当前位置: 仪器信息网 > 行业主题 > >

质谱测定含量

仪器信息网质谱测定含量专题为您提供2024年最新质谱测定含量价格报价、厂家品牌的相关信息, 包括质谱测定含量参数、型号等,不管是国产,还是进口品牌的质谱测定含量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱测定含量相关的耗材配件、试剂标物,还有质谱测定含量相关的最新资讯、资料,以及质谱测定含量相关的解决方案。

质谱测定含量相关的论坛

  • 气相色谱质谱法测定葡萄酒中104种农残含量

    最近得到一份岛津的文献方法《气相色谱质谱法测定葡萄酒中104种农残含量》,给大家分享。如附件。没想到葡萄酒也要检测那么多种农残。说明葡萄上打农药也打得很厉害。岂不是很危险,尤其像我这样吃葡萄不吐葡萄皮的。元芳,你怎么看?

  • 超高效液相色谱-串联质谱法测定奶粉中生物素的含量

    超高效液相色谱-串联质谱法测定奶粉中生物素的含量

    [size=16px]超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定奶粉中生物素的含量[/size][align=center][size=16px]户江涛[/size][/align][align=center][size=16px](黑龙江省农垦科学院测试化验中心,黑龙江 佳木斯 154007 )[/size][/align][size=16px]摘要:采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法建立了检测奶粉中生物素含量的分析方法,对试样提取、净化条件,流动相、色谱柱和质谱条件进行了优化,结果表明该方法与国标微生物法对同一样品检测得到的生物素含量基本一致,但检测所需时间大大减少,且抗干扰能力、精密度均比微生物法高,特别适和大批量奶粉中生物素含量检测。关键词:超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱;奶粉;生物素生物素又称维生素B7,是生物体内羧基转化酶作用的一种辅酶,在人体生长、代谢、发育过程中发挥着重要的作用。人类自身不能合成生物素,需从膳食中获得,而奶粉是人类(特别是婴幼儿)获取生物素的重要途径,准确测定奶粉中生物素含量有重要意义。目前国家标准规定的生物素测定方法《GB 5009.259-2016 食品安全国家标准 食品中生物素的测定》为微生物法。该方法需要购买特定菌种,成本较高,且菌种难保存、易受污染,实验操作复杂、费时费力、技术难度大、对检验人员和实验室要求较高,且容易受到基质干扰、检测结果重复性较差。同时奶粉成分复杂,所含生物素含量极低,一般为十几个微克/100克。因此,制定一种准确、高效、便捷、灵敏度高的生物素测定方法迫在眉睫。基于高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的分离能力和质谱的高灵敏度、高选择性,采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱测定法具有前处理简单、分析速度快,适用的基质范围广、实用性强,可以为奶粉中生物素含量的测定提供一种有效的检测手段。本文建立的超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定奶粉中生物素含量[color=black]的方法前处理过程简便、分析时间短、灵敏度高、抗干扰能力强,特别适用于大批量奶粉样品中生物素[/color]含量的检测。1 实验部分1.1 材料与试剂[color=black]生物素(纯度[/color][font=宋体][color=black]≥[/color][/font][color=black]99%,Sigma公司);婴儿配方乳粉定量分析质控样品(BQC1051147452,北京普天同创生物科技有限公司);乙腈、甲酸(色谱纯,Fisher公司);Prime HLB固相萃取柱(200 mg,3 mL,[/color][font=宋体]Waters[/font][color=black]公司);0.2 um有机系滤膜;实验用水为Millipore纯水仪制备。[/color]1.2 仪器与设备UPLC XEVO TQ-S超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱仪(Waters公司);涡旋振荡器。1.3 [color=black]生物素[/color]标准储备液的配置称取一定量生物素[color=black]标准品[/color],用50%乙醇-水溶液配置成质量浓度为100 ug/mL标准储备液,于2~4℃冰箱保存(有效期1个月),待用;临用前将溶液回温至室温,并吸取一定体积储备液用水逐级稀释成所需浓度的标准工作液。1.4 样品前处理准确称取1.00 g(精确到0.01 g)奶粉试样于50 mL离心管中,加入10.00 mL纯水涡旋混匀2 min,然后加入10.00 mL乙腈,涡旋混匀1 min,然后在离心机中以15000 r/min离心5 min,取出后吸取2 mL上清液置于[color=black]Prime HLB固相萃取柱中,使其自然流出弃去最初几滴,然后用玻璃试管接取流出液约1 mL涡旋混匀,[/color]过0.22[font=宋体]u[/font]m有机系微孔滤膜后供UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析测定。1.5 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及质谱条件[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]:色谱柱:Waters HSS [font=times new roman]T3(1.8 μm,100mm×2.1mm);柱温:30℃[/font];流速:[font=times new roman]0.3 [/font]mL/min;进样量:[font=times new roman]2[/font] [font=times new roman]μL;流动相A:乙腈;流动相B:0.1%的甲酸水溶液。梯度洗脱程序:0~0.5min,10% A;0.5~3. 0 min,10%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1min,100% A~10% A,4.1 ~5.0min 10% A。[/font]质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.2 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[/size][align=center][size=16px]表1生物素的质谱参数[/size][/align][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]锥孔电压/V[/size][/align][/td][td][align=center][size=16px]母离子/(m/z)[/size][/align][/td][td][align=center][size=16px]子离子/(m/z) [/size][/align][/td][td][align=center][size=16px]碰撞能量/V[/size][/align][/td][/tr][tr][td][size=16px]生物素[/size][/td][td][align=center][size=16px]30[/size][/align][size=16px][/size][/td][td][align=center][size=16px]245[/size][/align][size=16px][/size][/td][td][align=center][size=16px]227﹡[/size][/align][align=center][size=16px]97[/size][/align][size=16px][/size][/td][td][align=center][size=16px]13[/size][/align][align=center][size=16px]25[/size][/align][size=16px][/size][/td][/tr][/table][size=16px]﹡为定量离子2 结果与讨论2.1 色谱质谱条件及前处理过程的优化流动相的选择:对比了酸性体系(0.1%甲酸水溶液)与甲醇、乙腈的流动相体系组合,结果发现生物素在乙腈体系中响应值比甲醇更好一些,故本研究采用0.1%甲酸水溶液+甲醇流动相体系。色谱柱的选择:比较了[font=宋体]Waters [/font]BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm)和[font=宋体]Waters [/font]HSS T[sub]3[/sub](1.8 μm,100mm×2.1mm)两种不同填料的分析柱,实验时发现目标物在这两款色谱柱上响应值差不多,但目标物在BEH C[sub]18[/sub]上保留时间比HSS T[sub]3[/sub]要短,考虑到生物素本身属于水溶性维生素,极性较强,若出峰太早可能造成奶粉中一些极性强的基质随目标物一起共流出进而干扰目标物测定,因此本方法采用了HSS T[sub]3[/sub]色谱柱。质谱参数优化:将1.0 mg/L 生物素标准溶液直接注射到质谱中,在正离子模式下进行母离子全扫描,发现目标物各自对应的准分子离子峰[M+H][sup]+[/sup]具有很好的响应,然后在分别进行子离子全扫描,各得到两对丰度高、干扰小的子离子对进行MRM监测,最终确定的质谱条件见表1,相应的色谱质谱图见图1、图2。前处理过程优化:生物素属于水溶性维生素,用纯水作为提取试剂可以得到很好的提取效果。但实验过程中发现,用纯水将奶粉溶解后整个溶液呈乳白色,只通过离心方式很难去除其中大量的蛋白、脂肪等杂质,需要对提取液进行除蛋白操作。通过考察乙酸铅、三氯乙酸、乙腈等几种常用的沉淀蛋白方法,综合考虑在去除蛋白的同时要尽可能减少其它杂质的引入,因此本方法采用乙腈除蛋白的方式,比较了几种不同水/乙腈比例,最终选定水/乙腈(1:1体积比)达到最优的实验效果。对于脂肪的去除则选用了目前较流行的[color=black]Prime HLB固相萃取柱通过式方法,即提取液通过Prime HLB时脂肪等大分子保留在SPE小柱上,目标物不保留以达到去除脂肪等杂质的目的,[/color]综合以上因素本实验最终采用了1.4的前处理方法。[/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210071506558084_124_1729077_3.jpg[/img][/size][/align][align=center][size=16px]图1 [color=black]生物素[/color]标准溶液(10 ng/mL)MRM色谱图[/size][/align][size=16px][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210071506561980_1283_1729077_3.jpg[/img][/size][/align][align=center][size=16px]图2 奶粉样品中[color=black]生物素[/color]MRM色谱图[/size][/align][size=16px][color=black]2.2 线性范围和定量限[/color][color=black]吸取不同体积的生物素标准储备液(1.3),用[/color]纯水[color=black]分别配置不同浓度的[/color]上机标准溶液,以各自定量离子的峰面积(或与内标峰面积比值)为Y对应质量浓度X([color=black]m[/color]g/L)做标准曲线,得到的线性方程和相关系数见表2;以10倍信噪比(S/N)计算得到生物素的定量下限,结果见表2。表2 生物素标准溶液的线性方程、相关系数和定量下限(LOQ)[/size][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]线性范围/(ng/mL)[/size][/align][/td][td][align=center][size=16px]线性方程[/size][/align][/td][td][align=center][size=16px]R[/size][/align][/td][td][align=center][size=16px]LOQ/(ug/100g)[/size][/align][/td][/tr][tr][td][align=center][size=16px]生物素[sub] [/sub][/size][/align][/td][td][align=center][size=16px]0.2~50[/size][/align][size=16px][/size][/td][td][align=center][size=16px]Y=3078.1X-106.32[/size][/align][size=16px][/size][/td][td][align=center][size=16px]0.9993[/size][/align][size=16px][/size][/td][td][align=center][size=16px]0.5[/size][/align][/td][/tr][/table][size=16px][color=black]2.3回收率和精密度[/color][color=black]生物素在奶粉中天然存在[/color],选取已知生物素含量的奶粉作为基质进行加标。具体添加水平为:[color=black]0.5,5,50[/color] ug/100g。[color=black]每个[/color]水平重复6次,[color=black]同时做该奶粉的本底实验。[/color]按照1.4前处理方法处理后上机检测,回收率计算结果(扣除空白后)见表3。结果表明,该方法生物素的平均回收率为87.2%~110%,相对标准偏差(RSD,n=6)为2.3%~5.2%,均满足实验要求。[/size][align=center][size=16px]表3 奶粉生物素的加标回收率和相对标准偏差(n=6)[/size][/align][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]添加水平(ug/100g)[/size][/align][/td][td][align=center][size=16px]回收率/%[/size][/align][/td][td][align=center][size=16px]相对标准偏差/%[/size][/align][/td][/tr][tr][td][align=center][size=16px]生物素[/size][/align][size=16px][sub] [/sub][/size][/td][td][align=center][size=16px]0.5[/size][/align][align=center][size=16px]5[/size][/align][align=center][size=16px]50[/size][/align][/td][td][align=center][size=16px]86.8[/size][/align][align=center][size=16px]93.2[/size][/align][align=center][size=16px]91.6[/size][/align][size=16px][/size][/td][td][align=center][size=16px]4.6[/size][/align][align=center][size=16px]3.3[/size][/align][align=center][size=16px]2.1[/size][/align][size=16px][/size][/td][/tr][/table][size=16px][color=black]2.4实际样品分析[/color][color=black]为进一步验证该方法的准确性,采用本方法和《[/color]GB 5009.259-2016[color=black]》微生物法同时对北京普天同创生物科技有限公司的奶粉质控样品BQC1051147452生物素含量进行检测,结果见表4[/color]。由表4可知,UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法测定结果与国标方法的结果基本一致,无显著性差异,但前者所需时间更短,精密度更好。[/size][align=center][size=16px]表4 奶粉质控样品[color=black]BQC1051147452[/color]生物素的测定结果[/size][/align][table][tr][td][align=center][size=16px]检测方法[/size][/align][/td][td][align=center][size=16px]特性值区间(ug/100g)[/size][/align][/td][td][align=center][size=16px]测定平均值(n=6)[/size][/align][/td][td][align=center][size=16px]相对标准偏差/%(n=6)[/size][/align][/td][/tr][tr][td][size=16px]UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法微生物法[sub] [/sub][/size][/td][td][align=center][size=16px]15.6~22.4[/size][/align][align=center][size=16px]15.6~22.4[/size][/align][size=16px][/size][/td][td][size=16px]18.718.1[/size][/td][td][align=center][size=16px]2.5[/size][/align][size=16px] 4.6[/size][/td][/tr][/table][size=16px]3 结语本文建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)测定奶粉中[color=black]生物素[/color]含量的分析方法。该方法具有较高的灵敏度、准确度和精密度,前处理步骤简单,分析速度快,特别适合大批量样品的检测。参考文献:[1] GB 5009.259-2016 食品安全国家标准 食品中生物素的测定.[2] 薛霞, 赵慧男, 魏莉莉, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中五种水溶性维生素的含量[J]. 食品与发酵工业. 2021,47(12) : 250-256.[3] 李佳兴, 周利, 金艳, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定枸杞子中8种水溶性维生素[J]. 食品科技. 2018,43(11) : 336-341.[/size]

