离子化质谱成像技术(AFAI-MSI)可适用于大体积样品,可远距离检测,并可兼容多种质谱仪,可获得更丰富更全面的信息,AFAI-IMS在药物及其代谢物研究方面有很大优势。岛津公司端裕树博士介绍了岛津公司最新研制的敞开式离子源解析电晕束离子源(DCBI)及应用。中科院化学所陈义研究员介绍了其课题组进行的质谱离子化新方法探索,研制了位置可调的双枪离子化方法,并用运载离子化、镀金光子晶体离子化等方法提高测定的灵敏度。 中科院生态环境研究中心江桂斌院士   此外,在大会报告环节,中科院生态环境研究中心江桂斌院士介绍了&ldquo 色谱质谱在新污染物发现中的应用&rdquo ,据其介绍目前环境污染物中,PFOS含量在ppt级,并呈下降趋势 PBDEs在ppb级,也呈下降趋势 SCCPs在ppm级,呈现上升趋势。除了现有已知的污染物外,江桂斌课题组还利用MC-ICP-MS、 FT-ICR-MS等技术用于新污染物发现研究。 浙江大学潘远江教授   清华大学林金明则介绍了液滴形成与质谱联用,其主要研究了两种不同的液滴混合的方式,并通过质谱分析两种不同种类液滴混合后发生的反应。浙江大学潘远江教授则介绍了电喷雾质谱中苄基迁移反应的机理。 现场展示   本次研讨会还设立了仪器展示,岛津、安捷伦、赛默飞、天瑞仪器、威思曼、迪马、瑞达、磐合、兰博、正红塑料等进行了现场展示。   据悉,2015年秋天,中国化学会第二届全国质谱分析学术研讨会将在美丽的杭州召开,由浙江大学承办。(撰稿:杨娟)
  • 手机上的化学物质会“出卖”你 质谱分析缩小范围
    如果你担心手机里的私密信息被泄露以至于辗转难眠,那也许你会考虑给手机外壳来个彻底的清洗和消毒。  科学家们表示,他们可以通过手机外壳上残留的化学物质推断出一个人生活方式,具体到使用了什么美容产品、吃了哪些食物以及服用了什么药物。  专家还指出,分析个人手机上的遗留化学物质对医疗保健服务和警察办案都将有所裨益。  该研究的合著者之一、来自加利福尼亚大学Pieter Dorrestein说:“你可以据此判断对方的性别,如果发现对方使用了防晒霜,那么可以判断此人可能是个热爱野外活动的人。所有这些细微线索都能帮助调查人员缩小范围。”  这项研究发表在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上,来自美国和德国的研究者介绍了他们的实验过程:借助医用海绵擦拭39位受访者的手机外壳与右手,然后采用高灵敏度的质谱法对样本进行了分析。  结果显示,每位被调查者手上的化学物质都有着独特的“印迹”,能够与其他人区别开。这些化学物与手机外壳上的物质相重合,使得电子设备也能够彼此区分,与各自的主人相匹配。     “我们发现,在99%的被调查样本中,每个个体手上的化学物质都是独一无二的。只有在两例案例中没能完美得出上述结果,但这其中一例是因为被调查者生活在一起,”Dorrestein说,“在69%的案例中我们可以将手机外壳化学物构成报告与其所有者完美匹配。”  但他同时补充道,此项技术的前景不是用来区分个人,而是建立起使用者的个人档案。  通过参考数据库对化学“足迹”做出分析之后,调查人员可以将这些化学物质与已知及相近化学成分进行对比,从而揭示出被调查者个人的生活方式,比如他们是否使用了防脱发洗护品,是否服用了抗抑郁药物。  其中部分诸如驱蚊剂DEET之类的化学物质,距离手机主人最后一次接触4个多月后仍然能够被检测到。  研究者认为,警方可以根据这一调查方法建立起广泛的数据库,借助手机、钥匙或其他私人物品上的化学物质来推测嫌疑人的生活信息。同时他们还提出了许多其他的用途建议,比如监控个人接触污染物的严重程度,检查病人是否在遵照医嘱服药或对特定药品有反应。  英国萨里大学法医鉴定专家Melanie Bailey认为这项研究颇有价值。“以往鉴定的关键问题在于是否能从手机上提取到指纹,但如果被提取者信息根本不在数据库中,或者指纹被弄脏了,那就会毫无用处,”她说,“他们掌握的化学信息能帮助缩小嫌犯范围,或者说至少给出了一些应该关注哪类人群的参考情报。”  但北安普敦郡警察局法医部门前负责人、莱斯特大学犯罪学副教授John Bond对该研究的前景看法就没那么乐观了。他认为,目前已经能够从物体上侦测到枪炮、爆炸物和毒品的蛛丝马迹,而化学物质是否能帮助确定肇事者并不清楚。“问题在于这并不是特别有区分度的东西,即便你可以识别出某个特定品牌的化妆品,也不能就此缩小要搜寻的对象范围。”
  • 核磁、质谱等多种分析技术在中药质量控制中的应用
    p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 中药发展几千年,如今已在世界各地广泛使用。近年来,随着人们用药安全意识的普遍提升,中药质量标准不一致、临床安全性及有效性的不稳定性和不确定性越来越受到被行业内外诟病。而各种分析技术的快速发展,极大的推动了中药质量控制的进步。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 479px height: 319px " src=" https://img1.17img.cn/17img/images/201906/uepic/4911cd41-6d52-40c3-9a89-e2bfe9cd7bdd.jpg" title=" 微信截图_20190604225110.png" alt=" 微信截图_20190604225110.png" width=" 479" height=" 319" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 在上一篇文章 a href=" https://www.instrument.com.cn/news/20190531/486312.shtml" target=" _self" 《中药质量控制中的科学仪器——色谱、光谱篇》 /a 中,小编对中药质量控制中应用到的色谱和光谱技术及相关仪器进行了梳理盘点,本文中,将从核磁共振波谱技术、质谱及其联用技术和DNA分子标记技术等几种重要分析技术进行梳理。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 中药质量控制之核磁共振波谱 /span /strong /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 核磁共振最主要的应用是通过物理方法测定化合物的分子结构,而中药有效性的物质基础研究是中药质量控制中的重要环节。利用核磁共振技术能够获得中药中有效成分的化学结构。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除单独利用核磁共振技术,HPLC-NMR联用技术也被应用到中药质量控制中。通过该联用技术,能够实现色谱分离和波谱结构鉴定连续进行,避免了传统分析方法中,先分离纯化再进行鉴定从而浪费时间及人力物力的问题。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:35px" class=" firstRow" td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术类型 /span /strong strong /strong /p /td td width=" 140" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术原理 /span /strong strong /strong /p /td td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用方向 /span /strong strong /strong /p /td td width=" 215" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:144px" td width=" 100" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" span style=" font-size: 15px font-family: 宋体, SimSun " NMR技术 /span /a /p /td td width=" 140" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 15px font-family: 宋体 " 通过化学位移值、谱峰多重性 /span span style=" font-family: 宋体, SimSun font-size: 15px " 、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式 & nbsp 、空间的相对取向等定性的结构信息。 /span /span /p /td td width=" 100" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )结合其他分析手段如质谱对化合物进行定性分析 span br/ & nbsp /span ( span 2 /span ) span 1H /span 核磁共振波谱适用于定量分析 /span /p /td td width=" 215" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )崖藤生物碱的碳谱和氢谱全归属 span br/ & nbsp /span ( span 2 /span )预测青蒿素分子的核磁共振碳谱和氢谱 span br/ & nbsp /span ( span 3 /span )根据有无原小檗碱型生物碱的特征峰,鉴别黄连与黄连伪品 /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之质谱及其联用技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 质谱主要用于分析鉴定天然产物中提取的化合物,有机质谱能够给出有机化合物的分子量、分子式及碎片离子裂解方式和有机分子结构类型规律等信息。因质谱及其联用技术在物质化学结构鉴方面功能强大,被广泛应用于多种中药材的质量控制中。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:36px" class=" firstRow" td width=" 96" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 联用技术类型 /span /strong strong /strong /p /td td width=" 236" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 技术简介 /span /strong strong /strong /p /td td width=" 224" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:124px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size: 13px font-family: 宋体, SimSun " 质谱 /span /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 13px font-family: 宋体 " 质谱法可提供分子质量和结构的信息 /span span style=" font-family: 宋体, SimSun font-size: 13px " ,定量测定可采用内标法或外标法 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )确定朝鲜淫羊藿分离组分的化学成分 span br/ & nbsp /span ( span 2 /span )通过比较炮制乌头与乌头质谱智文峰的差异,作为乌头类中药是否经炮制的判断 /span /p /td /tr tr style=" height:95px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/290.html" target=" _self" span style=" font-size:13px font-family:宋体" 气质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 具有高灵敏度和强抗干扰能力,是分析鉴定具有挥发性成分的首选 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )冬虫夏草中挥发性成分鉴定 span br/ & nbsp /span ( span 2 /span )比较不同来源莪术中莪术醇等物质的含量 /span /p /td /tr tr style=" height:92px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/51.html" target=" _self" span style=" font-size:13px font-family:宋体" 液质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 同事进行多成分检测,可通过保留时间、分子量和碎片等信息用于目标化合物鉴别 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1) /span 判断东北红豆杉及其伤愈组织粗提物中紫杉醇色谱峰归属 span br/ & nbsp /span ( span 2 /span )鉴定八味地黄方与人参汤共煎时产生的毒性物质 /span /p /td /tr tr style=" height:56px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 毛细管电泳 span - /span 质朴联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 多数毛细管电泳操作模式可与质谱联用。选择接口时 /span span style=" font-size: 13px " , span style=" font-size: 13px font-family: 宋体, SimSun " 应注意毛细管电泳的低流速特点并使用挥发性缓冲液 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 粉防己甲醇提取物中的生物碱分离鉴定 /span /p /td /tr tr style=" height:81px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 超临界流体色谱 /span span style=" font-size:13px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size: 13px font-family: 宋体, SimSun " 质谱联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" vertical-align:middle" span style=" font-size:13px font-family:宋体" 主要采用大气压化学离子化或电喷雾离子化接口。