当前位置: 仪器信息网 > 行业主题 > >

色谱好坏方法

仪器信息网色谱好坏方法专题为您提供2024年最新色谱好坏方法价格报价、厂家品牌的相关信息, 包括色谱好坏方法参数、型号等,不管是国产,还是进口品牌的色谱好坏方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱好坏方法相关的耗材配件、试剂标物,还有色谱好坏方法相关的最新资讯、资料,以及色谱好坏方法相关的解决方案。

色谱好坏方法相关的资讯

  • 得利特技术组:3招教你正确判断工业溶氧仪的好坏
    得利特技术组员工表示很多销售会有客户疑惑产品质量问题,技术直接很明了表示可以教客户自己判断仪器状态,这样让客户选购的时候能有所把握。本次就教你3招正确判断工业溶氧仪的好坏一、工业溶氧仪“溶氧”档对氧电极的校正后的判断处理  测温检查正常后,测量选择开关拨至“溶氧”档。  将填有电解液后的氧电极放入5%新鲜自己制的亚硫酸钠进行“调零”电位器调零;  清洗电极放入空气中,调“校正”电位器进行气温相应氧值的校准。  如果出现读数过低、过高达不到所需数值,可根据产品说明书进行更换电池、电解液、薄膜,及对黄金阴极、银阳极的处理进行解决。如果还是达不到要求,则需更换电极。 二、工业溶氧仪“温度”档测室温时的应用判断  将氧电极插头插入仪器的插口内,测量选择开关拨至“温度”档,此时应正确显示室温值。  若实际测量值偏差很大,需用万用表欧姆档进行检测氧电极:  1.、2脚间电阻,13、5脚间电阻应都有几十KΩ(25℃时为50KΩ)。  阻值若相差很大,则需检查电极连接接头牢固与否或更换氧电极处理解决。  若阻值检查正常,则需将仪表送修。 三、检查测量显示单元  1.将不接氧电极的单个测量单元的电源开关置“调零”或“测量”任意一档,此时将测量选择功能开关置“温度”档。  显示值应为28.0左右;  2.将测量选择开关拨至“溶氧”档,电源开关置“测量”档,分别调节“调零”电位器或“校正”电位器时读数显示  应有变化。  若上述测量正常,可判断测量显示单元初步合格,否则,仪表可能有问题。
  • 得利特技术组浅析:判断工业PH计电极的好坏及寿命长短
    一般ph计的检测电极,主要以电极的斜率来判断电极的好坏,同时也可辅以电极的零电位mV值判断。对于工业场合电极,出厂标准为斜率95%~105%。零电位:±15mV,零电位是一个范围,在此范围内均是很好的电极,而不是有的仪表厂家给的8.2mV,限制电极零电位在8.2mV附近。使用一段时间以后,零电位会发生变化,±60mV以内均是允许的。但斜率应不低于70%,若要求一些,则不应低于80%。 pH测量采用的是电位分析法,所谓电位分析法,即是用零电流法对电化学电池的电极电位进行测量。而pH电极的主要特点又是高内阻,一般为几十兆欧至几百兆欧。因此它要求pH计具有很高的输入阻抗。一般pH计的输入阻抗应至少是电极内阻的1000倍以上。因此,pH计输入阻抗应5×1011Ω至1×1012Ω,但由于玻璃的内阻不是一个常数,而是温度的指数函数。如一支电极在28℃时内阻为100兆欧,而在7℃时,内阻就是800兆欧了,到0℃时就是1600兆欧了。 因此pH计输入阻抗如果不是足够高,显示值就会漂移、不稳定。同时,会在测量回路中产生电流,从而使电极极化,破坏参比电极,因此,pH计设计时,输入阻抗必须达到1012Ω以上,但这还不够,在实际应用中,有些仪表的输入阻抗部位密封性不好,或置于易变潮的位置,这样经过一段时间后,则输入阻抗根本达不到1012Ω以上的要求,而这一问题又是隐性的,往往显示值不准确时,首先就怀疑到是电极的问题,这实在是对电极的冤枉! 关于ph计电极的寿命,国家标准是“电极的保证期,从电极上所标注的制造日期起,在一年有效期内拆箱使用时,制造厂应负责修理或退换。"因此电极的质量保证期限以没有经过使用为前提,期限一年。笼统的讲电极的寿命是一年,是不正确的。电极的使用寿命跟使用介质有很大关系,不同介质使用寿命完全不一样。在很多恶劣的场合,可能仅使用2个月。而有些较好的介质,则使用达一年左右甚至更长。因此,我们建议用户尽量购买厂家zui近时间生产电极,存放时间越短,则使用效果越好!
  • 买玉注意:玉石证书只明真假不鉴好坏
    蔡华伟绘张芳曼制  游客在旅游商店买玉的经历许多人都有过经历,那么在玉石批发市场买玉情况又如何呢?记者走访多家玉石交易市场发现,即使真假不是问题,玉石价格仍然是雾里看花、水分十足。  “我们这张证书上有CMA、CAL、CNAS三个标志,有这三个标志就代表国内水平最高级别,你还有什么不放心的?”在珠宝玉石商家的再三保证下,看到鉴定证书上的红戳,不懂行的消费者往往会相信这是好东西——“证书都说是A货了,总不能错吧?”  但A货就等于好货吗?未必。记者调查发现,鉴定证书上的A货仅仅表示这是块天然石头而已。  假货出不了鉴定证书  “目前出现的珠宝方面的纠纷一般不是因为卖假货,而是价格欺诈”  记者在昆明和乌鲁木齐走访了部分珠宝城,大多珠宝商都会明确地告知记者所销售的玉石均为A货,并承诺假一赔十,有些商家为了招徕生意,甚至还打出了“假一赔百”的牌子。“只有在花鸟市场和一些路边小摊才会有B货或假货兜售。”昆明的玉石爱好者彭先生告诉记者,B货或者假货都出不了正规鉴定证书。  记者在云南联贸珠宝批发城内发现,标价较高的玉石都会附带一张由权威鉴定机构出具的鉴定证书,低于200元的玉石,一般没有鉴定证书。  随后,记者以游客身份咨询了多家珠宝商,均被告知没有B货或假货。其中一家店主称,如果顾客确有需要买B货或者假货的,可以通过关系联系到货源。  记者在云南、新疆调查发现,翡翠、玉石都可以通过鉴定证书得以鉴别,也具有很高的权威性。如果出售有鉴定证书的假货,商家将面临高额罚款,因此商家很少会主动冒险。  云南省珠宝协会专家委员会主任肖永福介绍,要成为鉴定师,先需要通过考试取得从业资格,同时必须在国家认可的鉴定机构任职才能出具鉴定证书,个人不能独立出具证书,国家也不允许个人挂靠机构。  目前对鉴定机构基本上停止审批。而出具一份鉴定证书,一般需要一人鉴定,一人核对。如果某个机构出具虚假鉴定证书或者错误鉴定,不仅会面临巨额罚款,还面临被吊销执照的风险。“应该说目前整个云南珠宝市场出具鉴定证书是非常规范的,具备出具证书资质的机构都经过政府审批。目前出现的珠宝方面的纠纷一般不是因为卖假货,而是价格欺诈。”  玉石价格与证书无关  “和田玉也有垃圾货,被拿来腌咸菜的多了去了”  但有A货的鉴定证书就能说明价值高吗?未必!  “一般来说,质检机构指的是质量技术监督局及其核发资质的检测机构或地矿局珠宝玉石检测站,他们的鉴定只是针对矿物成分,比如所有的透闪石都可以被鉴定为和田玉,云南黄龙玉也可以被鉴定为金丝玉,因为它们的矿物成分是一致的。”新疆金丝玉文化协会会长李常宝告诉记者,A货鉴定证书只能证明这是一块天然的石头,而不是玻璃或别的什么东西,只证明真假,不鉴定好坏。  比如,和田玉属于玉石中的“软玉”,但并不是所有的软玉都是和田玉。软玉产地较多,由于产地不同,软玉成因不同,软玉的质量、价值也存在明显的差别。行内将和田玉分为:新疆和田玉(新疆料)、青海软玉(青海料)、俄罗斯软玉(俄料)、韩国软玉(韩料)等。鉴定机构只能鉴定出一些数据,而对这些符合软玉数值的玉石,都将出具“和田玉”证书。  因此,市场在售的青海玉、俄罗斯玉、韩国玉等,都会有“和田玉证书”,但它们并不是真正意义上的新疆和田玉,价值也往往相差悬殊。  “从几万上百万的中高档翡翠,到几十块钱的翡翠旅游工艺品,都可以说是A货。”肖永福告诉记者,“鉴定珠宝真假并不困难,像一些长期从业人员,一般一眼就能看出真假 鉴定过程也并不复杂,一般只要用常规宝石检测仪器分析其宝石学特征即可,成本几块钱,几分钟即可。”  “但是如果需要对某个珠宝进行全方位鉴定,1000块钱也做不下来。”肖永福说,实际上,即便是花两三千元,做的仍然是真假的鉴定,而不是价格鉴定。  “从收藏的角度来说,珠宝玉石鉴定应该有一个周期,短则一周,长则一月,只有这样才能检测出它的稳定性。”李常宝说,相对于一般的宝玉石鉴定师,艺术品鉴定评估师会在矿物成分检测之外,进行经济价值评估,但目前市场上的鉴定证书都是宝玉石鉴定师出具的,无法作为价值参考。“证书无法鉴定你买的具体是什么玉。玉石分很多种类,价值相差巨大,和田玉也有垃圾货,被拿来腌咸菜的多了去了,你拿这种去鉴定,也能给你出A货鉴定证书。”  商家利用证书抬价  “消费者询问证书时,我们就基本摸清楚消费者的底了,因为这种询问就意味着消费者只认证书不识玉”  与鉴定证书的严格监管相比,珠宝玉石的价格则显得较为混乱。  在乌鲁木齐华凌玉器城,记者在4个珠宝玉石柜台上看到了4种不同机构出具的鉴定证书,有的机构就在新疆本地,还有的是带有“国家”字样的鉴定机构。证书没有假,但未必就值高价。  实际上,部分商家利用消费者对鉴定证书的盲目信任,往往会对鉴定内容作出过分解读,李常宝认为这是消费者“自作多情”,被商家利用了。记者在采访时常常听到不同的商户介绍:“我们这是A货,是最好的玉石,这样的价格已经非常便宜了。”  有一些商家动不动就爱说“达到羊脂白”,李常宝认为这更是无稽之谈,毫无依据,“这只是一种文字游戏,是指白度达到了羊脂白,但是没有说是新疆和田羊脂玉。而一块白玻璃,也可以说白度达到羊脂白。这种将颜色与玉质混淆概念的把戏,在市场上也屡见不鲜。”  昆明理工大学材料学院宝石及材料工艺学系主任祖恩东认为,商家不应该过度解读鉴定证书的证明力,同时有义务向消费者说明鉴定证书到底是证明什么。但目前绝大多数商家并未这么做。  由于多数消费者在购买珠宝玉石时,并没有足够的鉴定知识识别真伪优劣,因此,很多消费者将买玉全部的信心都放在证书上,殊不知这才是最大的陷阱。正规机构开具的证书,也证明不了玉石商品的价值。而不法商家正是利用消费者对于证书的信任,以次充好,以假乱真忽悠消费者。  记者在市场暗访中发现,商家凭借证书推销屡试不爽。  有位商家私下告诉记者,他们特别喜欢消费者主动询问有没有证书,“消费者询问证书时,我们就基本摸清楚消费者的底了,因为这种询问就意味着消费者只认证书不识玉,那么俄罗斯玉、青海玉等借着和田玉之名就很容易卖出个好价钱。”
  • 德国PCR世家耶拿深度解读:从哪些方面评价一台PCR 仪的好坏?
