当前位置: 仪器信息网 > 行业主题 > >

质谱精确质量

仪器信息网质谱精确质量专题为您提供2024年最新质谱精确质量价格报价、厂家品牌的相关信息, 包括质谱精确质量参数、型号等,不管是国产,还是进口品牌的质谱精确质量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱精确质量相关的耗材配件、试剂标物,还有质谱精确质量相关的最新资讯、资料,以及质谱精确质量相关的解决方案。

质谱精确质量相关的资讯

  • IonSense与Cerno推出精确快速筛查质谱
    在Pittcon 2013上,美国IonSense公司与Cerno Bioscience(思路生科)联合推出了一款低成本的DART(R)质谱系统。该系统将Cerno公司的MassWorks&trade 软件与DART® GSX系统实现了集成。   IonSense公司的DART® GSX系统能够在主流型号安捷伦5975 GC/MSD气质联用仪中实现常压离子化,再加上Cerno公司的专利校准技术,DART® GSX系统能够在短时间内提供精确质量测定结果,成本还不到行业标准用高分辨率质谱仪的一半。   借助于安捷伦的MSD产品,这款拥有精确质量检测能力的全套产品可以供那些QA/QC需求未得到满足的化学家们使用,如食品安全、法医和化学分析领域。   只需花费不到10万美元,就可以购买到该款集成的精确筛查仪器。目前,IonSense公司可以向那些销售高分辨率质谱仪的LC/MS厂商提供其广受欢迎的DART-SVP源。&ldquo 许多食品、香料和取证分析领域的实验室希望拥有一个高性能的LC/MS仪器,只可惜成本太高,大量的有机溶剂更是增加了操作成本。&rdquo 实时直接分析技术(DART)无需复杂的样品制备,减少耗时,并且只需要几秒钟可快速筛选大多数分析样品。IonSense公司总裁Brian Musselman补充到。   Cerno Bioscience公司创始人兼总裁王永东博士表示,2003年成立的Cerno 公司是一家专注于质谱新技术研究的公司。质谱软件产品MassWorks产品于2006年Pittcon会议上推出,并于当年获得了最佳新产品奖。MassWorks的关键技术是新的质谱校正法,能够提高100倍的质量准确度。其独特之处是:可在单级质谱上实现5ppm准确度的分子质量测定,并运用同位素峰簇作分子式的识别。(编译:刘玉兰)
  • 靶向质谱精确鉴别与研究
    p   今天小编与大家一起来来分享通过靶向质谱精确鉴别胰腺癌囊性前病变的研究。大家都知道胰腺囊性病变经常在影像学检查时被偶然发现,但是可能有一半是胰腺癌的征兆。因此,准确的鉴别诊断就显得尤为重要。但遗憾的是,目前的诊断方法并不能强有力地识别癌前病变和恶性胰腺囊性病变。不久前,在著名肿瘤学杂志上JCO则发表的一篇文章旨在提高鉴别诊断的准确性。 /p p   研究人员采用常规超声引导下抽吸囊液样本进行分析。在一个24例患者的队列中,通过探索性蛋白质组学的方法确定了8个恶性可能和高级异型增生/癌症的候选生物标记物。随后,利用30个重标肽和平行反应监测质谱进行了定量分析,在80例的队列中进行了测试,并在68例患者的验证队列中进行了前瞻性评估。终点为外科病理诊断/临床随访。 /p p   研究结果显示检测恶性可能最佳的一组标记是一组来自musin-5AC和mucin-2的肽段,能够在验证队列中区分出癌前病变/恶性病变与良性病变,准确率97%(95%CI,89%-99%)。这一结果与标准分析相一致:囊液癌胚抗原(61% 95%CI.46%-74% P& lt 0.001)和细胞学(84% 95%CI,71%-92% P=0.02)。结果蛋白质mucin-5AC及前列腺干细胞抗原能够以96%的准确性识别出高级别异型增生/肿瘤(95%CI,90%-99%),并能发现95%恶性/严重不典型增生,而癌胚抗原和细胞学分别为35%和50%(P& lt 0.001 P=0.003). /p p   由上述研究可以看出仅对三种囊液生物标记物做靶向的质谱分析,就可以以高度准确性来识别和评估胰腺囊性变及胰腺癌。 /p p   阅读上文小编认为,通过靶向质谱精确鉴别胰腺癌囊性前病变的研究,在临床、科研等影像研究领域起着至关重要的作用。而对于不断新型的标记物和靶像分析与检测,相信在未来的科学研究中有着突破性的意义。 /p
  • 精确操控离子反应质谱科学装置研发启动
    国家重大科学仪器设备开发专项 “精确操控离子反应质谱科学装置的研制及应用研究”启动   由国家质检总局组织实施的国家重大科学仪器设备开发专项——“精确操控离子反应质谱科学装置的研制及应用研究”的启动会,在项目牵头单位中国计量科学研究院召开。会议由国家质检总局科技司主持,科技部科研条件与财务司吴学梯副司长,国家质检总局科技司侯玲林副司长,国家自然科学基金委分析化学学科项目主任庄乾坤教授,中国分析测试学会张渝英秘书长,中国计量科学研究院副院长段宇宁、宋淑英等项目承担单位的领导,以及中科院大连化学物理研究所张玉奎院士、杨学明院士等相关专家出席。    会议宣布成立项目监理组、项目总体组、技术专家委员会、用户委员会和项目管理办公室。科技部条财司吴学梯副司长作了重要讲话。他指出,科学仪器设备是光学、机械、电子、计算机、物理、化学、生物等学科领域各种高新技术的集成和结晶,在涉及重大科技前沿、国防等敏感领域的研究中,研发若干具有国际领先水平的重大科学仪器设备,将有效支撑我国开展世界一流科学研究、带动我国高新技术产业的发展。他强调,科学仪器设备的自主研发水平往往成为衡量一个国家创新能力的重要标志之一。“十二五”期间,我国把引领和支撑科技发展的科学仪器设备自主创新摆在优先发展位置,这对于增强我国科技实力、引领国民经济又好又快发展具有非常深远的意义。   科技部条财司吴学梯副司长作重要讲话   项目负责人方向研究员汇报了项目整体情况,各任务负责人汇报了任务实施方案。与会专家认真听取、各抒己见,充分表达了对项目的支持,并提出了具体的要求和建议,希望项目组不仅要克服技术难题,也要努力将各任务之间的组织协调工作做好,以确保项目的顺利实施。项目总体组组长、中国计量科学研究院段宇宁副院长表示,中国计量院将全力以赴支持项目的实施。   该项目自2011年10月开始实施,将于2016年10月结束。任务承担单位包括:中国计量科学研究院、北京理工大学、清华大学、北京蛋白质组研究中心、中国科学院大连化学物理研究所、北京生命科学研究院。   该项目着重针对生物、材料和先进能源技术等重要领域的蛋白精确分析等前沿技术、分子反应动力学等基础问题,通过研发新技术、新方法,实现离子精确操控及质谱分析,为上述领域的研发提供高性能、高效率、具有创新操作模式的强大工具。   本项目将研制3套以精确操控离子反应系统为核心的科研装置,包括:离子反应超高分辨质谱装置、碰撞反应飞行时间离子谱装置和离子反应理论研究与实验装置。并在此新装置上分别开展离子束反应与控制、蛋白磷酸化筛选与鉴定、碰撞反应飞行时间离子谱、蛋白分析中的ETD反应及离子碎裂新方法、高纯有机试剂中痕量杂质精确分析等应用研究。   据项目负责人方向研究员介绍,通过该项目的实施,在仪器研制方面,将掌握精确离子操控核心技术和一系列关键技术,形成一整套具有自主知识产权的机械、电子、光学、软件等关键部件和高性能的整机 在应用研究方面,有望突破生物、材料和先进能源技术等重点领域尚未解决的难题,建立我国尖端科学实验装置研发基地,形成高端科学装备研制技术团队和前沿技术科学家紧密合作的研发联盟,为我国高端质谱仪器创新发展进一步奠定重要基础。   国家重大科学仪器设备专项项目是为了贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,由财政部、科技部共同设立的旨在支持重大科学仪器设备开发,以提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设而设立的专项支持资金。今年为首批资助,采取限项推荐方式。今年全国53个项目获得资助,中国计量科学研究院“宽量限超高精密电流测量仪”和“精确操控离子反应质谱科学装置的研制及应用研究”2个项目获得资助。
  • 国产飞行时间质谱仪实现纳秒级精确测定
    p   毫厘之差,已远不能形容现代科技测量的变化范围。高新技术企业北京毅新博创生物科技公司研发的飞行时间质谱仪,能在纳秒级对物质分子量进行测定,更敏锐地发现基因变化。记者日前获悉,该技术产品已获得北京市科委新技术新产品认证。 /p p   1纳秒相当于十的负九次方,即十亿分之一秒,飞行时间质谱仪的精度可见一斑。通过这一技术,可测定基因、蛋白、糖基的变化,从而发现肿瘤、缺陷基因等突变,在优生优育、精准医学、分子遗传育种等领域有着极广的应用。此前,该技术和产品均被国外垄断。 /p p   据项目工程人员介绍,该技术利用试剂把基因、蛋白质等生物大分子离子化后,在高能脉冲电压作用下,让其“飞一会儿”,最终通过测量离子飞行时间,计算分子量的变化,分析出基因或蛋白中发生的具体变化。 /p p   “精度可以达到分子量的千分之一量级。”毅新博创董事长马庆伟介绍。在一般初中和高中的化学课本中,精确到个位数的分子量,已足够人们去计算各种化学反应中物质种类、数量的变化。测量到千分位后,对分子内部变化都可以“明察秋毫”。举例说,水的分子量是18,如果精确到千分位,就可知道水分子中不同元素的同位素比例,来自长江、黄河的水即使提炼为纯净水,也一样可以迅速、精确地分辨出来。 /p p   该项目运用到临床中,可提前预警肿瘤。一位70岁的患者肺部出现阴影,但无法确诊是否是肿瘤。通过飞行时间质谱仪,检测到基因出现变化,并准确判断出血液循环肿瘤DNA中“KRAS”基因发生了突变。这名患有结肠癌合并肺转移的患者手术后,通过测量血液循环肿瘤DNA,术后第二周就可以发现基因突变,预警肿瘤复发,而目前临床检测手段直到术后第八周才能确诊肿瘤是否复发。 /p p   据介绍,飞行时间质谱仪对肿瘤的检测灵敏度,要比基因测序检测提高十倍。基因测序需要将所有基因测一遍,才能发现突变基因;而飞行时间质谱仪可以很精确地检测发生突变的基因位点。过去寻找基因中的突变靶位,需要几天时间才能完成基因测序,解读测序数据又需要花费几周时间。而利用飞行时间质谱仪几个小时就能完成检测,速度提升数十倍,患者所花费的检测费用也会大幅降低。 /p p   高精度的飞行时间质谱仪应用非常广泛。例如,用在优生优育领域,可以无创检测侏儒症、先天性耳聋等基因,完成产前检查、新生儿筛查 用在分子遗传育种领域,可以快速、准确找到优势基因,实现精确杂交,过去几年才能完成的杂交育种筛选,有望一两年内就能完成。目前飞行时间质谱仪已经开始在水稻、玉米、小麦等品种中建立基因数据库,下一步将在花卉、蔬菜、奶牛、蛋鸡等品种中开展基因数据库的建设,为推出高产、高质的新品种奠定分子基础。飞行时间质谱仪还可以用于病毒分析等微生物检测。 /p p   “之前,这一领域是外国技术的天下,现在终于实现中国‘智’造。”马庆伟介绍,这项完全自主知识产权的技术,已经申请发明专利60余项。今年年底到明年年初,马庆伟计划与美国霍普金斯大学合作建立一个实验室,让这项新技术接受国际竞争与挑战。 /p
  • 安捷伦科技公司推出了业内首款用于 GC/Q-TOF 的精确质量农药谱库
    安捷伦科技公司推出了业内首款用于 GC/Q-TOF 的精确质量农药谱库全扫描数据库与快速高分辨精确质谱相结合,适合广泛地分析各种已知和未知的食品污染物 2014 年 6 月 17 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日推出了适用于气相色谱/四极杆飞行时间 (GC/Q-TOF) 质谱联用仪的全新个人化合物数据库和谱库(PCDL)。作为安捷伦全系列农药监测与分析解决方案的组成部分,全扫描农药 PCDL 可与高分辨率精确质量技术相结合,即使面对最具挑战性的农药和未知污染物,也能清晰、精确地鉴别。 农药库 PCDL 是首款市售的高分辨率精确质量 GC/Q-TOF 谱库。它由安捷伦与德国化学兽医检验局的 Peter Fürst 博士、西班牙阿尔梅里亚大学的 Amadeo Rodriguez Fernandez-Alba 和加利福尼亚州斯托克顿的太平洋大学化学系副教授 O. David Sparkman 合作开发而成。 采用单四极杆或串联四极杆仪器的传统筛选过程需要通过大量的方法设置和优化,以筛选数百种化合物。将 Q-TOF 技术与精确质量质谱库相结合可避免这一复杂的过程,为筛选工作流程提供了更高的灵活性。此外,高分辨率精确质量测量使筛选结果更加可靠。 “将 GC/Q-TOF 与全新的精确质量谱库相结合,使我们能够快速筛选数百种农药和污染物,”Fürst 博士说道。“高分辨率精确质量与全扫描数据采集能力的结合,使我们不仅能获得更加可靠的结果,而且还能寻找和鉴别新兴的污染物。 农药库 PCDL 专门针对 Agilent 7890B 气相色谱和 7200 系列 GC/Q-TOF 质谱仪而开发,适用于食品安全检测和环境筛选分析。它针对农药筛选中最常用的三种气相色谱方法进行了保留时间锁定。该套件包括: 750 多种农药和环境污染物的精确质量 EI 谱图 MassHunter PCDL 软件,借助该软件可以轻松查看和编辑内容,使用户轻松创建针对较少量的、更特定的分析物的定制数据库,以满足特定要求 快速入门工具包,包括含方法和数据文件、应用简报和用户指南的 DVD,它展示了实际分析示例,有助于用户快速入门 这一全新的数据库和谱库将于 2014 年下半年推出。 如需了解有关这一全新的农药数据库/谱库的更多信息,请联系 jennfier_gushue@agilent.com。 关于安捷伦农药监测与分析解决方案 有关详细信息,请访问安捷伦农药监测与分析解决方案网站。 安捷伦的 LC/MS 和 GC/MS 技术在农药监测与分析以及公司的完整食品检测与农产品分析方案中具有重要作用,适用于全球食品供应链生产、检验、新产品开发、质量控制和包装的检测应用。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦公司新闻网站:www.agilent.com.cn/go/news。
  • 短寿命原子核质量精确测量揭示中子星性质
    5月4日,记者从中国科学院近代物理研究所获悉,该所原子核质量测量团队与合作者基于兰州重离子加速器冷却储存环,利用国际首创的新型质谱术,精确测量了一批关键原子核的质量,研究了中子星表面的X射线暴,从新的角度约束了中子星的性质。相关成果于5月1日发表在《自然物理》上。  中子星是人类已知的最致密的星体之一。X射线暴发生在中子星与伴星(通常是一颗红巨星)组成的双星系统中,是目前已知的最频繁的天体热核爆发过程,也是太空望远镜所能观察到的最亮的天文现象之一。中子星强大的引力将伴星中富含氢和氦的燃料吸积到中子星的表面。当这些燃料的温度和密度达到一定程度时,热核反应会被点燃,在10-100秒时间内释放出大量能量,形成X射线暴。X射线暴为研究中子星性质提供了窗口。  快速质子俘获过程是驱动X射线暴的主要热核反应之一,涉及到一系列远离稳定线的短寿命缺中子原子核。其中,锗-64扮演着非常重要的角色,被科学家称之为“等待点核”。精确测量锗-64附近原子核的质量,对深入理解X射线暴和确定中子星性质非常重要。  2011年,近代物理所首次测量了短寿命原子核砷-65的质量,它是锗-64的质子俘获产物,为研究快速质子俘获过程中锗-64等待点核问题提供了关键数据。但想要彻底明确锗-64周围的核反应流,锗-64的双质子俘获产物硒-66及其他附近原子核的质量也非常重要。然而,硒-66的产生截面比砷-65低一个量级,测量难度更大,多年来国际上一直未能突破。  历经十余年努力,近代物理所质量测量团队基于兰州重离子加速器冷却储存环研发了新一代等时性质谱术,并将其命名为“磁刚度识别的等时性质谱术”。新型质谱术具有高精度、单离子灵敏、高效率、短测量时间、无背景污染等优点,是目前国际上最先进的短寿命、低产额原子核质量测量方法之一。  利用新型质谱术,研究团队精确测量了砷-64、砷-65、硒-66、硒-67、锗-63等原子核的质量,从而在实验上首次确定了等待点核锗-64相关的所有核反应能。其中,砷-64和硒-66的质量是国际上首次测量,其他原子核的质量精度均得到提高。  通过研究新的原子核质量结果对X射线暴和中子星性质的影响,团队发现新的结果使快速质子俘获过程发生了变化,X射线光度曲线峰值增加、尾部持续时间延长。对比目前天文观测数据最丰富的、代号为GS1826-24中子星的X射线暴,团队发现该中子星与地球之间的距离更远(需增加6.5%)、中子星表面引力红移系数需要降低4.8%。中子星表面引力红移系数的上述变化意味着中子星密度比预想的要低一些,而X射线暴后中子星外壳的温度会比通常认为的更高。  中子星的性质研究是一个重要的前沿课题,可通过天文观测、重离子碰撞等不同方式进行研究。本研究通过原子核质量测量得到更精确的X射线暴光度曲线,和天文观测比较,从新的角度约束了中子星的质量和半径的关系。