色谱流出物通过一个位于柱子和离子源之间的加热限 /span span style=" font-size: 13px font-family: 宋体, SimSun " 流器转变为气态,进入质谱仪分析 /span /p /td td width=" 224" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family: 宋体" / /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之DNA分子标记技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " DNA分子标记技术可用来比较药材间DNA分子遗传多样性差异,从而鉴别药材基源、确定学明的方法。DNA指纹图谱技术在药材鉴别、GAP实施、道地药材研究、遗传育种和种植资源研究以及中成药质量控制等领域有重要价值和广阔的应用前景。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 目前已有研究人员利用DNA分子标记技术对不同地区的三七进行DNA指纹图谱的鉴别研究,根据其遗传特征的不同,鉴别不同地域的三七药材。此外,有研究人员利用此技术建立起了中药材鹿鞭的分子分类学鉴定试剂盒。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除上述技术方法外,近年来有更多先进的分析方法也在被不断被发展应用,如超高效液相色谱、二维液相色谱、联合在线鉴定技术等等,在中药材真伪鉴别、成分分离鉴定、毒性物质检出等等方面,发挥重大作用。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 随着科学技术不断提升,相应的仪器设备更加精密、高效,色谱、质谱、光谱、核磁共振波谱及DNA分子标记等多种分离、分析、检测技术共同推动中药质量控制的发展,确保中药更好的履行维护人类健康的使命。 /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 注:本文部分内容引自 /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 1.& nbsp & nbsp 蒋庆峰, 金松子, 蔡振华,等. 现代分析技术在中药质量控制中的应用[J]. 现代仪器与医疗, 2007, 13(3):1-8. /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 2.& nbsp & nbsp 马艳芹, 张蓉蓉, 房吉祥, et al. 现代分析技术在中药质量控制中的应用进展[J]. 首都医药, 2013(16):14-15. /span /p
  • 基于质谱成像技术对芦笋的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着近年来人们对功能性食品的关注度越来越高,芦笋被认为是对抗高血压比较有效的一种食物。芦笋中所含的Asparaptine是抗高血压的有效成分,但是目前还没有其在芦笋内的分布信息的相关研究。我们利用基质辅助激光解吸质谱成像(MALDIMSI)技术阐释了Asparaptine 在芦笋内的分布情况。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 230px " src=" https://img1.17img.cn/17img/images/202006/uepic/f446df0a-84bd-404c-a084-cecaa126ce76.jpg" title=" 1.png" alt=" 1.png" width=" 300" height=" 230" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1. 背景介绍 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 已有研究表明芦笋粗提取物有降低血压的功效。长期以来芦笋的降压功效一直被认为是来源于其中所含有的某些含氮化合 span style=" text-indent: 2em " 物,但近些年来,一些研究认为,芦笋的降压功效应该来源于其中的某些含硫化合物而非含氮化合物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在这种背景下,2015年的一项研究发现了一种由精氨酸和芦笋酸组成的新物质——Asparaptine1)。这项研究提出,Asparaptine的降血压功效来源于其对血管紧张素转化酶(ACE)的抑制作用。Asparaptine的发现使芦笋作为功能性食品更受欢迎,因而对其也需要进行更加详细的研究。作为研究此物质的一种方法,我们尝试阐释芦笋中Asparaptine的定位信息。近些年来,MALDI-MSI作为一种可直接用肉眼观察到各化合物定位信息的方法而备受关注。这种方法可以通过单次分析实现对大量分子信息的成像,并且由于其具有可区分靶向目标和代谢物的能力,目前已经被广泛应用于诸如神经递质可视化2)和药代动力学成像3)的研究中。此外,除了在医药领域,MALDI-MSI技术也已经被应用于食品领域,涉及食品样品的范围非常广泛,从作为日本的主要粮食的大米4),到土豆5)和草莓6)。提供“可视化”信息,比如功能性化合物的分布信息,可以从增加食品附加值的角度来吸引消费者。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图1展示了MALDI-MSI的标准操作流程。使用冷冻切片机将冷冻样品切成厚度在10 μm至30 μm之间的切片。将冷冻切片放置 span style=" text-indent: 2em " 在导电板上,例如涂有氧化铟锡(ITO)的载玻片。之后将作为辅助电离试剂的基质涂敷于样品表面,然后进行质谱分析。在MALDI-MSI过程中,我们可以确定被测区域和测量点之间的距离,得到每个测量点的质谱和位置信息。通过选择目标分子在每个测量点的质谱中的质荷比,我们可以从每个测量点的强度数值得到目标分子在样品中的分布信息。在本研究中,我们按照上述流程进行实验,以明确Asparaptine的定位信息。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/38b7a373-f224-416d-96f0-1ca09b8eba71.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图1 MALDI-MSI的实验流程 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验部分 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.1 样品及样品冷冻方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将芦笋按照尖部、中部和下端切成三份,使用切片机(CM1950)将三部分分别制成20μm厚度的切片。芦笋的侧面有三角形的叶片,称为鳞片,其作用是保护枝杆(图2A)。在这项研究中,对这四个部位均进行了成像。目标成分是之前已经描述过的Asparaptine。在MALD-MSI中,样品的冷冻是影响成像结果的一个重要过程。在本研究中,我们将对液氮冷冻法和真空密封袋冷冻法两种方式进行比较(图2B)。前一种冷冻方法是将芦笋包裹在铝箔中,放入液氮中冷冻。后一种方法是将芦笋放入真空袋中,将袋中抽成真空,然后在-80° C的冰箱中慢慢冷冻。为了比较这两种方法,我们使用甲苯胺蓝染色对组织切片进行检查。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.2 基质喷涂 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们通过喷涂的方式将α-氰基-4-羟基肉桂酸(CHCA)加载于样品表面,基质溶液是10mg/mL的浓度(30%乙腈,10% 2-丙醇,0.1%甲酸)进行配制的。使用喷笔(PS-270)将400 μL基质溶液喷涂于样品切片表面,喷枪的尖端与组织表面之间的距离保持在10 cm。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.3 MSI分析条件 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们使用iMScope TRIO& #8482 (图3)来进行MALDI-MSI分析。配置355nm Nd:YAG激光光源,激光频率1000 Hz,每点激光照射次数100,每个像素点累积次数为1次。激光光斑直径为25μm,强度为47,样品电压和检测器电压分别设为3.5 kV和2.1 kV。采集模式为正离子模式,采集范围m/z 100-350, 并以Asparaptine的质子加和产物m/z 307.09作为前体离子进行二级质谱分析。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 270px " src=" https://img1.17img.cn/17img/images/202006/uepic/35c9f0fd-485f-47e8-8c46-d661f6a0528a.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3. 结果与讨论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.1 样品冷冻方法比较 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将通过液氮冷冻和真空密封袋冷冻两种方式进行冷冻的样品切成20 μm 厚的切片,并将切片用甲苯胺蓝染色,然后使用光学显微镜进行检查(图4)。如图4A 中所示,使用真空袋冷冻的样品制备切片有可能不损害样品形态。另一方面,样品经液氮冷冻后,由于在冷冻过程中会产生裂纹,使得样品切片难以保持其形貌。样品冷冻在真空密封袋里,也同样可以保持组织细胞的形态,而用液氮冷冻的组织细胞会被破坏,可观察到很多包含裂缝的部分(图4B)。真空密封袋冷冻的样品之所以能够保持细胞组织形态,其重要原因是高压冷冻法原理发挥了作用7)。通常情况下,当水结成冰时细胞内就会形成冰晶8)。然而,在高压冻结方法中,通过在冻结过程中对样品施加高压(一般在2000 atm 左右),水的熔点会降低,粘度会增加,所以通过这种方法可以抑制导致细胞组织破坏的冰晶的形成。在本实验中,虽然没有施加2000 atm 的压力,但样品可能在外力的作用下,产生了不同于常压下冻结状态的现象。另一方面,在使用液氮冷冻时,样品本身可能会由于水的膨胀而产生了裂纹。同时,由于样品在液体中沸腾,在样品周围形成一层氮气层。一旦这种现象发生,冷冻效率将被极大降低。此外当使用高压冷冻方法时,水以非晶形态冻结的深度是5 到20 μm,而以液态氮冷冻时,这个深度可达5 到200 μm9)。这种现象在诸如芦笋这样的体积较大且含有大量水分的样本中尤为明显。根据上述原理,真空 span style=" text-indent: 2em " 密封袋冷冻是一种又好又简单的方法,它可以在冷冻植物样品时保持样品组织的形态。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/92efb3ee-ebd0-486c-96dc-c20258228867.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fedec6ff-3915-4260-816d-5f99173c4594.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.2 Asparaptine 定位信息的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本实验中,首先通过成像质谱来进行Asparaptine定位信息的可视化分析。如图5A所示,代表Asparaptine的m/z 307.09的质谱峰被检测到。然后通过在离子阱中的一级质谱筛选出m/z 307.09的碎片,再通过飞行时间质谱分析二级碎片离子信息,从而确认是否m/z 307.09的碎片来源于靶向物质。图5B所示的质谱图是由二级质谱获得的,我们成功检测到来自一级前体离子m/z 307.09的碎片离子m/z 248.05。由于m/z 248.05是Asparaptine结构可以产生的碎片离子,因此m/z 307.09被认为是Asparaptine的质谱峰。因此,采用m/z 248.05碎片离子对Asparaptine进行成像,结果如图6所示。分析结果表明,Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDIMSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bf3940c1-723a-4252-a89f-9bb061662a51.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/caab745a-1d80-44fb-888a-503a995397e9.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 结 论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本研究中,我们首次使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。我们还发现冷冻法在植物样品分析中具有重要的意义。通过借助MALDI-MSI 这种有力手段,我们可以通过可视化的定位信息来获得全新的发现,甚至对于那些合成机理和功能尚未明晰的物质也是如此。今后,把MALDI-MSI 应用于植物和食品样品将有助于我们明确样品中成分的定位信息,并有望在功能性食品的高效开发、目标物质合成机理的阐释等方面得到更多应用。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) R. Nakabayashi et al., J. Nat. Prod., 78, 1179 (2015) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Enomoto Y. et al., Anal. Sci., 34(9), 1055 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Ohtsu S. et al., Anal. Sci., 34(9), 991 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4) N. Zaima et al., Rapid Commun. Mass Spectrom., 24, 2723 (2010) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5) S. Taira et al., Int. J. Biotechnol. Wellness Industry, 1, 61 (2012) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6) Anna C. Crecelius et al., J. Agric. Food Chem., 65, 3359 (2017) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 7) H. Moor, U. Riehle, Proc. 4th Eur. Reg. Conf. Electron Microsc., 33 (1968) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 8) H. Moor, Cryotechniques in Biological Electron Microscopy, 175 (1987) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 9) Y. Ito, Plant Morphology, 25, 35 (2013) /p p br/ /p