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   说起PCR(Polymerase Chain Reaction,聚合酶链式反应)技术,生命科学领域从业人士肯定不会陌生。PCR技术问世已有30多年,期间创新性生物技术不断涌现,然而PCR技术的地位依然不可撼动——在三十多年后的今天,PCR作为一项必不可少的技术手段,仍被广泛应用在基因克隆、基因表达分析、病原体检测、疾病诊断、基因测序、生物制药、基因/细胞治疗、分子育种、物种鉴定、法医鉴定等各个领域。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   2020年的新冠疫情席卷全球,新冠病毒实验室检测起到核心作用的,正是PCR技术。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   到底什么是PCR技术? /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 简单说来,PCR技术是利用DNA双链复制的原理,在生物体外大量扩增特定DNA片段的技术,下图展示了PCR的基本过程。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/88d14d71-7bac-4ffb-8f21-a7c8c4a6f419.jpg" title=" 0 PCR.jpg" alt=" 0 PCR.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   传统的PCR实验结束后,产物需要通过电泳及成像来查看扩增条带,获得定性结果。20世纪90年代中期,在传统PCR技术的基础上诞生了荧光定量PCR技术,简称qPCR技术。qPCR可以对起始模板进行实时的检测,具有特异性好、检测灵敏度高、结果直观、省时、安全等优点,被更多地应用在检测诊断领域。在基础科研方面,qPCR也是基因表达分析研究的主要方法。21世纪初,PCR技术又迎来了第三次创新,出现了数字PCR技术,无需标准曲线就可实现精确定量,但由于其仪器平台和试剂耗材使用成本都远高于qPCR,且操作繁琐,所以目前仍是传统PCR和荧光定量PCR技术应用最为广泛。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   与前后三代PCR技术相对应的,当前市面上主要有三种类型的PCR仪,即普通PCR仪、荧光定量PCR仪和数字PCR仪。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    span style=" color: rgb(0, 112, 192) font-size: 18px " strong 一台PCR仪的关键零部件有哪些? /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   从仪器构成来说,普通PCR仪主要由热循环系统组成,荧光定量PCR仪和数字PCR仪除了热循环系统外,还含有光学检测系统以及配套的操作分析软件。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    strong 温控性能是PCR反应最重要的影响因素之一 /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   由PCR原理也可看出,PCR反应是不断升温和降温的过程。需要能在变性-退火-延伸这三个关键步骤进行温度控制。温度控制涉及温度准确性、均一性、升降温速率、温度梯度等多个方面。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   温度准确性是PCR仪的重要性能指标。如果仪器温度准确性差,样品槽的实际温度不能达到设定温度,那就无法获得预期的扩增结果,即要么扩增不出来,要么产生非特异性扩增甚至是错误扩增。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   温度均一性是获得稳定扩增的保障。若PCR仪的温度均一性差,在出现不同扩增结果时就无法判断是样品本身不同造成还是仪器性能不好所导致。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   升降温速率不仅直接影响PCR实验用时,进而影响工作效率,还会影响扩增产物的特异性。升降温速率越快,特异性越好。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   PCR仪梯度温度功能对于反应条件的优化(尤其是退火温度的优化)有很大帮助。对于新开展的实验,通过温度梯度功能快速获得最佳退火温度。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    strong 样品槽材质影响温控性能 /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   PCR仪样品槽的材质,会影响上述这几个温控方面性能。现在大多数PCR仪采用的是铝合金材质样品槽,高端PCR仪则采用热导性能更好的银质样品槽。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    strong 光学检测系统对结果产生很大影响 /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   对于荧光定量PCR仪来说,光学检测系统的好坏对检测结果会产生很大影响。光学检测系统主要包含激发光源、检测器、信号采集方式、检测通道数量等方面。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   激发光源需考虑光谱范围和光强。虽然现在新一代产品的激发光源大多都是LED灯,但单色LED灯和复合光白色LED灯,在激发效果上还是各有优劣。最好能利用各自的优势形成既宽又强的光照激发效果。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   检测器主要考察的是检测灵敏度。检测器灵敏度当然是越高越好,灵敏度越高,则可以检测到更低的信号强度,也就是说可以检测到更低的样品浓度。应用在qPCR仪上的检测器主要有PMT和CCD,光电倍增管PMT的检测灵敏度要高于CCD。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   每个公司的产品都有自己独特的信号采集方式,有些产品会存在信号光程差的问题,必须额外增加校正染料,比较麻烦。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   检测通道数量的多少,将决定该仪器最多能做几重的荧光检测。不同应用领域对于检测通道的多少要求不同,比如做基因表达分析的用户只需一个检测通道就够了,而像新冠病毒检测通常都需要三重或四重检测,这对于仪器的配置就会有不同的要求。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   除了上述的温控和光学检测系统外,样品通量、样品槽的多样性、热盖的防蒸发效果、运行时的噪音水平、平台对试剂耗材的适用性、操作界面的友好性等,也是考量一台PCR仪好坏的方面。此外,由于PCR仪是一个使用频率非常高的仪器,所以仪器的耐用性和售后服务也是用户关心的问题。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 18px " strong 1989年,革新性的三槽PCR仪诞生 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   谈到PCR仪,就不得不提到一家具有三十多年PCR仪研发制造历史的欧洲老牌PCR仪生产商——Biometra公司。2009年,Biometra被德国分析仪器巨头耶拿公司收购,如今Biometra已成为耶拿旗下一员猛将。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 红色是耶拿PCR仪的传统色,大家可以在很多实验室看到使用了十年以上的红色PCR仪还继续工作在第一线。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ad87b119-191d-4f2b-9590-eec8b8849938.jpg" title=" 1 PCR.jpg" alt=" 1 PCR.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "   经典的TProfessional PCR仪 & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 新一代TAdvanced PCR仪 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   耶拿公司第一代PCR仪可追溯到1989年,距离全球第一台PCR仪面世仅隔短短一年时间,且这台PCR仪为革新性的三槽PCR仪,可见耶拿PCR仪从一开始起点就很高。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 135px " src=" https://img1.17img.cn/17img/images/202011/uepic/fb092fb8-0a71-4ef8-aabd-324e25cab7af.jpg" title=" 2 发展.jpg" alt=" 2 发展.jpg" width=" 600" vspace=" 0" height=" 135" border=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   span style=" color: rgb(0, 112, 192) font-size: 18px " strong  PCR仪快、准、稳“镀金银槽”功不可没 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   除了极具特色的三槽PCR仪外,“镀金银槽”也是耶拿PCR仪另一大特色。典型代表是Biometra TAdvanced 96 SG 高速PCR仪。为了实现高精准的温度控制,早在二十多年前,耶拿公司就开创性地采用银质材料来制作反应样品槽,为了防止银质氧化,又特意在外面镀上一层惰性纯金,由此形成快速耐用的“镀金银槽”。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   镀金银槽再配合高端耐用的帕尔贴、瑞士PT100温度传感器,得以实现± 0.1 ℃的温度准确性和± 0.15 ℃的温度均一性。而市面上同类产品的温度准确性和均一性通常在± 0.25 ℃以上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/63098781-dc76-405b-b79b-a0306fd055d0.jpg" title=" 4 耶拿PCR仪极具特色的镀金银槽.jpg" alt=" 4 耶拿PCR仪极具特色的镀金银槽.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "   耶拿PCR仪极具特色的镀金银槽 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   镀金银槽还带来一个显著的优势,就是反应速度快。高速PCR仪Biometra TAdvanced 96 SG在保持上述优异的温度精准度外,还能实现最大升温速度8 ℃/s,最大降温速率6 ℃/s,正如火车中的高铁复兴号,运行又快又准又稳。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   也许有人会说:“PCR反应时间慢点也没关系,我可以等”。让我们通过以下的两个实验案例,来看一下高速PCR仪扩增的优势所在。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 案例1:一位做基因克隆的实验人员合成了6对引物对目的基因进行扩增,在实验室现有的某进口品牌普通PCR仪上扩增多次,均告失败。