  • 【分享】饲料中孔雀石绿和隐形孔雀石绿含量的液相色谱-串联质谱测定方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152821]饲料中孔雀石绿和隐形孔雀石绿含量的液相色谱-串联质谱测定方法[/url]摘要建立了超高效液相色谱一串联四级杆质谱法测定饲料中孔雀石绿和隐性孔雀石绿的含量。用乙腈提取,提取液经蒸干浓缩后用中性氧化铝和阳离子交换固相萃取柱净化,使用u.PLC—MS/M进行检测。色谱条件:ACQUITY uPLC M BEH C】8柱(2.1 innl×100 rain i.d.,1.7 ),流动相乙腈0.1%甲酸溶液,梯度洗脱流速O.3 mL/min。采用电喷雾串联四极杆质谱检测。结果表明,孔雀石绿和隐性孔雀石绿的浓度为1~500 ng/mL时线形良好,在1~100 g/kg的添加水平条件下平均回收率为68.5% ~91.6% ,该方法的检测限为1.0/zg,/kg。

  • 液相色谱_三重四级杆质谱法测定化妆品中 51种抗组胺类药物的含量

    张静等建立了液相色谱-三重四级杆质谱法(LC-MS-MS)快速测定化妆品中地氯雷他定等51种抗组胺类药物含量的方法。样品经10 mmol/L乙酸铵甲醇溶液超声提取后,经0.2 μm滤膜过滤后,以10 mmol/L乙酸铵水-甲醇作为流动相进行梯度洗脱,经Eclipse Plus C18色谱柱(100 mm×3.0 mm×1.8 μm)分离,采用电喷雾离子源在正、负离子 模式下进行多反应监测,外标法定量。结果表明,51种抗组胺类药物在2 ~ 50 ng/mL范围内线性关系良好(r0.999),检出限和定量限分别为0.15 μg/g和0.5 μg/g。对液态水基、乳液、膏霜、面膜、液态油基、凝胶、粉、蜡基8种不同化妆品基质在0.5、1.0、5.0 μg/g加标水平下的平均回收率为70.3% ~ 127.8%,相对标准偏差(RSD)小 于7.7%(n=6)。该方法前处理操作简便、快速、专属性强、灵敏度高、精密度、准确度均较好,可用于化妆品中51种抗组胺类药物含量的快速测定。 文章具体内容见附件

  • 【分享】GB/T 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-电感耦合等离子体质谱法

    GB/T 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=191590]GBT 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法.pdf[/url]

  • 【分享】GB/T 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-电感耦合等离子体质谱法

    GB/T 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=191590]GBT 223.81-2007 钢铁及合金 总铝和总硼含量的测定 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法.pdf[/url]

  • 文献求助--电感耦合等离子体质谱法测定进口鱼粉中镉含量的不确定度评定

    饲料研究. 2019,42(01)北大核心[color=#343434][back=none]印刷版[/back][/color]▼[color=#506697][back=transparent][/back][/color][list][*] [*] [*] [*] [*] [*][url=https://x.cnki.net/search/common/testlunbo?dbcode=CJFD&tablename=CJFDLAST2019&filename=slyj201901022&filesourcetype=1]记笔记[/url][/list][align=center][b][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定进口鱼粉中镉含量的不确定度评定周衡刚[size=12px]1,2[/size]朱克卫[size=12px]1,2[/size]刘正华[size=12px]3[/size]徐正华[size=12px]1,2[/size]邓锦华[size=12px]1,2[/size]郑思珩[size=12px]1,2[/size]许文娟[size=12px]1,2[/size]1. 黄埔海关2. 国家酒类检测重点实验室(广东) 3. 中山市小榄镇农业服务中心 [/b][/align]摘要:[color=#666666]采用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定进口鱼粉中的镉含量,对整个测量过程的不确定来源进行了分析,并对不确定度各个分类进行了评定和合成。结果表明,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定进口鱼粉中的镉含量的不确定度来源主要为工作曲线的拟合和样品的重复性测定。采用本方法测定了一个进口鱼粉中镉含量的测定结果为(0.959±0.048)mg/kg(k=2,p=95%)。 [/color]关键词:不确定度 镉 [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法 鱼粉 基金资助:广东出入境检验检疫局科技项目(项目编号:2018GDK52);[list][*]DOI:10.13557/j.cnki.issn1002-2813.2019.01.022[*]专辑:农业科技[*]专题:畜牧与动物医学[/list]

  • 【求助】请教:样品含量测定问题?