  • 罗氏全自动质谱方案最新解读|2024准备好进入质谱分析新维度了吗?
    距离上一年度罗氏的半年报中公布了比较多的临床质谱方案细节后,又过去了半年时间,按其规划,2024年底将会在欧洲率先上市。  随着上市时间的临近,按着新品上市的一般推进流程,罗氏公司也不断对外公布了一些最新细节,使得其质谱方案的神秘面纱也一层一层的逐渐揭开。  在临床质谱火热之际,我们之所以如此关注罗氏公司的质谱项目,还是基于业界对罗氏公司全自动质谱方案的高度期望,尤其在科学仪器巨头赛默飞世尔(Thermo Fisher)公司全自动质谱一体机Cascadion项目以失败告终之后,我们更期待IVD巨头的解决方案。  看从IVD企业的方向是否可以走通,彻底解决临床质谱自动化,推进临床质谱进入临床检测科室,完成临床质谱普及的最后一公里路。  本文仅为分享临床质谱相关知识、探讨质谱自动化方案,以期质谱技术在临床端的进一步发展。质谱技术的普及,需要各级别企业的共同努力,有大象起舞,也有蚂蚁雄兵。文中内容仅为技术探讨,是对公开信息的进一步学习、推测和探讨,如有理解偏差、不准确的地方,请仅以罗氏公司未来官方资料及解释为准。我们敬重头部企业罗氏这么有创新的技术尝试且需保护相应的专属设计,也期待各家质谱相关公司凭借独立的创新精神取得各自的突破。  上市计划进展  简言之,如期推进!  落地时间与之前公布的信息没有变化,侧面证明在欧美地区的注册工作顺利、项目的研发按期望进展。  2024年1月9日,在第42届摩根大通医疗健康大会(JPM 2024)上,罗氏公司CFO Alan Hippe 以Entering the next growth cycle(进入下一个增长周期) 为题汇报了罗氏公司的一些主要进展,其中有两页提到了诊断部的质谱项目,确定其对未来增长的重要性,并再次提到其上市计划,2024年底CE欧盟区域落地,2025年预计美国FDA获批。  2024年2月初发布的2023年财报中,在诊断部CEO Matt Sause的报告部分,也看到他把i601全自动质谱系统在2024年CE落地作为他的首条关键任务。    我们还注意到,2023年5月,在意大利罗马举行的第25届国际临床化学与检验医学大会(IFCC WORLDLAB)暨第25届欧洲临床化学与检验医学大会(EUROMEDLAB)上,罗氏也将其质谱系统进行了揭幕,为欧洲市场的上市预热。  关于中国的上市时间,按业内推测及罗氏新产品在中国上市的规划传统,预计在2026年争取拿到国内上市资质。  值得提及的一件事情,在2023年12月国家卫健委临检中心第二届临床质谱的培训班上,很高兴的看到罗氏公司RA注册部相关人员也来学习质谱相关内容。  质谱技术对于罗氏公司也是一项新技术、新方法,为了做好相关注册工作、确保注册进度,相关人员主动学习相关知识,值得认可肯定!  设备整体结构  从左到右依次为进出样单元(含STAT急诊端口)、加样及磁珠前处理部分、色谱质谱部分。总体的尺寸并没有相关资料公布,但参照图片里其他模块的尺寸(e801及进样模块尺寸),按比例可大致估算,整体的设备长度约3.8米(含进样单元)。  其中色谱质谱部分从图中可以看出比e801(含MSB样本缓冲区)尺寸略短一些,我们姑且按1.4米算。  关于重量,我们也做个大概估算:考虑到色谱质谱部分有泵单元、分子涡轮泵、质量分析器等重量较大组件,整体重量应大于等于e801的730公斤,所以三者相加(190+730+730)整体重量应在1.7吨上下。  设备的整体结构,可以理解为进样单元,加上e801系统(含MSB样本缓冲区、无ECL电化学发光的检测系统),后面再加一个液相色谱及质谱分析仪部分。  此系统的e801部分,负责样品的进出样,传输,样品的加入,试剂的加入,基于磁珠的前处理等的流程,最后转移至液相色谱部分,进行液质分析相关步骤。  质谱试剂产线  在公布了质谱系统的型号i601之后,质谱的试剂盒也有了它的名称:Ionify(已注册商标),并形成Ionify® reagent line。很显然,这个词来自于离子的词根,这也正是质谱的工作原理,使物质离子化,测量待检物的质荷比M/Z。  至此,我们又可以大胆的猜测i601质谱系统这个cobas i系列的命名起源,那就是也是源于Ion离子这个词,与其免疫系统的e来自Electro ChemiLuminescence (ECL)elecsys电化学发光系统、临床生化的c来自Clinical Chemistry形成家族化命名逻辑,共同组成cobas中心实验室的主力机型系列。  试剂盒形式沿用cobas生化、免疫系统的cassettes式设计,即试剂多联包形式,从截图可看出也为3组分、尺寸与免疫e green package一致,这也使得其能兼容使用免疫系统e801的试剂处理单元,享用在线装卸载试剂功能。  若如猜测与e pack green试剂盒大小一致且试剂仓一致,则单模块也可以放置48个试剂。  我们可以对比下罗氏的质谱试剂与赛默飞世尔的Cascadion质谱系统的试剂,从临床使用角度,罗氏的即开即用、成分整合、可高度自动化的试剂更符合临床工作人员的喜好。  样本前处理工作流程  质谱检测与生化免疫等其他间接检测(检测器隔检测杯读值、非直接接触待检物)不同,其待检物质是被吞进检测单元的,是直接读取待检物M/Z质荷比的一种技术,无需标记物。  但血清中的成分非常复杂,有大量的磷脂、蛋白等基质杂质成分,待检成分只是非常少的一些物质,所以质谱检测是需要进行样本纯化后才能进样的,尽可能纯的待检物质可降低基质干扰,提升检测的灵敏度和准确性。样本前处理工作由于步骤复杂,目前是临床质谱分析的一个难点和重点,也是各家临床质谱自动化方案主要需解决的关键步骤。在众多的前处理方法中,磁珠法(或称萃取磁珠法)是最有希望实现高通量、自动化、标准化的,国内也有很多公司在这个方向下取得了卓有成效的进展。  这里我们看到罗氏采用的是磁珠法的方案,其过程简要整理如下:  此部分用到的各类试剂应主要来自Ionify的试剂包部分,从图中可大致判断罗氏的磁珠方案为正向抓取待检物的模式,磁珠依靠binder正向结合、抓取待检物质,最后洗脱下待检物质与内标物,进行后续检测。  这里稍微补充一句,磁珠法其实也能做除杂的方式,即沉降基质等成分,用上清部分作为为后续待检样品。  色谱质谱部分  前处理纯化后的样本转移到色谱部分,经过色谱柱,再到质谱检测器进行检测,得到信号。  为了提高检测通量,罗氏方案中设计了8个色谱柱单元,柱子放在cartridge中,这是一种特殊盛放色谱柱的弹夹式结构的装置,它还具有RFID标签。  此种设计与Cascadion的Quick Connect Cartridge有相似的设计理念,都是为了使其安装更换更加便捷,易于临床客户上手。  我们在上一次解读中提及到其设计检测通量可达到100个样品/小时,有过质谱使用经验的都知道,若按传统的单线程标准过色谱柱模式,要实现此速度非常困难。  罗氏采用了多线程模式,即有8根色谱柱可供样本通过,后面将顺序出锋而陆续进入质谱检测。  为便于理解整个实验流程,附简易功能模块示意图。  布局仅为推测,最终布局请以官方公布为准。  还有个非常重要的细节我们从图中可以看出,8个色谱柱单元长短并不一样,其中5个短柱子,3个长(常规)柱子区域。  从如此高的检测通量设计来推测,短柱子是做单项目(或小组合)测试的,这类柱子应与常规的色谱柱不同,是为这些快速检测项目而设计的,如激素类单项。  在结果界面的截图中,我们看到睾酮的色谱图里,单个测试是36秒的检测时间(注:色谱质谱系统里,30秒处为保留时间或出峰时间),按此检测模式恰好可以达到标称的100标本/小时(3600秒/36秒)的速度。  而对于长柱子(相对于短柱子的称呼),应该与传统色谱系统中的常规柱子更接近,预估是做一些联检类的项目,会有较长的检测时间来处理套餐类的项目组合。具体哪些是组合项目和色谱柱具体工作模式,还请大家静待罗氏公司的最终公布吧。  在设备的下方,则应是流动相溶剂等液体耗材部分及质谱仪部分(右侧)。  分析软件  检测流程的最后一部分,将会对数据进行自动处理,软件应用复杂的算法对结果进行验证,然后传输至LIS系统。这相比于传统的质谱分析软件有很大的改善,减少了很多人为参与、调整、确认结果的过程。  在软件界面我们可以看到峰型整合和结果验证的细节,如这个睾酮结果的界面中,分别显示了内标物与待检物质的响应值与峰型情况,依靠峰面积得出待检物的浓度。  在这个过程中,将自动完成待检物质与内标物的峰型质量检查、质谱仪与色谱仪的状态确认、整合与定标质量的确认、结果确认。  项目菜单  检测菜单也是质谱项目是否能成功的重要因素,罗氏公司一直以规划检测项目见长,这次在项目规划上也进行了大量的前期调研和顾问工作。  按规划i601将有一个超过60多个项目、全面的试剂套餐组合,分两批上市。  项目大类为以下5类:类固醇类激素类、维生素D类、TDM药物浓度检测、免疫抑制剂药物检测、滥用药物类检测。  未来质谱模块的灵活配置  模块化的设计一直是罗氏诊断产品的特点,从最早的Modular时代开始,到cobas 6000/8000。  作为cobas Pro的一个模块,罗氏的质谱方案同样拥有灵活的配置形式,在以下图片中我们可以看到i601可以进行双模块的拼接,以便进一步的扩展检测通量和项目数。  当然,还有几种与cobas Pro里其他模块的联机,与免疫模块e801的连接、与生化模块c503的连接,及与生化、免疫混合模块的连接 同样在今年落地的高速生化分析模块c703作为cobas Pro方案里的一员,未来也应可以参与到质谱模块的灵活配置中。  但请注意,在官网的标注中,明确的告知:在上市初期,将仅以单模块形式提供,所有其他的包括生化、免疫的配置将会在随后的日期提供。  一个有意思的探讨: 一套i601质谱系统算几个模块?  我的猜测是算2个,那么一个线体分支就最多可连接2个i601(4个模块),为什么?  视频里的2个i601联机展示图可作为依据吗? 不是仅仅从这里。  我的考量如下:通量的需求、设备长度、系统的复杂度、人员动线、通讯的限制、标本周转时间等等。  但需要进一步的官方消息确认,仅作猜测探讨。  补充知识:罗氏的多模块联机方案中,cobas 8000及Pro系列的模块连接数量,最多可扩展至4个。  我们再看一下罗氏公司的一个整体规划图,这是一套CCM2.0的流水线系统,颇为壮观,从图中可以看出P系列前处理+后处理、日立的轨道系统与生化、免疫、质谱、分子、尿机、血球、凝血组成的强大多学科布局,i601质谱系统作为一个新学科模块,占据着极为重要的战略意义位置。  写在最后  近些年,临床质谱一直是热门赛道,资本方、客户端、企业端,一直期待这一技术在精准医学中大展拳脚,但其发展速度一直不如预期,这里面有很多的因素限制。  我们非常期待有更多的企业在解决诸多困难中取得实质性突破,带我们进入临床质谱的新维度、新时代。  如罗氏官网中质谱项目的标题:Are you ready to enter a new dimension in mass spectrometry?  你准备好进入质谱分析的新维度了吗?  作为相关从业者中的一员,也意识到,临床质谱的普及除了产品维度外,还需要更多的质谱相关知识的推广,让大家理解这一检测利器,最终懂它、用它,真正发挥其作用。  希望今天的分享能起到一点点的作用。作者:IVD崔哥
  • 生物药岛津说-利用岛津Q-TOF质谱进行贝伐单抗生物类似药抗体表征分析
    Bevacizumab是重组人源化人血管内皮生长因子(VEGF)单克隆抗体,作为美国第一个获得批准上市的抑制肿瘤血管生成的药,可用于转移性结直肠癌以及非鳞状非小细胞肺癌治疗等。在中国,超过10家贝伐珠单抗生物类似药在研发上市过程中,面对生物类似药分析,充满技术挑战,贝伐单抗生物类似药表征是质量控制关键点之一,分析过程中,抗体肽图分析方法尤为关键,今天我们就聊一聊贝伐单抗生物类似药肽图分析技术方法。 肽图分析(peptide mapping)是研究抗体药物结构组成的重要技术之一,抗体通过酶切处理后,利用色谱结合岛津高分辨Q-TOF质谱LCMS-9030分析,不仅可以对蛋白质氨基酸序列进行分析,同时可以对于相应肽段的翻译化修饰(PTM)进行分析。通过岛津反相HPLC方法分离不同性质的肽段,后续肽段通过高分辨质谱进行一级和二级扫描,通过监测的母离子和子离子匹配相应的肽段氨基酸序列以及存在的修饰。肽图分析是抗体蛋白药物质量控制的重要手段,岛津高分辨质谱可以完成相关所有的分析检测项目。 分析仪器及色谱柱方案 01分析仪器 LCMS-9030四极杆飞行时间质谱仪使高速度、高灵敏度的四极杆质谱与TOF技术的紧密结合。融合岛津先进工程技艺的DNA,打造出速度与出色性能兼备的全新一代高分辨质谱仪,以优异表现轻松胜任定性和定量分析挑战。 LCMS-9030 02液相色谱柱 ● 反相肽段分析专用色谱柱● 寿命长,耐压高,出峰稳定Shim-pack GISS-HP,3um,150*3.0 mm 应用实例 以bevacizumab 生物类似药为例,进行peptide mapping分析,将抗体蛋白通过胰酶酶切后,通过反相色谱质谱分离后进入高分辨Q-TOF质谱进行一级全扫描和二级扫描,高分辨数据提取分析匹配相应的肽段序列,完整流程如下图所示。 图. 利用岛津LCMS-9030抗体测序基本流程以及举例 岛津分析bevacizumab 生物类似药序列分析,通过Shim-pack GISS-HP色谱柱(3um,150*3.0 mm),可以高效分离酶切后的轻重链肽段,最后用LC-MS 9030 进行一级和二级扫描,最佳参数色谱质谱参数如下表所示。 图. 利用岛津LCMS-9030抗体测序详细参数 通过软件分析高分辨数据,进而匹配生物类似药的重链和轻链序列,完成整个抗体的肽图分析。因篇幅有限,以重链肽段序列部分数据进行展示,匹配覆盖率100%,可以说明岛津LCMS-9030 Q-TOF质谱在抗体肽段分析方面具有强大的实力。部分序列分析结果见下图所示。 图.bevacizumab 生物类似药重链测序结果展示(部分展示) 结合前述案例,岛津建立高分辨质谱LCMS-9030针对抗体药物进行肽图分析完整策略,此外对于分子量分析、翻译化修饰、二硫键分析、糖基化分析,LCMS-9030可以完成所有相关抗体药物关键质量属性检测,为用户节能增效,创造最大价值。
  • 沃特世推出Xevo MRT质谱仪,为高速、高分辨率的质谱分析树立全新性能标杆