试用了一台耶拿公司的高速PCR仪,结果惊喜地发现,在6对引物中,有2对可以很好地扩出目的基因。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/2230f77a-28b8-4af5-808e-8831ba889c02.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   M:Marker 1-6:6对引物在高速PCR仪上的扩增结果 7-12:6对引物在普通PCR仪上的扩增结果 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 案例2:某模式生物公司在开发基因敲除实验方法时,对比了耶拿高速PCR仪和某进口品牌普通PCR仪的扩增结果,发现耶拿高速PCR仪的扩增效率更高。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/eb9e93a6-a828-4e5b-9912-418a08efd0b5.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   任何实验室都有可能会碰到一些不易扩增的实验,反复优化PCR实验条件非常费时费力费钱,这个环节不应成为影响整个实验进程的障碍。好的实验工具能使工作事半功倍,所以一台高速PCR仪对于实验室来说是必要的,遇到扩增的疑难杂症,用高速PCR仪来快速解决! /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   耶拿PCR仪还有一个深受用户喜欢的特点是静音,即使多台仪器同时工作也听不见噪音,能够为用户提供舒适安静的实验环境。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 159px " src=" https://img1.17img.cn/17img/images/202011/uepic/fb455282-ee8c-46ef-b9aa-beaadad3560f.jpg" title=" 7 组合.jpg" alt=" 7 组合.jpg" width=" 600" vspace=" 0" height=" 159" border=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "   耶拿红色PCR仪 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    span style=" color: rgb(0, 112, 192) font-size: 18px " strong 自动化检测平台将迎快速增长 耶拿推出自动化定量PCR仪 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   今年新冠疫情的暴发,人们对于自动化工作平台的需求变得更加迫切和强烈。自动化PCR检测平台对于样品多而人手有限的的政府检测部门、医院、生物制药企业以及一些大型实验室中心平台来说必不可少。当前已有越来越多的个人实验室在积极搭建自动化系统,可以预见未来几年将迎来全自动检测平台的快速增长。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " 今年,耶拿最新推出配合自动化工作站使用的自动化PCR仪Biometra TRobot II和自动化荧光定量PCR仪qTOWER3 auto。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: left "    strong 自动化PCR仪Biometra TRobot II /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: left " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 458px " src=" https://img1.17img.cn/17img/images/202011/uepic/55e2bdf7-678b-4d6a-9ea8-1cf2738472ca.jpg" title=" 8 自动化PCR仪Biometra TRobot II.jpg" alt=" 8 自动化PCR仪Biometra TRobot II.jpg" width=" 500" vspace=" 0" height=" 458" border=" 0" / /p p style=" text-align: center " Biometra TRobot II /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   其实早在2001年耶拿公司就已领先推出自动化PCR仪TRobot。用机器代替人工操作,不仅可大大提高工作效率,减少错误率,还可以有效保护操作者的安全。此次推出的Biometra TRobot II新品,延续了高速精准的镀金银槽,并针对机械臂的操作特点,设计出三面开盖方式,能够和市面上多种自动机械臂兼容使用,形成PCR体系构建和PCR反应的全流程自动化。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: left text-indent: 2em " strong 自动化荧光定量PCR仪qTOWER3 auto /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "    /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 428px " src=" https://img1.17img.cn/17img/images/202011/uepic/daf5bb2f-96c9-49fc-b119-e0e249f1ec3c.jpg" title=" 9 自动化荧光定量PCR仪qTOWER3 auto.jpg" alt=" 9 自动化荧光定量PCR仪qTOWER3 auto.jpg" width=" 500" vspace=" 0" height=" 428" border=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center " qTOWER3 auto br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 自动化荧光定量PCR仪同样可以整合包括耶拿CyBio FeliX在内的多种自动化平台。qTOWER3 auto最高6通道检测能力,可实现多台仪器的串联使用,进一步提升高通量样品的自动化检测能力。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   qTOWER3 auto新推出不久,珀金埃尔默公司(Perkin Elmer) 便与耶拿公司合作,针对新冠病毒核酸检测,整合qTOWER3 auto推出了explorer G3全自动化系统,每天可完成10000人份样品的新冠检测,为新冠病毒核酸检测提供了一个无人值守、高通量全流程自动化的解决方案。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   正如开头所说,PCR技术现在还是一个无可替代、应用广泛的技术。作为来自德国的PCR世家,耶拿公司还将一如既往地为广大用户提供快速、精准、耐用、便捷的PCR系列产品,并进一步发挥耶拿PCR的优势来满足新的应用发展需求,我们真诚希望好产品能为更多的用户带来切实的帮助。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 534px " src=" https://img1.17img.cn/17img/images/202011/uepic/7a9b186a-a665-4758-b8d4-9bcda0254a3f.jpg" title=" 10 吴潇韫.jpg" alt=" 10 吴潇韫.jpg" width=" 400" vspace=" 0" height=" 534" border=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   作者:吴潇韫,德国耶拿公司生命科学部产品经理。毕业于浙江大学,熟悉分子生物学相关的前沿知识和技术,具有十几年PCR和qPCR方面的推广和应用经验。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em " br/ /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "    strong 关于德国耶拿公司 /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em "   德国耶拿分析仪器股份公司(Analytik Jena AG,简称AJ公司)成立于1990年,总部设在世界光学精密仪器制造中心的德国耶拿(Jena)市。耶拿公司的前身为久负盛名的卡尔?蔡司公司分析仪器部,传承了蔡司公司160多年的精密光学仪器研发制造经验。德国耶拿生命科学部是技术领先、产品齐全的专业供应商,旗下的Biometra、UVP、CyBio等工厂能为全球生命科学客户提供从样品制备、核酸纯化、自动化工作站、到PCR/qPCR、电泳、多功能成像、活体成像等“一站式”的整体高效解决方案。 /p
  • 气相色谱技术在饮用水水质检测中的应用
    饮用水水质检测包括水质的理化指标及水中微生物指标的检测。 生活饮用水理化检测技术主要包括化学分析法与仪器分析法两大类,色谱法属于仪器分析法。 气相色谱技术可以依据固定相、色谱原理、色谱操作形式等进行分类,其优点包括操作简单、灵活性高、分辨率高、选择性强、应用范围广等。 利用气相色谱技术能够实现饮用水中常见污染物的检测,从而实现饮用水水质检测目标。1 前言  气相色谱法(Gas Chromatography,GC)是一种利用气体作流动相的色层分离分析方法。随着各种各样污染的出现,人们已经逐渐意识到环境污染带来的严重问题。以水污染为例,水是人类赖以生存的重要资源,饮用水的安全与人们的身体健康息息相关。本文以饮用水水质检测的重要性为切入点,对饮用水的水质检测技术进行了简要概述,并分析了气相色谱技术在饮用水水质检测中的应用。  2 饮用水水质检测的重要性  水是人类生命的源泉,饮用水的安全是人们健康生存的基本保障。然而资料显示,我国许多江河水质检测时发现了污染物,水质相关指标超过了正常限值标准。水体污染是指在自然过程或人类生产活动过程中,某些有害污染物进入天然水体影响水体发挥正常功能。饮用含有污染物的水会对人体的胃、肝、肾等造成一定影响,如果长期饮用被污染的水,极有可能诱发一系列严重疾病。这就需要有效、准确的水质检测工作来确保饮用水的质量安全。  3 饮用水水质检测技术概述  我国饮用水水质检测技术主要包括化学与仪器分析法两大类。其中,化学分析法的原理就是依据化学反应、颜色变化来判断饮用水水质的优劣;而仪器分析法中主要是通过“光化学分析”“色谱分析”来判断饮用水水质的好坏。 色谱分析包括气相色谱分析和液相色谱分析。近年来,水质检测工作受到的重视度越来越高,有关部门在已有的检测标准中加入了新的方法。由于气相色谱法的诸多优点,使得饮用水水质检测效果大大提升,在环境检测领域得到了广泛应用。  4 气相色谱技术在饮用水水质检测中的应用  4.1 气相色谱技术的分类  4.1.1 依据固定相分类  气相色谱技术的分类依据固定相的不同可以划分为两大类。 采用固体吸附剂作为固定相的称为气固色谱;采用涂有固定液的单体作为固定相的称为气液色谱。  4.1.2 依据色谱原理分类  依据色谱原理可以将气相色谱技术分为吸附色谱和分配色谱。上文提到的气固色谱为吸附色谱,而气液色谱为分配色谱。  4.1.3 依据色谱操作形式分类  气相色谱的色谱操作形式为柱色谱[3]。 依据色谱柱的粗细可以将其分为两类。其一为填充色谱,是指将固定相装在一根金属或者玻璃管中,内径 2~6mm;其二为毛细管柱,毛细管柱可以分为填充与空心两类。空心毛细管柱是指将固定液涂在内径为 0.1~0.5 mm的金属或玻璃毛细管内壁;而填充毛细管柱是指将某些多孔性的颗粒装入厚壁玻璃中加热拉成毛细管,是一种新型技术,内径一般为 0.25~0.5 mm。  4.2 气相色谱技术的优点  4.2.1 分辨率高、选择性强  采用气相色谱技术能够在一根色谱柱形成上千甚至上百万个分离的搭板,可大大提升分离效率,尤其是在分离一些多组分物质时具有良好的有效性。