    要测定血液的各脂肪酸组成分的含量对色谱分析,我是盲点盼望得到达人指点,谢谢。要测定血液的各脂肪酸组成分的含量,抽血完高速离心后留血清,冰冻(一般冰箱是否可以?),等要做色谱质谱时再解冻?这样的步骤对么?谢谢

  • 【原创大赛】超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量

    【原创大赛】超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量

    [align=center][b]超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量[/b][/align][align=center]户江涛[/align][align=center](农业农村部豆类产品质量安全风险评估实验室(佳木斯),黑龙江省农垦科学院测试化验中心,黑龙江佳木斯 154007 )[/align]摘要:采用超高效液相色谱-串联质谱法建立了检测大豆中大豆异黄酮含量的分析方法。试样经90%甲醇水提取后,6种大豆异黄酮在C[sub]18[/sub]色谱柱上以0.1%甲酸水溶液和乙腈为流动相,进行液相色谱分离;质谱检测采用电喷雾正离子化模式和多反应监测模式(MRM)。结果表明,6种大豆异黄酮分别在0.01~0.5 mg/L(D、GL、G)和0.002~0.1 mg/L(De、GLe、Ge)范围内线性关系良好,相关系数(R)为0.9993~0.9998,定量限(LOQ)为0.0001 g/kg。在大豆空白样品添加浓度分别为0.01、0.05、0.2 g/kg(De、GLe、Ge)和0.2、1、2 g/kg(D、GL、G),6种大豆异黄酮的平均回收率为86.6%~96.2%,相对标准偏差(RSD)为1.07%~5.93%(n=6)。本方法简便、灵敏、抗干扰,适用于大豆中大豆异黄酮含量检测。关键词:超高效液相色谱-串联质谱;大豆;大豆异黄酮[align=center]Determination of soybeanisoflavone in soybean by ultra performance liquid chromatography-tandem massspectrometry[/align][align=center]HU Jiangtao[/align][align=center]([i]Laboratory of Qualityand Safety Risk Assessment for Soybean products, Ministry of Agriculture andRural Affairs, Testing and Analysis Center of Heilongjiang Academy of LandReclamation Sciences, Jiamusi 154007,China[/i])[/align][b]Abstract:[/b]A methodwasdeveloped for the determination of soybeanisoflavone in soybean by ultra performance liquid chromatography-tandem massspectrometry(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS). The samples were extracted by 90% methanol-water, then 6 soybean isoflavones were separated on aWaters BEH C[sub]18[/sub] column with gradient elution with the mobile phase of0.1% formic acid and acetonitrile, and finally detected by positive eletrosprayionization-mass spectrometry(ESI[sup]+[/sup]-MS/MS) in multiple reactionmonitoring(MRM) mode. The results showed the linearities of 6 soybean isoflavones were good in the concentrationrange of 0.01~0.5 mg/L(D、GL、G)and 0.002~0.1 mg/L(De、GLe、Ge), the correlation coefficients were 0.9993~0.9998. The limitof quantification(LOQ) of soybean isoflavone was 0.0001 g/kg. At the spiked levels of 0.01、0.05、0.2 g/kg(De、GLe、Ge)and 0.2、1、2 g/kg(D、GL、G) in the blank soybean samples, the mean recovery of soybeanisoflavone was 86.6%~96.2%, andthe relative standard deviation(RSD) was 1.07%~5.93%(n=6).This method is simple,sensitive, anti-jamming and suitable for simultaneous determination of soybean isoflavone in soybean.[b]Key words: [/b]ultra performance liquid chromatography-tandem massspectrometry (UPLC-MS/MS) soybean soybean isoflavone大豆异黄酮(soybean isoflavone)是一族化合物的统称,是大豆植物体内的一种次生代谢产物,是大豆主要活性成分之一,其母核为3-苯并吡喃酮,主要包括大豆苷、大豆黄苷、染料木苷及其相应苷元[sup][/sup]。研究表明,大豆异黄酮除具有天然抗氧化作用外[sup][/sup],还具有降低胆固醇含量、预防多种癌症及改善妇女更年期综合征等多方面生物功效[sup][/sup]。大豆异黄酮主要存在于大豆籽实中,其总含量约为0.4~5 g/kg,其中大豆苷、大豆黄苷和染料木苷这三种含量约占总量的97%~98%,而其对应的苷元含量仅占2%~3%左右[sup][/sup]。目前,大豆异黄酮的检测方法主要有高效液相色谱法(HPLC)[sup][/sup]、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[sup][/sup]、紫外分光光度法[sup] [/sup]、质谱法(HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[sup][/sup])等。紫外分光光度法[sup] [/sup]只能测定大豆异黄酮总量,且灵敏度不高;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[sup][/sup]需要对异黄酮进行衍生,前处理复杂;目前,大豆异黄酮检测现有的国家标准GB/T 26625-2011[sup] [/sup]采用的是高效液相色谱法(HPLC),在实际检测过程中发现,由于紫外检测器灵敏度不高,存在个别样品中异黄酮相应苷元检测不到的情况;同时大豆提取液中含有蛋白、脂肪等杂质影响色谱柱柱效,以至于不能满足分离度要求,严重干扰低含量组分峰面积积分定量。而[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法质谱检测器灵敏度高,通过选定大豆异黄酮的特征离子,能有效去除上述杂质干扰,定量更加准确可靠。目前,国内外采用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法检测大豆中大豆异黄酮含量的文献很少[sup][/sup]。本文对大豆中大豆异黄酮检测的前处理方法借鉴GB/T 26625-2011[sup][/sup],提取液改用UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测定。该方法前处理过程简便、灵敏度高、分析时间短、抗干扰能力强,适用于大批量大豆样品中大豆异黄酮含量的检测。[b]1 实验部分[/b]1.1 材料与试剂大豆苷(daidzin,记为D,以下同)、大豆黄苷(glycitin,GL)、染料木苷(genistin, G)、大豆素(daidzein,De)、大豆黄素(glycitein, GLe)、染料木素(genistein,Ge)(纯度≥99%,Dr.Ehrenstorfer公司);甲醇、乙腈、甲酸(色谱纯,Fisher公司);实验用水为Millipore纯水仪制备。1.2 仪器与设备Acquity UPLC型超高效液相色谱仪(Waters公司);XEVO TQ-S三重四级杆质谱仪(Waters公司);KQ-500DE型超声波仪(昆山市超声仪器有限公司);涡旋混合器(IKA公司);CR21GⅢ型高速离心机(HITACHI公司)。1.3 大豆异黄酮标准储备液的配置分别称取适量的D、GL、G、De、GLe、Ge标准品,用甲醇配置成质量浓度为1mg/mL标准储备液,于-18℃冰箱保存(有效期6个月),待用;使用时用10%甲醇水逐级稀释成所需浓度的混合标准工作液,现用现配。1.4 样品前处理提取:称取粉碎均与后的试样1.0g(精确到0.01g)于50mL聚乙烯离心管中,加入10.0 mL90%甲醇水,涡旋混合30 s后置于60℃超声波清洗器中提取30 min,在离心机中以15000 r/min离心5 min,将上清液转移至100 mL容量瓶中,残渣再加入10.0 mL90%甲醇水溶液按上述步骤提取后,合并两次上清液于100 mL容量瓶中,用10%甲醇水溶液定容至刻度,摇匀。a)De、GLe、Ge的测定:取1 mL过0.22um有机系微孔滤膜,供UPLC/MS/MS分析测定;b)D、GL、G的测定:由于D、GL、G含量较高,需要将a)中过完滤膜的待测液用10%甲醇水稀释50倍后,供UPLC/MS/MS分析测定。1.5 液相色谱及质谱条件液相色谱:色谱柱:Waters BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm);柱温:30℃;流速:0.5 mL/min;进样量:1μL;流动相A:乙腈;流动相B:0.1%的甲酸水溶液。梯度洗脱程序:0~0.5min,10% A;0.5~3. 0 min,10%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1.1min,100% A~10% A,4.1 ~5.0min 10% A。