  • 113万!复旦大学采购电喷雾离子源精确定性质谱仪
    项目概况复旦大学电喷雾离子源精确定性质谱仪采购国际招标项目 招标项目的潜在投标人应在复旦大学招采进宝电子招投标系统(http://fudan.zcjb.com.cn/ebidding)获取招标文件,并于2022年04月22日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:0705-224002028013项目名称:复旦大学电喷雾离子源精确定性质谱仪采购国际招标项目预算金额:113.0000000 万元(人民币)最高限价(如有):113.0000000 万元(人民币)采购需求:招标项目编号:0705-224002028013招标项目名称:电喷雾离子源精确定性质谱仪项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1电喷雾离子源精确定性质谱仪1套分辨率:>21000FWHM @1522 m/z(单电荷)预算金额:人民币113万元 合同履行期限:签订合同后6个月内合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:详见招标文件3.本项目的特定资格要求:(1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;(2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的唯一授权;(3)投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;(4)本项目不接受联合体投标;(5)本项目不接受分包和转包。三、获取招标文件时间:2022年03月24日 至 2022年03月31日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:复旦大学招采进宝电子招投标系统(http://fudan.zcjb.com.cn/ebidding)方式:有兴趣的潜在投标人应于2022年3月24日16:00时起至2022年3月31日16:00时止(北京时间),通过招标人指定的复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)在线领购招标文件,招标文件售价零元,在上述规定的招标文件出售截止期之后将不再出售本项目的招标文件。未从招标机构处领购招标文件的潜在投标人将不得参加投标售价:¥0.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月22日 10点00分(北京时间)开标时间:2022年04月22日 10点00分(北京时间)地点:复旦招采系统五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、招标文件的获取招标文件领购开始时间:2022-03-24招标文件领购结束时间:2022-03-31是否在线售卖标书:否获取招标文件方式:现场领购招标文件领购地点:复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)招标文件售价:免费其他说明:有兴趣的潜在投标人应于2022年3月24日16:00时起至2022年3月31日16:00时止(北京时间),通过招标人指定的复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)在线领购招标文件,招标文件售价零元,在上述规定的招标文件出售截止期之后将不再出售本项目的招标文件。未从招标机构处领购招标文件的潜在投标人将不得参加投标2、投标文件的递交投标截止时间(开标时间):2022-04-22 10:00投标文件送达地点:复旦招采系统开标地点:复旦招采系统3、投标人在投标前应在必联网(https://www.ebnew.com)或机 电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在必联网和中国国际招标网公示。4、联系方式招标人:复旦大学地址:上海市邯郸路220号联系人:张老师联系方式 :021-65641327招标代理机构:上海国际招标有限公司地址:中国上海延安西路358号美丽园大厦14楼联系人:马骎联系方式 :021-321736765、汇款方式招标代理机构开户银行(人民币):招标代理机构开户银行(美元):账号(人民币):账号(美元):其他: 1、通过境内账户用人民币形式汇款的银行账户信息 (1)开户银行:招商银行股份有限公司上海曹家渡支行 (2)户名:上海国际招标有限公司 (3)账号:215080920510001 2、通过境外账户用外币或人民币形式汇款的银行账户信息 (1)收款人开户银行:(ACCOUNT WITH INSTITUTION) (a)Bank: CHINA GUANGFA BANK, H.O. (b)Swift Code: GDBKCN22 (c)Address: No.713 EAST DONGFENG RD. YUEXIU DISTRICT, GUANGZHOU, GUANGDONG PROVINCE CHINA CHN (2)收款人名称、地址和账号:(BENEFICIARY) (a)Beneficiary: Shanghai International Tendering Co., Ltd. (b)Address: 14/F.358 Yan An Road(W), Shanghai 200040, P.R.China (c)A/C No.: 9550880025773600153(CNY) CNAPS:306290003671 (d)A/C No.: 9550880025773600333(USD) (e)A/C No.: 9550880025773600513(EUR) (f)A/C No.: 9550880025773600423(JPY)6、其他补充说明其他补充说明: 关于复旦招采系统:复旦招采系统是由第三方机构独立运营的电子采购平台,有关该平台的使用方法及注意事项请参见该平台的供应商使用说明,在参与投标的过程中若遇到该平台的操作及技术问题,请咨询平台运营机构(机构名称:上海汇招信息技术有限公司,联系电话:4000192166 转 4、4006166620)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:上海市邯郸路220号        联系方式:张老师、021-65641327      2.采购代理机构信息名 称:上海国际招标有限公司            地 址:中国上海延安西路358号美丽园大厦14楼            联系方式:马骎、021-32173676            3.项目联系方式项目联系人:马骎电 话:  021-32173676
  • 德测得迄今最精确电子质量
    正在围绕原子核旋转的电子(示意图)   德国科学家宣布对电子质量做出了迄今为止最精确的估算,精度比目前采用的数据提高了13倍。研究人员称,该成果对基础物理研究具有重要价值,为科学家探索物质世界提供了一个更为精确的工具。相关论文发表在19日出版的《自然》杂志上。   电子是构成原子的基本粒子之一,在原子中围绕原子核旋转,带负电,质量极小。1897年,英国剑桥大学卡文迪许实验室的约瑟夫· 汤姆逊在稀薄气体放电的实验中首次证明了电子的存在,并测定了电子的荷质比(带电体的电荷量和质量的比值)。   据物理学家组织网2月20日(北京时间)报道,德国马克斯普朗克核物理研究所的斯文· 斯特姆和他的团队通过使用一种名为&ldquo 彭宁离子阱&rdquo 的装置,测到电子的精确质量为0.000548579909067原子质量单位,比2006年国际科技数据委员会采用的电子质量精确了13倍。   &ldquo 彭宁离子阱&rdquo 是一种能够在足够长的时间内&ldquo 囚禁&rdquo 少量带电原子或电子的电磁设备,借助它研究人员能够对电子的性质进行空前精确的测量。原子质量单位是用来衡量原子或分子质量的基本单位,被定义为碳-12原子质量的1/12。   斯特姆的团队将一个质量已知的参考离子与被其束缚的一个电子一起&ldquo 关入&rdquo 彭宁离子阱,通过测定两者的总质量,得到了电子的质量。   研究人员称,这项成果将物理学的实验精度提高到了一个新的水平,为未来重大物理实验和标准模型的精准测试打下了基础。
  • 迄今最精确质子质量值有了
    11月30日,据《科学》报道,美国佛罗里达州立大学原子物理学家Edmund Myers和David Fink将两个离子限制在一个电磁陷阱中,让它们连续转动数周,并以极高的精度比较它们的质量。随后,他们得出了迄今为止最精确的质子质量估值:1.007276466574±10-12 amu(原子质量单位)。这串数字可能帮助科学家寻找到新的力。相关研究结果发表于《物理评论快报》。  为确定轻原子核(如质子)质量,科学家运用物理学方法,将质子这样的带电粒子垂直射入磁场,磁场会将其推向一边,这样质子就会以显示粒子质量的频率旋转。在实践中,为了提高测量精度,物理学家通过比较两种不同粒子的频率以测量它们的质量比。  例如,在2020年,Myers和Fink测量了氘核(由一个质子和一个中子组成的原子核)和一个电离氢分子(由两个化学结合的质子组成)的质量比。这两个粒子具有相同的电荷和几乎相等的质量,所以它们以几乎相同的频率运行,增加了测量的精度。  为了使氘核和氢离子在相同的条件下运行,Myers和Fink把它们放在同一个电磁陷阱中,并持续数周。他们将其中一个放置在一个直径4毫米的大轨道上,另一个在陷阱中心40微米的轨道上旋转,每10分钟交换一次。然而,即使是这种技术也不足以确保两个粒子的测量结果是完全可比的。Myers说:“在这10分钟内,磁场会发生变化。”  现在,Myers和Fink已经解决了这个问题。他们重现了麻省理工学院20年前开发的技术,同时旋转氘核和陷阱中心的氢离子。研究人员将离子频率的精度提高了4倍,利用一些理论结果,他们能够确定氘核与质子的质量比为万亿分之四点五。  最后,为了估计质子的质量,Myers和Fink将他们的测量比率与德国马克斯普朗克核物理研究所去年发表的一项对氘核质量极其精确的测量结果相结合。新的质子质量估计的不确定性是国际科学理事会数据委员会官方平均值的1/5。  然而,该结果还不能为质子质量设定一个新的值。Myers和Fink利用电子束从氢分子中撞击出一个电子,从而产生了被捕获的氢离子。这个剧烈的过程使离子带着内部能量振动和旋转。根据量子力学,离子的振动能量或转动能量的量是离散的。当离子每次辐射出振动能量时,实验者可以观察到它的质量在下降。但为了估计它每一步的转动能是多少,Myers和Fink依赖于理论的推论,这带来了一些不确定性。  未参与该研究的中央密歇根大学核物理学家Matthew Redshaw说,即使存在一些不确定性,但数据表明,他们估计的质子质量已经是迄今最精确的值。  荷兰阿姆斯特丹自由大学原子和分子物理学家Jeroen Koelemeij介绍,其团队正在使用激光创造和捕获已知振动和旋转状态下的氢离子。这项技术可能会与Myers和Fink的方法相结合,以减少不确定性。
  • 质谱分析|Native MS中计算质量、误差和不确定性的方法
    大家好,本周为大家介绍的是一篇发表在Journal of the American Society for Mass Spectrometry上的文章Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry1,文章通讯作者是来自美国亚利桑那大学化学与生物化学系的Michael T. Marty教授。  非变性电喷雾离子化质谱(native ESI mass spectrometry)已经发展为一种成熟的、表征生物分子相互作用和结合化学计量的技术,通过将生物分子的缓冲体系换成质谱可兼容的挥发性盐溶液,来保护样品的结构和非共价相互作用在离子化过程中不被破坏。随着该技术的发展,一些计算概念的标准化是有必要讨论的。本文介绍了native MS中质量的定义、计算、误差和不确定性。  对于一个质谱峰,有三个位置可以描述它的质荷比:平均值(mean)、中位数(median)和顶点(apex)。平均值又称为质心,即每根峰的质荷比加权其强度得到的平均值 中位数很少被用来描述峰值 顶点是指峰强度最高处的质荷比。在理想的情况下,质谱峰应该是完全对称形状的,质心和顶点的质荷比应该相同(图1A),但这种情况在native MS中比较少见,因为经常会有盐离子等小分子加合到峰上,导致质心和顶点分离以及峰型不对称(图1B),在这种情况下,顶点作为计算真实质量的参数更为合理。Native MS峰也可能与噪音(图1C)和基线(图1D)叠加,相比之下,噪音对顶点的影响大于基线,很可能干扰顶点的识别,这种情况下,选择超过一定阈值的质心计算质量更为合适。由于待测物会产生一系列电荷分布,建议在每个电荷态单独计算出质量后,再按电荷态的相对强度进行加权,获得最终的检测质量。  图1. 几种可能的谱峰形状:理想(A)、有加合(B)、有噪音(C)、基线高(D)。  在比较实测质量和理论质量时,误差指的是实测质量减理论质量,在谱峰鉴别时通常需要计算误差,而不确定程度是指在测量过程中不可避免的值的离散,为了评估误差和不确定程度,作者考虑了三个指标:①从不同电荷态计算出的质量的加权标准差(图2A),这反映了通过所有电荷态计算出的质量的平均值的准确程度,标准差越小,平均值就越准确,这种计算标准差的衡量不确定程度的方式,适合手动计算质量时使用。②峰宽(图2B),如果将质谱峰视为高斯分布,峰宽也是体现不确定程度的参数,在native MS中通常使用半峰宽来衡量峰之间的差异,由于重叠的峰难以手动区分但可以被软件识别,这种衡量方式更适合软件。③重复性(图2C),相比于前两种方式,重复性是更好的确定不确定程度的方式,不确定程度可以定义为多次重复测量出的质量的标准差,但重复实验也需要考虑实验重复性因素(喷针口径,样品制备方法,样品批次,仪器校准等)。  图2. 三种测量峰不确定程度的方法:不同电荷态计算出的质量的加权标准差(A),峰宽(B),重复性(C)。  总结:本文讨论了native MS谱峰的质量、误差和不确定程度的定义,推荐从native MS谱图中不同电荷态的峰计算质量后,加权平均以获得精确质量,并通过重复实验考察不确定程度。  1. Marty, M. T., Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? Journal of the American Society for Mass Spectrometry 2022, 33 (10), 1807-1812.