另一方面,检测一些相似度高的物质时,采用气相色谱技术能够有效地将复杂物质分离开,实现定性和定量分析,反映出该技术强大的选择性。  4.2.2 灵活性强、应用范围广  气相色谱技术能够实现水质检测、 空气检测等,对液体、气体、固体进行检测的同时不影响其含量,反映出气相色谱技术具有强大的灵活性和广泛性。  4.2.3 分析速度快  采用传统方法进行水质检测往往需要较长时间,气相色谱技术可以通过自身的自动分析处理能力提升结果获取速度,缩短检测时间,具有较快的分析速度。  4.3 气相色谱技术在饮用水水质检测中的应用举例  4.3.1 检测有机磷农药  有机磷农药是饮用水中常见的污染物, 常见的有机磷农药有马拉硫磷、甲基对硫磷、对硫磷等[5]。有机磷农药是一种不溶于水的液体,但可溶于动植物油且容易被碱性物质分解。水中有机磷检测时,可以利用气相色谱技术并配置火焰光度检测器, 检测时可以固定 5%苯基+95%二甲基聚硅氧烷的毛细管柱,通过有效程序升温检测饮用水中的有机磷农药。  4.3.2 检测有机氯农药  有机氯农药(常见的种类有七氯、狄氏剂、硫丹等)是饮用水中常见且对人体健康危害较大的污染物一。资料指出,有机氯农药具有神经毒性和肝毒性,其不仅会危害人体健康, 还会对环境造成巨大的不良影响。有机氯农药的物化特征为分解困难、残留时间长。采用气相色谱技术检测时,需要配置电子捕获检测器和毛细管柱,并利用程序升温进行检测。  4.3.3 检测(半挥发性)有机物  饮用水中常见的有机物与半挥发性有机物如甲苯、硝酸苯、四氯化碳等都是对人体有害的物质,采用气相色谱技术可以进行有效的检测并将有害物质分离出来,从而实现饮用水水质检测。  5 结语  饮用水的水质污染问题关乎人类的健康和安全。随着人们健康意识的不断提高,对水质质量要求也在不断增加,水质检测是控制饮用水安全的关键。 目前我国对饮用水水质检测方法较多,气相色谱技术是其中应用最广泛的技术之一,该技术具有操作简单、分辨率高、选择性强、灵活度高等诸多优点,可得到广泛应用。
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • Nexis视角丨完美的用户体验是未来气相色谱的核心竞争力
    气相色谱技术由于其高效、快速的分离特性,已成为医药、食品、环境、石化等领域中不可缺少的分析工具。近年来,气相色谱技术中与产品性能和操作体验相关的设计创新十分活跃,这些也代表着目前气相色谱技术的发展方向。在这些创新中,岛津推出了一系列围绕“用户体验”的代表性技术。 在硬件操作体验方面,一个很重要的发展方向是极简操作,主要表现为两点:一是将复杂的操作和检查功能完全简化或自动化;二是将以往藏得比较深的功能移到表层,方便用户调出和使用。 比如岛津推出的ClickTek技术是贴近用户操作体验的典型设计之一,对于气相色谱仪来说,维护和操作最频繁的部位应该就是进样口和色谱柱了,特别是色谱柱的安装和拆卸工作,近两年逐渐发展起来了简化安装和拆卸程序的设计。ClickTek技术不仅让色谱柱的安装和仪器维护实现了徒手操作,更实现了由“仪器智能判断”代替“用户主观感受”,即使初学者操作也能确保高温高压下的完美密封,提升了用户分析体验。 再比如岛津在2017年推出的旗舰款气相色谱仪Nexis GC-2030,创新设计了体感如个人移动设备的7英寸大液晶彩色触摸屏,包含进样口、柱温箱、检测器等各个部件的温度、流速、压力等信息,一目了然,轻松操作。在仪器可靠性测试方面,岛津创新设计了的微漏诊断技术“两点测定法”,尽可能消除不同仪器个体差异的因素,实现微小漏气检测。无需特别设定,在正常分析状况下仅需一键点击“载气泄漏检查功能”,即可实现载气的自动“微漏诊断”,自动输出结果,让以前不曾发觉的GC微量漏气成为历史。 在软件操作体验方面,现在的发展方向是自动化和流程化,尽可能减小用户的操作难度。以岛津在2019年推出的硫化学发光检测器Nexis SCD-2030为例,传统上SCD控制单元较多,需要用户手动操作从开机、启动真空、打开臭氧发生器、调整气体流量、稳定基线、分析到关机等。针对这个操作体验的痛点,岛津将这整个过程全部自动化,而且与工作站软件无缝对接,可以在所设定的时间自动启动,系统检测、自动参数设定、分析的开始\结束、设备停止等,尽可能降低了操作难度并提升了分析效率。 在仪器性能方面,气相色谱朝着更高精度、更高灵敏度、更高抗污染性能的方向发展。岛津新一代电子流量/压力控制技术AFC/APC-2030在控制精度、范围和调节性能方面均有不同程度的提升。通过改进的独立CPU处理器设计,获得了优异的流路控制性能,通过改善流路机械加工制作工艺,确保输出的气体更加洁净,实现优异的噪声抑制水平。即使在各种极端环境下(添加额外的阻力实验)测试,其流量的控制精度仍然非常好。这种优异的流路控制性能对即使是配置了自动阀切换的复杂气相检测而言也游刃有余,可以尽可能释放气相色谱仪的潜能。此外,岛津还推出了气相色谱的智能降温控制、检测器结构的再优化、氢气安全性保障、移动端远程访问工具、板式色谱柱等众多创新技术。 气相色谱仪作为现代实验室的普及型分析仪器,未来会朝着使用简便(分析流程简化、前处理自动化)、网络化、智能化(自检、使用、维护)等方向发展,所有这些方向的核心均是围绕“打造完美的用户体验”。通过新科技的引入(5G技术、AI&Iot技术、材料技术、色谱柱技术、软件设计等),不断将硬件、软件等进行优化,实现操作体验和产品性能的完美融合。同时岛津也提出了Analytical Intelligence“分析智能”新概念,其核心在于仪器可以如同熟练的技术人员一样进行系统和软件操作,自动判仪器状态和结果的好坏,并反馈给操作者,同时可弥补不同操作者在分析仪器知识和经验上的差距,确保数据的可靠性,目前体现该设计思想的功能已经越来越多的融入到岛津色谱质谱和光谱类产品中。 岛津在气相色谱领域深耕六十余年,一直致力于气相色谱仪的技术创新。岛津生产和研发气相色谱的历史可以追溯到1956年,成功研发了日本第一台商用气相色谱仪GC-1A,并于1957年实现商品化生产,为溶剂、药品、石油产品、食品原料等的成分分析带去了革新。后续随着化学产业及食品产业的发展,GC逐渐得以广泛普及,在这期间,岛津陆续推出了超过35款型号的气相色谱仪。在深耕气相色谱创新技术的过程中,岛津一直在持续开发能够满足时代要求的产品。 目前岛津在售的气相色谱仪共有5个型号,分别针对不同的用户和应用定位:Nexis GC-2030:高性能机型,主要针对追求优良操作体验和优异性能的用户,融合多种革新技术。GC-2010 Pro:高性能机型,继承了高性能毛细柱气相色谱GC- 2010 Plus的基本性能,主要针对追求优异性能的用户。GC-2014:毛细管柱和填充柱通用机型,集高性能、高扩展性和高可靠性为一体。GC-2014C:毛细管柱和填充柱通用机型,集高性价比、高扩展性和高可靠性为一体。GC-2018:基础普及机型,主要针对追加高性价比和高可靠性的用户。 近年来岛津气相色谱研发团队一个很重要的理念就是“与家电相媲美的易用性”,研发时完全以用户的立场作为出发点,以此来开发真正能诠释气相色谱分析技术的内涵和潜能的创新设计。未来的气相色谱技术将不仅仅被用于研究和专业领域,还有可能成为消费者用来自主分析与健康相关的日常工具。我们相信“完美的用户体验是未来气相色谱的核心竞争力”,通过对操作体验的精益求精,可以使分析回归本质,而不再受限于方法开发、操作过程或分析可靠性的探讨,让用户能真正着眼于 “从样品到结果”上。 *本文节选自仪器信息网“‘解码’气相色谱新技术新应用”专题中的内容,有删减和改动。
  • 岛津精彩亮相第22届全国色谱大会
    2019年4月20日至23日,“中国化学会第22届全国色谱学术报告会及仪器展览会”在上海光大会展中心国际大酒店盛大举办,会议邀请了多位院士和著名学者与会,并做会议报告。岛津公司分析计测市场部尹宏瑞,宋巍两位产品经理为与会者带来了精彩纷呈的分会场报告;在墙报发表中,岛津公司也为与会者分享了众多最新应用成果。大会现场传真 在组学应用分会场,岛津公司分析计测市场部尹宏瑞经理发表了题为“创新引领发展---岛津特色酶解技术助力蛋白大分子检测”的报告,他在报告中说到在生物大分子的检测中,蛋白的提取、 酶解等前处理方法在整个样品的分离鉴定中占有非常重要的地位,鉴定结果的好坏与否除了与后端分离检测的硬件性能相关外,酶解前处理方法也是关键的因素之一。岛津作为世界知名的分析仪器供应商,除了能提供性能优异的LCMS仪用做大分子检测外,也针对不同的样品开发出不同的特色酶解技术。纳米表面分子导向限制性酶解(nSMOL, nano-Surface and Molecular Orientation Limited Proteolysis)技术可完成对抗体药物的选择性酶解,并获得与之相应的特征性肽段组分,大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度,可用于所有单克隆抗体药物的定量分析。岛津在线酶切液相色谱仪Perfinity iDP 系统采用优化的专用胰蛋白酶固定化色谱柱实现对大分子样品的在线酶解,从对样品的酶切、脱盐到酶解肽段的HPLC分析一站式流程化管理,大幅缩短了前处理时间,减小了人为操作引入的误差,为蛋白大分子样品的高可靠性分析提供有效基础。采用这些特色的酶解手段,与80系列三重四极杆液质仪及9030 QTOF高分辨液质仪相结合,岛津为食品及药品中的蛋白大分子搭建了一个高效的检测平台。 岛津公司分析计测市场部尹宏瑞经理发表了题为“创新引领发展---岛津特色酶解技术助力蛋白大分子检测”的报告在分析检测分会场,岛津公司分析计测市场部宋巍经理发表了题为“色谱质谱技术应对环境大气VOC监测解决方案”的报告。他在报告中指出挥发性有机物作为烟雾颗粒PM2.5臭氧形成重要前体物,不仅是引起光化学烟雾、灰霾复合污染等大气污染主要因素之一,同时对人体健康造成极大伤害。随着《大气污染防治行动计划》、《重点区域大气污染防治“十二五”规划》、《“十三五”生态环境保护规划》、《“十三五”挥发性有机物污染防治工作方案》以及《2018年重点地区环境空气挥发性有机物监测方案》等政策法规相继出台,空气中VOC监测和治理工作已经刻不容缓,实施挥发性有机物总量管控和监测预警需求已经成为大气污染防治工作重要手段,同时也是有效落实排污许可制度和企业自行监测,实施国家环保监管重要环节。岛津公司通过研究,在色谱和质谱平台上推出“环境大气VOC监测解决方案”,方案结合中国环境标准法规,同时也满足EPA TO-14\TO-15等法规要求。通过应用研究,实现GCMS平台上实现一次进样完成117种VOC分析检测。体现岛津公司分析仪器在环境监测工作中专业全面解决方案。岛津公司分析计测市场部宋巍经理发表了题为“色谱质谱技术应对环境大气VOC监测解决方案”的报告岛津公司分析中心在本次大会上发表了七篇墙报,分别是:GCMSMS结合岛津Off-flavor系统分析食用胶中的异味来源;岛津细胞培养上清液分析技术在生物制药工艺开发中的应用;HPLC-ICP-MS法测定地表水中的5种形态砷;GCMS法检测淋洗类化妆品中3种环状甲基硅氧烷;GCMS-TQ8050检测原料药中的对甲苯磺酸酯基因毒性杂质;UHPLC-TQMS测定玉米中的杂色曲霉素含量;超临界流体色谱反相液质二维色谱在油脂样品分析中的应用。岛津公司部分墙报展示传真 在岛津展台,陈列出了极具历史感,在“岛津寻找古董级LC”活动中选出的目前仍可正常开机,现役40年之久的LC-3A以及作为岛津新标杆的旗舰机Nexera LC-40等新品,引来许多专家学者驻足观赏。岛津展台传真现役40年之久的LC-3A及岛津新品旗舰机Nexera LC-40岛津新品旗舰机Nexera LC-40岛津全新“Nexis SCD-2030”硫化学发光检测器气相色谱系统“中国化学会第22届全国色谱学术报告会及仪器展览会”前夜,岛津企业管理(中国)有限公司董事长兼总经理马濑嘉昭先生做了热情洋溢的致辞。他首先对到场的嘉宾表示了衷心地感谢。随后他说到随着中国经济的发展和国民生活水平的不断提高,色谱技术已经越来越广泛地运用到了我们的生活和工作之中。岛津公司一直不断推陈出新,为社会提供了丰富的色谱产品,并于晚宴前进行了岛津Nexera LC-40中国市场的线上线下发布会,并且希望这款产品能助推科研工作。最后马濑嘉昭先生预祝了全国色谱报告会圆满成功。岛津企业管理(中国)有限公司董事长兼总经理马濑嘉昭先生在岛津之夜做了热情洋溢的致辞关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 华谱科仪Chromloong色谱信息管理系统云发布会来袭!