质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.2 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[align=center]表1大豆异黄酮的质谱参数[/align][align=center]Table 1 MRM parameters of soybean isoflavone[/align] [table][tr][td] [align=center]Analyte[/align] [/td][td] [align=center]Cone/V[/align] [/td][td] [align=center]Parent ion/(m/z)[/align] [/td][td] [align=center]Daughter ion/(m/z)[/align] [/td][td] [align=center]Collision energy/V[/align] [/td][/tr][tr][td] [align=center]D[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]417[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]255﹡[/align] 137[/td][td] [align=center]27[/align] [align=center]18[/align] [/td][/tr][tr][td] [align=center]G[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]433[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]271﹡[/align] 153[/td][td] [align=center]21[/align] [align=center]50[/align] [/td][/tr][tr][td] [align=center]GL[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]447[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]285﹡[/align] 270[/td][td] [align=center]25[/align] [align=center]46[/align] [/td][/tr][tr][td] [align=center]De[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]255[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]137﹡[/align] 181[/td][td] [align=center]30[/align] [align=center]26[/align] [/td][/tr][tr][td] [align=center]Ge[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]271[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]153﹡[/align] 215[/td][td] [align=center]30[/align] [align=center]25[/align] [/td][/tr][tr][td] [align=center]GLe[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]285[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]242﹡[/align] 168[/td][td] [align=center]27[/align] [align=center]35[/align] [/td][/tr][/table]﹡quantitativeion[b]2 结果与讨论[/b]2.1 色谱及质谱条件的优化流动相的选择:对比了酸性体系(0.1%甲酸水溶液)与非酸性体系(纯水、乙酸铵溶液)分别与甲醇、乙腈的流动相体系组合,结果发现目标物在酸性体系中比非酸性体系响应更高、峰形更好;同时大豆提取液中含有蛋白、脂肪等杂质可能会残留在色谱柱上,影响色谱柱的使用寿命,而乙腈比甲醇体系洗脱能力更强,可以有效去这些杂质。综合考虑目标物信号强度、色谱分离效果以及除杂等因素,本研究采用0.1%甲酸水溶液+乙腈流动相体系。质谱的选择:根据6种大豆异黄酮的分子量,用10%甲醇水配置1.0 mg/L 大豆异黄酮标准溶液直接注射到质谱中,在正离子模式下分别对各种组分进行母离子及对应子离子全扫描,最终确定的质谱条件见表1。2.2 质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)与色谱法(HPLC)的比较国家标准《GB/T 26625-2011粮油检验大豆异黄酮含量测定高效液相色谱法》[sup][/sup]中规定的大豆异黄酮检测方法为HPLC法。对同一大豆样品分别采用本文UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法(MRM色谱图见图1、2)和GB/T 26625 HPLC法检测,结果表明这两种方法测定的大豆异黄酮总含量值基本一致。由于De、GLe、Ge这三种苷元在大豆中含量很低,用HPLC法检测时,紫外检测器灵敏度不高,存在个别样品中上述三种组分检测缺失的情况;同时在实际大批量样品检测中发现,随着进样次数的增加,色谱柱柱效下降,大豆提取液中存在的蛋白、脂肪等杂质对含量低的目标物峰干扰越来越大,定量困难。研究发现,同浓度的大豆异黄酮在质谱检测器上的响应值要远远超过紫外检测器,同时质谱法可以通过选定大豆异黄酮的特征离子,有效地去除杂质的干扰,其目标物分离度不受色谱柱进样次数增加的影响,定量更加准确可靠。[align=center][img=,690,651]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050912587968_4111_3299836_3.jpg!w690x651.jpg[/img][/align][align=center]图1 大豆异黄酮标准溶液(0.01mg/L)MRM色谱图[/align][align=center]Fig.1 MRM chromatograms of soybean isoflavone standard solution at 0.01 mg/L[/align][align=center][/align][align=center][img=,690,653]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050913342201_5843_3299836_3.jpg!w690x653.jpg[/img][/align][align=center]图2 大豆样品中大豆异黄酮MRM色谱图[/align][align=center]Fig.2 MRM chromatograms of soybean isoflavone in soybean[/align]2.3线性范围和定量限吸取不同体积的大豆异黄酮标准储备液(1.3),用10%甲醇水分别配置0.002、0.005、0.01、0.05、0.1(De、GLe、Ge)和0.01、0.05、0.1、0.2、0.5(D、GL、G)的大豆异黄酮上机混合标准溶液,以各自定量离子的峰面积为Y对应质量浓度X(mg/L)做标准曲线,得到的线性方程和相关系数见表2。结果表明,大豆异黄酮标准溶液在各自浓度范围内线性良好,相关系数R为0.9993~0.9999。以10倍信噪比(S/N)计算,大豆异黄酮上机液最低定量浓度为0.001 mg/L,通过公式(1)计算得到大豆中大豆异黄酮含量,最终确定本方法大豆异黄酮的定量限(LOQ)为0.0001 g/kg。糠氨酸质量分数计算公式:[align=center][img=,207,87]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050915166414_5621_3299836_3.jpg!w207x87.jpg[/img] ………………(1)[/align] 式中:X为试样中大豆异黄酮含量,以g/kg计;C为大豆异黄酮上机浓度(mg/L);V为定容体积(V=100)。表2 大豆异黄酮标准溶液的线性方程和相关系数[align=center]Table 2 Linear equation and correlation of soybean isoflavone in 10% methanol-water standard solutions[/align] [table][tr][td] [align=center]Analyte[/align] [/td][td] [align=center]Linear range/(mg/L)[/align] [/td][td] [align=center]Linear equation[/align] [/td][td] [align=center]R[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]D[/align] [align=center]GL[/align] [align=center]G[/align] [align=center]De[/align] [align=center]GLe[/align] [align=center]Ge[/align] [/td][td] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [/td][td] [align=center]Y=2393.6x+479.38[/align] Y=1885x+139.66 [align=center]Y=1470.9x+187.97[/align] [align=center]Y=4287.9x+442.79[/align] [align=center]Y=3521.7x-103.62[/align] [align=center]Y=1993x+122.79[/align] [/td][td] [align=center]0.9995[/align] [align=center]0.9999[/align] [align=center]0.9993[/align] [align=center]0.9998[/align] [align=center]0.9997[/align] [align=center]0.9998[/align] [/td][td] [/td][/tr][/table]2.4回收率和精密度大豆中De、GLe、Ge含量较低,而D、GL、G含量较高,故本方法准确度实验分为高低浓度梯度组进行加标。称取大豆试样1.00 g,分别添加0.01、0.05、0.2 g/kg(De、GLe、Ge)和0.2、1、2 g/kg(D、GL、G),每个水平重复6次,同时做该大豆的空白本底实验。按照1.4前处理方法处理后上机检测,计算回收率(扣除空白),结果表明:不同添加浓度下,De、GLe、Ge的平均回收率为91.7%~96.2%,相对标准偏差(RSD,n=6)为2.78%~5.93%;D、GL、G的平均回收率为86.6%~93.8%,相对标准偏差(RSD,n=6)为1.07%~3.77%。[b]3 结语[/b]本文建立了超高效液相色谱-串联质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)测定大豆中大豆异黄酮含量的分析方法。该方法灵敏度高,线性范围宽,能同时覆盖大豆中多梯度浓度大豆异黄酮组分含量的测定。同时该方法具有较高的准确度和精密度,前处理步骤简单,分析速度快,可有效避免由于色谱柱柱效下降对最终检测结果的影响,特别适合大批量样品的检测。田娟娟, 宋宏哲, 张飞, 等. 水剂法纯化大豆异黄酮的研究. 大豆通报, 2005, 6:19-22. Hagen M K, Ludke A, Araujo A S, et al.Antioxidant characterization of soy derived products in vitro and the effect ofa soy diet on peripheral markers of oxidative stress in a heart disease model .Canadian Journal of Physiology and Pharmacology, 2012,90(8):1095-1103. 徐春华, 张治广, 谢明杰, 等. 大豆异黄酮的抗氧化和抗肿瘤活性研究研究 . 大豆科学, 2010, 29(5): 870-873. 李俏俏, 王清路, 薛金艳, 等. 大豆异黄酮对绝经女性血清中脂类物质的影响的研究 . 大豆科学, 2009, 28(1):172-174. 胡润芳, 张玉梅, 陈宇华, 等. 大豆异黄酮含量的初步研究. 东南园艺, 2017, 6:9-11. 刘琴, 朱媛媛, 白兴梁. 不同种类大豆中大豆异黄酮含量及抗氧化性比较. 北京工商大学学报(自然科学版), 2012, 30(6): 45-51. 袁凤杰, 姜莹, 董德坤, 等. 中国大豆核心种质异黄酮含量分析.中国粮油学报, 2011, 26(2):5-8. Tepavcevic V, Atanackovic M,Miladinovic J,et al. Isoflavone composition,total polyphenolic content,and antioxidant activity in soybeans of different origin. MedFood,2010,13(3):657-664 GB/T 26625-2011《粮油检验大豆异黄酮含量测定高效液相色谱法》. Liggins J,Bluck J C. Deidzein and genistein content of fruits and nuts. Journal ofNutritional Biochemistry,2000,11(6):326-331. 鞠兴荣, 袁建, 汪海峰. 三波长紫外分光光度法测定大豆异黄酮含量的研究. 食品科学, 2001, 22(5):46-48.