  • 利用配备EAD的Q-TOF质谱对血清中单抗药物进行自上而下的定性和完整质量的定量
    大家好,本周为大家分享一篇发表在Journal of the Ameican Society for Mass Spectrometry上的文章,Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation1,通讯作者是来自美国宾州葛兰素史克的John F. Kellie博士。  最近,SCIEX开发了一种新的Q-TOF质谱系统,该系统具有允许调节的电子能量,能够将快速ECD作为电子激活解离(EAD)技术的一种操作模式,并能实现灵敏的大蛋白检测和定量。此外,通过采用一种新的trap-and-release特性,促进TOF加速器(Zeno阱)中心离子的空间质量聚焦,提高了碎片离子检测的占空比和信噪比(S/N)。本研究使用这个新型质谱仪器,对从血清中提取的一种生物治疗性单克隆抗体(mAb)进行了LC-MS分析,并进行了完整质量的检测、定量和亚单位表征实验。  样品处理和数据分析的流程如图1所示。简单来说,将研究的治疗性单抗药物注射到恒河猴中,使用自动免疫亲和试剂盒从猴血清中免疫捕获抗体。完整的单抗和还原的轻、重链进行LC-MS分析,并选择重链和轻链进行MS/MS分析和片段离子测定。在SCIEX OS软件中使用完整单抗和还原轻链的MS1数据进行定量。通过ProteoWizard文件转换处理亚基的片段离子数据,然后使用MASH软件套件中的THRASH脱同位素算法进行处理。最后将去卷积质量列表导入ProSight PC进行表征。  图1. 从血清中免疫捕获GSKmAb的LC-MS样品分析及数据处理流程。治疗性单抗轻链的Top-down MS示例数据如图2所示。抗体亚基达到电荷态分辨率 ,通过去卷积计算平均质量为23197 Da。对于碎片离子,实现了同位素分辨率,从中可以确定碎片离子质量(图2C)。在图2B中,使用SCIEX的内部研究软件,MS/MS谱显示了可能匹配的片段的叠加。图2C展示了去卷积后的片段离子的代表性数据。为了确定匹配的片段离子,使用THRASH脱同位素算法生成了高达30000 Da的精确质量。    图2. 从血清中免疫捕获和TCEP还原后GSKmAb轻链的表征分析示例。该Q-TOF仪器同时配备了EAD和CID功能,虽然两种解离方式可以在一次注射中进行,但作者进行了两次单独的注射。一次注射用于ECD MS/MS,第二次注射用于CID MS/MS。亚基的MS/MS覆盖率如图3A所示。ECD和CID结合时,轻链有49%的氨基酸残基被裂解。对于重链(图3B),获得了21%的残基覆盖率。    图3. 使用CID和EAD的组合对(A)轻链和(B)重链的表征结果。在这里,b-和y离子用蓝色钝角表示,c-和z离子用红色直角表示。接着,作者介绍了使用提取离子色谱图累积面积和去卷积质谱图累积面积两种方式的完整抗体定量研究。这里,将不同水平的mAb作为标准物质添加到血清中,建立2 ~ 50 μg/mL范围内的浓度与测定面积的线性关系。选取了两个电荷态的离子提取色谱和去卷积质量峰进行面积的累积(图4A, B)。MS数据显示,定量下限时(LLOQ=2 μg/mL),观察到完整的单抗电荷态分布的S/N约为4。对于定量上限(HLOQ=50μg/mL),观察到的S/N约为50(图4C, D)。在这里,校准曲线显示出良好的线性响应(所有数据的r2≥ 0.97),完整单抗定量的准确度和精密度值在15%以内。    图4. 完整单抗定量示例数据,使用基于XICs和去卷积数据的两种不同的定量方法。  本文介绍了自上而下的数据处理工作流程,这对于从MS/MS数据中获取信息至关重要。在XIC或去卷积质量水平上的生物分子定量也得到了证明,并表明这两种方法都足以从血清中测定单抗浓度。最后,作者预期这类能够实现完整蛋白质表征的多功能质谱系统将被更广泛地用于生物样本分析。  撰稿:夏淑君  编辑:李惠琳  文章引用:Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation
  • W玻色子质量:新物理隐藏在精确测量中
    费米实验室的对撞机探测器记录了1985年至2011年间由Tevatron对撞机产生的高能粒子碰撞情况。来自23个国家54个机构的约400名科学家仍在研究该实验收集的大量数据。图片来源:费米实验室4月7日,《科学》以封面文章的形式刊发一项重要成果:美国费米实验室对撞机探测器(CDF)合作组的389位科学家,共同完成了迄今为止对W玻色子质量的最精确测量,其精度达到了前所未有的0.01%。这一令全球实验与理论物理学家们振奋和激动的结果,可能将挑战粒子物理学的“标准模型”。在中国科学院理论物理研究所研究员于江浩看来,比结果更重要的是,这是“实验物理学家坚持在旧的金矿中挖掘、‘十年磨一剑’终于淘得的金子”。“旧的实验设备仍有获得新发现的能力和优势,只要坚持在正确的方向上,依然可以做出领先世界的成果。”于江浩告诉《中国科学报》。标准模型之上的追求基本粒子之间存在4种基本的相互作用:引力、电磁力、强力和弱力,每种相互作用都是由某一种媒介粒子传递的,它们被称为玻色子。在标准模型里,W玻色子就是一种传递弱力的媒介粒子。这里的W就是weak(弱)的缩写。2012年,著名的“上帝粒子”希格斯粒子的发现,标志着标准模型取得了极大的成功。标准模型也被称为粒子物理学的基本理论模型。“但是,标准模型不能解释什么是暗物质、什么是暗能量,也不能解释宇宙中物质与反物质的不对称。因此,它只是一定能量标度下的有效理论,也就是说必定存在更加普适的理论,这是粒子物理学所要追求的目标。”北京大学物理学院技术物理系研究员李强告诉《中国科学报》。也因此,寻找超出标准模型预言的“新”物理现象成为众多物理学家毕生追求的目标。李强进一步解释,寻找新物理通常有“直接”和“间接”两种途径,测量W玻色子的质量属于后者。通过精确测量W玻色子质量,科学家可以以之检验标准模型的自洽性,提供揭示可能的新物理迹象的重要途径。于江浩介绍,W玻色子质量是标准模型的重要基本参数,W玻色子质量的精确测量本身十分有意义。W玻色子质量经常被选为标准模型理论计算的输入参数,很多物理过程的预言敏感依赖于W玻色子质量的输入值。基于粒子物理标准模型的高度可预言性,W玻色子质量的改变牵一发而动全身,会影响到已有物理测量的自洽性。“W玻色子质量的精确测量是间接探测新粒子的一种手段,如果对其质量测量十分精确,就可能检测到某些新粒子、新物理产生的影响。”于江浩说。“最精确的测量”“我们知道,W玻色子的质量十分重要,因为其直接影响了原子核弱衰变,以及太阳中轻核聚变的速率。如果其质量远轻于80倍的质子质量,那么太阳的寿命就会比现在短很多,甚至可能已燃烧殆尽。”于江浩表示。W玻色子的质量精度是如何一步步提高的?1983年,研究人员在欧洲核子中心的SPS质子反质子对撞机上发现了W玻色子,第一次测量显示其质量为80.4GeV(10亿电子伏特)左右,误差为0.8。美国费米实验室的Tevatron质子反质子对撞机基于部分结果数据,在2012年公布结果,误差为0.016。从上世纪90年代开始,欧洲核子中心的大型正负电子对撞机持续改进W玻色子的质量测量精度,在2013年将误差缩至0.033。2010年以来,欧洲核子中心的大型强子对撞机实验持续开展W玻色子的质量测量工作,但精度提高得并不多。“W玻色子的质量精确测量是所有对撞机实验上的旗舰式课题, 需要对探测器、物理对象重建、软件计算、理论预言等有很深刻的理解和掌控。”李强表示。直到近日,美国费米实验室CDF合作组分析了对撞机在2002年至2011年间第二轮运行时的所有数据,得到了W玻色子质量目前最精确的测量(80.4335 +- 0.0094 GeV),其精度达到了前所未有的0.01%。“这是非常精确的结果。”于江浩介绍,需要对实验误差(比如丢失能量等的测量精度)进行进一步控制,同时大大降低部分子分布函数的误差等——这直接影响横向动量的分布——计算到很高的精度,这些CDF都做到了。于江浩进一步表示,虽然此次测量结果与2012年的测量结果相比偏离不大,但是由于误差的极大压低,测量的结果比标准模型的预期结果(80.357 +- 0.006 GeV)偏离高了7个标准偏差。“在粒子物理领域,通常高于5个标准偏差就意味着确信和现有理论不符合,这是这个实验结果让很多人激动的原因。”于江浩说。偏差是如何产生的?于江浩说,这一偏差有可能是超出标准模型的新物理引起的,但是由于这一偏差体现在W玻色子质量的高阶修正上,新物理的效应只是间接体现,因此无法直接敲定是何种新物理。此外,实验的系统误差、部分子分布函数因子化误差、非微扰的理论输入的模型依赖依然存在;标准模型的预期主要是来自于电弱整体拟合,这一理论拟合也许存在偏差。“所以虽然偏离达到7个标准偏差,对其是否是新物理的贡献仍需持谨慎态度,需要通过减小实验和理论误差以及其他实验比如LHC来进一步验证,以确定是否是由新物理导致的,并且从相关新物理的直接寻找来排除一部分可能的新物理。”于江浩表示。“旧矿”淘得真“金子”这是在一台已经拆除的仪器上作出的成果。事实上,2011年,Tevatron实验装置在关闭后逐渐被拆除,很多实验物理学家投入到了新仪器LHC的怀抱,希望在新的金矿中淘金。于江浩曾于2012年访问费米实验室,参观了即将拆解的实验装置。他问道,“CDF实验组成员还剩多少?”“很大一部分都去做LHC物理的分析了,只有少量实验物理学家还在整理目前的数据。”费米实验室科研人员有些“悲壮”地告诉他。而10年之后,CDF的研究结果“一鸣惊人”。这也让于江浩意识到,还是有一部分物理学家选择继续在旧的金矿中挖掘,终于淘得金子,真的是“十年磨一剑”。这种坚持,连同实验和理论物理学家紧密无私合作的科学精神,都非常值得学习。目前,我国也有一些科学家在LHC和未来对撞机的多玻色子物理研究上作出了一系列重要的原创性贡献。李强介绍,2012年,我国科学家首先提出高能环形正负电子对撞机方案(CEPC)。环形对撞机造价较低,却能在240GeV能区达到更高的亮度,并能产生大量W、Z粒子来精确检验标准模型。因此,环形对撞机对于研究希格斯粒子与精确检验标准模型更具优势。未来,CEPC与欧洲核子中心未来环形对撞机的项目,均计划在91GeV的对撞能量(Z pole)以及W玻色子对的质量阈值附近取数,用于电弱物理的精确测量,将大大改进W玻色子质量测量精度。“我希望自己能坚持在一个领域做到极致。”于江浩一直记得著名W玻色子理论研究工作者、美国密歇根州立大学教授袁简鹏告诉他的话——“一个理论家等到退休的时候,一定要能留下比较坚实的工作,而不应该一直盲目追逐热点。”相关论文信息:https://doi.org/10.1126/science.abk1781
  • 科学家首次成功用离子阱精确测量锘原子质量
    科学家首次成功用离子阱精确测量锘原子质量   使发现长寿命超重元素成为可能   以德国亥姆霍兹重离子研究中心(GSI)为首的一个国际研究小组首次成功使用离子阱捕获了102号元素锘的原子,并精确测量了锘原子的质量。该方法使获得长寿命的超重元素成为可能。相关研究成果发表在近期的《自然》杂志上。   除了地球上自然存在的92种元素外,科学家们已陆续发现20多种人为产生的化学元素。在这些元素中,原子序数超过103(或105)的元素被称为超重元素。到目前为止所生成的超重元素的寿命都很短,大多在秒和毫秒的量级。由于超重原子核数量少且寿命短,科学家们一直无法直接测量它们的质量和电荷,只能通过测量它们的α衰变链来间接推断。   现在,由GSI主任迈克尔布洛克领导的国际科研小组成功研制出一套复杂的试验装置SHIPTRAP,并将其与曾发现6个超重元素的速度过滤器连接在一起,不仅成功捕获了锘原子,还精确测量了它的质量。   科学家们先用加速器发射的钙离子轰击铅箔来产生锘,然后用过滤器将锘与其他反应产物分开。在SHIPTRAP装置中,锘离子先在充满气体的空腔中被减速,然后被所谓的彭宁离子阱捕获。在离子阱磁场的作用下,锘离子在一个很小的螺旋轨道上以特定的频率运动,通过它锘原子的质量可以被直接计算出来。测量的精度可以达到百万分之五。   这是首次在没有理论假设的帮助下,以空前的精度直接确定锘原子的质量。而质量是原子的一个基本属性,通过它可以直接计算出原子组成的结合能。反过来,这也决定了原子的寿命或稳定性。因此,科学家们认为在离子阱中可能会发现寿命非常长的超重元素。   迈克尔布洛克表示,锘原子质量的精确测量只是他们新研发的测试设置SHIPTRAP成功的第一步。他们现在的目标是要继续完善测试装置,向越来越重的元素前进,将来或许有一天能够到达超重稳定岛。   更多阅读   《自然》发表论文摘要(英文)
  • 希格斯玻色子质量分布获迄今最精确测量
    大型强子对撞机(LHC)紧凑渺子线圈(CMS)国际合作组在最新一期《自然物理学》杂志上撰文指出,他们对希格斯玻色子的质量分布——“宽度”作了迄今最精确测量:3.2兆电子伏特。这与标准模型预测一致,但比此前测量更精确,此前测量仅指出其宽度必须小于9.2兆电子伏特。  在粒子物理标准模型中,希格斯玻色子赋予所有其他基本粒子质量,2012年LHC首次发现了希格斯玻色子。但希格斯玻色子的性质很难确定,因为它会很快衰变为其他粒子,且并不总是以相同质量出现。  CMS成员之一格雷格兰德斯伯格解释称,后者是海森堡不确定性原理的一个结果。该原理认为,任何在有限时间内存在的粒子都必须拥有可能的能量和质量范围——宽度,而非固定值。在几乎所有实验中,宽度非常小的粒子都拥有相同的质量,而宽度较大粒子的质量则非常不一致,物理学家迄今仅对希格斯玻色子的宽度进行了不精确估算。  在最新研究中,CMS合作组根据2016年至2018年LHC第二轮运行期间收集的数据,确定了希格斯玻色子的宽度。他们的策略是比较希格斯玻色子衰变为其他两个粒子的两个不同过程的数据。在一个过程中,一个质量异常巨大的希格斯玻色子衰变为两个Z玻色子。在另一种情况下,希格斯玻色子的质量为理论模型预测更常见的质量。通过比较,研究人员计算出希格斯玻色子的宽度可能为3.2兆电子伏特。  研究人员表示,准确测量希格斯玻色子的宽度可揭示理论预测中的差异,从而揭示新物理现象,比如与一些奇异暗物质粒子相互作用的希格斯玻色子。CMS团队希望2026年获得对撞机第三轮运行后的数据,改进其计算,更深入地揭示希格斯玻色子的“庐山真面目”。
  • 用户论文|国家富硒产品质量检验检测中心:全自动垂直振荡提取-超高效液相色谱-串联质谱法测定鱼肉中地西