    新闻摘要 Waters Xevo™ MRT质谱仪采用新一代多反射四极杆飞行时间技术,在不影响分析性能的前提下,实现了高分辨率和高速度的完美结合。i与其他品牌的同类产品相比,该系统在上限运行时可提升高达6倍分辨率以及2倍的质量精度ii,有助于科学家用更短的时间处理更多的样品,更好地开展大型队列生物医学研究和流行病学研究。 提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,用户可以方便灵活地使用沃特世软件、色谱柱和仪器开展高通量分离,并与第三方软件应用程序共享通用数据。 美国加利福尼亚州安纳海姆和马萨诸塞州米尔福德 – 第72届美国质谱年会(ASMS) - 近日,沃特世公司(纽约证券交易所代码:WAT)隆重推出新款Xevo™ MRT台式质谱仪(MS),其拥有在同类仪器中出类拔萃的性能,为高分辨率和高速度的质谱分析树立了新标杆,可在大规模群体研究和流行病学研究中发挥关键作用。在先前推出的Waters SELECT SERIES™ MRT 质谱仪的创新技术基础之上,新型Xevo MRT质谱仪将多反射飞行时间(MRT)技术和混合四极杆飞行时间(QTof)技术的特性以及分辨率、速度的优势整合到了这款灵活的台式仪器中。 图1.全新Waters Xevo MRT台式质谱仪在100 Hz下可提供100K FWHM的分辨率和亚ppm级质量精度,可实现可靠的鉴定并提高实验室生产率。 Udit Batra 沃特世公司总裁兼首席执行官Udit Batra博士表示: 为了了解复杂疾病,科学家们需要分析来自大规模人类队列的数以千计的样本,才能得出有统计学意义的结果。这使得药物发现科学家压力倍增,他们必须设法在更短的运行时间内获得高质量数据。Xevo MRT是沃特世专为解决这一需求而打造的新一代QTof质谱仪,在提供高分辨率和高速度的同时不影响分析性能。它的多反射飞行时间质谱技术可在小型体积下实现出色的灵敏度和分辨率,加快获得结果的时间,并确保高质量的实验结果。 在100 Hz的MS/MS扫描速度下,Xevo MRT系统的半峰全宽(FWHM)分辨率可达到100,000,属业内前列iii,质量精度 500 ppb。得益于此,它能以高质量精度更深入地检测生物相关分析物的浓度,而不受采集速率影响。 Perdita Barran 曼彻斯特生物技术研究所化学系质谱学主任兼Michael Barber质谱协作中心负责人Perdita Barran教授表示: 目前有一系列质谱方法可以应用于代谢组学、脂质组学和代谢物鉴定研究,但这些方法都需要在数据质量或分析效率方面做出妥协。Xevo MRT质谱仪的这项技术令人眼前一亮,它不仅能提高样品通量,精确度也十分出众,有望大幅推进靶向验证和表型分型研究。扫描速度和数据质量的提升至关重要,因为这能让我们在更短的时间内分析更多样品,而不影响数据可信度。我们对这一技术帮助加快帕金森病诊断检测的开发十分看好。 得益于Xevo MRT 质谱仪创新的多反射飞行时间设计,科学家们能以高分辨率、高灵敏度和快速的数据采集速率开展研究。这能确保他们可靠地鉴定各种样品和复杂基质中的分析物,生成全面、高准确度的质谱数据供科学解析之用。 沃特世针对Xevo MRT 质谱仪提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,还提供沃特世高通量ACQUITY™ UPLC™系统和UPLC色谱柱填料,以及用于数据采集、处理和报告的waters_connect™软件。该系统支持使用mzML文件格式与第三方信息学软件共享通用数据,包括Mass Analytica™的常用应用程序,例如MARS、Lipostar2和MassMetaSite软件产品。 Waters Xevo MRT 质谱仪即日起开放预订,预计发货时间为2024年下半年。 6月26日,沃特世将于北京举行 “逐极而质|沃特世代谢组学与脂质组学研讨会 — 暨Xevo MRT新产品发布会”,并同时开启线上直播。扫描下方二维码即可报名参加,届时可近距离深度了解这款集高分辨率、高灵敏度和快速的数据采集速率于一体的新品高分辨质谱,期待与您在云端相见!△扫码立即报名 *更多活动详情将于近期在沃特世公众号公布,敬请关注。 其他参考资料 点击了解更多产品详情Waters Xevo MRT MS 欢迎查看2024 ASMS沃特世在线新闻资料包,可下载新品图片/视频、产品规格、信息图表等。 欢迎阅读产品解决方案:“使用Waters Xevo MRT 质谱仪的高通量脂质组学工作流程” 关于沃特世公司 沃特世公司(网址:www.waters.com;纽约证券交易所代码:WAT)是居于全球前列的分析仪器和软件供应商,作为色谱、质谱和热分析创新技术先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾65年历史。沃特世公司在35个国家和地区直接运营,下设15个生产基地,拥有约7,700名员工,旗下产品销往100多个国家和地区。 关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,并在上海、北京、广州设立实验中心和培训中心。今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世致力于通过攻克关键难题释放科学潜力,始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世与合作伙伴一起,在世界各地的实验室中,为增进人类健康福祉提供科学见解,助力让世界变得更美好。 i 评估依据是Xevo MRT MS与其他品牌同类仪器的性能比较:在100 Hz的扫描速度下,Xevo MRT MS在m/z 956处的分辨率= 100,000 FWHM,质量精度iii 在100 Hz的扫描速度下,Xevo MRT MS在m/z 956处的分辨率达100,000 FWHM,是其他品牌同类仪器分辨率的1.5~6倍;Xevo MRT的质量精度
  • BCEIA 2011金奖产品:舜宇恒平过程气体质谱分析仪——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访上海舜宇恒平科学仪器有限公司市场部部长黄晓晶博士的视频。   黄晓晶博士介绍了由上海舜宇恒平科学仪器有限公司生产的高性能过程气体质谱分析仪。该款仪器有台式和机架式两种机型,可依应用环境不同选择。仪器采用高性能的四极杆质量分析器和针对过程气体分析设计的专用软件,可实时、在线对过程气体进行快速分析。通过多通道进样阀实现多点监测,提供多组分、多流路分析。   另外,黄晓晶博士介绍说该款过程气体质谱分析仪的外观、样气处理系统、采样接口、真空系统和软件等均可视用户需求进行针对性设计。舜宇恒平成立有应用中心,提供专业的技术支持和量身定制服务,满足用户的分析检测需求。   具体产品展示、技术特点介绍、应用领域分析,请点击查看采访视频。   关于上海舜宇恒平   上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,专业致力于各类科学仪器的研发、制造和销售。公司继获得“上海市著名商标”后,又获得“上海市创新型企业”称号。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成色谱仪器、光谱仪器、质谱仪器、天平仪器等一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。
  • 全二维气相色谱飞行时间质谱仪分析气溶胶PM2.5的终极方案
    薛恒钢 张志杰 2011年12月4日、5日北京的灰霾天气引发人们对于大气PM2.5监测的关注。PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。它的直径还不到人的头发丝粗细的1/20。PM2.5粒径小,富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。PM2.5的检测过程当中,经常遇到基质种类繁多、痕量微量灵敏度不足,分离不佳共流严重,且浓度差异大等常规色质难以解决的难题。因为现有的传统GCMS峰容量低,分离能力有限,广谱性差,通量低,尤其是对共流干扰问题无有效解决方法。而污染物种类众多,要求同时检测样品中可能存在的污染物列表少则几百多则上千,这就要求仪器对同一样品能高通量高分离度的检测成千上万化合物,同时能进行高效率的批量样品处理,具有相当水平的自动化数据分析能力。 一维色谱技术分离能力有限,时常不能满足应用需求。许多分析问题需要比一维色谱技术提供更高的分辨率。而分离能力可通过使用多种分析机制的组合来增强。全二维气相色谱(GC×GC)是一个正交分离系统,样品通过两维不同机制的分离使得分析效果大大提升。它的峰容量为组成它的两根柱子各自峰容量的乘积,分辨力为二柱各自分辨率平方加和的平方根。目前一维气相技术只能对二百左右组份峰进行有效的分离。而全二维气相技术可以完全分离上万个色谱峰。 高通量飞行时间质谱采集速率500张全谱图/秒。力可特有的自动峰识别Peak Find、自动解卷积True Signal Deconvolution、自动谱库检索功能大大提高了质谱的检出能力。可自动解出干净无杂峰的高质量质谱图。高通量的数据处理能力适用于快速反应监测、快速自动全组份定性及全组份半定量。可在几分钟内完全全组份的自动数据处理。结果的谱检索的匹配率大大提高,出峰量数倍于其它质谱,且定性可靠性很高。 针对以上难题,全二维色谱高通量飞行时间质谱GCxGC-TOF MS成为最佳结果最高性能的解决方案,其分离解析能力在气相质谱产品中是最强的,对于小分子分析研究有着无可比拟的优势。美国力可公司生产的全二维气相色谱飞行时间质谱仪Pegasus 4D GCxGC TOF-MS为监测MP2.5提供了终极解决方案。 本解决方案建立了一种使用美国力可全二维气相色谱飞行时间质谱仪Pegasus 4D GCxGC TOF-MS的方法。样品经提取后,用全二维气相色谱进行分离,飞行时间质谱仪Pegasus TOF进行分析。 色谱条件:进样口温度:270℃;不分流进样;柱初始温度130℃,以40℃/min升至210℃,以4℃/min升到320℃,保持10min;脉冲时间:0.8s;调制周期4-8秒 调制器温度:40℃;二维柱温:20℃;传输线温度;270℃。色谱柱:SGE BPX-5 30m*0.25mm*0.25um,BPX-50 1.5m*0.1mm*0.1um。 质谱条件:离子源温度:250℃;离子源电压:70eV;扫描方式:160-520u全扫描;扫描速度100spetrum/s。自动数据处理软件:ChromaTOF。 该方法完全满足国标的要求。通过美国力可全二维气相色谱飞行时间质谱仪Pegasus 4D GCxGC TOF-MS可将有机碳、元素碳、细粒子和水溶性离子进行分类找出主要的污染因素,指导大气污染的治理方案。图1. Zimmermann等设计的PM2.5采集及分析方案图2. PM2.5气溶胶,自动归类峰识别结果:橙色为饱和烷烃,绿色为不饱和烷烃及环烷烃,紫色为直链酸,淡蓝色为部分水合萘及烯基取代萘,黄色为萘及烷基取代萘,红色为极性苯系物,黑绿色为烷基苯系物。(S/N 100:1,Lesie Vogt et. al.)图3. ChromaTOF软件定性,共自动识别峰匹配度满足定性要求的峰3639个。(Zimmermann.et al)全二维气相色谱飞行时间质谱仪Pegasus 4D GCxGC TOF-MS------------------------------------------------------------------------------------关于力可公司 美国力可公司(LECO)始创于1936年,今天已经发展成为拥有约2,300多名员工,在全球设有25家子公司及代表处的规模 公司总部位于美国圣约瑟市(芝加哥以东60公里的密执安湖东岸)。美国力可公司早在1970年代中期就进入中国市场,至今,在国内已销售了4500多台各种分析设备,各行各业用户已有3000多家。三十多年来以仪器为纽带,通过用户和我司员工共同努力,力可同用户之间已建立了深厚友谊和密切关系。同时我们还定期发行“力可通讯”,以此加强力可公司与用户之间,力可仪器的用户与用户之间的联系,成为同行用户之间沟通的桥梁。 力可公司不仅很早就通过ISO国际标准认证,同时公司在专业技术上始终保持着领先的优势,并拥有多项技术专利,成为世界上分析仪器知名厂商。力可公司十分重视中国市场的发展和潜力,为广大用户提供优质、快捷的信息及服务,确保力可仪器在国内用户手中发挥应有的作用。详情请参阅:www.leco.com
  • 一种膜渗透的、固定化金属亲和色谱富集的交联试剂用于推进体内交联质谱分析
    大家好,本周为大家分享一篇发表在Angew. Chem. Int. Ed.上的文章,A Membrane-Permeable and Immobilized Metal Affinity Chromatography (IMAC) - Enrichable Cross-Linking Reagent to Advance In Vivo Cross-Linking Mass Spectrometry,该文章的通讯作者是德国莱布尼茨分子药理学研究所的Fan Liu教授。交联质谱 (XL-MS) 已被用于在全蛋白质组范围内表征蛋白质的结构和蛋白间相互作用。目前,由于能够穿透完整细胞的交联试剂和富集交联肽的策略的缺乏,体内交联质谱研究的深度远远落后于细胞裂解液的现有应用。为了解决以上限制,本文开发了一种含膦酸盐的交联剂-tBu PhoX,它能够有效地渗透各种生物膜,并且可以通过常规的固定化金属离子亲和色谱 (IMAC) 进行稳定富集。 文章建立了一个基于 tBu-PhoX 的体内 XL-MS 分析流程,在完整的人类细胞中实现了较高的交联识别数目,并大大缩短了分析时间。总的来说,本文开发的交联剂和 XL-MS 分析流程为生命系统的全面交联质谱表征铺平了道路。细胞蛋白质组通过广泛的非共价相互作用网络进行组织,表征蛋白质-蛋白质相互作用 (PPIs) 对于了解细胞的调节机制至关重要。交联质谱 (XL-MS) 是系统研究细胞 PPIs 的一种强有力的方法,在 XL-MS 中,天然蛋白质接触通过交联剂共价捕获,交联剂是一种由间隔臂和两个对特定氨基酸侧链具有反应性的官能团组成的有机小分子,交联样品经过蛋白酶水解后,可以通过基于质谱的肽测序来定位氨基酸之间的交联。由于交联剂具有确定的最大长度,检测到的交联揭示了蛋白质内部或蛋白质之间的氨基酸的最大距离。以上这些信息提供了对蛋白质构象、结构和相互作用网络的见解。虽然最初仅限于纯化的蛋白质组装,但如今 XL-MS 已经可以应用于复杂的生物系统——这是通过开发先进的交联搜索引擎、样品制备策略和交联剂设计而实现的。特别是,已进行的几项全蛋白质组范围的 XL-MS 研究表明,可以通过使用可富集的交联剂来改进交联产物的鉴定,例如,通过添加生物素或叠氮化物/炔烃标记,使得消化混合物中的交联肽段能够基于亲和纯化或点击化学富集。最近,一种基于膦酸的交联剂 PhoX 被引入作为现有生物素或叠氮化物/炔烃标记试剂的高效和特异性替代品。PhoX 可通过固定化金属离子亲和色谱 (IMAC) 实现交联富集,这是一种非常快速和稳健的富集策略。 然而,尽管 PhoX 已被证明可用于从细胞裂解液中进行交联鉴定,但它无法渗透细胞膜,因此不适合体内的 XL-MS检测。基于以上讨论,本文开发了交联剂 tBu-PhoX ,其中,膦酸羟基被叔丁基保护以掩盖负电荷(图 1)。为了检测 tBu-PhoX 的膜通透性,文章交联了各种膜封闭的生物系统,包括人 HEK293T 细胞、从小鼠心脏分离的线粒体和革兰氏阳性枯草芽孢杆菌,并在 SDS-PAGE 上监测了蛋白质条带的变化(图 2)。在SDS-PAGE中,观察到在交联剂浓度为0.5和1.0mM时,蛋白质向更高分子量的浓度依赖性迁移,这表明了有效的膜渗透和交联。相比之下,将 PhoX 应用于完整的 HEK293T 细胞将产生与非交联对照相同的条带模式。