  • 【原创大赛】顶空-气相色谱质谱法测定皮革挥发性有机化合物的含量

    【原创大赛】顶空-气相色谱质谱法测定皮革挥发性有机化合物的含量

    [align=center][b]顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法测定皮革挥发性有机化合物的含量[/b][/align]摘要:本文通过顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法(HS-GC/MS),采用外标法测定皮革挥发性有机物的含量,结果表明,方法检出限为0.04281mg/kg,方法回收率在80-115%之间,标准偏差10%,可用于皮革样品中挥发性有机物含量的准确测定。关键词:顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法,外标法,挥发性有机物(VOC)引言:挥发性有机物,常用VOC表示,它是VolatileOrganicCompound三个词第一个字母的缩写。VOCs的主要成分有:烃类、卤代烃、氧烃和氮烃,它包括:苯系物、有机氯化物、氟里昂系列、有机酮、胺、醇、醚、酯、酸和石油烃化合物等。VOC对人体的影响主要为气味、感官、粘膜刺激和其他系统毒性导致的病态及基因毒性和致癌性。多数VOC是具有毒性和恶臭气体,当在环境中达到一定的浓度时,短时间内可使人感到头痛、恶心、,严重时会抽搐、昏迷,并可能造成记忆力衰退,伤害人的肝脏、肾脏、大脑和神经系统;部分VOC已经被列为致癌物,特别是苯、甲苯及甲醛,会对人体造成很大的伤害。皮革是日常消费品(如鞋、服装、沙发及皮包类)的常用材料。然而,皮革加工过程中不可避免地要使用各类化学品,特别是复鞣、加脂、染色、涂饰等后整理加工工序,如皮革鞣制过程使用的醛类、芳香族类、脂肪族类、氨基树脂类乙烯基聚合物树脂类等鞣剂,涂饰过程中使用的有机溶剂等,最终导致VOC在皮革中的残留。皮革是我国的传统特色产业,我国的皮革产量在世界上具有举足轻重的地位。随着社会对健康的重视及安全环保意识的日益提高,消费者对皮革中VOC的毒性也日益重视,并逐渐从环境生态的角度去认识和设定消费品中VOC安全阈值的意义,并将逐渐对VOC在皮革制品(鞋类、服装、沙发、皮包)中含量水平提出要求。因此,开展皮革中VOC含量评估,具有积极的现实意义。[b]实验部分[/b]1.1[b]试剂[/b]甲醇甲苯1.2[b]仪器[/b]顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪(HS-GC/MS)安捷伦7697A-7890B/5977B[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—质谱条件:顶空样品瓶的加热温度为120℃,加热平衡时间45min。a)色谱柱:HP-5 MS 30m×0.25mm×0.5μm 或相当者;b)柱温:50℃(3min) 12℃/min200℃(4min);c)进样口温度:200℃;d)进样方式:分流比1:20;e)载气:氦气,纯度≥99.999%,1.0mL/min;f)色谱—质谱接口温度:250℃;g)电离方式:EI;1.3[b]分析步骤[/b]取有代表性的样品,剪碎至5mm*5mm以下,混匀。从混合样中称取2.00g试样,精确至0.01g,置于顶空进样瓶中,盖上硅橡胶垫和铝盖,用封口工具加封,放入到自动顶空进样器中待测定。[b]2.试验结果报告[/b]2.1[b]标准曲线[/b] 称取0.5g甲苯,用甲醇作为溶剂,定容至10mL。将其稀释配置标准系列,取4uL加入20mL顶空瓶中,进质谱分析,结果见表1。[img=,401,469]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251341_01_1657564_3.png[/img][b]2.2方法的精密度[/b] 将三个顶空瓶中分别称取灰色皮革2.00g,用封口工具压紧瓶盖,上机测试结果见表2[img=,544,195]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251406_01_1657564_3.png[/img][img=,589,480]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251407_01_1657564_3.png[/img][img=,690,131]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251342_01_1657564_3.png[/img]2.3[b]方法的回收率[/b]取5mg/mL的混合标准溶液4uL(即20ug)分别加入20mL顶空瓶及有2.00g样品的顶空瓶中,进质谱分析,结果见表3。[img=,623,358]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251344_02_1657564_3.png[/img]2.4 方法检出限将三个顶空瓶用封口工具压紧瓶盖,上机测试10次计算结果偏差的3倍作为方法的检出限。[img=,623,634]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251352_01_1657564_3.png[/img][img=,659,358]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251345_01_1657564_3.png[/img][b]3.结果讨论[img=,690,333]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251346_01_1657564_3.png[/img][img=,690,333]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251346_01_1657564_3.png[/img][/b][img=,690,409]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251347_01_1657564_3.png[/img]顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法(HS-GC/MS)可有效排除交叉干扰,结果准确可靠,多数挥发性有机物在3-7分钟出峰;方法检出限为0.04281mg/kg,方法回收率在80-115%之间,结果偏差10%,完全可以满足皮革中挥发性有机物(VOC)含量的测定。[b]4.参考资料[/b] HJ507-2009环境标志要求皮革和合成革中附录F挥发性有机化合物(VOC)含量的测定。

  • 【原创大赛】气相色谱-质谱法检测鱼肉中脂肪酸含量

    气相色谱-质谱法检测鱼肉中脂肪酸含量摘要:本实验通过气相色谱-质谱联用技术检测鱼肉中脂肪酸的组分并通过面积归一化法对各组分进行百分含量测定。 关键词:梭鲈鱼;气相色谱-质谱联用;脂肪酸 实验部分1、仪器:气相色谱—串联质谱仪(Agilent 安捷伦,7890B-7000B);2、试剂与标准品:正己烷、甲醇(Fisher Scientific 飞世尔);三氯甲烷、氢氧化钾(天津光复试剂厂)。3、样品前处理:称取10g左右的鱼肉置于索式提取器中,加入40mL氯仿回流4h,取出后旋转蒸发浓缩近干,加入5mL乙醚-正己烷(1:2)溶液,溶解脂肪后倒入25mL试管中,继续加入5mL氢氧化钾-甲醇溶液(甲酯化),振摇后加入5mL正己烷静置10min后,吸取上层正己烷过滤膜后放入自动进样瓶中待测。4、色谱与质谱条件:色谱柱:HP-5MS(30 m×0.25 mm×0.5 μm);载气:氦气(99.999%);恒流模式流速:1.0 mL/min;进样:1.0 μL,不分流;进样口温度:250 ℃;程序升温:80 ℃保持1min,以10 ℃/min升温至180 ℃,以5℃/min升温至