    全自动垂直振荡提取-超高效液相色谱-串联质谱法测定鱼肉中地西泮残留量单长海 ,马作江 ,杨周 ,黄山 ,李翔 ,孙辉(国家富硒产品质量检验检测中心,湖北恩施 445000)DOI;10.3969/j.issn.1008-6145.2024.07.011地西泮又名安定,属于苯二氮卓类镇静剂,具有镇静、抗惊厥等作用[1]。近年来,一些不法商贩在鱼类的捕捞和运输过程中非法使用地西泮,导致其在水产品中残留[2]。鱼肉是日常生活不可或缺的食物,人体长期摄入含有地西泮残留的鱼肉后,会产生一系列副作用,如易怒、嗜睡、幻听、头痛、乏力等,甚至可能导致药物依赖和耐药性,严重威胁人体健康[3-4]。许多国家已将地西泮列为动物养殖和运输过程中禁止使用的药物,GB 31650—2019《食品安全国家标准食品中兽药最大残留限量》规定鱼肉中不检出地西泮。目前,从鱼肉中地西泮的监管检验情况来看,检出率较高,是市场监管部门重点监管对象。国家富硒产品质量检验检测中心发表的文章中,作者采用乙腈作为提取溶剂,V20垂直振荡器提取,MCX固相萃取小柱净化,并通过液相色谱-串联质谱法检测,方法提取效率高,净化效果好,降低了样品基质干扰,提高了方法准确性,可用于鱼肉中地西泮残留量的大批量检测。实验相关1、睿科集团 产品支撑2、实验步骤2.1样品处理称取鱼肉试样2 g(精确至0.01 g)于50 mL离心管中,加入15 mL乙腈,在垂直振荡仪中以1 000 r/min振荡5 min。然后,以10000 r/min离心5 min,将上清液转入另一50 mL离心管中。对残渣再加入15 mL乙腈,重复提取并离心一次,合并两次上清液,并用氮气吹干。加入3 mL 5%(体积分数)乙酸水溶液,涡旋1 min。用3 mL甲醇和3 mL水依次活化MCX萃取柱,取备用液过柱,用5 mL 5%(体积分数,下同)乙酸水溶液洗涤,抽干,再用5 mL 10%氨水甲醇溶液洗脱,收集洗脱液,并在40 ℃下用氮气吹干。用1.0 mL 20%乙腈水溶液溶解残渣,通过0.22 μm滤膜过滤,待上机测试。2.2实验方法以目标化合物质量浓度为横坐标,色谱峰面积为纵坐标,绘制标准工作曲线。取经样品处理的待测溶液进行测定,将目标物色谱峰面积代入标准曲线方程中,得到样品提取液质量浓度,代入样品质量及提取液体积进行换算得到样品中目标物的质量浓度。提取方式的选择V20垂直振荡器,可以根据需要设置振荡频率,无需人工操作。比较提取5min振动频率分别为500、800、1000、1200、1500次/min的提取效率,每个频率称取3个平行质控样,按照2.1样品处理的方法进行样品提取回收率试验。图1为不同振荡频率提取的鱼肉粉中地西泮残留量回收率,从图1中可以看出,当振动频率高于1000次/min时,提取效率无明显差别,因此提取频率采用1000次/min。图1 不同振荡频率提取的鱼肉粉中地西泮残留量回收率比较超声提取法、涡旋提取法和全自动垂直振荡仪提取法对质控样中地西泮提取的提取回收率,提取时间分别为5、10、15、20、30 min。按照2.1样品处理的方法进行样品提取回收率试验。图2为三种不同提取方式的鱼肉粉中地西泮回收率,从图2可以看出,超声法提取效率较低,可能是塑料离心管阻碍了超声波的传递,涡旋法提取效率次之,全自动垂直振荡提取法效率最高。综合以上,选择全自动垂直振荡提取法,以实现批量操作,省时省力,操作简单。图2 三种不同提取方式的鱼肉粉中地西泮回收率完整版论文收录在《化学分析计量》
  • 精确控制印刷品质量的关键工具——印刷密度仪
    在追求卓越的印刷品质量过程中,准确控制印刷密度变得至关重要。印刷密度仪作为印刷质量评估的关键指标之一,成为印刷企业不可或缺的工具。印刷密度是指油墨在印刷品上的浓度或覆盖程度,通过测量油墨的光学密度或光反射率来确定。印刷密度的准确控制对印刷品质量有着重要的影响。高印刷密度意味着油墨覆盖更厚,颜色更鲜艳,对比度更高,而低印刷密度可能导致颜色淡薄,细节不清晰,影响视觉效果。适当的印刷密度可以确保图像细节得以保留,轮廓线条清晰,形状和结构准确可辨。然而,过高或过低的印刷密度可能导致细节丢失或模糊,使印刷品失去细腻和精细感。因此,在印刷过程中,精确控制和调整印刷密度是确保印刷品达到预期质量的关键步骤,印刷密度仪成为印刷行业不可或缺的工具。印刷密度仪是一种专用仪器,用于测量印刷品上油墨的密度或光反射率。它通常由光源、探测器和显示器或计算机系统组成。通过测量油墨或颜料的浓度,印刷密度仪提供准确的数值数据,以评估印刷品的质量。它能够检测和记录印刷过程中的密度变化,以及印刷品不同区域的颜色一致性,帮助印刷厂商确保印刷品的一致性和符合客户要求。印刷密度仪有多种类型,其中包括传统印刷密度仪和数字印刷密度仪。传统印刷密度仪,也被称为光密度仪,使用光学原理测量油墨的密度或光反射率。它通常由光源、透射滤光片和接收器组成。光源照射到印刷品上的光线经过滤光片后反射到接收器,并转换为电信号。通过分析电信号强度,可以计算油墨的密度或光反射率。近年来,随着数字化印刷技术的发展,数字印刷密度仪应运而生。它采用光电传感器和数字显示屏等先进技术,实时获取和显示印刷密度数据。数字印刷密度仪具有更高的精度和更多的功能选项,可以提供更详细和准确的测量结果。在Exact系列印刷密度仪中,包括exact2便携式色差仪、exact2XP便携式色差仪和exactPlus便携式测色仪等多种仪器。Exact系列密度仪采用高精度的光电传感器和先进的数字显示技术,能够实时获取和显示印刷品的密度数据。它们具有多功能选项,如自动校准、多区域测量和数据存储等,提供更详细和准确的测量结果。这些仪器具有便携性和易于操作的特点,适用于现场测量和调整。同时,它们可以与印刷设备连接,实现在线监测和自动调整,提高印刷效率和一致性。在印刷行业中,印刷密度仪扮演着关键的角色,确保印刷品质量的精确性和一致性。Exact系列仪器的高精度、便携性和多功能特点,为色彩测量和质量控制提供可靠的解决方案。它们不仅提高了印刷生产效率,减少废品率,还能够实时监测和调整印刷过程,确保印刷品的一致性和品质。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 美国质谱年会(ASMS 2009)质谱新产品扫描
    第57届ASMS质谱年会落下了帷幕,会议为期五天。各大质谱仪器公司都非常看重此次会议,并集中展示了各自近期推出的质谱产品、解决方案以及相关软件系统。下面将对此次展出的质谱产品做一些简要介绍,以飨读者。 排名不分先后   赛默飞世尔科技   赛默飞世尔科技在ASMS 2009上发布了两款新一代离子阱和轨道阱质谱仪:LTQ Velos 和 LTQ Orbitrap Velos。   LTQ Velos™ 采用最新双压阱设计和大气压离子源(API),使离子处理和检测相互独立。此项设计允许分析中使用最优压力, 减少扫描时间的同时提高分辨率。   LTQ Orbitrap Velos™ 将业界领先的 Orbitrap™ 质量分析仪, 新高能碰撞解离池,和双压阱技术完美结合,确保提供超高分辨率和精确质谱数据。      LTQ Velos   LTQ Velos – 离子阱技术的根本创新   LTQ Velos卓越的数据质量和灵敏度使它成为复杂分析物分析,如生物样品中低丰度蛋白质的确认和小分子代谢物结构鉴定的理想之选。   在蛋白组学应用方面,速度和灵敏度方面的提升为复杂多肽混合物的分析提供更大的覆盖范围,并提高了小量样本中蛋白质鉴定的可信度。LTQ Velos的多级碎裂技术提供更为可信的序列分析和翻译后修饰(PTM)鉴定。更高速的扫描速率能将循环时间减少50%之多,并将鉴定的蛋白和肽段数量翻倍。   在代谢组学应用方面,双压阱技术提高了离子碎裂效率,从而提供更快、更可信的结构鉴定。提高的速度和灵敏度与多级质谱能力充分结合,最大限度地提高通量的同时保持了鉴定和定量多个共洗脱化合物所需的卓越的数据质量。LTQ Velos可以升级为LTQ Orbitrap Velos,使实验室得以扩大其最初的投资,在保持灵敏度和分析速度的同时获得准确的质量和超高的分辨率的能力。   LTQ Orbitrap Velos – 基于Orbitrap技术   LTQ Orbitrap Velos是轨道阱质量分析仪的质量准确性和超高分辨率与LTQ Velos改善的灵敏度和分析速度的完美结合。      LTQ Orbitrap Velos   LTQ Orbitrap Velos的高质量精确度通过降低假阳性结果从而为复杂样品中的蛋白质鉴定增加了速度和可信度。其超高分辨率能够提供完整蛋白质的分子量测定和等质量物种的深入分析,从而提供确定性的分析结果。对蛋白质组学研究人员来说,这些功能增加了序列覆盖范围和可信度,从而识别更多的蛋白质。   LTQ Orbitrap Velos新的HCD碰撞池更加高效,提高了同位素标记肽段的定量分析功能,诸如需要应用串联质谱标记(TMT)的分析。电子转移解离 (ETD)为高度敏感的翻译后修饰(PTM)分析和从头测序生成互补性信息。   瓦里安公司   瓦里安公司在ASMS 2009上展示了其全线的质谱仪器,200-MS系列气相色谱-离子阱质谱联用仪,300-MS系列系列三级四极杆气相、液相质谱,500-MS离子阱质谱仪,920-MS 三重四极杆傅立叶变换质谱仪(TQ-FTMS)。 920-MS 三重四极杆傅立叶变换质谱仪(TQ-FTMS)      920-MS   瓦里安公司920-MS最新质谱产品,其离子源接口可以联用液相色谱或者气相色谱联用技术。920-MS以超高的分辨率(﹥1,000,000)和质量精确度(﹤0.5ppm)为蛋白组学、代谢组学、石油化学以及环境分析等领域的化学家们提供了更详细的信息。   最新的920-MS结合了Varian 320-MS三级四极杆质谱仪和Varian FT-ICR(Ion Cyclotron Resonance)检测器技术。超导磁体包括7、9.4、 12.0Tesla以及15.0 Tesla——目前商品化的最强磁场强度的磁体,它提供了最宽的样品动态范围。既可以选用传统磁体,也可以选用零损耗(Zero boil-off)设计的磁体。磁体和离子源的多样化选择便于用户根据自身需求如灵敏度、质量精确度、动态范围和应用领域等的考虑选择不同的配置。   920-MS三重四极杆质谱仪拥有完全独立于磁体中FT分析池的偏轴离子检测器,两种检测器使用户用一台仪器就可以获得更多的信息。除了利用FT检测器获得超高的分辨率和质量精确度外,用户还可以通过典型的三重四极杆质谱仪功能如母离子扫描、中性丢失扫描、多反应监测和定量分析获得其他数据。   500-MS LC/MS Ion Trap      500-MS LC/MS Ion Trap   500-MS离子阱质谱仪是在现有离子阱技术(第二代)基础上全新设计的第三代离子阱质谱仪,集中了诸如增强电荷容纳、离子三重共振扫描等专利技术,使离子阱的“低质量截止效应”和“空间电荷效应”和抗基质干扰能力差的弱点降到几乎可以忽略不计的程度,使得离子阱的定性和定量性能更加优异。500-MS离子阱质谱仪广泛应用于食品安全、药物开发、环境监测、生命科学研究和分析等领域。   300-MS Series Triple Quadrupole Mass Spectrometers   300-MS三重四极杆质谱主要用来提高常规实验室高通量的分析效率,它也可以通过单级四极杆质谱升级获得。一次进样可扫描或定量150多种化合物。样品引入和离子化的方法取决于常规GC/MS实验室遇到的样品类型,化学电离(CI)和电子轰击电离(EI)可用于高灵敏的检测和结构确认。    300-MS三重四极杆质谱   200-MS Series GC/MS Ion Traps   240-GC-MS/MS其专利的三重共振扫描技术,完全消除分子离子反应、谱图匹配等问题。可由单级MS升级为多级MSn(n=10)。   220- GC-MS/MS可由单级MS升级为多级MSn(n=10)。完全可以替代单级四极杆质谱仪的应用。   210-MS GC-MS是EI单级MS气相离子阱质谱仪,可以代替常规气相色谱多检测器系统,是实验室必备的常规分析仪器之一。   布鲁克.道尔顿   在ASMS 2009上,布鲁克推出了三款高性能质谱系统。   UltrafleXtremeTM是目前唯一采样速率达1,000Hz的MALDI-TOF/TOF质谱系统,结合最新的Smartbeam™ -II激光技术和4GHz数字转换器。在蛋白质组学研究中,质量分辨能力达40,000,质量精度达1ppm。该系统具有快速自清洁离子源,业界领先的成像软件系统,直径小到10 µ m的激光聚焦非常适合MALDI 成像。该设备的高度灵活性使LC-MALDI TOF/TOF广泛用在蛋白质组学、无标记蛋白质定量、MALDI成像、TOP-DOWN蛋白质组学技术、Edmass ™ 蛋白质测序技术、完整的蛋白质组分析和聚合物分析以及寡核苷酸的分析的方面。      MALDI-TOF/TOF质谱   AmaZonTM离子阱质谱扫描速度可达52,000 u/s,并保持分辨率在0.58u 当与UHPLC耦合时,可以进行零延迟极性转换。该系统具备专利的双离子通道技术,灵敏度提高了一个数量级。第二代的ETD和PTR以其优雅、简单的设计为蛋白质组学研究提供了很高的灵敏度。该离子阱质谱在全扫描的模式下,50-3000 m/z的质量范围内分辨能力达20,000,其速度完全可匹配LC。其出色的全扫描质谱速度和MS / MS分析的灵敏度,使其在毒理学、食品安全、兴奋剂检测以及法医领域的快速定量方面可替代三重四极杆质谱的MRM定量方法。      amaZonTM离子阱质谱   SolariXTM傅立叶变换质谱仪的灵敏度提高了10倍 其分辨率提高了8倍,在7 Tesla时大于1,000,000,在很宽的动态范围质量精度可达亚ppm级。其完整的工程学设计使得该仪器功能强大而且易于操作。该系统非常适合用在top-down蛋白质组学、石油组学、代谢组学、小分子药物和代谢物MALDI成像等方面。      solariXTM傅立叶变换质谱   安捷伦科技   安捷伦6540 Ultra-High-Definition (UHD) Q-TOF台式质谱系统 Agilent 6540 超高分辨率的精确质量四级杆-飞行时间质谱仪(Q-TOF)   安捷伦6540 Ultra-High-Definition (UHD) Q-TOF是一款性能优异的台式Q-TOF质谱系统,它可以提供高质量的数据和卓越的分析能力,使研究人员在鉴定低分子量化合物和生物分子方面充满了信心。创新的Ion Beam Compression (IBC)和Enhanced Mirror Technology (EMT)技术提高了该质谱的精确度和分辨率,并保持台式布局。   “对于Q-TOF观念认为‘越大越好’,Agilent的工程设计极大地提高了仪器的性能并保持了台式布局”,安捷伦全球资深LC/MS营销总监Ken Miller说,“我们的仪器已经达到了更高的准确度和分辨率,在灵敏度和动态范围方面保持着行业领先的地位。