四氨络酮

仪器信息网四氨络酮专题为您提供2024年最新四氨络酮价格报价、厂家品牌的相关信息, 包括四氨络酮参数、型号等,不管是国产,还是进口品牌的四氨络酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四氨络酮相关的耗材配件、试剂标物,还有四氨络酮相关的最新资讯、资料,以及四氨络酮相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

四氨络酮相关的资料

四氨络酮相关的论坛

  • 碱式碳酸铜与氨水生成 络氨铜?

    请教氨水与碱式碳酸铜会生成络氨铜吗?溶液是否是深蓝色,本人实验,加入一定量的氨水至碱式碳酸铜完全溶解,但一段时间后有沉淀产生,是氨水加入过多还是过少?还是碱式碳酸铜有杂质?(本人用的是AR)这样的反应能否完全生产络合物而不会出现氧化铜或者其他铜化合物。

  • 除草剂:氨唑草酮 介绍

    氨唑草酮(BAY314666)是拜耳公司1988年发现的三唑啉酮类除草剂,1999年在英国布莱顿世界植保大会上推出。氨唑草酮为光合作用抑制剂,敏感植物的典型症状为褪绿、停止生长、组织枯黄直至最终死亡,与其它光合作用的抑制剂(如三嗪类除草剂)有交互抗性,主要通过根系和叶面吸收。具有内吸活性,通过抑制敏感植物的光合作用,干扰正常的电子传递。通常使用三到四周就能产生效果。http://ng1.17img.cn/bbsfiles/images/2017/04/201704222147_01_1623180_3.jpeg氨唑草酮欧洲专利EP0370293,已于2009年11月3日到期;美国专利US5194085,已于2010年5月15日到期。氨唑草酮的适用对象主要为甘蔗、玉米和草坪。它可以有效防治玉米和甘蔗上的主要一年生阔叶杂草和禾本科杂草。在玉米上,氨唑草酮对苘麻、藜、野苋、宾州苍耳和甘薯属等具有优秀防效,此外对甘蔗上的泽漆、甘薯属、车前臂形草和刺蒺藜草等也有很好的防效。甘蔗玉米在我国种植面积较大,因此氨唑草酮在我国的应用市场也比较广阔。氨唑草酮的最大优点是有抗旱和非毒性特性,应用更灵活,能降低工作量,减少整修,降低杀菌剂、杀虫剂和植物生长调节剂的使用。除草时间长,对地下水安全,对后茬作物安全,用量仅为莠去津的1/2—1/3,也因此成为了高毒农药莠去津等的最佳替代产品。与莠去津相比,氨唑草酮原药成本较高。另据业内人士透露,该产品在玉米作物中使用尚存安全性问题,因此目前国内市场上并无氨唑草酮产品的销售。