图1 tBu-PhoX交联剂图2 PhoX或tBu-PhoX交联HEK293T细胞的SDS-PAGE在证明了 tBu-PhoX 可渗透各种生物膜系统后,文章接下来开发了一种基于 tBu-PhoX 的体内 XL-MS 工作流程,相比于之前的全蛋白质组 XL-MS 策略,该工作流程提高了样品处理和交联富集的速度和效率(图 3)。首先,按照标准蛋白质消化方案将交联蛋白质消化成肽;其次,使用 IMAC 珠对消化混合物进行预清除步骤以去除内源性修饰(特别是磷酸化);第三,预清除的消化混合物(从 IMAC 流出)在稀释三氟乙酸 (TFA) 溶液中孵育以去除叔丁基并暴露膦酸基团以进行二次 IMAC 富集。第四,使用标准 IMAC 程序丰富交联产物,最后通过 LC-MS 分析以进行交联产物鉴定。图3 与tBu-PhoX进行体内交联和后续样品处理的工作流程接下来,文章优化了体内 XL-MS 工作流程的几个分析参数,以最大限度地提高交联检测的效率。首先,通过使用 IMAC 珠预清除评估了去除磷酸肽的效率;之后,使用 tBu-PhoX 交联完整的 HEK293T 细胞,经酶切成肽后,并应用预清除 IMAC 步骤去除内源性磷酸肽。在去保护步骤之后,利用 IMAC 富集交联,并通过单次 120 min LC-MS 运行测量富集的样品。通过测量 IMAC 洗脱液中磷酸肽和交联产物的数量,发现第二个 IMAC 中只有数百条磷酸肽,而预清除 IMAC 中有 4,128 条磷酸肽,这突出了通过预清除 IMAC 步骤去除磷酸肽的效率。此外,与单阶段 IMAC 结果相比,使用预清除 IMAC 的工作流程鉴定了 22% 以上的交联(1165 对 952 交联),证明了该两阶段工作流程去除干扰修饰肽的好处(图 4A)。其次,文章在肽水平上研究了膦酸盐去保护的功效。使用 tBu-PhoX 制备了体内交联的 HEK293T 样品,并分析了在不同的酸度(TFA 浓度)和孵育时间下,去保护后交联的数量如何变化。结果显示,不同浓度的 TFA 下获得了相似数量的交联。为简化处理(即在接下来的IMAC富集步骤中保持相对较低的样品体积),选择 0.5% TFA 的去保护条件,持续两个小时(图 4B,C)。第三,文章测试了 Orbitrap Tribrid 质谱仪的不同采集参数如何影响交联识别,即在高场非对称波形离子迁移率质谱法 (FAIMS) 中应用的电荷态选择和补偿电压 (CVs)。当考虑电荷状态 +3 和更高时,确定了最多数量的 tBu-PhoX 交联肽(图 4D)。图4 样品处理和LC-MS参数的优化文章将优化参数后的体内 XL-MS 工作流程应用于完整的 HEK293T 细胞。使用 180 min的 LC 梯度和优化后的分析参数,文章从体内 tBu-PhoX 交联的 HEK293T 细胞中获得了 9,547 个交联(图 5A)。基因本体分析表明,交联蛋白参与了广泛的分子功能、生物过程和细胞成分,表明 tBu-PhoX 可以揭示所有细胞区域的 PPIs(图 5A)。另外,文章还考察了完整细胞的体内 XL-MS 是否捕获了与细胞裂解液的 XL-MS 不同的 PPIs。为了验证这一点,从 HEK293T 细胞中制备 tBu-PhoX 交联裂解液,并使用与体内 XL-MS 实验相同的工作流程处理样品。 结果显示,从五个 SEC 部分中确定了 9,393 个交联。这表明 tBu-PhoX 允许以类似的效率进行裂解和体内 XL-MS。比较本文的体内和裂解数据表明,在体内 XL-MS 实验中,蛋白质间交联的数量更高,从而产生了更加相互关联的 PPI 网络(图 5B,C)。这种效应可以通过细胞环境的拥挤来解释,其中蛋白质紧密堆积并参与多种相互作用,这些相互作用被细胞裂解和稀释部分破坏。文章在 8 种选定蛋白质复合物的已知 3D 结构上可视化了 145 个体内检测到的交联(图 5C),另外,还观察到 96.6% 的交联在 35 Å 的最大距离限制内(图 5D),表明此 XL-MS 工作流程对内源性蛋白质复合物的体内结构分析的适用性。最后,文章比较了 tBu-PhoX 与 PhoX 在表征细胞裂解液的 PPI 网络方面的性能。使用与上述 tBu-PhoX 裂解液交联实验相同的交联条件从 HEK293T 细胞制备 PhoX 交联裂解液。为了去除内源性磷酸肽,在单阶段 IMAC 富集之前,用碱性磷酸酶处理消化的肽两小时。使用与 tBu-PhoX 相同的 LC-MS 方法进行 LC-MS 分析。该实验产生了 2,117 个交联,与使用 tBu-PhoX 识别的交联数量(1,942 个交联)相比略高。然而,基于 PhoX 的 XL-MS 流程需要更长的样品制备时间,因为需要进行碱性磷酸酶再处理和之后的额外脱盐步骤。行体内交联综上所述,本文开发并应用了一种新型的、可富集的、用于体内 XL-MS 的膜渗透交联剂 tBu-PhoX。在广泛使用的交联条件下(交联剂浓度为 1-5 mM),tBu-PhoX能够有效地穿透各种生物膜,为完整的细胞器和活细胞提供交联的机会。tBu-PhoX上的叔丁基基团使得高效的两阶段IMAC样品制备方案成为可能;首先,使交联剂对 IMAC 呈惰性,以促进基于 IMAC 快速而彻底地提取不需要的磷酸化肽,然后,通过去除叔丁基暴露膦酸基团,从而有效地二次 IMAC 富集交联剂修饰的肽。通过随后的 SEC 分馏,可以进一步富集交联肽段以进行 LC-MS 分析。XL-MS 在表征生命系统中的蛋白质结构和相互作用方面发挥着越来越重要的作用。为了促进这一发展,迫切需要有效的体内 XL-MS 方法。文章报告的体内 XL-MS 工作流程满足了这一需求,提供了与之前基于裂解液的 XL-MS 研究类似的交联识别能力,但需要的测量时间不到之前报告的十分之一。这一结果突出表明,本文开发并应用的 tBu-PhoX 交联剂和集成样品制备流程为推进体内相互作用组学和结构生物学提供了一种非常有前景的化学方法。
  • Extrel-艾科特利尔展出MAX系列在线质谱(东西分析代理)——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是Extrel公司亚洲销售经理Jian Wei,Ph.D.介绍该公司MAX系列在线质谱仪的视频。   Jian Wei,Ph.D.介绍了艾科特利尔公司最近推出的MAX300-LG、MAX300-IG系列在线质谱仪。其中MAX300-LG系列在线质谱仪是艾科特利尔公司高性能四极杆质谱仪家族中的最新成员。它高灵敏度,高分辨率和灵活性的设计,能满足各种研究型实验室的需要,而且它的重现性和可靠性也能满足生产车间的需要。MAX300-LG拥有一套独一无二的系统,能同时提供两个独立的软件包:Merlin 自动数据处理系统和Questor 5 过程控制软件包。配备Questor 5 软件使得MAX300-LG可以提供无限选择的组分分析,使它完美的应用于在线生产和质量控制等各方面。   Extrel-艾科特利尔公司     Ectrel-艾科特利尔公司,是匹兹堡大学物理学教授Wade Fite博士于1964年创立的,四十余年来一直致力于在线质谱仪的研究,是全球最知名的在线质谱仪厂商之一,在世界科学界享有盛誉。艾科特利尔在线质谱,不仅可用于基础研究、实验室的质量管理/质量控制,而且还广泛应用于工艺开发和在线控制等工业领域。艾科特利尔公司能够提供各种类型的四极杆、电源、振荡器、检测器及相关组件的任何组合,并能根据客户的具体需求,提供各类产品的设计和客户化方案。迄今为止,超过500台艾科特利尔公司的在线质谱仪在全球工业领域中得到广泛的应用。目前中国大陆地区总代理为北京东西分析仪器有限公司。   北京东西分析仪器有限公司   北京东西分析仪器有限公司,成立于1988年,主要业务包括分析仪器及相关产品的研发、应用服务与生产销售。经十余年艰苦奋斗,已成功自行开发生产了一系列具有高技术含量的分析仪器产品,荣获中国“十大知名分析仪器品牌”、“分析测试协会BCEIA金奖”、“产品信得过单位”、“煤炭部定点安全仪器生产厂”等荣誉称号。
  • 粒粒皆信息:什么是单颗粒物/单细胞ICP-MS质谱分析法?
    在使用电感耦合等离子质谱法(ICP-MS)进行分析之前,对含有颗粒状残留物的液体样品进行适当的酸消解仍是标准前处理步骤。采用此类或类似样品前处理后,所记录的ICP-MS数据也跟整体粒子数量以及种类连在一起,对需要分析要求更加精细的应用不完全满足需求。2003年,Degueldre首次证明了ICP-MS质谱法可以定量检测单个颗粒物,并引入了单颗粒物(single particle-sp)ICP-MS质谱分析的概念[1]。spICP-MS质谱分析法可以测量单个颗粒内含所有元素的质量以及总颗粒物数浓度,并且提供比其他分析技术好得多的检测极限(单颗粒物ICP-MS质谱仪是如何工作的?单颗粒物ICP-MS质谱分析具有以下两个主要要求: 样品中的颗粒物数浓度非常低,以降低将多个颗粒物同时引入ICP-MS质谱仪的可能性 质谱质量分析仪以不到2毫秒的驻留/积累时间不间断运行,以观察持续的单颗粒物事件在实践中,我们可以将任何液体样品导入ICP质谱系统,当中一些液体样品在颗粒物传输和电离方面比其他相对更加高效。取决于采用ICP质谱仪的硬件配置,颗粒物悬浮液通常被稀释到10万-100万个颗粒物/毫升的浓度。当液体样品中的颗粒物数量足够少时,单位时间将只有一个颗粒物进入ICP系统。进入等离子系统,颗粒物将被气化、雾化和电离,形成元素离子。所生成的离子将通过多级差分压强接口从前端ICP系统导向下游质量分析仪,该减压接口用于调节ICP大气压进样口与低压(如10-6毫巴)质量分析仪之间的压力差。逐步减压过程中,系统内置离子光学元件将离子最大效率地传输到质量分析仪。质量分析仪利用电场和/或磁场在离子撞击检测器之前根据其质荷比(m/Q)对元素离子(同位素,或氧化物等)进行有效分离。所生成的质谱图显示在每个质荷比下记录的离子数量。质荷比可用于定性元素(或干扰物)类别,而信号强度则用来定量元素浓度。经ICP源后单颗粒物离子事件产生非常快速的瞬态信号(信号尖状突起),总持续时间一般只有几分之一毫秒。因此,质量分析仪的响应速度需要适配或者更快,从而完整的记录多种离子信号。如前所述,扫描型质量分析仪通常仅针对一种或两种元素,而TOF质量分析仪则能够瞬时记录单颗粒对应的整张质谱(所有质荷比),同时也包含了元素同位素和可能的氧化杂质信息。对于所记录的任何元素(基于质荷比),在瞬态单颗粒物事件持续时间内观察到的总离子信号与单颗粒物中该元素的质量成正比。ICP-MS质谱仪检测到的单颗粒物事件(瞬态信号尖峰)频率则与引入液体样品中的颗粒物数浓度成正比。值得注意的是,不包含信号尖峰的连续平滑信号区域(类似于信号时序图中的背景信号)则代表溶解在液体样品中的相应浓度信息。 为确保所记录的质谱数据包含,且只包含来自单个颗粒物的信号,质量分析仪必须以较快的数据采集效率运行[5]。随着数据采集所需时间的增加,包含两个或多个连续颗粒物信号的事件数量将会相应增加,这会导致后续结果的分析和解读产生偏差。此外,通过在高瞬时分辨率下采集数据,还可以提高信噪比(SNR):与粒子共同单位时间内噪声(对应无颗粒物事件)越少,谱图信噪比将越高,空间检测限则越好。使用spICP-MS质谱仪可实现的空间检测限与特定的元素和其同位素相关,通常在10纳米至数百纳米范围内。无论是将所记录的信号强度转换为元素质量,还是将颗粒物事件频率转换为粒子数浓度,均需要对仪器进行适当的校准。通常,基于参考颗粒物进行校准是最直接的方式,但由于缺乏这些标准颗粒物,这种方式并不直接适用。因此,Pace等 [6]提出了一种替代校准程序,即使用元素标准溶液,同时利用标准程序确定颗粒物传输效率和检测效率。许多分析实验室都在使用这种方法,但其他不同的校准概念在相关文献中也有报道 [7]。超纯水是与ICP-MS质谱仪最兼容的单颗粒物分析溶剂,提供最佳的检测限,但其并不适用于所有系统。此外,在适当样品稀释或颗粒物提取成后,也可以在更复杂的样品基质中进行单颗粒物分析[8],[9]。单颗粒物多元素ICP-MS质谱仪使用由四极杆或扇形场质量分析仪为主的ICP-MS系统进行单颗粒物分析仅限于信息相对简单的样品(比如单元素金属或个别氧化物粒子),因为这类质量分析仪只能在瞬时单颗粒物事件持续时长内记录一种或两种元素信号。相比之下,飞行时间质量分析仪(比如TOFWERK icpTOF系统)则可以记录每个单颗粒物内所有元素及其同位素信号。因此,除了报告元素质量和数量浓度外,基于飞行时间(TOF)的质谱仪还可以精准表征粒子的多元素组分,排除可能的杂质干扰。这种独特的功能对于快速增长的复合纳米粒子分析应用潜力巨大。此外,初始的简单粒子在暴露于复杂环境后经常会发生组分变化,这也使它们的特性和相互作用途径发生变化。单颗粒物多元素ICP-MS系统可以提供有效的方法用于研究这些过程。随着纳米颗粒物在日常产品应用范围和生产规模的持续增加,人们越来越担心其对环境和生命系统(包括人类)可能造成的潜在负面影响。与类似的天然源颗粒物相比,释放到环境中的工程纳米材料的浓度仍然非常低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要。可以想象,要在复杂的环境背景中准确识别出低浓度颗粒物非常具有挑战性。最近,相关研究人员提出使用多元素spICP-MS质谱分析法对单颗粒物进行指纹识别,提供了解决该问题的一种可能解决方法。举例来说,业界已成功运用该方法在含有天然铈粒子的复杂背景下追踪土壤中的二氧化铈(CeO2)工程纳米颗粒物[2]。延伸阅读1. Degueldre, C. and P.Y. Favarger, Colloid analysis by single particle inductivelycoupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A, 2003. 217(1-3): p. 137-142.2. Praetorius, A., et al., Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci.: Nano, 2017. 4(2): p. 307-314.3. Scanlan, L.D., et al., Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013. 7(12): p. 10681-10694.4. Suzuki, Y., et al., Real-time monitoring and determination of Pb in a singleairborne nanoparticle. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 947-949.5. Hineman, A. and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 2014. 29(7): p. 1252-1257.6. Pace, H.E., et al., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011. 83(24): p. 9361-9369.7. Gschwind, S., et al., Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1166-1174.8. Peters, R.B., et al., Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014. 406(16): p. 3875-3885.9. Mitrano, D.M., et al., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 2012. 31(1): p. 115-121.