该系统可快速运行为UHPLC获取准确的MS和MS/MS数据而并不会引起分辨率的损失,而这个问题一直困扰着orbitraps。该质谱系统在蛋白质组学、代谢组学、食品和环境安全等定性分析领域具备很高的水平。”   安捷伦7700 系列ICP-MS Agilent 7700系列ICP-MS痕量元素分析仪   安捷伦在此次ASMS 2009上还介绍了新一代的7700系列ICP-MS痕量分析系统,7700系列在保证完整数据性方面性能优异,仪器操作简单,占地面积小。   “ICP-MS已变成了实验室的常规设备,向测量更多元素、测更低含量物质以及处理更复杂样品方面发展 伴随着高通量、易操作等特点,对于数据的质量也提出了新的要求。” 安捷伦副总裁兼质谱部总经理Chris Toney说,“我们的目标就是满足这些要求,我们已有的用户反馈对于测试结果非常满意。”   新型7700系列ICP-MS最明显的特点就是占地面积小,只相当73 厘米工作台空间。安捷伦的八级杆反应池技术(ORS)、特有的氦碰撞模式可以可靠有效地消除光谱干扰,在处理未知样品和复杂样品方面表现优异。7700系列配有新的第三代反应池(ORS3),进一步提高了氦碰撞效率。   安捷伦6430三重串联四级杆液质联用系统 Agilent 6430型三重串联四级杆液相色谱质谱   安捷伦新型6430三重串联液质联用系统是6410的升级版本,具有很高的灵敏度,快速地监测反应离子,快速地进行极性转换。6430三重串联液质联用系统非常适合于食品检测、水质分析、蛋白质生物标记等,而且价格方面很有竞争优势。   6430三重串联液质联用质谱系统拥有6460三重串联四级杆质谱的许多高性能特征,包括为提高离子传输效率和获得更好的灵敏度而附加的涡轮泵,这对于6410是可选择的配置,而对于6430是标准配置。新的质谱系统极性转换非常快,从正离子模式转换到负离子模式仅需30ms。在分析复杂体系方面具有极大的灵活性,可以获得更多的被分析物的离子,使分析灵敏度得到极大的提高。   沃特世科技      SYNAPT™ G2(QTOF)   Waters在ASMS 2009上推出了SYNAPT™ G2质谱系统。该系统具有突出的定性定量性能、超过40,000的分辨率、达20 spectra/s采集速率、精确质量到1ppm(RMS)、动态范围达5个数量级。与Waters ACQUITY® 超高效液相色谱(UPLC)联用可以最大限度地发挥其分析能力和速度 主要用在生物制药、代谢物鉴定、代谢组学、蛋白质组学、生物标志物的鉴定、食品和环境研究领域,SYNAPT™ G2操作直观,灵活性高。整体达到了一个全新的性能水平,Waters预计该系统将于2009年四季度上市。   “SYNAPT G2的发布是一个重要的事件,不仅是在质谱技术上的飞跃,同时对于世界范围的研究者试图从分子层面解决一些根本问题提供了新的机遇”,Waters公司质谱业务部副总裁Brian Smith说,“我们相信SYNAPT G2将会替代通用的QTOF和静电离子阱系统,成为高端质谱分析仪器的选择。”   岛津公司   岛津公司在ASMS 2009上推出了AXIMA Resonance™ MALDI质谱系统,主要用于结构分析和生物大分子测序。AXIMA Resonance在整个MS和MSn分析过程中提供高质量分辨率和准确度。该仪器具有卓越的MSn功能,独特的MALDI和QIT相结合可以使用数种不同的基质产生离子,数秒内切换正负离子化模式,在MSn实验中简单高分辨地选择前驱离子,并很好的控制碎片离子 具有极好的前驱离子选择性:从复杂混合物得到的离子或者相邻同位素可以很好的分离,分辨率大于1000(FWHM) 同时具有高灵敏度和高分辨率,样品消耗量低,灵活性高,与其他的仪器设备进行无缝对接。      AXIMA Resonance™   岛津同期展示的其他产品有:   Full Series of MALDI Mass Spectrometers (Assurance, Confidence, Performance, Resonance)   LCMS-IT-TOF Mass Spectrometer   LCMS-2020 Single-quad Mass Spectrometer   CHIP-1000 Chemical Printer   Prominence HPLC Front Ends (2D HPLC, nano LC, UFLC) for Mass Spectrometry   GCMS-QP2010 Plus   GPC-MALDI     从此次发布的质谱产品可以看出,QTOF 、TOF/TOF以及离子阱技术仍然是各公司开发的重点 在应用方面,高通量、高灵敏度、高分辨率以及以简化仪器操作都是各仪器公司所看重的。
  • 质谱仪器研制专辑分享三——四极杆质谱质量分辨自动调节技术研究
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术;四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术;双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术;小型飞行时间质谱和离子束诊断飞行时间质谱;复合离子源技术和激光后电离技术;以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 仪器信息网授权对本专辑内容进行转载,以下为第2期题为“四极杆质谱质量分辨自动调节技术研究”的文章,作者刘磊,通信作者邱春玲、黄泽建。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.通信作者邱春玲,现任吉林大学精密仪器与机械系教授。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 科研与学术工作经历:1984.1-1987.7 长春半导体厂 工程师;1990.7-1992.7 长春地质学院 助教;1992.7-1997.2 长春地质学院 讲师;1997.2-1998.6 长春科技大学 讲师;1998.6-2000.6 长春科技大学 副教授;2000.6-2004.12 吉林大学 副教授;2004.12-至今 吉林大学仪器科学与电气工程学院 教授; /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 主要研究方向:从事分布式测控技术研究和分布式测控技术。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.通信作者黄泽建,现任中国计量科学研究院前沿计量科学中心质谱仪器工程技术研究中心副研究员。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 科研与学术工作经历:2004年至今,专注质谱仪器研发已有十多年,包括整机(四极杆、离子阱)及关键部件研发,主攻质谱仪器小型化和便携式。主持和参与国家级科研项目十多项,获国家科技进步二等奖1项,质检总局科技兴检一等奖1项,仪器仪表学会科学技术一等奖1项。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 主要研究方向:从事质谱仪器研发。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 397px " src=" https://img1.17img.cn/17img/images/202003/uepic/66daff59-7671-4173-af4d-8d1eedd42438.jpg" title=" 图4.jpg" alt=" 图4.jpg" width=" 600" height=" 397" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱仪器的质量分辨是指仪器区分两个质量相近离子的能力,是仪器的一项重要指标。为了保持四极杆质谱仪质量分辨的稳定性和可靠性,降低仪器维护成本,实现仪器的自动化及智能化,本实验室研究了一套适用于四极杆质谱仪质量分辨的自动调节算法。该算法实现了对质谱谱峰半峰宽(full width at half maximum, FWHM)的检测,并通过与设定的FWHM目标值进行对比的方式对仪器进行调整,最终使FWHM达到目标值,达到自动调节质量分辨的目的。本研究在由中国计量科学研究院研发的四极杆质谱仪上开展相关工作,根据该仪器的电路设计,建立算法流程,将算法理论应用于具体仪器。使用四极杆质谱仪常用的标准物质全氟三丁胺(PFTBA)测试算法调节四极杆质谱仪的质量分辨,实验结果均达到预期。该算法对四极杆质谱仪具有普适性,降低了对操作人员调节仪器能力的要求,提高了仪器的稳定性。算法经多次测试,均可达到减小实验数据偏差,提高谱图质量分辨的目的。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 以下为论文内容: /p p style=" text-align: center" img style=" width: 600px height: 513px " src=" https://img1.17img.cn/17img/images/202003/uepic/ea897852-e10b-4340-a795-9738eadd2f03.jpg" title=" 截屏2020-03-27下午2.20.38.png" width=" 600" height=" 513" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.20.38.png" / /p p style=" text-align: center" img style=" width: 600px height: 926px " src=" https://img1.17img.cn/17img/images/202003/uepic/8ee4ffdd-c04b-4176-bd77-5ef69b2aae05.jpg" title=" 截屏2020-03-27下午2.20.47.png" width=" 600" height=" 926" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.20.47.png" / /p p style=" text-align: center" img style=" width: 600px height: 1045px " src=" https://img1.17img.cn/17img/images/202003/uepic/8b5fe897-8489-4879-aadb-b1ea90abc131.jpg" title=" 截屏2020-03-27下午2.21.02.png" width=" 600" height=" 1045" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.21.02.png" / /p p style=" text-align: center" img style=" width: 600px height: 1029px " src=" https://img1.17img.cn/17img/images/202003/uepic/99d0cd6c-301a-4ffb-81ab-e00548e0de7d.jpg" title=" 截屏2020-03-27下午2.21.19.png" width=" 600" height=" 1029" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.21.19.png" / /p p style=" text-align: center" img style=" width: 600px height: 1046px " src=" https://img1.17img.cn/17img/images/202003/uepic/1afd7b83-41f1-461c-9944-e2439a948cda.jpg" title=" 截屏2020-03-27下午2.21.37.png" width=" 600" height=" 1046" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.21.37.png" / /p p style=" text-align: center" img style=" width: 600px height: 1019px " src=" https://img1.17img.cn/17img/images/202003/uepic/b33a0204-b36e-4c8f-a1b7-226dafd3db45.jpg" title=" 截屏2020-03-27下午2.21.52.png" width=" 600" height=" 1019" border=" 0" vspace=" 0" alt=" 截屏2020-03-27下午2.21.52.png" / /p p br/ /p
  • 中国制造,中国质量——赛默飞色谱质谱业务本土化生产