四氨络酮相关的方案

四氨络酮相关的资讯

  • 海尔欣受邀参与海螺研究院水泥氨逃逸测试试验
    众所周知,水泥行业三大污染物“粉尘、二氧化硫、氮氧化物”中,氮氧化物超低排放治理难度最大。目前氮氧化物治理主要分为“脱硝技改+SNCR”以及SCR两种方案。而国内现有水泥企业多数采用“脱硝技改+SNCR”控制氮氧化物排放量,但是SNCR技术也存在一大弊端,就是“氨逃逸”问题。日前,海尔欣应海螺建材设计研究院的邀请,参与集团旗下水泥窑炉生产工艺中的氨逃逸排放比对试验,我公司安排专业的技术人员到现场配合客户现场测试,在水泥窑炉高尘,高温等工况条件下,海尔欣的LGM1600便携氨逃逸分析仪依然能够圆满完成测试,为客户获取到宝贵的水泥工况氨逃逸数据,解决了实际生产中的问题。海螺研究院现场测试图海螺简介:安徽海螺建材设计研究院有限责任公司(以下简称“海螺设计院”)创立于1997年,2018年4月16日完成公司化改制,是海螺集团公司的全资子公司,注册资本金1.5亿元,近三年年营业收入均超过5亿元。多年来,通过服务集团工程建设和技术创新,不断积累发展成为拥有水泥工程、轻钢结构、环保专项、工程咨询等4项甲级,建筑工程、非金属矿、新型建材等3项乙级,以及国家级压力管道、消防和防雷等多项工程设计资质的专业化设计研究公司。
  • 大连化物所实现铜晶面串联催化促进电化学还原硝酸盐合成氨
    近日,大连化物所催化基础国家重点实验室汪国雄研究员和包信和院士团队在电化学合成氨研究中取得新进展,发展了一种原位衍生的高性能Cu纳米片催化剂,提出了Cu晶面串联催化促进电化学还原NO3-合成NH3的有效策略,并加深了对Cu催化剂上NO3-转化为NH3反应机制的理解。   电催化还原将硝酸盐(NO3-)污染物转化为高附加值的氨(NH3),为氮资源循环利用提供了一种有前景的解决途径。NO3-转化为NH3需要经历复杂的多步质子电子转移过程,导致动力学速率缓慢,过电势高。同时,竞争性析氢反应(HER)降低了NH3法拉第效率及分电流密度。因此,硝酸盐电催化还原(NO3-RR)的关键是设计制备高活性、高选择性和高稳定性的催化剂。本工作报道了一种电化学原位衍生的高性能铜(Cu)纳米片催化剂,在流动相电解池中,该催化剂在-0.59 V vs. 相对可逆氢电极(RHE)条件下获得了665 mA cm-2的NH3分电流密度和1.41 mmol h-1 cm-2的NH3产率。该催化剂表现出700 h的高稳定性,在365 mA cm-2电流密度下,NH3法拉第效率保持在~88%。电化学原位谱学表征结果表明,氧化铜(CuO)纳米片在RR反应条件下被原位还原为金属Cu,提供了NO3-电化学还原的活性位点。物理化学和电化学表征以及密度泛函理论计算结果表明,原位衍生Cu纳米片的高性能归因于Cu(100)和Cu(111)晶面的串联催化作用。由于Cu的不同晶面上静电势的差异导致NO3-吸附强弱的差别,其中Cu(100)更容易吸附NO3-并促进其转化为NO2-,产生的NO2-随后迁移在Cu(111)上进一步还原,从而促进了NH3的生成。   相关工作近日以“Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis”为题发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作第一作者是我所502组博士研究生付云凡和博士后王硕。该工作得到国家重点研发计划、国家自然科学基金等项目的支持。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。