  • 赛默飞展出SOLA II总硫分析仪及在线工业气体质谱仪Prima Pro——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是赛默飞世尔科技的产品经理介绍SOLA II总硫分析仪及在线工业气体质谱仪Prima Pro的视频。   赛默飞世尔科技工程部总监King Poon先生首先表示非常高兴能参加“第四届中国在线分析仪器应用及发展国际论坛暨展览会”,并隆重的向大家介绍了赛默飞世尔科技的两位产品经理Doug Frye先生和Peter J Traynor先生。   Doug Frye先生向大家介绍了赛默飞世尔科技的SOLA II总硫分析仪,该款仪器卓越的性能在于它能做微量的总硫分析,最低量程可至25ppb,最高量程可达95%;同时该仪器可以配置双PMT检测器用来做宽量程的两个不同的工艺应用;分析仪可做气相或液相应用,也可以分析火炬气中总硫的含量,并且具有非常好的线性;此外,该分析仪非常便于维护和操作,有非常好的经过验证的可靠性,并且具有95%-99%的投用性,是世界上总硫分析仪的领袖产品。   Peter J Traynor先生介绍了新型的在线工业气体质谱仪Prima Pro,该款仪器可用于优化石化行业的控制过程,亦可应用于EOEG(环氧乙烷乙二醇)行业、聚烯烃行业等防爆场合;仪器包括了多流路快速进样阀(32路或64路),非常可靠并具有温控功能;仪器内部使用了扫描磁扇技术,用来分析工业应用中的各种复杂组分;仪器的电子部分采用最新的表面安装技术,带有一体化的温控空调,可靠地设计使得仪器运行3年都不需要停机,其中仅仅需要1-2个小时的维护。   赛默飞世尔科技   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额接近110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific和Fisher Scientific两个首要品牌,公司将持续的技术创新与最便捷的采购方案相结合,为客户、股东和员工创造价值。   赛默飞世尔科技中国   作为全球科学服务领域的领导者,赛默飞世尔科技进入中国发展已有30余年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,员工人数超过1400名,服务于第一线的专业人员超过800名。公司的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案。为了满足中国市场的需求,目前国内已有6家工厂运营。公司在中国连续多年获得《商务周刊》评选的“100家快公司”、《中国企业报》评选的“跨国公司中国贡献奖”以及“2010年中国社会责任优秀企业奖”等奖项。
  • 聚浪成潮 以待花开|质谱国产替代之路有多长?——皖仪分析事业部总经理程小卫
    1.质谱应用广泛成长性高 科研分析仪器是生命科学及医药医疗产业的重要基石,其中质谱仪是市场占比最大,均价最贵,技术壁垒最高的主要领域之一。质谱仪作为高端的检测仪器,在环境监测、食品安全、工业过程分析等领域有着广泛的应用,同时这些下游应用需求带动上游质谱仪市场迅速成长。2021 年全球质谱市场大约450 亿元,预计 2026 年全球质谱仪市场规模可达700亿元。2021年国内质谱仪市场大约150 亿元,占全球市场的30%,年复合增长率高达 20%左右,国产化率大约10%。 2.质谱成为国产替代的首要阵地 在精准医学发展的大趋势下,质谱检验以其高通量、高灵敏度、高精度、高分辨率等诸多优势,在生命科学、生物医药、临床诊断、半导体、环保、食品安全等多领域的检测应用中发挥着越来越重要的作用,但目前国内的市场被赛默飞、SCIEX(丹纳赫)、布鲁克、安捷伦、沃特世、岛津等国外巨头垄断,2020年我国进口质谱规模为105.3亿元,国外厂商在中国质谱市场占有率为74.05%。中美贸易冲突以来,进口质谱的技术限制风险加大,国家陆续出台多项政策支持高端科学仪器的国产化,“十四五”、科技部、工信部相关政策均指出供应链设备需要稳定可控的重要方针,并明确仪器的硬性国产采购比例,同时随着一批国内企业在某些质谱仪产品性能上逐渐达到国际水平,加速了开启国产质谱进口替代的进程。根据海关进口数据,我国质谱的进口依赖度由2014年的94.7%降至2020年的74.05%。 3.质谱应用多元渗透,市场空间可观 美国科研端和生物医药医疗端质谱市场占比约70%,国内对标领域由于下游行业标准及市场空间存在客观差距,应用端渗透仍有较大空间,叠加半导体、环保领域的存量市场,未来国产质谱的市场份额可期。随着生物制药、医疗检测、临床诊断、科研院所的质谱应用多元化渗透,2026年对应质谱仪市场有望达到135亿元,叠加其它赛道国内质谱市场有望达到240亿元。质谱流式细胞仪等新兴领域有望带来质谱市场更大增量空间。表 1:质谱的应用领域广阔 4.质谱仪技术原理介绍 质谱仪是一种通过分析待测物质量获取其结构信息的仪器,基本原理为将分析 样品(气体、液体、固相)电离为带电离子,这些离子被检测器检测后即可得到质荷比与相对强度的质谱图,进而推算出分析物中分子的质量。通过质谱图及分子量测量可以对分析物进行定性分析,利用检测到的离子强度可以进行精确的定量分析。质谱仪器主要由五部分组成:样品导入系统、离子源、质量分析器、检测器、数据处理系统。样品导入系统通过合适的进样装置将样品引入并气化,气化后的样品引入到离子源,在离子源的作用下被转换为气态的阳离子(带正电)或阴离子(带负电),电离后的离子通过适量的加速后进入质量分析器,在质量分析器里磁场与电场的共同作用下,会产生不同的运动轨迹,按不同的质荷比分离,到达检测器上,进而由检测器将其转换为不同的电信号,再由计算机将信号转换为质谱图,质谱图为离子信号与质荷比的函数曲线图,对其进行分析,获得结果。质谱仪器中重要的两个部分是离子源和质量分析器。图 1:质谱仪系统结构示意图4.1离子源随着各种离子化方法不断发展,质谱分析技术广泛地应用于许多领域。多种离子化方法在分析应用价值上各具独特之处,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光致电离(APPI),以及基质辅助光解吸离子化(MALDI)等等技术,还包括新型的这些技术除了有宽广的样品适用范围与高灵敏度,还可与色谱仪联用以降低干扰。使用者可根据样品与被分析物的物理化学特性选用适当的离子化方法。表 2:不同离子源原理对比4.2质量分析器不同的质量分析器均有其不同特性,质量分析器分为磁场式与电场式。磁场式分析器有扇形磁场质量分析器与傅里叶变换离子回旋共振质量分析器,电场式分析器有飞行时间、四极杆、轨道阱等质量分析器,每种质量分析器都具有不同的特性与功能。表 3:不同质量分析器原理对比 5.质谱组合方式——串联质谱 串联质谱(MS/MS)通常是指两个以上的质谱分析器借由空间或时间上联结在 一起所组成的分析方式,常以英文缩写 MS/MS 表示。在常见的串联质谱技术 中,第一个质量分析器的功能通常为选择与分离前体离子,分离出的前体离子 碎裂可产生离子群,传送至串接的第二个质量分析器中进行分析,这些产物离子的质荷比信号在第二个质量分析器中被扫描检测后,即可获得串联质谱图以进一步分析。目前串联质谱技术有两大主流应用,其一为应用于蛋白质组学中以自下而上的方式对酶水解后的多肽进行氨基酸的序列分析。另一主要应用在于对特定化合物进行定量分析。 一般而言,串联质谱分析法有两种不同的串联方式:一种为连接两个实体的不同的质量分析器,为空间上的串联方式,另一种则是在同一子储存装置内进行一系列的离子选择、裂解与质量分析步骤,依时间先后顺序进行不同分析步骤,为时间上的串联。• 空间串联质谱:三重四极杆质谱仪(QqQ)是目前最广泛使用的空间串联质谱仪,由三重四极杆质量分析器组成。其中第一与第三重四极杆质量分析器具有质量分析功能, 第二重四极杆作为碰撞室,仅以射频电位方式操作。 由于三重四极杆的碰撞室中的气体压力十倍高于磁场分析器的碰撞室中的气体压力,在三重四极杆中离子束与中性气体分子具有较高的碰撞次数,用于定量分析具有较高灵敏度,因此这是目前串联质谱最广泛使用的形式。另一种常用的是飞行时间串联质谱仪(TOF/TOF),具有为高能量碰撞解离的优点。• 时间串联质谱:串联质谱法也能在某些具离子储存功能的质量分析器上进行时间串联,其离子在不同时间点可分别进行前体离子选择后储存、离子活化、产物离子分离、扫描后排出等模式,反复进行离子选择、储存与解离的步骤,即可在此类具有离子储存功能的串联质谱仪上得到不同阶段的MS结果。目前具有离子储存及活化解离功能的质谱仪,以傅里叶变换离子回旋共振分析器与离子阱为主。• 杂合质谱仪:在串联质谱仪中,如果不同种类的质量分析器串接,则称为杂合质谱仪。杂合的主要目的是撷取各式不同质量分析器的特点,经组合后可获得更佳的串联质 谱分析结果。 四极杆飞行时间杂合质谱仪(Q-TOF)是杂合质谱仪的主流形式,因为其结合了四极杆分析器具有较高碰撞裂解效率的特点,以及飞行时间分析器具有高质荷比分辨率、非扫描式及高灵敏等优势,具有高解析与高灵敏度的优点,被广 泛应用于蛋白质组定性分析。此外还有离子阱飞行时间(IT-TOF)杂合质谱仪等各类杂合类型。 6.三重四极杆质谱仪(QqQ)知多少?目前主流质谱仪品类已实现商业化,包括单四极杆、离子阱、飞行时间质谱,并能实现三重四极杆的自主可控生产,对应市场端覆盖率超过80%。2019年7月,国家重大科学仪器设备开发专项 2011年首批启动项目——“三重四极杆串联质谱系统的研制及其在痕量有机物分析中的应用(2011YQ060084)”完成综合 验收。该专项围绕国家“十二五”科学和技术发展规划,针对复杂体系中痕量有 机物高通量、高灵敏度和自动化检测需求,研制三重四极杆串联质谱系统产品和配套自动化前处理装置及其它关键部件,开发基于三重四极杆串联质谱系统的痕 量有机物分析平台,在蛋白组学、代谢组学、环境及生态毒理学、食品安全等领域开展分析技术研究与应用示范,实现三重四极杆串联质谱系统的国产化和产业化。当前中国每年10,000台的质谱销量中,无论是台套数还是金额,占比最大的就是液相色谱串联四极杆联用仪(LC-QqQ),每年销量达3000台。随着农兽药残留、药典等新国标的出台,气质联用仪也将会更多地被GC-QqQ取代。LC-QqQ同样也是临床质谱最受关注的技术。据预测,2030年,我国的质谱年市场销量将达到20,000台,LC-QqQ将达到6000-8000台,随着优秀的国产厂商加入,未来将有2000台的新增国产LC-QqQ。这其中包括两大利好因素,首先是政策释放老市场:随着国产设备的稳定性和可用性提高, 2~3年内会出现市场选择和政府扶植的双重增长,年增长率约50%。其次是专用设备的新市场:低竞争、高毛利,配合国内高检测量、实时在线、政府监管的需求,将产生一批过亿的细分市场。因此,国产质谱的未来都是光明的。6.1四极杆质谱仪的几个关键指标解读• 分辨率是指分开两个峰的能力,刚刚分开时两峰之间的质量距离是DM,分辨率英文的原义是Resolution,常用简写R表示,计算公式:R=M/DM,M可理解为两个刚刚分开的峰的平均质量。最严格的分辨率定义是磁质谱的,要求相邻两峰10%峰谷分开才算真正分开,磁质谱的分辨率(即M/DM)不随质量变化,所以磁质谱都用R=M/DM来表示分辨率,磁质谱中,R不变,DM是变化的,质量M越大,DM越大。所以,磁质谱表示分辨率都用R,常常可以见到R=10,000的说法。今天我们讨论的四极杆质谱,都是要求50%峰谷刚刚分开就算分开,这个定义没有磁质谱严格。同时,这个分辨率R随质量变化,而DM不变,即M越小,R越大。所以有机质谱并不用R来表示分辨率,而用DM表示。因为实际工作中很难找到恰好在50%峰谷分开的峰,所以又简化为用单峰法表示,即测定一个峰的半峰高处的全峰宽Full width half Maximum(简写为FWHM),FWHM应近似等于DM。由于采用原始定义,即R=M/DM,DM 不变,M在变,所以R在变,为方便起见还可以用R表示,所以又简化为用FWHM的倒数表示R,R=1/DM。若采用单峰法,则认为R=1/FWHM。这个值也不变化。我们一般称FWHM=0.5为单位质量分辨率;定义宽松一点时,认为FWHM=0.7称单位分辨率;严格一些时,说FWHM=0.4为单位分辨率。反正,不管是0.7、0.5、0.4,一般都认为是指单位质量分辨率。换算下来,R=2M或R=2.5M也都指单位质量分辨率。这些都是我们常见的分辨率的表示方法。所以,我们又常常看到有机质谱用FWHM来表示,比如FWHM=0.25。• 质量准确度是非常重要的指标,代表质量是否准确称量,测定值和理论值之间的误差。随着质谱的长期使用,室温的变化、灰尘的累积、电子元件的老化……这些因素均会导致电学参数发生变化,进而影响到仪器正常运行。四极杆质谱因为其独有的筛选机制 — 固定的RF与DC电压能允许固定质荷比的离子通过,故微小的电压偏差就可能造成质量轴的偏移。由于质荷比大的离子需要较高的RF与DC电压方可通过四极杆,会将漂移的结果放大。同为0.1%的漂移,可能只会造成100 Da的离子峰出现在99.9 Da处,但2000 Da的离子峰则可能会出现在1998 Da处。