    长期以来,伴随着国家科技创新利好政策以及“十四五”规划的重大机遇,赛默飞以自主科研实力、本土创新技术、中国制造及中国定制产品和解决方案助力本土科学服务领域发展。  其中,赛默飞中国色谱质谱业务正快速扩张在中国的生产制造能力,继续推进国产化进程。截止2022年,赛默飞色谱质谱业务的国产仪器大家族已经扩大到10余个产品,包括液相色谱仪Vanquish™ Core和Vanquish Flex UHPLC 、气相色谱仪Trace 1600、单四极杆气相色谱质谱联用仪ISQ 7610 、三重四极杆气相色谱质谱联用仪TSQ 9610(同步实现了国产化)、离子色谱仪ICS-600、Dionex™ ICS-6000 HPIC高压离子色谱系统(旗舰产品)、原子吸收光谱仪 iCE 3000、电感耦合等离子体光谱仪iCAP PRO 以及电感耦合等离子体质谱仪iCAP RQ,三重四极杆液相质谱联用仪TSQ Altis Plus,加速溶剂萃取浓缩仪EXTREVA™ASE™(中国自行设计、研发、生产)。这些国产仪器已经在食品、环境、工业、制药与生物制药等垂直市场全面开花,赢得业界客户赞誉。  以液相色谱仪为例,一年多前,赛默飞开始在苏州工厂生产高效液相色谱 (HPLC) 仪器/模块。源于首次本土化的成功,赛默飞在中国的生产基地增加了更多的液相色谱投资。2021年4月,赛默飞苏州工厂再次增设HPLC装配产线。HPLC产品线由德国工厂转移到中国,据赛默飞苏州工厂的人介绍,以往类似的项目,通常需要1年半的时间。而且按照惯例,我们应该去德国工厂接受现场培训,德国工程师也会到中国现场指导。由于项目初期正值疫情爆发,都没能成行。“当时看来,这次的项目是一个不可能完成的任务。”  因为疫情,物料进海关的物流方案要推翻重来 德国工程师无法到现场,最终只能通过远程视频指进行导 然而,无论是中国工程师还是德国工程师,对于非现场教学都没有任何经验。时间紧,任务重!但是,即使期间经历了1个月的疫情干扰,赛默飞苏州工厂还是仅用9个月就实现了高质量交付,完美体现了中国速度,中国质量!  赛默飞中国人是如何交出了这一份满意的答卷的呢?在产线组装测试过程中,发生过哪些令人印象深刻的小故事呢?  为“消灭”0.1%误差而战  工厂每年都会制定年度改进项目,目的是为了不断提高成品率、提升质量。“一次有一个指标一直不能达标,我们做了各种检查,意料之外地发现,竟然是由于德国工厂和中国苏州两地的海拔不同造成的。”一位工程师讲述到,“苏州属于平原地区,德国工厂所在区域海拔要高于苏州,这导致了两地空气浮力有细微差异,进而影响到最终0.1%的微小分析误差。而这0.1%可能对于结果来说不会有本质影响,但是源于对中国质量的承诺,我们还是会寻找问题根源,逐步优化,直至最终解决。”  据了解,在赛默飞苏州工厂,每年这样大大小小的改进项目有很多个,并且,工厂积极鼓励产线上的员工提建议,因为他们更加贴近生产第一线,熟知各种质量提升小细节以及生产安全隐患等。积跬步以至千里  赛默飞对质量控制的严谨,体现在每一个细节上。比如,一个一次成型模具,其生产过程中有需要工人进行“压”的动作。压一下、按一下,感觉是一个非常简单的动作而已,但是,关于如何正确地“压”,德国工程师特别开视频远程进行了示范。每个人的力气不一样,德国员工与中国员工的体型也存在差异,那么如何衡量压得好不好,到不到位呢?“这一点不用担心,在那个模具上有一个明确高度的刻度线,你只有压到线才算合格,而不是你压了就可以。”工程师介绍到。  这样的细节很多,例如,组装用到的螺丝,哪怕是相同口径的螺丝,用在不同的位置上,都规定了不同扭具。检测室的温度,工厂严格要求在一小时内的波动不能超过一度。这已经可以说是一种“苛求”了,但正是这一步步,才走出了中国质量之路。   后记  一个仪器中有成千上万的零部件,赛默飞的仪器走向全球时,也带着这些零部件供应商达到“中国制造”水准,走向世界。它们除了赛默飞,未来还可以供应其他厂商,这必然带来中国整个产业链价值的提升。
  • 中国农业科学院农产品加工质量安全防控创新团队采用液相串联质谱分析技术实现食品中食物过敏原的高效检测
    近日,中国农业科学院农产品加工研究所农产品加工质量安全防控创新团队在食物过敏原检测领域取得重要科研进展。相关成果在线发表在食品领域国际知名学术期刊《Food Chemistry》(JCR一区, IF=8.5)和《Journal of Agricultural and Food Chemistry》(JCR一区, IF=5.7)上。加工所杨术鹏研究员为论文第一作者,李熠研究员为通讯作者。该研究得到了中国农业科学院青年创新专项 (Y2023QC13)与中国农业科学院创新工程(CAAS-ASTIP-Q2022-IFST-01)的支持。食物过敏是影响全球公共卫生和食品安全的突出问题。据统计,全球范围内约有5%~8%的儿童和2%~4%的成人患有食物过敏症,且发病率持续上升,但尚无有效根治的方法,因此严格的食物规避仍是最有效的预防措施。食物过敏原在农产品收储运和加工环节存在交叉污染的风险。随着加工食品日益增多,消费者难以辨别食品中是否含有过敏原,因此准确检测食物过敏原至关重要,但现有的检测方法存在灵敏度不足、通量低、耗时长等缺点。针对这一难题,研究团队创新性地开发了一种基于多重同位素反应监测技术(MIRM)的液相串联质谱方法,并用单样本多点校正曲线策略(OSCC)替代了传统的多样品校准曲线(MSCC),不仅简化了校准曲线的制备过程,而且显著提高了分析的通量和精确度。研究团队通过该方法对市售食品中的十种主要过敏原进行调查,发现新方法在选择性、灵敏度、准确性和精密度方面表现优异,且具备广泛的应用潜力。此创新策略的成功应用为质谱蛋白质定量分析开辟了新途径,尤其在食品过敏原检测领域具有重要意义。同时,研究团队针对蛋过敏原的复杂性,优化了从样品提取、酶解、纯化到校准曲线等一系列步骤,最终开发出一种高精准度的液相串联质谱方法。通过选用VMVLC[+57]NR (Gal d 1)和GTDVQAWIR (Gal d 5)分别作为蛋清与蛋黄的特征性定量肽段,实现了鸡蛋过敏原的精准定量分析。该方法在验证过程中展现了卓越的灵敏度、准确性和重复性,并成功应用于实际样品的分析。该成果为食品过敏原的确证检测提供了关键技术,有助于进一步提升食品安全监管的水平。
  • 【国产高端质谱】“全自动核酸质谱检测系统” 共筑健康未来
    9月27日,广州禾信仪器股份有限公司(股票代码:688622)于北京(BCEIA 2021)以“立足高端质谱,打造质谱实验室综合解决方案”为主题,隆重发布多款新品。来自全国各地累计300+业内专家、客户以线上线下方式参与了发布会,并对禾信此次发布的新品给予了高度的评价与期望!新品发布 开启无限未来健康永远是人们关心的第一话题,体外诊断的发展经历了从细胞形态学诊断、生化诊断、免疫诊断,现在已经进入到分子诊断的时代。核酸质谱技术的出现解决了传统PCR技术灵敏度、准确性、通量低的问题,同时大大降低了高通量测序开展的技术难度和检测时间。但目前核酸质谱市场上,进口仪器占据96%以上。疫情当前,世界形势变幻莫测,与人民健康相关的高端科学技术及核心部件严重依赖进口,随时存在被“卡脖子”风险。禾信仪器全自动核酸质谱检测系统NucMass 2000应运而生。该系统集结多项专利性创新技术,大大提升了核酸检测质谱性能,具备以下特点:1高分辨较市场同类产品提升20%以上,保证最大反应重数2高精度质量精度较市场同类产品提升50%,判型准确率更高3高灵敏可检测到更低拷贝数量的基因片段信息4宽范围超高分辨率使核酸检测质量范围更宽5高稳定连续测量8小时,每次测量结果满足质量精度要求6高重复连续测量10次,质量偏差更小7高通量8小时完成700样本检测8广应用SNP基因分型、indel、拷贝数分析、DNA甲基化分析、多病毒检测等9低成本反应条件均一,试剂通用,无需荧光标记解决方案全自动核酸质谱检测系统+高精度芯片靶板+自动纳升级点样仪产品应用应用场景一:结直肠癌KRAS基因低频突变解密遗传变异与肿瘤发生发展关系的研究,质谱肿瘤基因突变检测分析具有成本低、高通量、高灵敏度和特异性等显著优势。应用场景二:多呼吸道病毒、多亚型同时检测巧妙的整合PCR技术的高灵敏度以及质谱技术的高精确度,开创了检测精确度高、重复性强、具有高度自动化、标准化特征的全新检测时代。可以对微生物、病毒以及其他单倍体生物方便快捷的进行分子分型、物种鉴定、变异物种发现及归类等全面分析。应用场景三:高血压用药指导检测到1%-3%突变等位基因,在个体化用药、耐药及新药筛选等临床项目中,可以尽早检出突变,帮助临床医生改善治疗方案。禾信仪器秉持“锲而不舍,做中国人的质谱仪器”理念,以高端产品与技术创新为立命之本;将持续加大创新投入和精良制造力度,以市场为导向,不断推出符合客户需求的产品,完善医疗诊断产品线,与客户共筑健康未来!
  • 你的飞行时间质谱符合FDA“高分辨”质谱吗?
    HIGH RESOLUTION MASS SPEC2022.09TOFWERK PTR-TOF 2R高分辨质谱一般包括飞行时间质谱(TOF)、轨道阱质谱(Orbitrap)、磁质谱和傅里叶变换-离子回旋共振质谱(FT-ICR)。然而,并不是所有飞行时间质谱(TOF)都能被称为高分辨质谱。Q&A什么是FDA定义的“高分辨质谱”?根据美国食品药品监督管理局(FDA)食品和兽药项目(Foods and Veterinary Medicine Program)2015年发布的《利用精确质量数鉴定确认化学残留的接受标准》一文中,明确将目标m/z 分辨率(半高峰宽FWHM)≥10,000的质谱定义为“高分辨质谱high resolution mass spectrometry (HRMS)”。欧盟在EU 2002/657/EC指南中将高分辨质谱定义为(双峰法)10%峰谷处分辨率≥10,000,转换成FWHM定义相当于20,000左右,但此标准未定义质量准确度。2013年欧洲食品与健康总局(SANTE)的SANCO/12571/2013中,将高分辨质谱定义为具有高分辨力的质谱,通常分辨率超过20,000。然而在最新的SANTE/11312/2021中,取消了“高分辨质谱”这一词条,改为明确要求质量准确度≤5 ppm。目前我国在《质谱方法通则》(GB T 6041-2020)中,未明确定义高分辨质谱标准,而在《禽畜血液和尿液中150种兽药及其他化合物鉴别与确认》(农业农村部公告第197号-9-2019)中,鉴别法要求母离子质量准确度≤5 ppm。Q&A如何定义分辨率(FWHM)?*图1 FDA标准对FWHM定义分辨率=M/△M,M为目标m/z,△M为目标m/z峰高一半时的宽度(如上图所示)Q&A如何定义准确度(Accuracy)?质量准确度(ppm)=(实测质量数-理论质量数)/理论质量数x106。Q&AFDA和SANTE高分辨质谱全扫描模式(Full Scan)鉴别和确认要求?FDA要求至少两个具有结构特征(structurally significant)的母离子,且准确度均≤5 ppm。SANTE要求两个离子的质量准确度均≤5 ppm,其中至少有1个碎片离子(例:不能两个为同位素母离子),两个离子中最好有分子离子(M+或M-)、得质子分子离子(M+H或M-H)或加合离子(如M+NH4+)。(SANTE认为如果两个离子间仅相差水分子,对鉴别意义不大)m/z<200时准确度<1 mDa,离子比吻合。Q&A在高分辨质谱方法中,空白样中目标m/z完全没有噪音时(即无法计算信噪比S/N)时,确定样品中有效信号(即阳性)的方法?例:芬太尼理论精确质量数336.2202,即[M+H]+为337.2274,三重四级杆受分辨率限制,只能输出337.2±0.2 Da段的总信号,空白样品不含芬太尼,因此337.2±0.2 Da总信号记作噪音(N),国标中绝大多数都以信噪比(S/N)≥3为检出限。但高分辨质谱可以精确解析这些无关信号,空白样品中可能完全没有m/z 337.2274(±5 ppm)信号,即噪音为零。对此FDA和SANTE作出以下解释:FDA:可以设定样品与对比标准品的相对信号强度阈值,来识别信号。SANTE:样品中必须连续5张图都存在该m/z才能确定为信号。Q&AFDA和SANTE对筛查检测(定性或半定量检测)质谱的要求?FDA和SANTE均未对用于筛查检测的质谱提出分辨率要求,甚至不要求色谱分离,但筛查结果需要与数据库作对比,并要求假阴性<5%,假阳性<10-15%,因此实际多用高分辨质谱。FDA提出即使在鉴定确认实验前,先进行广谱筛查作为预实验,能够有效提高检测效率。对于非靶向方法(Non-targeted analysis),FDA和SANTE均认同可以先运用适当的方法去除背景噪音并提取峰(质谱软件一般都提供这些简便的功能)来解读这些离子峰。高分辨质谱提供的准确分子式准确度应在3 ppm以内。同位素峰的分布比例也是也是关键的筛查标准,同位素比例偏差应在5%以内,比如氯-35和氯-37的比例应接近3:1;含碳化合物的碳-12,碳-13,碳-14也应符合其分布比例(质谱软件可提供分子式的模拟分布)。TOFWERK Vocus 2R CI-/PTR-TOF 在高灵敏度**同时,具有≥10,000高分辨率,轻松满足从环境大气、风味物质,到农残兽残、营养物质的高分辨标准需求。多种电离形式、原位电离源,可供选择,提升分析物覆盖度,增强检测选择性。 “阅读原文” 《高分辨PTR-TOF测定芬太尼》*FDA标准中将Resolving Power(分辨力)定义为M/△M,Mass Resolution(分辨率)定义为△M/M,即两者互为倒数。根据质谱仪器的显示习惯和国内习惯说法,此处用分辨率代替原文分辨力。SANTE标准指出两者经常混用,按一般规律理解即可。**二甲苯灵敏度≥30,000 cps/ppb请留言索取下列参考文献:[1] Food and Drug Administration, “Acceptance Criteria for Confirmation of Identity of Chemical Residues using Exact Mass Data within the Office of Foodsand Veterinary Medicine ”https://www.fda.gov/downloads/ScienceResearch/FieldScience/UCM491328.pdf[2] European Commission, Health & Consumer Protection Directorate-General, “Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed”, SANCO/12571/2013https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf[3] European Commission, Health and Food Safety, “Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed”, SANTE/11312/2021[4] U.S. Food and Drug Administration Foods Program, “Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products (3rd Edition)”, October 2019[5] 农业农村部,《禽畜血液和尿液中150种兽药及其他化合物鉴别与确认》(农业农村部公告第197号-9-2019)[6] 国家市场监督管理总局,国家标准化管理委员会,《质谱方法通则 GB/T 6041-2020》,2020-03-31
  • 隐藏在科学背后的宝藏——探索质谱和质谱离子源的发展历程