    色谱分析结果的可靠性很大程度上取决于数据处理装置的可靠性和数据处理的好坏。色谱数据系统对于合规、高效和可靠地处理色谱数据至关重要。色谱软件可确保数据质量并管理从仪器控制到原始数据存储和处理的所有分析过程,直至产生最终结果。近年来,生产技术进步、科研水平提升、分析准确度要求提高,促使色谱数据系统不断更新与升级,特别是实验室合规要求下,对其中功能多样化、智能化、分析精准化是色谱数据系统重要升级方向。华谱科仪(北京)科技有限公司,简称华谱科仪,是一家提供色谱领域“产品+技术服务”整体解决方案的高新技术企业。2016年,华谱科仪正式踏入国产色谱软件研发征程。公司坚持掌握核心技术,目前已拥有多项专利、软著等自主知识产权。2022年10月20日,华谱科仪联合仪器信息网,举办“智捷华谱科仪Chromloong色谱信息管理系统云发布会”,展示华谱科仪在国产高端科学仪器领域的技术成果,分享Chromloong色谱信息管理系统。该系统采用分布式数据库存储、标准网络部署架构,同时具备全链路审计以及先进的智能化数据分析能力,为用户提供更加安全、合规、高效、智能的色谱信息管理解决方案。会议报名点击上方图片本次发布会,还邀请到中国食品药品检定研究院原化学药品检定首席专家胡昌勤、北京大学化学学院教授刘虎威以及中华全国工商业联合会医药业商会技术副总监吕东红等多位专家做客线上,共同揭晓全新Chromloong色谱信息管理系统的庐山真面目。以下为会议详细日程14:00-14:05开场寄语韩灏——华谱科仪战略市场总监14:05-14:25行业专家致辞胡昌勤——中国食品药品检定研究院原化学药品检定首席专家刘虎威——北京大学化学学院教授吕东红——中华全国工商业联合会医药业商会技术副总监14:25-14:30新品揭幕14:30-14:31互动抽奖14:31-14:36研发历程——华谱科仪软件研发部测试经理15:11-15:12互动抽奖
  • 福州电业局成功研发新型色谱在线监测系统
    “氢气浓度正常,总烃浓度正常……八个组分浓度均正常,含气量为1.9%。”10月14日一大早,福建福州电业局变电检修部高级工程师王远远,打开“色谱高性能多组分在线监测系统”查看220千伏南门变电站3号主变的运行情况。据悉,这套由福州电业局自主研发的 “色谱高性能多组分在线监测系统” 成功实现对充油电力设备的24小时监测,能第一时间预测故障的发生。日前,该系统被福建省科技厅鉴定为国际先进水平。   据了解,变压器等充油电气设备在电网中起着至关重要的作用,它们状态好坏,直接影响到电网的安全运行,所以保障充油电力设备的健康运行是电力企业的重要工作。但充油电气设备故障主要是内部潜伏性故障,目前一般通过对设备油中溶解气体含量分析来解决。虽然现在国内外市场上有色谱在线监测系统产品,但它们存在着“无法分别测出油中气体组分的准确浓度值、响应时间较慢、数据反应滞后、油污染情况多”等问题,无法对设备的故障类型进行综合判断。   针对现状,福州电业局在2008年4月份成立科研项目后,经过一年多的创新试验,最终研发出“色谱高性能多组分在线监测系统”。该系统可以对充油电气设备中的氢气、一氧化碳、总烃等八个组分气体浓度和含气量进行24小时在线监测,以最快的速度提交测试数据,从而达到在最短的时间内发现设备内部潜伏性故障的目的。与国内外各种色谱在线检测系统相比,“色谱高性能多组分在线监测系统”不仅可以用一根色谱柱分离出七个组分的气体浓度,而且其检测灵敏度可达到10-9 级。并且,该系统采用真空脱气缓冲返油系统和油路定量循环系统,可以及时采集到代表性油样,脱气效率高,试验后也无废油出现,成功解决了色谱柱、检测器等被油污染的问题。该系统自2009年6月在福州电业局220千伏南门变电站3号主变试用以来,各项数据均超过主要技术经济指标。   据项目研发负责人王远远介绍,由于“色谱高性能多组分在线监测系统”具有检测组分多、脱气率高、灵敏度高、故障诊断功能强、性能稳定的特点,在全脱气、含气量检测、油定量循环和返回技术方面具有独特常新,项目成果已获得国家知识产权局五项专利的申请受理。
  • 守护水质安全,科技精准探秘:水中缩醛类物质的高效检测方法
    饮用水有无异味是消费者直接评判水质好坏的一个重要依据。近年来,我国饮用水异味问题时有发生,每次饮用水水质异常的事件都会引起社会的广泛关注。其中,源自树脂工业的副产品——2-乙基-4-甲基-1,3-二氧戊环(2-EMD)与2-乙基-5,5-二甲基-1,3-二氧杂环己烷(2-EDD)这两类缩醛物质,尽管在水中的浓度极低(嗅味阈值仅5-10 ng/L),却因其强烈的青苹果味道会引发公众的不良感受。为确保水质安全与公众健康,对这两种缩醛物质进行精确、高效的检测至关重要。01创新技术揭秘 珀金埃尔默企业管理(上海)有限公司先进的TurboMatrix™带专利捕集阱顶空-气相色谱/质谱联用法,突破传统顶空分析的灵敏度瓶颈,跟固相微萃取技术相比,该方法线性和重复性良好,稳定性较高,并且由于顶空结构简单,无六通阀、定量环和多余的管线,可以真正做到无残留,基本无需做任何的维护,基本无需额外的维护成本。此外,专利的捕集阱可以做到最多四次待测物的富集,相对传统顶空可以大幅提高结果的灵敏度。 02 方法优势 1 卓越灵敏度该方法检出限低于5 ng/L,低于两种缩醛物质的嗅味阈值,确保对极低含量的有效测定。 2 优良线性与重复性 实验数据显示,顺式与反式2-EMD以及2-EDD的校正曲线相关系数R²均超过0.999,展现出优异的线性关系。连续7次进样,峰面积重复性控制在3%以内,凸显了系统的稳定性与一致性。 3 高效便捷 带阱顶空设计简单,没有六通阀、定量环等复杂组件,有效避免残留,大幅降低维护成本与操作难度,提升了整体实验效率。 03 实验仪器和结果谱图展示 实验中所用的珀金埃尔默GCMS 2400与TurboMatrix 40 Trap联用系统,图片如下: 5ng/L的缩醛物质的色谱图如下图所示,其中,顺式与反式2-EMD的信噪比分别为21与21,2-EDD的信噪比为28,证明系统较高的灵敏度。 图 5 ng/L的SIM模式提取离子图 (点击查看大图) 珀金埃尔默带阱顶空-气相色谱/质谱联用法以其出色的灵敏度、线性度与重复性,成功应对了水中缩醛类物质的痕量检测挑战。 未来,我们将继续探索其他嗅味物质的检测,请持续关注珀金埃尔默,让我们共同守护每一滴清澈,让科技的力量为水资源保驾护航! 扫描左侧二维码 即刻获取解决方案 参考文献 [1] Schweitzer et al. (1999). The Formation, Stability, and Odor Characterization of 2-ethyl-4-methyl-1,3-dioxolane (2-EMD). Water Science and Technology, 40(6), 293-298. [2] Schweitzer et al. (1999). The Environmental Fate and Mechanism of Formation of 2-Ethyl-5,5′-Dimethyl-1,3-Dioxane (2EDD) – a Malodorous Contaminant in Drinking Water. Water Science and Technology. 关注我们
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 默克密理博与戴安公司签署全球分销协议,免化学试剂型离子色谱再无水质之忧
    2010年9月2日,戴安公司与默克密理博宣布签署了一项全球分销协议,此协议确定戴安公司可以在全球范围内直接销售默克密理博公司ICW-3000水纯化系统及耗材。 暨全球分销协议之后,戴安公司与默克密理博也于2010年9月9日就中国的分销协议达成共识。 ICW-3000水纯化系统是默克密理博为戴安免化学试剂型离子色谱系统专门设计的可提供在线超纯水的水纯化系统,该系统采用方便的“just add water”技术,不需要准备额外的淋洗液。该系统安装简便,并可通过戴安离子色谱系统软件来实现全线控制。另外ICW-3000 水纯化系统再循环的待机模式能在较长时间内保持高纯度的水质。在较低的水和能源消耗的情况下更好地满足毛细管型离子色谱仪的在线用水需求。 水质的好坏在分析检测过程中起着至关重要的作用,只有高品质的水,才能确保免化学试剂离子色谱技术发挥到极致。在离子色谱系统上配备超纯水系统的整体方案,将大大减少因水质问题而引起的各种离子色谱问题,更在一定程度上降低了可疑数据分析的复杂度和困难度,从而提高产品性能。目前戴安与默克密理博两公司就产品ICW-3000分销方式、安装、维修、应用支持及培训,售后等方面达成共识,并商定将尽快完善组合产品的信息,所有用户从现在开始即可直接 从戴安公司购买默克密理博的ICW-3000水纯化系统,戴安公司免化学试剂离子色谱用户从此再无水质之忧。 关于默克密理博 默克密理博是德国Merck KGaA公司旗下的生命科学部门,致力于为全球从事生物技术和生物医药的研发和生产的用户提供创新的技术,高品质的产品、服务和商务关系。 作为全球生命科学工具行业名列前三的研发投资者,默克密理博通过与用户在最新的科学和工程思路的合作,成为了全球用户的策略性合作伙伴,共同推进生命科学的发展。默克密理博的总部设在美国麻省,在全球拥有近10000名员工,在64个国家拥有办事机构。 在美国和加拿大,默克密理博被称为EMD Millipore。 欲了解更多默克密理博信息,请登陆www.millipore.com. ADVANCING LIFE SCIENCE TOGETHERTM Research. Development. Production.