  • 【分享】氧弹燃烧-离子色谱法和气相色谱-质谱联用法测定废旧冰箱保温材料中CFC-11的含量

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152824]氧弹燃烧-[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法测定废旧冰箱保温材料中CFC-11的含量[/url]摘 要:介绍了一种测定废旧冰箱保温材料(聚氨酯硬泡)中cFc~11含量的方法。聚氨酯硬泡中的cFc一11测定包含两部分:一是通过氧弹燃烧一[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定材料燃烧后的氯离子含量,另一部分是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一质谱联用法测定材料燃烧后CFC—l1的含量。

  • 超高效液相色谱-串联质谱法测定婴幼儿配方奶粉中叶酸的含量

    超高效液相色谱-串联质谱法测定婴幼儿配方奶粉中叶酸的含量

    超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定婴幼儿配方奶粉中叶酸的含量[align=center]户江涛[/align][align=center](黑龙江省农垦科学院测试化验中心,黑龙江 佳木斯 154007 )[/align]摘要:本实验建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法建立了检测婴幼儿配方奶粉中叶酸含量的分析方法。试样经50℃热水溶解,超声提取,等电法去除蛋白后,在T[sub]3[/sub]色谱柱上以0.1%甲酸水和乙腈为流动相进行[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离,质谱检测采用电喷雾正离子化模式和多反应监测模式(MRM)。结果表明该方法在浓度范围内线性关系良好,相关系数(r)为0.9998,定量下限(LOQ)为10 [color=black]u[/color]g/100 g,加标回收率为83.7%~101%,相对标准偏差(RSD)为2.5%~5.1%(n=6)。本方法快速、灵敏、准确,特别适和大批量婴幼儿配方奶粉中叶酸含量检测。关键词:超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱;婴幼儿配方奶粉;叶酸[align=center]Determination of Folic acid in infant formula by ultra performance liquid chromatography-tandem mass spectrometry[/align][align=center]HU Jiangtao[/align][align=center](Testing and Analysis Center of Heilongjiang Academy of Land Reclamation Sciences, Jiamusi 154007,China)[/align]Abstract:A method was developed for the determination of Folic acid in infant formula by ultra performance liquid chromatography-tandem mass spectrometry(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS). The samples were disolved by 50℃ water,extracted by ultrasound,after protein was removed by Isoelectric method, Folic acid was separated on a Waters HSS T[sub]3[/sub] column with gradient elution with the mobile phase of 0.1% formic acid and acetonitrile, and finally detected by positive eletrospray ionization-mass spectrometry(ESI[sup]+[/sup]-MS/MS) in multiple reaction monitoring(MRM) mode. The results showed the linearity of Folic acid was good in the concentration range of 0.02~1 mg/L, and the correlation coefficient was 0.9998. The limit of quantification(LOQ) was 10 ug/100 g,the mean recovery was 83.7%~101%, and the relative standard deviation(RSD) was 2.5%~5.1%(n=6).This method is rapid, sensitive, accurate and suitable for simultaneous determination of Folic acid in infant formula.Key words: UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS infant formula Folic acid叶酸([font=helvetica][color=#333333]C[/color][/font][font=helvetica][sub][size=12px][color=#333333]19[/color][/size][/sub][/font][font=helvetica][color=#333333]H[/color][/font][font=helvetica][sub][size=12px][color=#333333]19[/color][/size][/sub][/font][font=helvetica][color=#333333]N[/color][/font][font=helvetica][sub][size=12px][color=#333333]7[/color][/size][/sub][/font][font=helvetica][color=#333333]O[/color][/font][font=helvetica][sub][size=12px][color=#333333]6 [/color][/size][/sub][/font]),[font=helvetica][color=#333333]又名维生素B[/color][/font][font=helvetica][sub][color=#333333]9[/color][/sub][/font][font=helvetica][color=#333333],[/color][/font]是一种水溶性维生素,在人类蛋白质合成、细胞分裂与生长过程中具有重要作用。叶酸缺乏可能会引起婴幼儿[font=helvetica][color=#333333]发生神经闭合不完全[/color][/font],从而导致神经性厌食症,叶酸虽然广泛存在于[font=helvetica][color=#333333]如菠菜等绿叶蔬菜及肝脏等动物源食品中,但在婴幼儿阶段(特别小于6个月婴儿)很长一段时间不能直接食用这些辅食,[/color][/font]这时婴幼儿配方奶粉便成为婴幼儿获取叶酸的重要途径,因此准确测定婴幼儿配方奶粉中叶酸含量有重要意义。目前食品中叶酸测定的国标方法《GB 5009.211-2022 食品安全国家标准 食品中叶酸的测定》为微生物法,该方法是将鼠李糖乳杆菌接种至含有叶酸的培养基中,培养一段时间后测定吸光度,利用在一定范围内叶酸含量与吸光度值符合某种规律而得到叶酸含量数值。该方法对菌种活力、培养条件、检验人员操作水平要求较高,检测周期较长,且容易受到基质干扰、检测结果重复性往往较差。因此,制定一种准确、高效、快速测定婴幼儿配方奶粉中叶酸的检测方法十分必要。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱测定法具有前处理简单、分析速度快、抗基质干扰能力强等优点,能有效避免叶酸在长时间、繁琐的前处理及检测过程中损失,可以为奶粉中叶酸含量的测定提供一种有效的检测手段。本文建立的超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定奶粉中叶酸含量[color=black]的方法前处理过程简便、分析时间短、灵敏度高、抗干扰能力强,且用到的都是实验室常用试剂,实验成本较低,特别适用于大批量[/color]婴幼儿配方[color=black]奶粉中叶酸[/color]含量的检测。1 实验部分1.1 材料与试剂[color=black]叶酸(纯度[/color][font=宋体][color=black]≥[/color][/font][color=black]99%,Dr公司);乙腈、甲酸(色谱纯,Fisher公司);盐酸、氢氧化钠(优级纯,科密欧公司);0.2 um水系滤膜;实验用水为Millipore纯水仪制备。[/color]1.2 仪器与设备UPLC XEVO TQ-MS超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱仪(Waters公司);涡旋振荡器。1.3 [color=black]叶酸[/color]标准储备液的配置称取一定量叶酸[color=black]标准品[/color],用甲醇配置成质量浓度为100 ug/mL标准储备液,于-18℃冰箱保存,待用;临用前将溶液回温至室温,并吸取一定体积储备液用水逐级稀释成所需浓度的标准工作液。1.4 样品前处理准确称取2.00 g(精确到0.01 g) 婴幼儿配方奶粉试样于50 mL刻度离心管中,加入10 mL 50℃纯水使奶粉充分溶解,超声提取10 min,然后用2 mol/L盐酸调节试样pH值至1.7,静置5 min后用2 mol/L氢氧化钠调节试样溶液pH至4.5,用纯水定容至25 mL,在离心机中以10000 r/min离心10 min[color=black],取上清液[/color]过0.2 um水系微孔滤膜后供UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析测定。1.5 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及质谱条件[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]:色谱柱:Waters HSS [font=times new roman]T3(1.8 μm,50mm×2.1mm);柱温:35℃[/font];流速:[font=times new roman]0.3 [/font]mL/min;进样量:[font=times new roman]2[/font] [font=times new roman]μL;流动相A:乙腈;流动相B:0.1%的甲酸水溶液。梯度洗脱程序:0~0.5min,5% A;0.5~3. 