    当我们思考关于现代科学和技术的伟大突破时,质谱学可能并不是大众熟知的一个名词,然而,它却在过去一个多世纪中对我们的理解和应用范围产生了深刻的影响。质谱学,作为一门独特的科学领域,旨在解析和测定物质的组成和结构,它的历史充满了科学家的探索和创新,从19世纪末的初步实验到21世纪的现代仪器和技术。 从J.J. Thomson的早期质谱研究到Wolfgang Paul和John Bennett Fenn的离子技术创新,质谱学一直是科学界的关键工具,对各种领域的研究产生了深远影响。质谱学不仅推动了科学研究的发展,还在医学、环境科学、制药工业、食品安全和法医学等领域发挥了重要作用。它为我们提供了分析和识别物质的精确方法,有助于解决各种问题和挑战。从早期的实验室探索到现代的质谱仪器,质谱学的历史充满了启发和创新,引领我们进入一个更加深刻、精确和富有挑战性的科学时代。Francis Aston和他的质谱仪 质谱学和质谱离子源的历史充满了探索、创新和突破,回顾了质谱学从其初步实验开始的发展历程,从19世纪末的实验室探索到21世纪的现代仪器和技术。质谱离子源的发展历史,这些离子源是质谱仪的关键组件,用于将样品中的分子或原子转化为离子以进行质谱分析。质谱学的历史见证了科学家们对了解物质的组成和结构进行不懈努力。图1. 因为质谱有关的诺贝尔奖项获得者J.J. Thomson (1906) - 英国物理学家J.J. Thomson因为他对电子的质谱研究以及对带电粒子性质的重要贡献而获得了诺贝尔物理学奖。Francis Aston (1922) - 英国化学家Francis Aston因使用质谱仪测定非放射性元素的同位素而获得了诺贝尔化学奖。Ernest O. Lawrence (1939) - 美国物理学家Ernest O. Lawrence因他的工作在核物理领域,包括对回旋加速器的开发,以及用于同位素分离的Calutron而获得了诺贝尔物理学奖。Wolfgang Paul (1989) - 德国物理学家Wolfgang Paul因他对离子阱技术的贡献而获得了诺贝尔物理学奖。John Fenn - John Bennett Fenn 被授予2002年的诺贝尔化学奖,以表彰他对生物质谱学的贡献。他是因为他的开创性工作,特别是对于"soft desorption ionization methods"(软解吸离子化方法)的开发而获奖。这些方法对于质谱分析生物大分子(如蛋白质)非常重要,因为它们允许这些分子在质谱仪中被更加温和地离子化,使其更容易进行分析。Koichi Tanaka 田中耕一,也因为其在质谱学领域的突出贡献而于2002年获得了诺贝尔化学奖。他的工作涉及到新的离子化方法,被称为"ultra fine metal plus liquid matrix method"(超细金属加液体基质法),该方法在离子化大分子方面取得了重大突破,使生物质谱学得以发展。质谱的发展历史图2.阿斯顿1919年制作的第三台质谱仪的复制品 1886年,Eugen Goldstein观察到阳极射线。1898年,Wilhelm Wien展示了通过强电场和磁场可以偏转阳极射线,1898年,J. J. Thomson测量了电子的质荷比。1901年,Walter Kaufmann使用质谱仪测量了电子的相对质量增加。 1905年,J. J. Thomson开始研究正电荷射线。1906年,Thomson因“在气体导电方面的理论和实验研究的杰出优点”被授予诺贝尔物理学奖。 1913年,Thomson能够分离具有不同质荷比的粒子。他分离了20Ne和22Ne同位素;1919年,Francis Aston构建了第一个速度聚焦质谱仪,质量分辨率为130。 1922年,Aston因“通过质谱仪在大量非放射性元素中发现同位素并提出整数规则”而被授予诺贝尔化学奖。1931年,Ernest O. Lawrence发明了回旋加速器。1934年,Josef Mattauch和Richard Herzog开发了双聚焦质谱仪。 1936年,Arthur J. Dempster开发了火花电离源。1937:Aston构建了质谱仪,分辨率为2000。 图3. 这张照片展示了Mass Spectrometer 9(MS-9)在位于得克萨斯州贝敦的汉布尔石油和炼油公司研发部实验室的安装过程。照片中出现的人员,从左至右,分别是:亨利厄尔兰普金(汉布尔石油和炼油公司的质谱仪专家)、奈杰尔宾(Associated Electrical Industries的安装工程师)、乔丹尼尔斯(汉布尔石油和炼油公司的电子工程师)以及彼得达默斯(Associated Electrical Industries的工程师实习生)。这台MS-9质谱仪由英国曼彻斯特的Associated Electrical Industries(AEI)制造,是首台安装在美国的质谱仪。在汉布尔石油和炼油公司,它被用于通过精确测量百万分之一的质量,来识别石油中的复杂烃类、硫、氮和氧化合物。 1939年,Lawrence因回旋加速器获得诺贝尔物理学奖;1942年,Lawrence开发了用于铀同位素分离的Calutron;1943年,Westinghouse推出其质谱仪,并宣称它是“快速、精确气体分析的新电子方法”; 1946年,William Stephens提出了飞行时间质谱仪的概念。1953年,Wolfgang Paul和Helmut Steinwedel引入四极质量滤器;1954年,A. J. C. Nicholson(澳大利亚)提出一种氢转移反应,后来被称为麦克拉弗蒂重排;1959年,陶氏化学公司的研究人员将气相色谱仪与质谱仪相接合; 1964年,英国质谱学会成立,成为第一个专门的质谱学会。它于1965年在伦敦举行了第一次会议; 1966年,F. H. Field和M. S. B. Munson开发了化学电离技术; 1968:Malcolm Dole开发了电喷雾电离。 1969年,H. D. Beckey开发了场脱附技术; 1974年,Comisarow和Marshall开发了傅里叶变换离子回旋共振质谱仪;1976年,Ronald MacFarlane和同事开发了等离子体脱附质谱仪。1984年,John Bennett Fenn和同事使用电喷雾技术对生物大分子进行离子化; 1985:Franz Hillenkamp、Michael Karas和同事描述并提出了“基质辅助激光解吸电离”(MALDI)这个术语; 1987年,田中耕一使用“超细金属加液体基质法”对完整蛋白质进行离子化; 1989年,Wolfgang Paul因“离子陷阱技术的发展”而获得诺贝尔物理学奖;1999年,Alexander Makarov介绍了Orbitrap质谱仪。2002:John Bennett Fenn和田中耕一因“软解吸离子化方法的发展分别被授予诺贝尔化学奖;2005年,Orbitrap MS商业化。2008:ASMS质谱学杰出贡献奖。美国田纳西州橡树岭Y-12工厂的Caultron质谱仪(摄于1945年)质谱离子源的发展历史 质谱离子源是质谱仪的一个关键组件,用于将样品中的分子或原子转化为离子以进行质谱分析。下面是质谱离子源的发展历史的简要概述:热释离子源(1920s-1930s):早期的质谱仪使用了热释电子离子源,其中通过加热样品使其释放电子,然后这些电子被聚焦为电子束,用于离子化样品分子。这是质谱离子源的早期形式。电子轰击离子源(EI)(1930s-1940s):电子冲击离子源引入了电子冲击离子化技术,其中高速电子与气体或样品分子碰撞,将它们离子化。这种技术被广泛应用于质谱分析,直到今天仍然使用。化学离子源(CI)(1950s-1960s):在这一时期,化学离子源(如化学电离源和化学反应源)开始得到广泛应用。这些源使用化学反应来选择性地离子化样品中的特定化合物,增强了质谱的选择性和灵敏度。飞行时间质谱仪离子源(TOF)(1940s-1950s):飞行时间质谱仪引入了一种新型离子源,它利用离子在电场中的飞行时间来测量质谱。这种技术允许对分子的质量进行非常精确的测量。大气压化学离子源(Atmospheric Pressure Chemical Ionization)离子源是质谱仪的一种离子化技术,它的发展历史可以追溯到20世纪70年代。以下是APCI离子源的历史发展:APCI的起源可以追溯到20世纪70年代,当时科学家们开始研究大气压下的质谱离子化技术。早期的研究主要集中在气相色谱-质谱联用(GC-MS)领域。基质辅助激光解吸离子源:(MALDI,Matrix-assisted laser desorption/ionization)(1980s-1990s):MALDI是一种特殊类型的激光解吸离子源,被广泛用于生物质谱学。它允许非常大的生物分子(如蛋白质和多肽)进行质谱分析。电喷雾离子源(ESI)(1990s-2000s):电子喷雾离子源是一种用于高分辨率和高灵敏度质谱的离子源,特别是在液质谱和飞行时间质谱中。 结语:质谱离子源的不断发展和创新推动了质谱学领域的前沿研究,为分析和识别各种物质提供了强大工具。不同类型的离子源被设计和优化,以满足不同样品类型和分析要求,从而在科学、医学、环境和工业等领域中得到广泛应用。质谱学和质谱离子源的历史告诉我们,科学是一个不断进化和前进的领域。每一位贡献者和创新者都为扩大我们的知识边界和改善我们的生活贡献了自己的一份力量。在质谱学的世界里,探索和发现的旅程永无止境,我们期待着未来的科学家继续推动这一领域的前沿,为人类知识的扩展作出贡献。质谱学,作为一门精密、强大和令人着迷的科学,将继续引领我们进入更深刻、更精确的科学时代。
  • 高分辨质谱新组合!​赛默飞发布Orbitrap Astral 质谱新品
    近日,赛默飞在2023年ASMS(美国质谱年会)期间发布了年内最新的Thermo Scientific TM OrbitrapTM AstralTM高分辨质谱仪。赛默飞Orbitrap Astral全新一代高分辨质谱仪,在四极杆、Orbitrap和新型的Astral质量分析器的协同作用下,这款革命性的新仪器实现了无与伦比的性能和覆盖组学领域的应用。这三种质量分析器的组合能够快速获取高质量、高分辨率、高灵敏度和宽动态范围的精确质量(HRAM)数据。该仪器的性能特点更适合从单细胞到批量样品的准确和精确的定量,同时达到前所未有的覆盖深度。创新点:四极杆质量分析器——对Orbitrap Astral质谱仪的前端进行了灵敏度和耐用性的优化。• 具有最新的离子源,以提高灵敏度• EASY-IC实时质量校准,以提高质量精度• 通过主动离子导向的预过滤器降低噪音,提高仪器耐用性• 先进的四极杆技术,提高传输,使隔离宽度降低到0.4 Th,更快的隔离切换时间仅为1 ms,并能实现自动,切换以提高耐用性。Orbitrap质量分析器——在超高分辨率水平上提供高质量精度,高动态范围的测量结果新型的Astral质量分析器赛默飞开发了一种全新的非对称轨道无损质量分析器,简称Astral,与Orbitrap质量分析器相辅相成。Astral质量分析器是赛默飞15年的研发成果,每个组件都经过协同优化,以更快的扫描速度和更高的灵敏度提供前所未有的性能水平。离子首先从离子导向多极杆传输到离子处理器(Ion processor)中,该处理器以高达200 Hz的速度捕获并碎裂离子。然后,所得离子通过一系列注入透镜(injection optics)使其准确地对齐离子束并提高灵敏度。离子进入一个开放式的静电阱,并通过无网格的非对称离子镜(ion mirrors)和离子箔(ion foil)的组合进行非对称横向振荡,该离子镜可产生27米的非对称轨道,分辨率高达80000(@ m/z 524),离子箔则能在三个维度上使离子束保持形态和聚焦,以提高分辨率和灵敏度。离子的检测是由一个新型的高动态范围检测器进行检测,该检测器能够实现超高灵敏度的单个离子检测以及超过1000:1的高动态范围检测,并且低噪音和长寿命。Astral质量分析器的传输效率非常高,超过90%的离子进入质量分析器后到达检测器,实现超高灵敏度的同时不损失扫描速度和高分辨率。赛默飞Orbitrap Astral全新一代高分辨质谱仪适用于:• 高灵敏度检测与Astral分析器低样品上样,包括单细胞实验• 精准的非标定量(LFQ)和串联质量标签(TMT)的定量分析• 在更广泛的动态范围可用于生物制药选择天然蛋白复合物的综合分析
  • 核酸质谱之漫话一: 什么是核酸质谱
    导读核酸质谱,顾名思义是一种能检测核酸的质谱,它是基于MALDI-TOF MS质谱发展起来的一种继PCR(核酸扩增技术)和NGS(高通量测试)之后的又一个分子诊断新平台。那么,核酸质谱在医疗领域它有哪些优势和应用呢,接下来一起了解下… 核酸质谱技术近年来核酸质谱已成为PCR和NGS之后的又一个分子诊断新平台。荧光定量PCR检测速度快,但通量有限,无法方便快捷地满足对于多基因数十个至数百个位点的检测需求;而高通量测序虽然通量极高,但其检测成本高、项目检测周期长、检测的数据也需专业的分析解读,技术门槛较高;而核酸质谱稳定准确的检测结果和较低的检测成本满足了对中等通量位点SNP及基因突变等定性和定量检测的需求,同时可以进行方便快捷的DNA甲基化及拷贝数变异(CNV)检测,更凸显其在基因检测领域的强大竞争力,从而成为生命科学特别是临床诊断领域快速发展的主力平台之一。生命遗传物质DNA分子由4种碱基——ATCG所构成的,而每种碱基的分子质量不同。核酸质谱这台高精度的“天平”,可区分单个碱基的质量差异(GATC)。当核酸发生变异的时候,不论是碱基替换还是修饰,都会改变DNA的分子质量。核酸质谱通过对这种质量变化的精确分析,可对其精准识别。核酸质谱既可以检测基因的多态性和基因的突变,也可以检测核酸的化学修饰,还能够对拷贝数变异和修饰水平等进行定量的分析。核酸质谱主要通过多重PCR+高通量芯片+飞行时间质谱来实现核酸检测。目前核酸分析所使用的质谱电离技术主要为基质辅助激光解析电离(MALDI),分子量检测范围可达到50万道尔顿,打破了以往质谱仅可进行小分子物质分析的限制,使得研究范围扩大到核酸、蛋白质等生物大分子,极大推进了基因组学和蛋白质组学的发展,给生物科学及医学领域带来了突破。核酸质谱可进行基因的单核苷酸多态性(SNP)、基因突变、DNA甲基化及拷贝数变异(CNV)分析,广泛应用于药物基因组学、肿瘤分析、肿瘤液态活检、病原体检测、遗传性疾病和甲基化研究等领域。迄今为止临床上还鲜有其他检测平台可以兼顾多种组学层次的检验分析。东西分析经过多年研发,继飞行时间质谱仪取得微生物鉴定医疗器械注册证书后,也同时在核酸质谱领域开发了多个应用并陆续开始生产转化,如多种食源性致病菌联检、军团菌检测、耐药基因位点检测、癌症早筛、冠状病毒检测和甲基化检测;并参与了多个相关国标和行业标准的制定工作。编者语从下期将陆续给大家带来东西分析开发的核酸质谱的多种应用介绍,如宫颈癌、甲状腺癌、多种食源性致病菌和呼吸道病毒联检等,敬请期待!