四氨络酮相关的仪器

  • 2118XP 联氨表功能特点:1. 0-200 ppb 检测范围—在宽范围内连续检测联氨浓度2. 连续测量水样的联氨含量,为确保最优化联氨试剂泵的运行提供实时、准确的信息,降低系统的运行成本3. 操作极其简单,缩短仪表的停机时间,确保有效运行时间4. 大屏幕带背光的 LCD 显示,即使在昏暗的环境中仍能清晰读取显示数据5. 选用Orion性能优异的碘离子电极,快速的响应并达到稳定值,无需进行频繁的校正6. 仪表不含需要经常维护及成本昂贵的移动部件及试剂泵,最少的操作时间和维护量7. 高级的用户操作界面,提供详细的校正、测量、诊断信息8. 独特的试剂添加设计技术,保证水样在所需的适当条件下测量,从而获得精确、可靠的测量结果仪器具有灵活的扩展性1. 可选择增加第二通道为 pH 或电导率测量通道2. 可选择数字通讯模块,满足用户现场数字网络通讯的要求领 域农业用水 自来水/瓶装水 市政饮用水 食品和饮料应 用氟含量控制订购信息
    留言咨询
  • TR-408型COD氨氮总磷总氮(四参数)测定仪详情介绍 1. TR-408型水质COD氨氮总磷总氮测定仪简介 TR-408型水质COD氨氮总磷总氮测定仪,可同时测定水质中COD、氨氮、总磷、总氮四个参数的含量值,其中COD的测定符合HJ/T399-2007标准,氨氮的测定符合HJ535-2009标准,总磷的测定符合HJ671-2013标准,总氮的测定符合《碱性过硫酸盐消解光度法》,测定结果准确有效,广泛应用于环境监测、污水处理、化工化学、医药制药、科研单位及大中专院校。 2. COD氨氮总磷总氮四参数测定仪检测原理 COD测定原理:《水质 化学需氧量的测定 快速消解分光光度法》,运用密闭消解管密闭消解,在强酸性溶液中,用含有一定量重铬酸钾的专用氧化剂,在催化剂的作用下于165℃恒温消解,使水中还原性物质被氧化,在不同波长下测定水样中Cr6+和Cr3+的吸光度,利用吸光度计算出水中COD的含量值。 氨氮测定原理:《水质 氨氮的测定 纳氏试剂分光光度法》,以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡黄棕色络合物,该络合物的吸光度与氨氮含量成正比,利用比色法比色,经过微电脑芯片计算后直接显示氨氮含量(mg/L)。 总磷的测定:《水质 总磷的测定 钼酸铵分光光度法》,运用消解管密闭消解,以过硫酸钾为氧化剂,在125℃条件下,将样品中的含磷化合物全部转化为磷酸根,再在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,变成蓝色的络合物,利用比色法比色,经过微电脑芯片计算后直接显示总磷含量(mg/L)。 总氮的测定:《碱性过硫酸盐消解光度法》,运用消解管密闭消解,以过硫酸钾为氧化剂,在125℃条件下,将样品中的含氮化合物全部转化为硝酸盐,再在酸性条件下与显色剂反应,生成络合物,利用紫外吸收光度法测定其吸光度,经过微电脑芯片计算后直接显示总氮含量(mg/L)?? 3. TR-408型水质COD氨氮总磷总氮测定仪技术参数 测定项目COD氨氮总磷总氮测定范围0-10000mg/L(分段)0-50mg/L(分段)0-20mg/L(分段)0-100 mg/L检测下限5mg/L0.05mg/L0.02mg/L0.5 mg/L消解环境165℃,15min不需消解125℃,30min125℃,30min抗氯干扰1000mg/L—测定精度COD50mg/L,≤±10%COD50mg/L,≤± 5%≤±5%≤±5%≤±5%测定时间20~30分钟10~15分钟35~50分钟35~50分钟批处理量16/25支水样不限16/25支水样16/25支水样重复性≤±3%≤±3%≤±3%≤±3%光学稳定≤±0.001A/20分钟(10万小时寿命)比色方式比色管供电方式AC(220V±10%),50Hz主机尺寸310mm*230mm*150mm环境温度5~40℃环境湿度≤85%无冷凝重量主机<3kg,消解器6kg 4. TR-408型水质COD氨氮总磷总氮测定装箱清单 序号名 称数量序号名 称数量1打印型测定主机1台10比色管冷却架1个216孔智能消解仪1台11比色管清洁布1块3消解防护罩1个12电源线2根4COD测定试剂4套13USB数据线1根5氨氮测定试剂2套14联机光盘1张6总磷测定试剂2套15操作流程图各1份7总氮测定试剂1套16使用说明书1份8标准液各1套17合格证/保修卡1份9消解比色一体管30支18 TR-408型COD氨氮总磷总氮测定仪,已通过ISO9001::208质量管理体系认证,拥有深圳市计量研究院出具的校准报告,多参数水质分析仪软件登记证书等,同奥科技注册商标。仪器操作简单,价格实惠,是广大用户的首选仪器,采用消解比色一体管,消解和测定同一支管进行,步骤简单,人为误差影响小,如需了解更多TR-408型COD氨氮总磷总氮测定仪,请直接联系同奥客服,我们将竭诚为您服务。
    留言咨询
  • 钢衬聚氨酯管防腐管性能:钢衬聚氨酯管防腐管具有优异的耐磨、耐酸、耐碱、防结垢、耐辐射、耐水解老化、高弹性、抗机械 4冲击等综合性能。可广泛用于电力、煤炭、矿山、建材、化工等行业输送煤粉、灰渣、矿粉、铝液、泥浆等磨削性颗粒物料和腐蚀性介质。 钢衬聚氨酯管防腐管适用于粗颗粒、高压、高速介质的输送,在此工矿条件下,聚氨酯的优越性能将发挥到。在细颗粒(-200目占80%以上)、低压(2.0Mpa以下)、低流速(<1.8m/s=的软性介质中其优越性能体现很小。洛阳东宏新材料周江龙—— 钢衬聚氨酯管防腐管三通参数:公称通径DN钢管规格钢管重量(kg/m)内衬重量(kg/m)内衬厚度(mm)三通管重量(kg/m)支管中高mm工作压力Mpa80φ89×43.010.6353.621406.4100φ108×43.870.8454.721506.4125φ133×46.121.1457.561906.4150φ159×59.671.44511.152056.4200φ219×617.182.14519.352306.4225φ245×619.743.06622.822406.4250φ273×626.24.19630.312806.4300φ325×633.145.24638.423056.4350φ377×751.276.98658.273506.4400φ426×766.6512878.674006.4450φ480×780.5814.6895.184006.4500φ530×8113.6918.018131.174504600φ630×8158.2724.918182.565004700φ720×10259.2436.5410295.825504800φ820×10342.8455.110398.056504900φ920×10426.9268.3110795.247004 钢衬聚氨酯管防腐管具有以下特性:1、钢衬聚氨酯管防腐管高的耐冲击性橡胶会在冲击下变形,吸收颗粒的动能,然后以反弹的形式将大部分能量回传颗粒,降低冲击力,大大的提高了钢衬碳纳米聚氨酯耐磨管使用寿命。 2、耐磨性能好衬里可根据耐磨的需要进行配方,适用于磨耗大的环境,钢衬聚氨酯管防腐管耐磨性能是钢管的二十倍以上,陶瓷的四倍以上,同类衬胶管的七倍以上,可连续使用15-40 年。 洛阳东宏新材料科技有限公司周经理--- 邮箱:905266466@qq.com公司网址:加油站复合管 / 隧道逃生管道 阿里巴巴:
    留言咨询