0 min,5%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1min,100% A~5% A,4.1 ~5.0min 5% A。[/font]质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.0 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[align=center]表1叶酸的质谱参数[/align][table][tr][td][align=center]分析物[/align][/td][td][align=center]锥孔电压/V[/align][/td][td][align=center]母离子/(m/z)[/align][/td][td][align=center]子离子/(m/z) [/align][/td][td][align=center]碰撞能量/V[/align][/td][/tr][tr][td]叶酸[/td][td][align=center]18[/align][/td][td][align=center]442.3[/align][/td][td][align=center]295﹡[/align]176[/td][td][align=center]18[/align][align=center]30[/align][/td][/tr][/table]﹡为定量离子2 结果与讨论2.1 色谱质谱条件及前处理过程的优化流动相的选择:B族维生素在酸性条件下比较稳定,对比了酸性体系(0.1%甲酸水溶液)与甲醇、乙腈的流动相体系组合,发现叶酸在乙腈体系中响应值更高,故本研究采用0.1%甲酸水溶液+乙腈流动相体系。色谱柱的选择:比较了[font=宋体]Waters [/font]BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm)和[font=宋体]Waters [/font]HSS T[sub]3[/sub](1.8 μm,50mm×2.1mm)两种不同填料的分析柱,实验时发现目标物在C[sub]18[/sub]上保留比T[sub]3[/sub]弱,考虑到若出峰太早可能造成奶粉中一些极性强的基质随目标物共流出,可能会干扰目标物测定,因此本方法采用了HSS T[sub]3[/sub]色谱柱。质谱参数优化:将1.0 mg/L 叶酸标准溶液直接注射到质谱中,在正离子模式下分别进行母离子和子离子全扫描,同时优化质谱条件,找到两对响应好高、干扰小的子离子对,最终确定的质谱条件见表1,相应的色谱质谱图见图1、图2。前处理过程优化:叶酸属于水溶性维生素,易于氧化,这个实验过程需在避光条件下进行。通过查阅相关文献的前处理方法,发现通过先酸化样品再用NaOH调节pH的等电法去除蛋白方式,可以得到很好的提取和净化效果,能大大减少奶粉中蛋白等大分子基质对目标物干扰;调节pH后的溶液产生了蛋白沉淀,需要用过滤或离心方式予以去除,通过实验比较了过滤和离心去除蛋白沉淀的效果,发现高速离心后得到的上清液明显更容易通过0.2 um水系滤膜,综合以上因素本实验最终采用了1.4的前处理方法。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310041348335007_5097_1729077_3.png[/img][/align][align=center]图1 [color=black]叶酸[/color]标准溶液(1 ug/mL)MRM色谱图[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310041348338570_9110_1729077_3.png[/img][/align][align=center]图2 奶粉样品中[color=black]叶酸[/color]MRM色谱图[/align][color=black]2.2 线性范围和定量限[/color][color=black]吸取不同体积的叶酸标准储备液(1.3),用[/color]纯水[color=black]分别配置不同浓度的[/color]上机标准溶液,以各自定量离子的峰面积为Y对应质量浓度X([color=black]m[/color]g/L)做标准曲线,得到的线性方程和相关系数见表2;以10倍信噪比(S/N)计算得到叶酸的定量下限,结果见表2。表2 叶酸标准溶液的线性方程、相关系数和定量下限(LOQ)[table][tr][td][align=center]分析物[/align][/td][td][align=center]线性范围/(mg/L)[/align][/td][td][align=center]线性方程[/align][/td][td][align=center]R[/align][/td][td][align=center]LOQ/(ug/100 g)[/align][/td][/tr][tr][td][align=center]叶酸[sub] [/sub][/align][/td][td][align=center]0.02~1[/align][/td][td][align=center]Y=12793X-56.759[/align][/td][td][align=center]0.9998[/align][/td][td][align=center]10[/align][/td][/tr][/table][color=black]2.3回收率和精密度[/color][color=black]选用[/color]不添加叶酸的奶粉样品作为基质进行加标。添加水平为:[color=black]20,100,200[/color][size=12px] ug/100g。[/size][color=black]每个[/color]水平重复6次,[color=black]同时做该奶粉的本底实验。[/color]按照1.4前处理方法处理后上机检测,回收率计算结果见表3。结果表明,该方法叶酸的平均回收率为83.7%~101%,相对标准偏差(RSD,n=6)为2.5%~5.1%,均满足实验要求。[align=center]表3 奶粉叶酸的加标回收率和相对标准偏差(n=6)[/align][table][tr][td][align=center]分析物[/align][/td][td][align=center]添加水平(ug/100g)[/align][/td][td][align=center]回收率/%[/align][/td][td][align=center]相对标准偏差/%[/align][/td][/tr][tr][td][align=center]叶酸[/align][sub] [/sub][/td][td][align=center]20[/align][align=center]100[/align][align=center]200[/align][/td][td][align=center]89.0±5.3[/align][align=center]95.3±2.7[/align][align=center]98.5±2.5[/align][/td][td][align=center]5.1[/align][align=center]3.2[/align][align=center]2.5[/align][/td][/tr][/table][color=black]2.4实际样品分析[/color][color=black]采用本方法随机抽取市售8批次婴幼儿配方奶粉,对其叶酸含量进行测定[/color],实测值、标示值及实测值与标示值比值见表4。结果表明,这些样品中叶酸实测含量均符合《GB 28050-2011 食品安全国家标准 预包装食品营养标签通则》中对维生素等营养成分的规定——婴幼儿配方奶粉中叶酸实际含量不应低于标示值的80%。[align=center]表4 实际样品中叶酸实测值与标示值比对结果[/align][table][tr][td][align=center]样品编号[/align][/td][td][align=center]实测值(ug/100g)[/align][/td][td][align=center]标示值(ug/100g)[/align][/td][td][align=center]比值[/align][/td][/tr][tr][td]1[sub] [/sub]2345678[/td][td][align=center]65[/align][align=center]156[/align][align=center]103.2[/align][align=center]57[/align][align=center]117[/align][align=center]86.5[/align][align=center]79[/align][align=center]101[/align][/td][td]81.3203230134106146198185[/td][td][align=center]1.25[/align]1.302.232.350.911.692.511.83 [/td][/tr][/table]3 结语本文建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)测定婴幼儿配方奶粉中[color=black]叶酸[/color]含量的分析方法。该方法具有较高的灵敏度、准确度和精密度,前处理快速、简单,特别适合大批量样品的检测。参考文献:[1] GB 5009.211-2016 食品安全国家标准 食品中叶酸的测定[s].[2] GB 28050-2011 食品安全国家标准 预包装食品营养标签通则[s].[3]张丽芳,张鑫,周鑫,等. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法同时测定婴幼儿奶粉中7种水溶性维生素[J].[size=13px] [/size]食品工业,2022,43(01):[size=13px] [/size]277-280.[4]刘娜,陈大舟,汤桦,等. 婴幼儿奶粉中8种水溶性维生素的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]同时测定[J].[size=13px] [/size]分析测试学报,2008,27(4):[size=13px] [/size]408-411.[5]严华,崔凤云,别玮,等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-同位素稀释质谱法同时测定婴幼儿奶粉中10种水溶性维生素 [J].[size=13px] [/size]食品安全质量检测学报,2020,17(11):[size=13px] [/size]5871-5878.[6]郭建博,宋莉,牟霄,等.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法快速测定复合维生素产品中的10种水溶性维生素 [J].[size=13px] [/size]食品安全质量检测学报,2017,8(5):[size=13px] [/size]1794-1799.[7]夏静,俞婧,孙磊,等.功能性饮料中9种水溶性维生素的HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]-MS同步检测技术 [J]. 食品科学,2014,35(12): 196-199.[/s][/s]