  • 四极质谱核心部件-高精度四极质量分析器通过验收
    记者近日从中国工程物理研究院机械制造工艺研究所获悉,被列入科技部首批国家重大科学仪器设备开发专项的《高精度四极质量分析器工程化研制与应用》项目,日前通过项目初步验收。   质谱仪是以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,再利用电磁学原理使离子按不同的质荷比分离后,测量各种离子强度,确定被测物质的分子量和结构的科学仪器。四极质谱仪具有灵敏度高、样品用量少、分析速度快、分离和鉴定同时进行等优点,广泛应用于化工、环境、能源、医药、生命科学、材料科学等各领域。而四极质量分析器是四极质谱仪的核心部件,此前完全依赖进口,国产高端四极质谱仪一直处于&ldquo 空心化&rdquo 状态。   2011年,中物院机械制造工艺研究所牵头,联合复旦大学、北京普析通用仪器有限责任公司等单位建立研究团队,几年中,团队成功研制出系列四极质量分析器产品,综合性能指标均达到国际先进水平。   &ldquo 四极质量分析器要求在一定频率的射频电压与直流电压作用下,只允许一定质荷比离子通过到达接收器,从而实现不同质荷比离子分离,其设计、制造精度要求极高。&rdquo 中物院机械制造工艺研究所所长王宝瑞说。
  • 魏开华:质谱进展评述专题之【质量分析器何去何从】
    p   质量分析器的进展主要来自国外科研院所,由其合作质谱厂家协同大力开发完成,是目前质谱仪器竞争力的最热点。各种技术名称很多,但技术背后的根本离不开偏转与聚焦之类的离子轨迹控制。 /p p   “轨道阱(Orbitrap)”无疑是突破性质谱分析器技术,该类质谱仪器在生命科学领域取得了巨大的成就,尽管它的原理在数10年前就已经被发明,但真正成为商品化产品,还是近些年才完成的,主要得益于与之相配套的离子传输系统(尤其是C-Trap)、电源稳定性、超高真空系统的研发取得了实质性进展。 /p p   多次反射、曲线型或螺旋型分析器显著提高了分辨率,但与多次反射线型分析器一样(如W模式),灵敏度损失也比较明显,通过延长离子路径来提高分辨率,并非一个理想化方案,或许聚焦才是根本,因此,分析器改进的方向是分辨率和灵敏度同步提高,许多宣传实现了这项要求的质谱仪器其实并未在应用中得到良好验证。 /p p   多种分析器的杂交技术是分析器重要进展,QQQ、Q-TOF、TOF/TOF、IT-TOF、Q-LIT已被证明是质谱最关键的技术进展,市场获益巨大。近期“分析器三重杂交(TriHybrid)”广受关注,在鉴定结果可靠性方面得到了大幅度改善,在功能蛋白质组学、修饰蛋白质组学、复合物蛋白质组学等生命科学等领域得到了良好的应用。目前,TriHybrid系统的三个主机布局还有改进的地方(本人亲自跟发明人进行过讨论),这个观点得到了仪器发明人的认可,具体方案和措施有待深入研究。 /p p   移动式小型IT-IT质谱已速度快、体积小、高可靠鉴定小分子和肽等方面超过了其它同类质谱产品,结合专利化的样品导入系统,预期在临床标志物快速筛查、食品安全、国防与军事等领域具有良好的前景。当国产QQQ质谱艰难推进的时候,是不是可以进攻IT-IT体系呢? /p p   离子回旋共振(ICR)分析器的重要进展是在磁场和液氦循环方面,调制系统有些局部改进。 /p p   离子淌度技术应用于质谱有了近30年历史,离子淌度部件由早期的单一型分析器转变为辅助型分析器,具体部位几经改变:“离子源内”--& gt “四极杆前”--& gt “离子源与四极杆间相对独立”,最近几年在技术缺陷改进方面取得了重要进展,如由于真空变低导致的灵敏度降低等,当然离子淌度技术最重要进展还是在软件和应用方面,已经不仅仅局限在大分子体系,也可以用于复杂混合物小分子体系了,增加了新的分离维度,检出容量比非离子淌度分离体系提高非常大,而且与质谱成像技术结合,很好的拓展了质谱的基础研究与应用的范围。 /p p   总体上来说,质量分析器虽然没有离子源那么花样繁多,但人们依然在不断努力和创新,企图实现技术上的突破,这些年来取得了一些进展,有些还是重大惊人的进展。从商业角度看,质谱分析器的价格占整机的比例与技术程度密切相关,但一般比离子源的价格比例大不少。可以预测,谁拥有核心技术的质量分析器,谁就拥有质谱发言权。 /p p style=" TEXT-ALIGN: center" img title=" 微信图片_20180627104039.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/6fe1a4e2-5900-428e-9fd1-345b3f5e4dcd.jpg" / /p p style=" TEXT-ALIGN: right" (本文作者为蛋白质药物国家工程研究中心魏开华研究员 /p p style=" TEXT-ALIGN: right" 微信公众号:药网堂) /p
  • 沃特世新一代质谱仪,扩展Xevo质谱平台
    Xevo TQ-S和Xevo G2 QTof将台式质谱的定性和定量分析性能提升到崭新水平   犹他州盐湖城 – 2010年5月24日 – 沃特世公司(WAT:NYSE)今天隆重推出Xevo质谱平台的两款新的质谱仪 -Xevo TQ-S和Xevo G2 QTof,这两款质谱仪为台式质谱分析带来了性能上的飞跃性提升。 此产品于美国质谱协会(ASMS)第58届年会上隆重推出和介绍。 Xevo TQ-S和Xevo G2 QTof是2008年首次引进的台式质谱仪Xevo家族的最新成员,也是该家族最强大的质谱仪。结合Waters® ACQUITY® 超高效液相色谱® (UPLC® )系统,无论对于化合物鉴定、定量分析和筛查,还是通过一次分析从最小的样品量中提取最多的信息,这两款质谱仪为科学工作者提供了最高灵敏度水平和最强大分离能力相结合的分析技术。   沃特世质谱运营部副总裁Brian Smith称,“今天的产品发布,意味着沃特世在高性能质谱分析领域已经奠定了稳固的领导地位。科学家们发现,我们新型Xevo质谱仪上发现的新特性和创新技术为他们直接呈现研究结果而不是其它无用数据。按他们的话说,那正是质谱仪的价值所在。”   在今天记者招待会上,沃特世国际市场部全球副总裁Dr. Rohit Khanna发表讲话称,“客户告诉我们他们想更轻松、更快速地获取高品质、高影响力的分析结果。质谱仪Xevo家族增加的这些新性能意味着我们可以提供适合特殊用途的UPLC/MS/MS系统,帮助他们轻松达成科学和业务目标,并为他们解决疑难问题。”   预计Xevo G2 QTof和Xevo TQ-S系统将分别于就2010年6月和9月开始发货。   沃特世XEVO TQ-S质谱仪   沃特世Xevo TQ-S串联质谱仪意味着对于目标化合物定量的UPLC/多反应监测(MRM)的分析能力上升到一个新的台阶。该质谱系统可以对复杂样品中fg级或更低浓度水平的目标化合物进行准确定量。XevoTQ-S专为UPLC/MS/MS应用而设计,这些应用以速度、灵敏度和精确度为重,如生物学和医学研究、生物分析、食品安全、环境监测和法医检验。   创新的StepWave™ 离轴离子迁移技术是Xevo TQ-S的特色,通过这项技术,大幅度提高了离子从离子源迁移至四极杆质量分析器的效率,同时有效地清除了不需要的中性污染物。它赋予了Xevo TQ-S卓越的灵敏度。与上一代质谱仪相比,Xevo TQ-S色谱峰面积普遍提高超过30倍,信噪比通常要提高5~10倍。   独创的高速迁移光学和碰撞室设计,使TQ-S系统可在狭窄的1~2秒峰宽的UPLC色谱峰上同时获取全扫描MS和MRM数据,并且在整个质谱峰上仍然获取超过12个数据点(这对处理复杂基质时的方法开发尤为重要),从而监测在常规分析时样品中出现的新组分或解决实验难题。   使用Xevo TQ-S质谱仪,科学家们现在可以信心十足地对超过以往可达到的更低浓度的化合物进行定量分析,该仪器的高灵敏度特性还允许科学家们考虑稀释样品以降低基质效应对化合物分析的干扰。它们还可用更小的样品量进行分析,当分析从动物或人体中提取的宝贵的生物样品时,这一点带来的好处就非同凡响。   沃特世Xevo G2 QTof质谱仪 Xevo G2 QTof是新一代精确质量台式MS/MS质谱仪,也是首个具备沃特世QuanTof™ 技术 特色的Xevo飞行时间质谱仪,QuanTof™ 技术之前只有沃特世SYNAPT™ G2 MS和G2 HDMS 质谱仪拥有。该项技术为研究所、学术实验室和工业实验室提供了研究级的定量和定性分析性能。QuanTof技术可将上一代Xevo QTof 系统的动态线性范围扩大至4个数量级以上,以及更高的质量分辨率(20,000 FWHM),从而使实验室具有更高的效率和生产率。 Xevo G2 QTof结合沃特世ACQUITY UPLC系统并利用了UPLC/MSE 专利技术的力量,UPLC/MSE 是一种简单的专利数据采集方法,可在一次分析中对复杂样品成分进行全面数据记录。这为科学家们提供了可随时访问的全面的样品数字化记录,从此他们不再需要重新分析样品,而以前在某些时候是必须要做的,如:采用标记的“data directed(数据定向)”蛋白质定量方法时。 Xevo G2 QTof 专为需要获得准确的定量和定性数据信息且样品量与日俱增的实验室而设计(如进行完整蛋白分析、肽谱测定、寡聚核苷酸分析、代谢物鉴定、代谢组学测定、蛋白组学实验和食品安全筛查时)。   “Xevo G2 QTof在许多方面都具有超越的性能”,苏格兰爱丁堡SASA的George Keenan博士(作为一名科学家,他开发了小于10分钟的UPLC/MS/MS方法,可对水果和蔬菜中多达160种杀虫剂进行监测,他的实验室是经European Union Community Reference Labs Survey(欧盟参考实验室调查)技能认定的欧洲等级最高的实验室之一)说,“它的分辨率和精确度均大大优于上一代四级杆飞行时间质谱仪,它拥有我们实验室对食物进行欧盟法规符合性监查分析时所要求的高灵敏度。”   工程精简和通性共享   根据科学家们(他们多数是非质谱学或分析化学学科领域的专家)反馈的意见,沃特世于2008年创造了Xevo仪器平台,使质谱分析测量结果比以往更容易获取。   自此,Xevo客户报告称,他们正经历着从操作者到操作者、从实验室到实验室的样品结果一致性的持续改进。他们把这项改进归功于沃特世应用于Xevo 家族质谱系统的Engineered Simplicity™ (工程精简)技术的设计理念。Engineered Simplicity意指,沃特世质谱仪用尽可能最简单的方法提供相关研究信息,可使科学家们更快、更精确地将数据转换成业务关键信息。 在现今的制药行业中,依赖于合同研究组织的制造商比以往任何时候都要多,这种情况下,从仪器到仪器、从实验室到实验室的结果可重现的重要性就更加突显。   沃特世Xevo家族质谱仪具有好几个共同特性,每个特性都解决了使用质谱仪时曾经常遇到的麻烦和头痛的问题。   我们拥有沃特世通用离子源结构系统。沃特世离子源的选择 – 包括电喷雾电离源(EI)、大气压化学电离源(APCI)、大气压光电离源 (APPI)、大气压气相色谱接口(APGC)、大气压固相分析探头 – 它们具有共同的设计特征,即:几分钟之内,无需使用工具且不破坏仪器的真空环境,即可进行离子源互换或取下离子源进行清洁。这个对于其它质谱仪而言通常要花几个小时的艰巨任务从此不再令人望而却步。独特的APGC源还可使科学工作者在一台Xevo TQ-S质谱仪上同时进行精确质量的LC/MS/MS和GC/MS/MS检测,而无需在不同的质谱仪上分别进行LC/MS/MS和GC/MS/MS分析工作。   质谱仪的操作和维护曾经需要具有相当的专业内行知识和大量的学习。现在不需要了。凭借着IntelliStart™ 技术,沃特世将曾经在任何样品检测之前都要求的许多人工操作步骤都给予了自动化。其中包括自动化校正和系统性能监测。   利用沃特世ACQUITY UPLC系统,Xevo质谱仪的使用得以优化。UPLC技术意指:色谱峰更尖更窄、峰高增加、分离速度更快以及信噪比性能更好,从而拥有更高的总体质谱灵敏度。UPLC、Xevo质谱仪、MassLynx™ 软件和UPLC的化学品的结合产生了唯一被认定为可解决各种实验室难题的特殊应用的 LC/MS/MS系统。   位于美国加洲圣地亚哥的MicroConstants公司是符合GLP要求的合同研究组织,它致力于为全世界的生物制药和生物技术公司提供质量最优的生物分析、药物代谢、药代动力学、药物配方和免疫测定的支持服务。MicoConstants公司DMPK部门的总监David Johnson称,“ACQUITY UPLC系统能够为我们提供在液相色谱(LC)上我看到过的重现性最好的色谱。当将它与Xevo TQ结合使用时,我们即可迅速且轻易地将各种小分子的检测限降低至pg/ml。使用二者结合后的设备,我们快速完成了许多灵敏的方法开发项目。”   更多详情请浏览:www.waters.com/xevo   关于沃特世公司(www.waters.com)   50年来,沃特世(NYSE:WAT)公司通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。   沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。   沃特世公司2009年的收入达15亿美元,员工人数达5,200人,公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。   # # #   Waters、UPLC、UltraPerformance LC、ACQUITY UPLC、ACQUITY、IntelliStart、MassLynx、StepWave、QuanTOF、Engineered Simplicity 和Xevo 是沃特世公司的注册商标。
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    为什么飞行时间质谱(tofms)是相对于四级杆质谱(qms)更理想的检测器?您是否想了解飞行时间质谱仪(tofms)和四极杆质谱仪(qms)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。tofms采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,tofms具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱tofms级杆质谱qms mass analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000hz全谱1000hz单个离子质量分辨率r = m/rm10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rm/m1000质量数时,4 ppm = 4 mth/th精确质量rm0.001 th at 300 th0.5 th质量范围1 th 到 10000 th通常为10 th 到 500 th四极杆和tof质量分析仪的工作原理?四极杆和飞行时间(tof)质量分析仪实现对不同质荷比(m/q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/q值的离子才能通过四极杆被后端检测器检测到。 第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频rf电场将离子聚焦在四级杆的轴心;叠加的直流dc电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频rf场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。 图1. 四级杆原理动画图。同一时间,只有特定m/q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(sim)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器tof分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在tof飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能e。更准确来说,离子获得的动能与其带电荷量q成正比。电荷量相同的离子,e/q近似完全一致。动能e跟质量和速度的方程式:e = ½ mv2这也就意味着:e/q = ½ m/q v2 约等于恒定。因此,质荷比m/q较小的离子会以更快的速度地通过tof区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。 每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 hz)秒或者更长时间段的谱图。举例来说:当tof以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代tof仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。tofms快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。tof同时检测所有离子的特质,相比于qms离子监测(sim)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用vocus 2r ptr-tof在4hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的vocs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图)。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用tofms实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个tofms质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而tofms对每个m/q的信号累积时间则为10秒。很明显,tofms将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。 tof瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式sim)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用tofwerk ei-tof以5谱每秒的采集频率测量的gc逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行sim。另一方面,图中最大的色谱峰中包含的ei谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与nist库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用sim的操作者必须非常确定他们对除样品目标物外的其他任何vocs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的tof数据,针对这些‘新’物种进行回溯分析。图4. ei-tof测得的gc气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在sim模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的nist ei谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的voc成分变化很快,就无法准确定量vocs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段vocus elf小精灵ptr-tof对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(icp-ms)。在非连续进样时,icp-ms需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。tofwerk的icptof (icp-ms搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icptof r检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有r=m/dm(fwhm)=3000-4000th/th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的ptr四极杆谱图与分辨力为r=5000 th/th的vocus s ptr-tof谱图进行了详细对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的vocus s ptr-tof的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 th/th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 th)或2-乙基呋喃(97.065 th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,tof分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,tof的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。 来源:tofwerk
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    您是否想了解飞行时间质谱仪(TOFMS)和四极杆质谱仪(QMS)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOFMS采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,TOFMS具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱TOFMS级杆质谱QMS Mass Analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000Hz全谱1000Hz单个离子质量分辨率R = M/rM10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rM/M1000质量数时,4 ppm = 4 mTh/Th精确质量rM0.001 Th at 300 Th0.5 Th质量范围1 Th 到 10000 Th通常为10 Th 到 500 Th四极杆和TOF质量分析仪的工作原理?四极杆和飞行时间(TOF)质量分析仪实现对不同质荷比(m/Q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/Q值的离子才能通过四极杆被后端检测器检测到。第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频RF电场将离子聚焦在四级杆的轴心;叠加的直流DC电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/Q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/Q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频RF场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。图1. 四级杆原理动画图。同一时间,只有特定m/Q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(SIM)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器TOF分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在TOF飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能E。更准确来说,离子获得的动能与其带电荷量Q成正比。电荷量相同的离子,E/Q近似完全一致。动能E跟质量和速度的方程式:E = &half mv2这也就意味着:E/Q = &half m/Q v2 约等于恒定。因此,质荷比m/Q较小的离子会以更快的速度地通过TOF区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在TOFWERK仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 Hz)秒或者更长时间段的谱图。举例来说:当TOF以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代TOF仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。TOFMS快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。TOF同时检测所有离子的特质,相比于QMS离子监测(SIM)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用Vocus 2R PTR-TOF在4Hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的VOCs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图))。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用TOFMS实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个TOFMS质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而TOFMS对每个m/Q的信号累积时间则为10秒。很明显,TOFMS将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。TOF瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式SIM)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用Tofwerk EI-TOF以5谱每秒的采集频率测量的GC逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行SIM。另一方面,图中最大的色谱峰中包含的EI谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与NIST库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用SIM的操作者必须非常确定他们对除样品目标物外的其他任何VOCs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的TOF数据,针对这些‘新’物种进行回溯分析。图4. EI-TOF测得的GC气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在SIM模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的NIST EI谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的VOC成分变化很快,就无法准确定量VOCs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段Vocus Elf小精灵PTR-TOF对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(ICP-MS)。在非连续进样时,ICP-MS需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百Hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。TOFWERK的icpTOF(ICP-MS搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icpTOF R检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有R=M/dM(FWHM)=3000-4000Th/Th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的PTR四极杆谱图与分辨力为R=5000 Th/Th的Vocus S PTR-TOF谱图进行了详细对比。图7. 质子转移反应QMS和TOF谱图对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的Vocus S PTR-TOF的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 Th/Th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 Th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,TOF分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,TOF的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制