四氨络酮相关的耗材

  • 普洛帝液体无水氨取样钢瓶
    液氨采样钢瓶满足标准:符合GB8570《液体无水氨实验室样品的采取》国家标准。适取范围:适用于液体无水氨样品的采取。液氨采样钢瓶材质:316L不锈钢容积:1L。设计压力:4MPa。液氨采样钢瓶规格:1000ml普洛帝荣誉出品:全程取样器,汽油取样器,柴油取样器,重油取样器,渣油取样器,薄壁加重取样器,天然气采样钢瓶,防静电采样绳,三酸取样器,耐酸点采样绳,沥青取样器,石油实验室分析仪器,油液颗粒度分析仪,颗粒计数器、颗粒计数仪、颗粒计数系统、油液取样器,颗粒度取样瓶等
  • 普洛帝液氨取样钢瓶
    液氨采样钢瓶满足标准:符合GB8570《液体无水氨实验室样品的采取》国家标准。适取范围:适用于液体无水氨样品的采取。液氨采样钢瓶材质:316L不锈钢容积:1L。设计压力:4MPa。液氨采样钢瓶规格:1000ml普洛帝荣誉出品:全程取样器,汽油取样器,柴油取样器,重油取样器,渣油取样器,薄壁加重取样器,天然气采样钢瓶,防静电采样绳,三酸取样器,耐酸点采样绳,沥青取样器,石油实验室分析仪器,油液颗粒度分析仪,颗粒计数器、颗粒计数仪、颗粒计数系统、油液取样器,颗粒度取样瓶等
  • 普洛帝液氨取样钢瓶
    液氨采样钢瓶满足标准:符合GB8570《液体无水氨实验室样品的采取》国家标准。适取范围:适用于液体无水氨样品的采取。液氨采样钢瓶材质:316L不锈钢容积:1L。设计压力:4MPa。液氨采样钢瓶规格:1000ml普洛帝荣誉出品:全程取样器,汽油取样器,柴油取样器,重油取样器,渣油取样器,薄壁加重取样器,天然气采样钢瓶,防静电采样绳,三酸取样器,耐酸点采样绳,沥青取样器,石油实验室分析仪器,油液颗粒度分析仪,颗粒计数器、颗粒计数仪、颗粒计数系统、油液取样器,颗粒度取样瓶等

四氨络酮相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制