因此对于大分子分析来说,保证质量准确性就变得更加重要。当质量轴发生明显漂移时,对于使用Scan模式的定性分析,会出现目标峰与理论值偏差增大;对于使用SIR/MRM的定量分析,则是MS1/MS2放行的质荷比与实际离子的质荷比不匹配,导致离子通过率减小,灵敏度下降。所以,我们建议您每隔3~6个月使用已知的标准品进样,质谱通过Scan模式采集信号,检查标准品m/z与实际采集到质谱峰的峰顶处m/z的偏差,如果超过0.2 Da,就需要考虑进行质量轴校正了。如果仪器使用的环境发生较大变化,如一场秋雨让室温从夏天的25度降到秋天的18度,最好立刻检查质量轴漂移情况。• 灵敏度/信噪比。常用的信噪比计算方法有两种:均方根(RMS),峰峰比(S/N)。均方根(RMS)计算方法信噪比最高,峰峰比方法信噪比最低。均方根(RMS)计算方法信噪比最高,对质谱公司的宣传有利;峰峰比方法信噪比最低,对满足用户的要求不利• 滞留时间。Duty Cycle中的两部分Scan1和ISD(恢复原有状态)两部分组成;Dwell time滞留时间,指Scan 1和ISD两部分时间。Dwell Time越长,Duty Cycle越少,扫描越慢,灵敏度越高,数据点越少,分辨率越低!反之依然!• 扫描型仪器(QqQ/Ion Trap)性能制约的黄金三角规则:提高分辨率就会降低扫描速度和灵敏度;提高灵敏度就会降低分辨率和扫描速度;提高扫描速度就会降低灵敏度和分辨率。但,非扫描型仪器(TOF)性能不受黄金三角规则制约,可以同时提高分辨率、扫描速度、灵敏度。6.2三重四极杆质谱仪的几种工作模式解读三重四极杆质谱仪作为目前最灵敏的MS定量技术,可用结构标志物进行选择性测定 ,比如母离子扫描、子离子扫描、中性丢失扫描等。• Q1 MS 全扫描Q1 全扫描 (开始 – 停止),Q1 永远 作为单级 MS 分析器,主要用来鉴定母离子 ,Q1 采用RF-only模式。Q1 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses• Q3 MS 全扫描Q3 全扫描 (开始 – 停止):Q3 永远 作为单级 MS 分析器,主要用来鉴定母离子或用做IDA, Q3 采用RF-only模式。Q3 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses。• MS/MS – 子离子扫描: 选择特定化合物鉴定碎片离子。Q-1设定 , Q-2碰撞活化 , Q-3扫描• MS/MS – 母离子扫描: 发现能产生特定子离子的所有母离子。Q-1扫描 ,Q-2碰撞活化 , Q-3设定(寻找特征离子的来源),应用于化合物筛选,代谢产物鉴定,蛋白质修饰分析。• MS/MS – 中性丢失扫描:发现能丢失中性分子的所有母离子。Q-1扫描,Q-2碰撞活化, Q-3扫描,同时保持Q-1和 Q-3的差值不变 (丢失同一质量的中性碎片),应用于检测失去H2O,H3PO4,HCl,NO2,CO2,SO3,糖分子等的离子。• MS/MS – MRM多反应监测:快速筛查(定性)和定量。Q-1设定,Q-2碰撞活化, Q-3设定(常用于定量)综上所述,三重四极杆质量仪具有超高的 NCI灵敏度;超高的MRM MS/MS 灵敏度;同时检测更多的 MRM离子对(100);工作模式丰富包括SIM、NCI/SIM、NCI/MS/MS、LC/MS/MS、PI,PR,NL,MRM。(未完待续)
  • 全球质谱市场分析及前景预测
    质谱是一种被用于鉴别样品中各种化学成分的分析技术,同时也被用于样品中特定化学组分的定量。目前,质谱已成为分析实验室中研究化合物生物和化学性质的一种很常用技术,其中在生命科学领域,质谱主要用于蛋白质的测序和表征,如鉴定疾病中的关键蛋白并定量、改变表型及识别诊断标志物以便于治疗。   得益于临床诊断的广泛应用,MALDI-TOF发展最快   根据技术划分,目前的质谱技术包括气相色谱-质谱(GC-MS)、液相色谱-质谱(LC-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)、三重四极杆液相色谱-质谱,四极杆飞行时间液相色谱-质谱、电感耦合等离子体质谱等。其中,MALDI-TOF是全球质谱市场中发展速度最快的细分市场,这主要得益于该技术在临床诊断领域中日益广泛的应用。   使用频繁&成本降低,制药成为质谱最大应用领域   按照应用划分,质谱的应用领域包括制药、环境监测、食品和饮料检测、生物技术、工业化学等。其中,制药行业是全球质谱市场中最大的应用市场,这是因为质谱在药物安全方面使用日益频繁,同时还降低了药物发现相关过程中的成本。   北美市场规模最大,亚洲市场增速最快   从地理区域角度来看,北美地区占据了全球质谱市场的主导地位,这是因为该地区的生物技术和生物医学领域的政府投资不断增加,而且蛋白质组学领域研发力度加大也推动了该地区质谱技术的发展,美国是该地区最大的质谱技术市场,加拿大其次。法国、德国、意大利、西班牙和英国占据了欧洲地区的主要市场份额。然而,亚洲市场在未来五年预计将成为全球质谱市场中增速最高的地区,因为很多企业在该地区设立生产工厂和研究中心,并且质谱制造商为促进质谱技术参与发起的展会日渐增多,这也为亚洲质谱市场的快速发展做出了贡献;日本、中国和印度预计将成为亚洲地区增长最快的质谱市场。   剖析:全球质谱市场中驱动力、制约因素   近来,全球质谱市场的主要驱动力包括生命科学研究领域的政府投入加大、医药行业的研发投入提升,同时人们对食品和饮料安全问题的日益关注也推动了全球质谱市场的增长。此外,质谱技术不断进步也刺激了终端用户的采用。   然而,仪器的高成本成为了全球质谱市场增长的关键制约因素,同时质谱操作技术人员的缺失也妨碍了全球质谱市场的增速。   主流制造商兼并整合成全球质谱市场发展趋势   全球质谱市场中的主要参与者包括丹纳赫、安捷伦、沃特世、赛默飞、布鲁克、珀金埃尔默、岛津、日本电子、日本理学、Bio-Rad等,这些主流质谱制造商之间的兼并整合日渐频繁,这将成为全球质谱市场的主要发展趋势。 编译:刘玉兰
  • 质谱进行微生物鉴定的优劣分析
    伴随着医学技术的迅猛发展,质谱技术快速走进人们的生活,特别是在医学中的应用越来越广泛,质谱技术在临床中快速鉴定细菌的成果颇为显著。近年来,全国各大检验室大力引进前沿的检测技术,主要针对微生物领域进行精准检测,质谱技术检测具有操作步骤简单、程序自动化和结果准确率高的优点,能够有效对微生物进行鉴定,此外,质谱技术具有高通量、高灵敏度和高特异性,基于此特点,该技术应用在临床微生物检测上,取得了惊人的效果。总而言之,质谱时代已经到来,打破了传统的微生物鉴定局限,为我国的医疗临床事业作出了巨大的贡献。一、质谱技术的应用原理及优势大量实验研究结果显示,质谱技术的工作原理很复杂,主要是对被检测的标本离子质荷比进行详细测定,采用标本与激光辐射基质混合点相结合形成结晶的方式,力争将标本通过基质分子吸附的方式将其电离,形成完全不相同的带电离子。同时,在带电离子的动能加速下,快速形成聚焦,从而进入质谱技术分析仪器科学分析。在微生物的检验中,质谱技术在一定程度上具有明显的优势,其主要优点在于检验时对标本的要求很低,不像传统的检验需要将标本进行分离甚至是提纯,质谱技术可以直接进行点样。与此同时,质谱技术检验微生物的准确性非常高且操作方便快捷。二、质谱技术在鉴定检测中的具体应用(一)细菌鉴定检测质谱技术应用于临床检验时可以对原始的样本进行检测,也可以对已经分离的纯菌落进行检测。实践证明,临床检验标本时采用质谱技术进行检测,其标本可以是原始样本,还可以是通过相关技术已经分离的纯菌落。临床上,质谱技术在对革兰氏阳性、阴性细菌进行检验鉴定时,其检验结果的准备性很高,但是,同样的标本采用原始检验方法进行对比,其结果相差很明显。在用原始方法与质谱检验方法检验革兰氏细菌的结果对比中,质谱技术检验结果明显比原始技术检验结果准确度高,同时采用质谱技术检验获取结果的时间更短,二者检验结果的差值在统计学上具有一定的存在意义。除此之外,质谱技术在细菌鉴定检测中还有一个特殊的优势,即能够将相同或相近的菌株准确区分开,从而快速鉴定出多种细菌的不同类型、各自的属性及种类等,最主要的是其准确率相当高,能够达到90%-95%左右,此外,在细菌鉴定中还有发现新型病原菌的可能。(二)真菌鉴定检测针对于真菌鉴定检验,质谱技术检验结果对比传统技术具有很高的精准率。在二者的真菌鉴定检测结果中,质谱技术检验结果要明显比传统检验方法更准确,且检测时常较短,其检验结果存在较大的差异性,在统计学上具有重要的存在意义。分析结果表明,因为真菌本身很干燥,不轻易挑选菌落,这种情形能够导致靶点涂菌分布不均匀,再加上检验人员如果在涂菌时涂得过薄,最后影响结晶不能完好形成,基于此特点,原始方法鉴定真菌,其鉴定检测结果与真实结果差异是非常大的。(三)药物敏感性检测临床上,质谱技术还可以对药物的敏感性进行检测,其检测结果具有极高的准确率,而且针对于药物敏感性的检测,质谱技术检验结果用时要比传统技术短很多,可以大幅度降低技术人员的劳动成本。质谱技术与传统技术在药物敏感性的检测中,除了在检测时间和检测结果上有很大的差异性外,在检测范围上也有所不同。传统技术检验范围具有一定的局限性,能够检测极少数的细菌,而质谱技术恰恰相反,可检测的范围十分广泛,且具有检测人工成本低和资源节约的作用。三、质谱技术的发展前景临床上,血液感染时一种十分严重且常见的感染性疾病,该疾病经常需要使用抗生素来治疗,但是由于抗生素使用的不规范,加上不间断的侵入性治疗方案陆续实施,导致每年因血液感染的发病机率持续升高,引起了医学界的高度关注。在过去应用传统的方法检验临床数据时,血培养鉴定结果经常需要很长的时间,进而严重影响治疗的最佳时间,因此,质谱技术应用在微生物检验上,解决了以往医疗上的大难题。大量的临床数据研究结果指出,根据目前的医疗科学技术能够把血液中的致病细菌大量提取出来,然后应用质谱技术检验细菌,对比之前的平板培养技术,其结果更加精准且耗时短。专家指出,有相关学者利用常规技术和质谱技术鉴定血培养结果,得出针对于血培养结果的鉴定还是质谱技术更准确、更快速,且具有明显的统计学意义。四、质谱技术存在的缺陷目前,在现代微生物检验技术中,质谱技术有着诸多优势,对比传统的检测技术,最明显的优势就是检验结果精准且用时很短,同时具有操作简单便捷、程序自动化的特点,但是在临床大量的实际检验中,质谱技术还是存在一定的缺陷,值得相关人员去大力研究。临床上,质谱技术是无法精准检验结构较为特殊的微生物菌种,例如罕见的菌种、新出现的菌种、复杂混合的菌种或与图谱极为相似的菌种,在检验结果上存在着一定误差。质谱技术检验细菌出现这种结果的原因是目前已有的数据库并不完善,现有数据库中已有的标准菌株图谱是有限的,质谱技术的数据库还需要持续不断的完善,因此在微生物鉴定的结果中会产生一定的差异,更无法对新型菌种和特殊菌种进行准确鉴定。除此之外,由于质谱技术刚刚在国内兴起,是一项新型高新技术,在微生物鉴定过程中要求技术人员的操作能力比较强,因技术员的相关知识匮乏、器械不充足或检验手法不熟练等因素都有可能对检验结果形成一定的差异,导致结果不准确。同时,质谱技术检验微生物是一种新型的技术方法,检验时需要采购相应的仪器,价格高昂的检验仪器导致市场推广难以进行。近年来,科学技术的高速发展有效推动了我国社会的进步,其中,作为重要的鉴定技术之一,微生物鉴定技术可以帮助医疗人员进一步实现对于病原微生物的合理理解与充分认识,基于此,医疗工作者在临床过程中可以进一步结合相关结果对于患者的健康情况进行全面分析,对于后续治疗方案的合理制定具有良好的促进意义。近年来,在科学技术的引导下,质谱技术在我国临床微生物鉴定工作中展现出了良好的应用价值,从而受到了广大医疗行业从业者的高度关注。总的来看,与传统微生物鉴定技术相比,质谱技术具有良好的应用优势,可以进一步提升微生物鉴定工作的效率与准确性,然而,该技术仍存在一定的发展空间,因此,为了更好地应用该技术为医疗行业服务,相关研究人员仍需结合大量临床实践合理做好对于质谱技术的探索与改良。
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 沃特世出席第三届全国质谱分析学术报告会,展示最新质谱技术