  • 最全的液相色谱柱知识分享和选择技巧 你值得拥有!
    p   现代高效液相色谱分析中,色谱柱的选择直接影响了分离效果的好坏,选择合适的色谱柱可以缩短方法开发所需的时间,并且使方法更具稳定性。但是现在市场上色谱柱种类繁多,不同类型的色谱柱分离对象不同,因此,要做合适的选择,必须对此有一定的认识和了解。 /p p   色谱柱参数 /p p   物理性质 /p p   柱长,内径,如250*4.6mm。一般柱长在2—250mm,柱越长,分离度越高,但柱压更高,分离所需时间更长 但分离度与理论塔板数的平方根成正比,所以一昧增加柱长并不是最有效的分离手段,一般情况下,150mm、5um的填料可以提供足够的塔板数。 /p p    center img alt=" 最全的液相色谱柱知识分享和选择技巧 你值得拥有!" src=" http://images.ofweek.com/Upload/News/2017-07/28/nick/1501205781977068668.jpg" width=" 640" height=" 195" / /center p /p p & nbsp /p p   粒径,影响色谱分离度。粒径越小,分离越快,柱效越高,但柱压力越高,柱容易被污染,导致柱寿命降低。常见分析柱通常使用5um填料,复杂的多组分样品分离一般使用3.5um粒径,更大内径的制备色谱柱通常使用更大的粒径。如果固定相选择是正确,但是分离度不够,那么选用更小的粒度的填料是很有用的。3.5um填料填充柱的柱效比相同条件下的5um填料的柱效提高近30% 然而,3.5um的色谱柱的背压却是5um的2倍,因此如何选择填料粒径需要根据现实情况而定。 /p p    center img alt=" 最全的液相色谱柱知识分享和选择技巧 你值得拥有!" src=" http://images.ofweek.com/Upload/News/2017-07/28/nick/1501205794940065273.jpg" width=" 268" height=" 153" / /center p /p p & nbsp /p p   孔径,60A,120A,300A等。孔径小,则含孔率高,比表面积大,载碳量高 色谱柱填料孔径大小需和分子大小相匹配,保证分子自由进出填料孔并与孔内表面的键合相进行分离分配,通常要求孔径直径是分子直径的3倍以上,一般小分子使用80—120A,大分子使用300A。 /p p    center img alt=" 最全的液相色谱柱知识分享和选择技巧 你值得拥有!" src=" http://images.ofweek.com/Upload/News/2017-07/28/nick/1501205810572019417.jpg" width=" 336" height=" 186" / /center p /p p & nbsp /p p   颗粒形状,一般有球形和不规则形,当使用黏度较大的流动相时,球形颗粒可以降低柱压,延长色谱柱寿命。 /p p    center img alt=" 最全的液相色谱柱知识分享和选择技巧 你值得拥有!" src=" http://images.ofweek.com/Upload/News/2017-07/28/nick/1501205819292003604.jpg" width=" 428" height=" 166" / /center p /p p & nbsp /p p   比表面积,指的是每克填料的表面积,如180m2/g—350m2/g,与粒度和含孔率有关 比表面积大,会增加样品与键合相之间的反应,增加保留和分离度 比表面积小则可以缩短分析时间和平衡时间,并不是比表面积大或者小就更好,需要选择合适的比表面积。 /p p   化学性质 /p p   硅胶基质:最通用的基质,强度大,化学修饰容易,但使用的pH值范围有限(一般为2—8,特殊修饰的可以达到1—12)。 /p p   聚合物基质:多为聚苯乙烯—二乙烯基苯或聚甲基丙烯酸脂,化学稳定,应用pH范围宽,具有更强的疏水性,对蛋白质等样品分离效果较好 但强度较小,有机溶剂可能导致聚合物溶胀而受损,批次重复性较差,商品化色谱柱不多,一般价格较贵。 /p p   载碳量:基质表面键合相的比例,载碳量高,则保留增加,适合分析非极性化合物。 /p p   键合相:键合试剂不同,对化合物的选择性不同,一般长链的烷基键合相(C18 C8)比短链的(C4 C3)稳定 非极性的键合相比极性的键合相(-NH2)稳定。 /p p   封端:用短链将裸露的硅羟基键合后封闭起来,以减少残留的硅醇基,减轻待测组分与酸性硅羟基反应而引起的色谱峰拖尾现象。尤其对于极性样品而言,未封端处理的色谱柱分离效果较差。 /p p   正相& amp 反相色谱 /p p   目前市场上主要以反相色谱为主,约占80%的比例。& nbsp /p center img alt=" 最全的液相色谱柱知识分享和选择技巧 你值得拥有!" src=" http://images.ofweek.com/Upload/News/2017-07/28/nick/1501205763928073622.png" width=" 621" height=" 98" / /center p   在了解了色谱柱的基本知识后,色谱柱的选择也就迎刃而解了。 /p p   柱长及内径的选择 /p p   长度的选择:柱越长,总柱效越高(n值越大),柱越长,分析时间也越长。250—300mm是最普遍的柱长,实验室一半以上的工作都是采用此规格柱子,一般用来分离l0到50个组份的中等至复杂混合物 500—600mm,要求较高分辨率的应用,—般用来分离大于50个组份或包含有难分离物质的复杂样品程序升温分析。 /p p   内径:柱效率与柱半径平方成反比,内径越小柱效越高,但内径越大,柱容量也增加,允许进样量就越多。当进样量超过柱容量时,则因柱内每块理论板内不能建立真正的平衡,将会导致色谱蜂畸变,柱分辨率降低,重现性不好。因此对于复杂样品需要精确分离,必须使用小内径柱子。另一方面若样品中存在具有很不相同浓度组份化合物,为了增加样品容量就必须使用内径大的柱子,目前实验室使用最常见的柱子内径一般是4.6mm。 /p p   一般选择原则:分析大分子量化合物选择大孔径色谱柱 对于高pH值或者碱性化合物需要选择高封端或者特殊封端的色谱柱,以改善峰形,延长色谱柱使用寿命等。 /p p   现在商品化的液相色谱柱琳琅满目,根据色谱柱的参数可以给我们提供一个初步的选择,但由于各个仪器厂商的填料技术和键合技术都有差异,即使都是C18柱,同一品牌不同系列都有不同的功能,有能耐受低pH值的、有耐高温的、有适合碱性样品的等等。所以在选择色谱柱前要好好研究色谱柱参数,仔细阅读色谱柱说明书,才能找到合适的色谱柱和适宜的分离方法。 /p /p /p /p /p
  • 如何检查液压试验机中润滑油的质量好坏
    首先,观察润滑油的外观。合格的润滑油应该呈现出均匀的亮黄色或淡黄色,而不会出现深色或浑浊的现象。如果润滑油中存在杂质、污垢或其他悬浮物,则说明润滑油的质量存在问题。其次,闻一下润滑油的气味。合格的润滑油应该有一种轻微的芳香味,而不会出现刺激性的气味。如果润滑油中存在刺激性的气味,则说明其中可能含有化学物质或污染物。第三,检查润滑油的粘度。粘度是衡量润滑油流动性的指标。合格的润滑油应该具有一定的粘度,能够在液压试验机的运行过程中起到良好的润滑作用。如果润滑油的粘度过低,则说明其中含有过多的水分或其他杂质,需要更换新的润滑油。第四,检查润滑油的酸碱度。酸碱度是衡量润滑油化学性质的重要指标。合格的润滑油应该呈中性或弱碱性,而不会出现明显的酸碱反应。如果润滑油的酸碱度过高或过低,则说明其中含有过多的酸性或碱性物质,需要更换新的润滑油。第五,检查润滑油的闪点。闪点是衡量润滑油燃烧性能的重要指标。合格的润滑油应该具有较高的闪点,说明其不易燃烧,安全性较高。如果润滑油的闪点过低,则说明其易燃烧,存在安全隐患。第六,检查润滑油的抗氧化性。抗氧化性是衡量润滑油使用寿命的重要指标。合格的润滑油应该具有良好的抗氧化性,能够在使用过程中保持稳定的化学性质。如果润滑油的抗氧化性较差,则说明其容易变质,需要更换新的润滑油。总之,检查液压试验机中润滑油的质量是非常重要的工作。只有通过全面、细致的检查,才能确保润滑油的质量符合要求,从而保证液压试验机的正常运行。
  • 进出口浓缩果汁中噻菌灵、多菌灵残留检测方法高效液相色谱法