  • 粉干中硼砂的含量测定

    今天接到两个粉干样,要检测其含有的硼砂量,我参照GB/T21908-2008食品中硼酸含量的测定中第三法电感耦合等离子体质谱法来检测,折算为硼砂含量分别为1。8mg/kg, 1.2mg/kg。方法的检测限为0。20mg/kg的,以前我有测过肉制品,面制品的硼砂含量,其硼含量均为未检出了,今天硼却均有检出,可排除污染,其检出的硼应该就是样品中的,就是不知道是样品的本底引入的,还是人为加入硼砂引入的啊,粉干这类的样品有硼本底值吗,纠结啊

  • 【原创大赛】高效液相色谱质谱法测定涂料中双酚A的含量

    [align=center]高效液相色谱质谱法测定涂料中双酚A的含量[/align]1.摘要[color=#333333]双酚A,也称BPA,在工业上双酚A被用来合成聚碳酸酯[/color][color=#333333]PC)和环氧树脂[/color][color=#333333]等材料。60年代以来就被用于制造塑料(奶)瓶、幼儿用的吸口杯、食品和饮料(奶粉)罐内侧涂层。BPA无处不在,从矿泉水瓶[/color][color=#333333]、医疗器械到及食品包装[/color][color=#333333]的内里,都有它的身影。每年,全世界生产2700万吨含有BPA的塑料[/color][color=#333333]。但BPA也能导致内分泌[/color][color=#333333]失调,威胁着胎儿和儿童的健康。癌症[/color][color=#333333]和新陈代谢[/color][color=#333333]紊乱导致的肥胖也被认为与此有关。欧盟认为含双酚[/color][color=#333333]A奶瓶[/color][color=#333333]会诱发性早熟,从2011年3月2日起,禁止生产含化学物质双酚A(BPA)的婴儿奶瓶。[/color][color=#333333]双酚A是重要的有机化工原料,苯酚和丙酮的重要衍生物,主要用于生产聚碳酸酯、环氧树脂、聚砜树脂、聚苯醚树脂等多种高分子材料。也可用在增塑剂、阻燃剂、抗氧剂、热稳定剂、橡胶防老剂、农药、涂料等精细化工产品。双酚A在生活中应用广泛,成为人们经常能接触到的物质。因此,其安全性问题成为了公众的关注的焦点,但其应用存在争议。涂料中双酚A的测定方法报道还不多见,本文尝试样品通过甲醇超声萃取,0.2μm滤膜过滤后,用液相色谱-质谱仪分析样品中的双酚A的含量。方法检出限低,线性好,精密度和准确度均满足试验测试要求,可用于实际分析测试。[/color]关键词:双酚A,涂料,高效液相色谱-质谱法2.试验部分2.1试剂及试验设备色谱纯甲醇,超声波清洗机,0.2μm滤膜,电子天平,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907021011137512_1851_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907021011347303_9982_1657564_3.jpg!w690x920.jpg[/img]2.2 测试过程称取1g涂料试样,加入100mL甲醇超声提取30分钟,过滤后[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]分析。2.3 仪器条件参考检测标准中的仪器条件,结合实验室实际情况,确定仪器条件如下:[img=,542,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011727181853_7802_1657564_3.png!w542x388.jpg[/img] [table][tr][td]色谱柱[/td][td=6,1] C18柱,100mm×2mm×2.2μm[/td][/tr][tr][td]进样量[/td][td=6,1] 1μL[/td][/tr][tr][td]流速[/td][td=6,1] 0.2mL/min[/td][/tr][tr][td]流动相[/td][td=6,1] A:0.1%氨水溶液B:乙腈A:B=40:60[/td][/tr][tr][td]柱温箱[/td][td=6,1] 30°C[/td][/tr][tr][td]采集时间[/td][td=6,1] 3min[/td][/tr][tr][td]监测方式[/td][td=6,1] MRM[/td][/tr][tr][td]离子化方式[/td][td=6,1] 负离子扫描[/td][/tr][tr][td=1,4] 监测离子及条件[/td][td] [align=center]前体离子[/align] [align=center]M/Z[/align] [/td][td] [align=center]产物离子M/Z[/align] [/td][td] [align=center]驻留时间ms[/align] [/td][td] [align=center]Q1 Pre[/align] [align=center]偏差(V)[/align] [/td][td] [align=center]CE[/align] [align=center](V)[/align] [/td][td] [align=center]Q3Pre[/align] [align=center]偏差(V)[/align] [/td][/tr][tr][td] [align=center]227.00 [/align] [/td][td] [align=center]212.15 [/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]18[/align] [/td][td] [align=center]22[/align] [/td][/tr][tr][td] [align=center]227.00 [/align] [/td][td] [align=center]133.10 [/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]26[/align] [/td][td] [align=center]24[/align] [/td][/tr][tr][td] [align=center]227.00 [/align] [/td][td] [align=center]211.20 [/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]29[/align] [/td][td] [align=center]20[/align] [/td][/tr][/table]此仪器条件下,标准溶液(20μg/L)总离子流色谱图如下:由图上可知,此仪器条件下目标物响应良好,基线稳定,适合分析。2.4 线性范围按标准要求,使用购买的BPA标准物质配制成1000mg/L标准储备液,再通过逐级稀释用甲醇配制成10, 20, 50,100及200μg/l的标准曲线工作溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行分析,得到数据如下: [table=576][tr][td] [align=center] [/align] [/td][td=5,1] [align=center]各浓度峰面积[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=right] 浓度μg/L[/align] 目标物[/td][td] [align=center]10[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]200[/align] [/td][td] [align=center]相关系数(R)[/align] [/td][/tr][tr][td]BPA[/td][td] [align=center]6415[/align] [/td][td] [align=center]12326[/align] [/td][td] [align=center]29530[/align] [/td][td] [align=center]57870[/align] [/td][td] [align=center]114113[/align] [/td][td] [align=center]0.9999[/align] [/td][/tr][/table]从上表可以看出,曲线线性良好,相关系数R>0.995,满足标准要求。2.5 精密度取20μg/L的BPA标准溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行7次测试,计算精密度。 [table=576][tr][td] [align=right]重复[/align] 目标物[/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]RSD[/align] [/td][/tr][tr][td]BPA[/td][td] [align=center]21.88[/align] [/td][td] [align=center]21.68[/align] [/td][td] [align=center]20.68[/align] [/td][td] [align=center]21.31[/align] [/td][td] [align=center]20.62[/align] [/td][td] [align=center]21.61[/align] [/td][td] [align=center]20.92[/align] [/td][td] [align=center]2.4%[/align] [/td][/tr][/table]7次测试相对标准偏差RSD小于5%,精密度良好。2.6 样品加标回收率选取涂料“汽车面漆”样品,添加0.2mL的10mg/L的BPA混合标准溶液,样品中理论加标浓度为20μg/L,按样品测试过程进行操作,重复7次,考察样品加标回收率。 [table=621][tr][td] [/td][td] [align=center]样品[/align] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]测得浓度μg/L[/td][td] [align=center]ND[/align] [/td][td] [align=center]19.79[/align] [/td][td] [align=center]18.29[/align] [/td][td] [align=center]18.23[/align] [/td][td] [align=center]19.96[/align] [/td][td] [align=center]19.64[/align] [/td][td] [align=center]20.31[/align] [/td][td] [align=center]20.52[/align] [/td][/tr][tr][td]回收率[/td][td] [align=center]/[/align] [/td][td] [align=center]99.0%[/align] [/td][td] [align=center]91.5%[/align] [/td][td] [align=center]91.2%[/align] [/td][td] [align=center]99.8%[/align] [/td][td] [align=center]98.2%[/align] [/td][td] [align=center]101.6%[/align] [/td][td] [align=center]102.6%[/align] [/td][/tr][/table]回收率要求80%-120%.进行7次测试,回收率在91%~103%之间,满足测试要求。2.7 方法检出限(MDL)和定量检出限(LOQ)选取面漆样品添加0.2mL的10mg/L的BPA混合标准溶液,样品中理论加标浓度为20μg/L,按样品测试过程进行操作,重复7次,通过标准偏差来计算检出限。 [table=658][tr][td] [align=center] [/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]SD[/align] [/td][td] [align=center]MDL (μg/L)[/align] [/td][td] [align=center]LOQ (μg/L)[/align] [/td][td] [align=center]LOQ (mg/kg)[/align] [/td][/tr][tr][td]BPA[/td][td] [align=center]19.79[/align] [/td][td] [align=center]18.29[/align] [/td][td] [align=center]18.23[/align] [/td][td] [align=center]19.96[/align] [/td][td] [align=center]19.64[/align] [/td][td] [align=center]20.31[/align] [/td][td] [align=center]20.52[/align] [/td][td] [align=center]0.92[/align] [/td][td] [align=center]2.76[/align] [/td][td] [align=center]9.20[/align] [/td][td] [align=center]0.92[/align] [/td][/tr][/table]以7次加标测试值相对偏差的3倍作为方法检出限,10倍作为定量检出限,按称样量1g,加入甲醇体积体积100mL,计算得到的定量检出限为0.92 mg/kg,实际测试中可将报告检出限定为1mg/kg。2.8 结果与讨论本文考察了线性相关系数、精密度、回收率及检出限等参数,结果表明,方法的线性良好,达到了0.9999,精密度<3%,回收率在91%~103%,检出限低达到了1mg/kg,均满足要求,方法简单实用,前处理简单,可批量处理,实验室可以依据此方法开展涂料中双酚A含量的测定工作。3. 参考文件【1】 DBS13/007-2016食品安全地方标准食品中11种双酚类物质的测定高效液相色谱-串联质谱法【2】 GB31604.10-2016 食品安全国家标准食品接触材料及制品 2,2-二(4-羟基苯基)丙烷(双酚A)迁移量的测定【3】 GB/T27417-2017 合格评定化学分析方法确认和验证指南【4】 CNAS-CL01-A002:2018检测和校准实验室能力认可准则在化学检测领域的应

  • 全血中EDTA含量检测,EDTA能进质谱吗

    请教各位,全血中EDTA含量检测有[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]的检测方法吗,如果配制标准曲线,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]连用法检测全血中EDTA含量,可以直接进质谱吗。谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制