    由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的第三届全国质谱分析学术报告会于12月8日至11日在厦门成功召开。本次会议以“高速发展中的中国质谱分析”为主题,吸引了来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加。该会议旨在促进中国质谱分析技术的快速发展,展示中国在该领域取得的成绩及增进同行间的学术交流,全国质谱分析学术报告会已成功举办两届,本次的会议内容包括:新仪器新技术、离子源、蛋白与代谢组学、质谱在精准医学中的应用、环境与食品安全分析、无机质谱、质谱成像、有机/生物质谱新方法、青年论坛。作为深耕质谱技术几十载的行业领导者,沃特世公司全方位参与了此次会议,并展示了一系列质谱分析技术领域的最新成果,包括三重四极杆质谱、高分辨质谱以及离子淌度技术等,引起了众多参会者的高度关注和浓厚兴趣。其中,作为Xevo家族最新成员的Xevo TQ-XS,以其极高的灵敏度和整体创新设计已先后荣获ACCSI“2016科学仪器行业优秀新产品”和分析测试百科AnTop奖殊荣。Waters Xevo TQ-XS三重四极杆质谱仪值得一提的是,今年恰逢沃特世推出全球第一台行波离子淌度质谱(IMS)10周年、全球第一台商品化QTof 20周年。从第一台淌度质谱SYNAPT HDMS,到新型淌度质谱VION IMS QTof,淌度质谱已不再神秘,可以应用到每一个实验室的常规分析中,帮助研究人员更有把握地进行分析物的探索、鉴定和定量。会议现场,沃特世公司特意设置了离子淌度知识答题活动,吸引了众多与会者踊跃参与。沃特世展台现场人头攒动,离子淌度答题活动气氛热烈在分会报告上,沃特世公司应用科学家殷薛飞博士作了题为“原位电离质谱技术及其在生物分析中的应用”的报告,详细介绍了沃特世独有的REIMS技术及无损的DESI技术在生物分析中的应用,包括微生物鉴定、质谱成像、药物分布等。原位电离质谱技术是近年来发展迅速的质谱离子化技术,因其无需复杂样品前处理即可实时进行样品分析的优点被广泛应用于快速检测。REIMS技术及无损的DESI技术是两类非常有用的原位电离质谱技术,已被广泛应用于生物科学、食品、制药等行业。沃特世公司应用科学家殷薛飞博士报告现场此外,为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“优秀青年报告奖”和“优秀墙报奖”。沃特世公司质谱产品市场发展总监舒放先生为获得“优秀墙报奖”的诸位作者颁奖,并表示:“沃特世非常荣幸能够赞助此次优秀墙报评选活动。作为质谱分析领域的领导者,沃特世将在未来继续大力支持中国质谱领域的创新发展和各项工作,加大与业内专家学者的学术交流,共同促进中国质谱事业的发展。”“优秀墙报奖”颁奖现场(左二为沃特世公司质谱产品市场发展总监舒放先生)关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 质谱分析可能帮助指导脑瘤手术
    使用一种基于质谱分析的技术探测肿瘤的代谢物,科研人员报告称,实时诊断可能有助于外科医生在手术室跟踪人类大脑肿瘤的范围。外科切除肿瘤常常需要诊断信息,目前是通过病理学家辛苦而耗费时间的活检显微检查获得的。   Nathalie Agar及其同事使用一种称为电喷雾解吸电离质谱(DESI-MS)的技术,用最少的样本处理在手术室迅速执行,从而检测2-HG,这是一种见于IDH-1 和IDH-2基因突变的人类大脑肿瘤的代谢物,这两种基因为参与细胞生长和分化的酶编码。   研究人员使用电喷雾解吸电离质谱(DESI-MS)在数分钟时间里区分了有IDH突变的人类大脑肿瘤样本和没有IDH突变的样本,而这种代谢物清晰地勾画出了肿瘤的范围,并且探测到了渗透的肿瘤细胞&mdash &mdash 这类能力被认为对于优化肿瘤切除和手术的结果具有关键意义。使用安装在美国波士顿的Brigham和女性医院的一间手术室的一台质谱仪,研究人员在手术期间测量了来自两名患星形细胞瘤的脑瘤病人的活检样本中的2-HG,他们提出这种方法可能用于实时诊断,并且有可能清除用其他方法可能会遗漏的肿瘤细胞。   研究人员说,电喷雾解吸电离质谱(DESI-MS)仪器可能有助于描述肿瘤,比组织病理学检查更有效,它们可以安装在手术室中,成本只有用于间接神经外科导航的外科手术MRI机器的一小部分。   原文检索:   Sandro Santagata, Livia S. Eberlin, Isaiah Norton, David Calligaris, Daniel R. Feldman, Jennifer L. Ide,Xiaohui Liu, Joshua S. Wiley, Matthew L. Vestal, Shakti H. Ramkissoon, Daniel A. Orringer,Kristen K. Gill, Ian F. Dunn, Dora Dias-Santagata, Keith L. Ligon, Ferenc A. Jolesz,Alexandra J. Golby, R. Graham Cooks, and Nathalie Y. R. Agar. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumorsurgery. PNAS, June 30, 2014 doi:10.1073/pnas.1404724111
  • 中国化学会质谱分析专业委员会成立
    经中国化学会第28届第3次常务理事会研究决定,同意设立中国化学会分支机构&ldquo 中国化学会质谱分析专业委员会&rdquo ,委员会挂靠清华大学化学系,陈洪渊院士担任委员会首任主任。   2013年10月22日,以陈洪渊院士为主任的首届质谱分析专业委员会,在北京新世纪日航饭店召开首届全体委员会议,共商&ldquo 中国化学会质谱分析专业委员会&rdquo 的活动宗旨以及发展规划。会议来自全国不同领域的质谱专家共35名,由清华大学分析中心承办,陈洪渊院士主持会议。国家自然科学基金委员会分析化学学科主任庄乾坤教授到会致词。庄教授对质谱分析专业委员会的成立表示衷心祝贺,介绍了分析化学学科的发展近况,强调质谱分析研究要瞄准国际学术前沿,开展高水平的基础理论研究 加强质谱分析方法以及质谱仪器研发的创新研究,扩大质谱分析的应用领域,使质谱分析的研究成果在科研领域和经济建设中发挥更大的社会效益和经济效益 吸引更多的年轻人加入质谱分析以及质谱仪器的研究,加强质谱分析的人才培养和队伍建设。   中国化学会常务理事、首届质谱分析专业委员会主任委员陈洪渊院士宣布首届中国化学会质谱专业委员会成员名单,到会委员逐一做了自我介绍。陈院士简要地回顾了我国质谱仪器研制、分析方法研究与应用的发展过程,指出成立中国化学会质谱分析专业委员会是顺应分析化学学科的发展趋势,有利于开展广泛的学术交流,可以为生命科学、环境保护、医药卫生、石油化工、新材料、新能源等领域提供更大的帮助。本次会议秘书长林金明教授介绍了委员会成立的经过,考虑到质谱分析涉及研究领域多、应用范围宽等特点,委员会的成立经过长期的酝量,在不同领域、不同单位的院士、领导和专家的推荐下,成立了以陈洪渊院士为主任委员,江桂斌院士、张新荣、刘虎威、陈义、邹汉法、杨芃原、林金明、钱小红、再帕尔· 阿不力孜、潘远江等教授为副主任委员的首届质谱分析专业委员会。得到中国化学会秘书长会议以及常务理事会的大力支持,于2013年1月15日召开的中国化学会第28届第3次常务理事会上表决通过。   会议期间,委员们踊跃发言,对于如何更加快速推动我国质谱分析,乃至其它分析方法研究水平的提高,献计献策。会议讨论了质谱分析专业委员会的活动宗旨和业务范围,讨论了与中国物理学会质谱分会联合开展各项学术活动的相关事项,初步确定于2014年召开中国化学会首届全国质谱分析学术研讨会 确定了杨芃原教授作为特约主编,在《中国科学》(化学)出版首届质谱分析专业委员会成立的纪念专辑 确定与《仪器信息网》合作,开展质谱技术讲座和网络研讨会,普及推广质谱研究成果。   附:中国化学会质谱分析专业委员会组织机构(第一届)   挂靠单位:清华大学化学系   主任:陈洪渊   副主任:江桂斌、张新荣、刘虎威、陈义、邹汉法、杨芃原、林金明、钱小红、再帕尔&bull 阿不力孜、潘远江   秘书长: 林金明   委员(按姓氏拼音排列):   蔡宗苇、陈焕文、储晓刚、段忆翔、方向、郭良宏、郭寅龙、杭伟、黄业茹、黄光明、纪建国、蒋宇扬、李晓东、刘劲松、刘建华、刘斯奇、刘震、刘志强、陆豪杰、吕强、聂宗秀、史权、谭蔚泓、吴永宁、汪海林、吴侔天、熊行创、许国旺、徐建中、杨福全、张丽华、张四纯、张殷、张智平、周江、周振、赵镇文
  • BCEIA 新品奖,原位电离助力前沿质谱分析!
    在 BCEIA 盛会上,华质泰科以“原位检测”为主题,携 7 款产品亮相,并有 5 款产品获得“BCEIA2017 新品奖”。先来感受下展会盛况:展出产品现场交流BCEIA 分析测试仪器与 技术评议注重应用开发,搭建原位检测应用平台“我们引进国外先进的质谱技术,通过和国内不同市场的整合,刺激客户的需求。在与客户的不断交流中发现新的问题,从而开发具有中国特色的新部件和下一代产品,迎合一带一路的策略,走向全球各地。”—— 华质泰科总裁兼首席技术官刘博士“我们不只是担任仪器的销售代理,更希望能够从仪器的技术应用到生产制造,都发挥特殊的价值和作用。国家的发展带来了对分析仪器、分析技术的强烈需求,因此我认为新应用平台的搭建大有可为。”—— 华质泰科运营总监汤总前沿原位质谱部件,荣获五项“BCEIA2017 新产品奖”在 BCEIA 的颁奖晚会上,华质泰科有五款产品喜获“BCEIA2017 新产品奖”。这是华质泰科第二次荣获中国分析仪器行业新品奖,原位电离质谱技术能够再次得到专家和同行的肯定,令产品厂商及相关研究人员备受鼓舞。传播前沿质谱理念,共谋实时科学发展,是华质泰科一直坚持不懈的追求。我们致力于引领行业领域中先进的原位质谱技术潮流,为国内质谱行业的发展做出贡献。相关产品信息:HM4 或 Pearl 为第四代“超”高分子量 MALDI 质谱检测系统,基于独特的转换打拿极技术,扩展 MALDI 质谱检测质量上限到 250 万 Da 以上,实现 nM 浓度的超痕量、大分子抗体药物和蛋白质复合物的高灵敏度分析。在诸如蛋白质复合物测定、蛋白质相互作用、抗原抗体相互作用、蛋白质聚集分析、高分子量 MALDI 质谱成像、临床转化医学、生物制药,等领域的应用卓有成效。实时直接分析离子源(DART),兼容各主流质谱厂家的液质(LC-MS)质谱仪,用于快速、无损、原位分析固体、液体、气体、及异型样品中的极性、弱极性甚至非极性有机分子。适于食品、材料、体液、商品、农副产品、水产品、药品、理化、物证、化纤、玩具、临床、环境等等活性成分、功能组分或有毒有害化合物的快速定性、定量分析及快筛和确认。该技术不需要(像 ESI 那样)引入其他溶剂来影响离子的形成过程,真正实现直接、快速或无损、无接触分析。由于溶剂、基质(如蛋白质)、盐类对 DART 离子化过程不产生抑制效应,因而该技术对样品基质不需要进行特殊的前处理。DART 能充分实现几秒钟内的快速、高通量的样品分析,大大提高大批量样品的瞬时定量和定性分析能力。如某地商检用 6545 飞行时间质谱接 DART 源快速筛查并定量鸡蛋中氟虫腈,每个样本检测时间 6 秒(内)。而常规分析接色谱柱至少要 5 分钟才能完成每次检测,该(DART-QTOF)方法极大地提高了效率,真正意义上实现高通量。DESI (解析电喷雾电离) 为常压离子化技术,可直接原位分析固相或凝固相样品,用于药物代谢物分布、肽、脂质、和蛋白质分析,实现分子成像而不需(像 MALDI 那样)采用基质,保持样品的形态和特征无损,快捷获取器官、材料、和组织切片中的关键物质信息及分布信息。其独特的高分辨率成像功能可实现器官组织等基体中关键物质的快速分析,并能在多个质谱厂家(如 Bruker、SCIEX、Thermo、Agilent 和 Waters)的各型质谱仪上使用。flowprobe 流动微萃取探针离子源, 是一种实时的原位动态微萃取技术,是美国橡树岭国家实验室的 Gary Van Berkel 博士发明了静态液滴萃取表面分析(LESA)之后的又一创新发明。该技术基于液相微临界表面取样探针 (LMJ-SSP) 原理,其萃取效率在商品化的原位电离技术中首屈一指,适用于细胞、组织、聚合物等平面类样品的药物分布研究、癌症分析、微生物聚类分析等方面,并与主流质谱兼容(如 Thermo、Bruker 和 SCIEX 等)。多通道纳喷离子源 (TriVersa NanoMate,简称 TVNM) ,是基于芯片的多通道纳升电喷雾离子化(Chip-based nanoESI) 技术,集液相色谱 (LC)、质谱 (MS)、芯片纳升注射 (Chip-based Infusion)、馏分收集 (Fraction Collection) 和液滴萃取表面分析 (LESA) 等众多优异功能于一身的新型高端质谱产品。LESA 能够实现极小量样品的多次重复测量,准确度高,重复性好,实现生物样品如组织切片、食品、材料表面等的原位、灵敏、直接、和高通量分析,可帮助解决围绕食品中的蛋白质、脂质、抗体、代谢物、药物残留、小分子质谱成像、药物在组织中的分布等生命科学中的问题。LESAPlus 添加了第五种功能 -- 用于液滴萃取表面分析后的进一步分离,对复杂体系、抗体分析、蛋白分析等等添加了新的第四维度的分离。AP-MALDI (常压基质辅助激光解析电离源)基于独特的脉冲动态聚焦技术,采用高效的固态 Nd:YAG 激光器,离子化更加连续稳定。调谐优化简便,可质谱成像,最高成像分辨率达10 μm。与各种质谱分析器相联,适于多肽、蛋白质、核酸、唾液酸神经节苷酯、低聚木糖、表面活性剂、聚合物等大分子以及氨基酸、寡肽、中性寡糖、植物皂苷等小分子化合物的原位、直接分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制