    美国食品药物管理局(FDA)上周三宣布将暂停进口橙汁、下架有危险浓度杀菌剂(多菌灵)的果汁后,橙汁制造商之一的百事总部上周六发表声明指正在对果汁进行额外的检测。早前,可口可乐公司在发现巴西种植者给果树喷洒的一种杀真菌剂在美国并未经过注册时,率先向美国当局报告了事件。FDA将在本周起,陆续公布进口到美国的橙汁抽检结果 医学研究表明,多菌灵能增加动物肝脏患肿瘤的风险。据专家介绍,一般农药对人的危害分三个途径,第一个途径是通过肠胃吸收,吃进去后会对肝脏、肾脏造成破坏。这种破坏有急性的,比如说呕吐,腹泻,甚至导致死亡的急性中毒;还有慢性的,就是当时可能不表现出来,几年以后才表现出来,也有的会表现在对子女的影响上;第二个途径是通过神经系统,我们有时候可能闻一些东西会中毒;第三个途径是通过皮肤毛细孔渗透进去。而多菌灵主要就是通过肠胃进入,而多菌灵造成的危害就和其他农药一样,就多菌灵而言,原来它是相对比较安全的,但是它对我们的肝脏也是有破坏的,严重可能会导致肝癌。 我司参考SN/T 1753-2006《进出口浓缩果汁中噻菌灵、多菌灵残留检测方法高效液相色谱法》,提供如下果汁中多菌灵检测解决方案。 下载:进出口浓缩果汁中噻菌灵、多菌灵残留检测方法高效液相色谱法.pdf 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 从中国色谱“芯”崛起看中国电子“芯”的希望
    导读:春节期间,我发了一篇朋友圈文章《中国产业转型升级需要更多的隐形冠军》。文中对中国长期以来重产值轻研发、注重规模体量忽略核心技术、产业发展大而不强,表达了担心和忧虑。特别指出,中国很多产业的核心技术,关键材料和部件都被欧美日等发达国家隐形冠军所垄断,一旦停供,就可能让中国一个产业瘫痪。这篇文章发出去后不到半年,中兴事件就发生了。除了震惊和热议,我想我们更应该冷静下来思考,中国从政府到企业到个人下一步该如何做,才能从根本上改变中国各大产业缺“芯”的困局。本文旨在与大家分享我回国十多年,通过跨领域创新突破国外色谱芯制造技术壁垒,并致力于解决产业化过程中错综复杂的各种问题和困难,最后成功创造出中国“色谱芯“的创新创业历程,希望对当前解决中国各大领域的核心技术突破,能够有所启发。江必旺 苏州纳微科技有限公司 董事长国家“千人计划”特聘专家什么叫色谱“芯“如同电子芯片一样,任何一个在世界上能够长时间垄断的核心技术、关键材料、部件及产品,都不是短期内形成的,而是经过一批顶级技术团队长时间的专注研发,最后依靠先进的技术和极致的工艺形成极高的技术壁垒,让后来者难以逾越。在生物制药领域及实验室分析检测领域,也有一种关键材料,被称为色谱“芯”,这就是色谱填料。色谱技术可以对复杂组分里的各种物质进行有效分离,因此被广泛地用于生物医药、化药和中药、食品安全、环境监测、材料、石油化工等领域。在生物制药工艺中,几乎所有生物分子的分离和分析都是依赖色谱技术。因此,色谱填料作为整个色谱分离系统的核心,被誉为色谱“芯”。正如同没有芯片就没有半导体工业一样,同样如果没有色谱芯,就无法分离出纯的药物分子,因此也就无法生产治病救人的生物药,甚至连生物技术的研究都会受阻。除了生物制药领域,关乎广大人民群众身心健康的食品安全、药物质量检测和环境分析领域,同样离不开色谱芯,其重要性可想而知。具体来说,色谱“芯”通常是指具有纳米孔道结构的微球材料,其粒径在微米尺度范围,跟头发丝的直径大小在同一个数量级,而色谱填料上面的孔径,则是以纳米衡量,大小在5-100纳米范围,是微球直径的千分之一。由于色谱芯孔道小,因此具有极高比表面(1克色谱芯材料比表面积相当于足球场那么大)。为了满足其选择性吸附和分离性能要求,微球表面还需要偶联一些特殊功能配基,使其具有选择性吸附和分离目标分子功能。用于生物制药分离纯化或实验室分析检测的色谱芯,制备要求极高,商业价值大、技术难度大,需要整合当今世界多个前沿领域的交叉技术,涵盖材料、化学、物理、和生物多个领域。目前,世界上只有少数几家欧美和日本公司具备色谱芯规模化生产能力,基本垄断了包括用于分析检测和生物分离纯化的色谱“芯”材料,及其用色谱“芯”组装成的色谱柱。在电子显微镜下看到的纳微新一代高性能均粒色谱填料微球中国色谱走过严重缺“芯”时代近年来,在中国政府强大科研经费的支持下,在众多色谱科研工作者的共同努力下,中国的色谱技术基础研究已取得巨大进展。中国在色谱领域发表科研论文数量从2011年就超越美国,成为世界上在该领域发表文章数量最多的国家。然而,与发表文章数量不相匹配的现实却是:我国色谱关键材料和设备的产业化技术一直非常落后。无论是走进生物制药的生产车间还是走进科研院所的实验室,可以看到80%以上色谱仪器或色谱系统都是进口的,即使在不足20%的国产色谱仪器中,其核心部件也是依赖进口;更重要的是色谱系统的心脏—色谱芯,几乎100%是国外的。科研成果与实际应用的严重脱节,可见一斑。前段时间的中兴事件,使中国电子产业缺“芯”的弊端和风险暴露无疑。其实,中国色谱领域也长期处于缺“芯”状态。由于色谱芯产品质量要求苛刻,制备技术壁垒高,生产难度大,同时研发时间长、投资大、风险高,因此国内从事色谱产品生产的厂家一般都没有意愿也不具备条件从事色谱芯的研发和产业化。正如国内电子产业厂家主要是依靠购买国外芯片和核心器件,然后组装成下游电子设备去销售,中国色谱公司更多的也是去购买国外色谱填料组装成色谱柱子出售,或者是直接买色谱填料的基球做表面偶联配基然后卖给客户,却很少有研究底层色谱芯的制造技术的公司。短期看的确是投资小见效快。但关键材料始终被国外公司垄断,企业命运完全掌控在国外公司手里,要么是随时可能突然被停止供货,要么是被迫支付高额费用。其实色谱界就曾发生过类似于中兴事件的“断芯事件”。几年前,某国外公司为了占有中国日益增长的分析检测用色谱柱市场,突然停止向中国公司供应分析用色谱填料,导致数十家中国从事色谱柱装填和生产的公司破产。只是由于实验室分析检测的领域小,公众关注程度和影响力小,没有像中兴事件引发这么大的震动。色谱填料是生物制药分离纯化生产工艺的核心,而分离纯化占据了整个生物制药生产成本的50-80%。一直以来,中国用于生物制药生产的关键设备和耗材如色谱芯和色谱柱系统基本依赖进口。由于国外公司的长期垄断,这些材料在国内的销售价格不仅高于国际市场30%以上,而且供货周期长,价格每年还要增加10%以上。低成本优势原本是中国制造在全球竞争中获胜的关键因素之一。很多产业只要转到中国生产,就可以把成本控制得很低。然而,目前中国生物制药产业,却有个奇怪的现象,在中国生产的抗体药物成本远高于国外进口生物药的成本。究其原因,抗体生物制药的主要成本不是人工而是生产用的耗材和设备,而耗材和设备都依赖进口,其在中国的价格又高于国际市场的价格。同时,用于生物制药分离纯化的色谱填料属于制药工艺不可分割的组成部分,不可随意更换。也就是说,一旦国内的制药公司选定了某国外公司色谱填料进入药物生产工艺后,即使国外供应商涨100%价格,企业也不得不用。因此,中国生物制药产业能否有竞争力,关键取决于关键材料和核心技术是否能够实现突破。电子行业如此,生物制药行业亦如此。坚守初心 创造中国色谱芯作为一家致力于中国自主创新的高科技公司,纳微公司创立之初,就坚持“以创新、赢尊重、得未来”的发展理念,以创造出属于中国自己的色谱芯为己任,使得关系到全社会生命健康与安全的生物制药产业不再受制于人。做出这种选择,与我在国外的经历和感受有着内在关联。我在美国生活和工作十多年,80-90年代去美国留学的中国绝大多数学生都是学数理化生,毕业后留美一般也是从事技术工作,而且很多都做到美国公司的核心技术层,这充分说明了中国学生的聪明和勤奋。尽管如此,还是有不少美国人从心底里对中国人有偏见,他们认为中国人只会拷贝别人的技术,缺乏创新能力,生产的产品也是价廉质低。这些经历和感受深深地刺痛了我,因此我希望回国坚持做一个创新型企业,来证明中国的企业也有创新和技术引领能力,也会推动世界技术进步。虽然公司创业初期有很多机会做短平快的项目,也有不少投资人跟我说,他们非常看中我们的技术创新能力,只要我们愿意做低端一点的产品,他们就愿意给我投资。但是投资人并不看好我们做色谱芯,认为与中国大环境不相匹配,风险太大。一是技术风险。因为做色谱芯就像做电子芯片一样,属于高难度底层技术和产品,不仅技术壁垒高,工艺复杂,面对的又是世界在该领域最顶级的竞争对手,这些公司由于长期处于垄断地位,具有超额的利润和强大的财力,因此聚集了该领域最顶尖的技术专家和工艺人才,同时还拥有通过多年研发形成的领先技术和极致工艺壁垒,以及强大的知识产权保护墙等,后来者要突破是极其困难的。二是环境不利。中国过于浮躁和急功近利的大环境,非常不利于公司团队沉下心来长期坚持研发攻关核心技术,解决产业化过程的层层困难。三是产业化风险。由于国内欠缺高质量的基础原材料和设备,也会大大增加对质量有苛刻要求的色谱芯产业化过程的难度。四是收益风险。即使产业化成功了,由于国内知识产权保护制度尚不健全,再加上高科技企业在国内需要承担沉重的value added tax(VAT)等因素,使得中国高科技企业必须承担更高风险和更高投入,而且即使成功了,也不能保证高回报。相比美国,由于美国没有value added tax(VAT),而且对知识产权有严格法律保障,因此可以确保高科技项目一旦成功就可以长时间获得超额利润。在美国,有大把的风险投资首选高科技项目,尽管成功概率也不是特别高。基于这些顾虑,中国的风险投资人对色谱芯这样的高科技项目都不太敢涉足。面对众多投资人的质疑和反对,我义无反顾地选择了坚持走创造中国色谱“芯”这条高难度、高风险、长周期,注定是不平坦的道路,因为色谱芯对中国生物制药、食品安全检测、环境监测、实验室分析检测等众多民生和科技领域来说至关重要。当然我也想通过色谱芯这种高难度的项目实施来证明中国企业也是有创新能力的,也同样可以引领全球的技术进步,赢得世界同行的尊重。当然纳微的中国色谱芯创造之路绝不平坦,历经“十年磨一剑”,可谓是困难重重,“九死一生”!在十年的漫长研发和产业化过程中,公司不只是要解决国外垄断核心技术壁垒及产业化过程每个环节的各种问题,还得面对部分股东和管理团队的意见分歧和压力,特别是公司在陷入低谷以及资金短缺时,部分股东和高管质疑项目前景,甚至提出要终止项目;产品在导入市场时,还会遇到国外厂家的封杀及国内外客户对中国品牌的不信任等非技术性问题,以及由于国内对知识产权不尊重,必须防范和担心技术泄露风险等等。在如此困难的情况下,纳微团队始终坚守初心,始终坚定不移地研发原创技术,终于成功开发出完全自主创新的中国色谱芯。跨领域创新 突破色谱芯技术壁垒硅胶色谱填料由具有分离效果好,分辨率高等特点,已被广泛地用于胰岛素,多肽、手性药物、抗生素、中药等大规模分离纯化中。也成为实验室分析检测最常用的色谱填料。硅胶色谱填料的组成是二氧化硅,与沙子相同。我常常跟朋友开玩笑说,硅胶色谱填料虽然源之于沙子,但高性能的硅胶色谱填料用金子却换不来。在纳微做出第三代硅胶色谱芯技术之前,硅胶色谱填料的发展已经历过两代技术的更新。第一代技术是70年代研制开发的无定型硅胶,制备技术简单,填料形态不规则,粒径分布宽,装成的柱子柱效低,稳定性和重复性差,且使用寿命短,往往是一次性使用,因此会产生大量的固废物,造成巨大的环保压力,国外已逐步淘汰,国内仍在大规模生产。第二代硅胶色谱填料产品是80年代国外开发出来球型硅胶色谱填料。这种填料形态一致性好,尤其是小粒径球形硅胶(10微米)的出现,极大地改善了硅胶色谱填料的分离性能,使得制备色谱成为工业分离纯化最重要的方法。因此球型硅胶被广泛地用于生物药(如胰岛素,多肽)、手性药物、抗生素、中药等大规模分离纯化。但由于其制备技术壁垒高,筛分设备昂贵,工艺技术复杂,长期以来,中国国内企业一直无法生产出合格的球型硅胶色谱填料。传统溶胶-凝胶法和喷雾干燥法制备硅胶填料原理国际上大规模制备球型二氧化硅胶的第二代技术主要依赖喷雾干燥法和溶胶--凝胶法。纳微如果按照国际上通用的方法或技术路线去做,只能是跟随,很难做到国外水平,更无法超越,也无法赢得国际同行或竞争对手的尊重。因为只要是国外有的技术,即使我们是自己独自做出来的,国外也会认为我们是拷贝来的。而且按国外的技术方法,还绕不开筛分工艺壁垒和昂贵设备投资。我们清醒认识到,即使我们有钱可以买得起国外的设备,短期内也很难做到与国外同等水平的产品,规模和经济效益上也难以与国外竞争。基于此,纳微要成功做出色谱芯,必须走出一条自己独特的创新之路!纳微在缺资源、缺资金、缺人才的情况下,从零开始,艰苦创业,但幸运的是纳微有一支在材料,化学,生物组成的跨领域的技术专家团队,通过长期坚持不懈的努力下,创造性地把有机高分子微球的精准制备技术嫁接到无机二氧化硅的微球制造上,一举突破了多孔二氧化硅微球材料粒径大小和粒径分布精准控制技术难题,既解决了国外垄断技术壁垒,又绕开了复杂的筛分工艺,而且具有生产效率高,质量稳定性好,固废少,绿色环保等特点,实现了业界科学家长期追求的目标。纳微的技术解决了第二代硅胶制备技术无法控制粒径大小和分布的难题,成为名副其实的新一代硅胶色谱填料制备技术,使中国在该领域从原先的技术空白,一步跨越成为核心技术的引领者,并成功带动了世界高性能硅胶色谱填料制备技术的进步,树立起第三代技术的标杆。纳微色谱填料与国际上知名品牌对比图实现色谱芯产业化 耐心、恒心、信心、决心缺一不可很多人都会低估产业化的难度,包括我自己在内。认为技术突破了,就很快会有产品。残酷的现实却是,绝大多数的实验室技术成果无法最终转化成产品或成功产业化。 一项技术的突破只能解决一个产业化过程中一个点的问题,而一个成功的产业化需要解决多维系统问题:不仅要突破核心技术壁垒,还要解决产业化过程中原材料供应、仪器设备、资金和人员、中试放大、生产成本、经济效益、人员管理、市场和营销等方方面面的问题,任何一个微小环节问题没有解决,技术产业化就可能失败。因此无论是创业还是技术转化项目,成功是小概率事情。纳微的产业化道路同样走得异常艰难和漫长。当在实验室证明可以利用高分子微球制备技术来控制无机二氧化硅微球的粒径和粒径分布问题时,我们都很兴奋,经过放大生产,很快推出一款世界上首创的单分散硅胶色谱填料,其粒径精确性和均匀性达到前所未有的水平。然而令人意想不到的是,这款产品推到市场上没多久,就不得不退出,原因是由于孔径结构没有控制好,导致硅胶色谱填料机械强度不够,客户使用时容易破碎,造成硅胶色谱填料寿命短。从市场退出后,我们不得不通过几年的潜心研发,才解决了二氧化硅孔道结构控制技术难题,从而改善了硅胶机械强度。然而事情还没有到此结束,色谱填料的最终产品需要在二氧化硅基球上偶联功能基团或配基,因此我们又花了几年时间去解决基球表面功能化的问题。即使至此,仍然路漫漫其修远兮!,因为填料必须装在柱子里才能测试和应用,装柱好坏会影响色谱填料测试的效果,因此我们又组织研发团队,解决装柱的技术问题,并通过大量的实际应用,来证明色谱填料性能的好坏,并不断地加以改进,最后才做出有竞争力的色谱芯产品。从纳微色谱芯的研发成功到产业化成功的过程可以看到,做色谱芯这种产业底层技术(foundation technology)不像做应用技术或组装技术,只需要解决一个层面的技术或工艺问题,并能买到核心材料和部件就可以很快组装成产品,拿去销售并产生效益。这也就是为什么中国在很多领域可以把组装和应用做到世界最大,因为组装和应用往往是短平快项目,中国人又聪明勤快,因此可以做得很好。但色谱芯这种产业底层技术和产品,不仅需要有颠覆性的粒径控制技术,还需要解决孔径结构的控制技术,表面功能化技术,装柱工艺及应用工艺等,一环套一环的上层技术问题,其中每层技术既相互制约,又相互支持,任何一个层面的技术没有解决到位,都不可能做出好的色谱芯产品。电子行业的芯片也一样,不仅要做好电路设计,还要做好精密加工,还要有配套的操作系统和应用软件。任何一个问题没有解决,芯片都不可能成功实现产业化。而每一个环节技术和工艺要做好都需要花费大量的精力和时间,因此做色谱芯和电子芯片这种产业底层技术需要有足够的耐心、专注的恒心、坚持的信心和一张蓝图绘到底的决心,这恰恰是目前中国人欠缺的。这也就是为什么中国有14亿人口,培养了最多的理工科技术人员,又有足够的经济体量和基础,产业却没有芯的原因。另外需要指出的是,技术产业化项目失败,有时并不完全是技术障碍,由于这种底层技术风险大,投资长,在漫长的产业化过程中,尤其是公司在低谷时或资金短缺时,企业股东和管理层不可避免对项目产生怀疑并引起分歧和矛盾,结果就会导致项目半途而废。很多公司包括纳微在内都会经历过这种非技术层面的困难。我想,即使是像中兴这种中国顶级的高科技企业,一直没把底层芯片做出来,恐怕也远非技术因素。靠创新和实力,打开市场赢得尊重中国公司的技术往往都是“拿来主义”,因此即使做得再大也很难赢得尊重,只有真正具有创新能力的公司,能为世界技术进步做出贡献,才有可能获得尊重。纳微凭借世界独有的创新技术和高性能的产品,用真正的中国色谱“芯”, 敲开了非常保守的欧洲制药公司大门,赢得了国外同行和客户的认可和尊重。纳微第一个成功案例是一家具有百年历史的欧洲制药公司,以前其生产用的色谱填料一直从以高质量和高性能闻名的世界500强日本公司购买(详见《赢得尊重》)。纳微的中国色谱“芯”,用实验数据让欧洲制药公司从原来的不相信到震惊,最后决定把使用了十多年的日本产品替换成纳微的产品!这在以保守著称的欧洲制药公司是绝无仅有的事情。这样的改变完全不是因为纳微的产品价格低,而是纳微创新性的色谱填料能够使欧洲制药公司的生产效率提高了近4倍,纳微用了3000升填料就达到日本13000升填料生产效率水平,不仅为客户创造了巨大效益,提高了药品的纯度和质量,而且大幅度减少了污染排放。这家世界500强日本公司做梦也没想到,会输给一个不知名的中国小公司,而且输得心服口服,从此对纳微很尊重。令我深感遗憾的是,纳微的色谱芯不是首先被中国制药公司使用,而是被最保守的欧洲制药公司所接受和采用。中国先进的技术和产品之所以会很快被欧美公司认可,与国内外商业理念和市场环境的差异有很大关联。虽然欧美对中国公司也存在偏见,但他们相信客观的实验数据和结果,也愿意去尝试,而中国商业环境更复杂,人为的因素考虑多于客观的实验数据。当然随着国外的客户的使用,已经有越来越多的中国生物制药公司开始使用纳微的产品,国外长期垄断中国色谱填料的历史一去不复返了。(详见《中国原料药厂家何去何从》。尊重,来自真正的实力! 尊重,来自绝对的领先!纳微跨领域的创新创新性技术,不仅一举打破外国公司长期垄断格局,结束了中国高性能硅胶色谱填料完全依赖进口的历史,并使中国在该领域异军突起,成为世界范围内该项核心技术的领跑者!国际著名品牌的硅胶色谱填料粒径分布系数CV值普遍大于10%,而纳微科技的硅胶色谱填料小于3%;(注:粒径分布系数CV值越小,微球均匀性和一致性越好,性能也越好)。如果国外产品要做到纳微这种粒径均匀的水平,产品合格率将不到5%,而纳微的产品合格率几乎是100%。因此根本不是一代的技术!每次纳微带着产品参加国际展会时,都会遇到一个尴尬的问题,欧美客户都会问:您们是从日本来的吗?他们根本不敢相信这是一个中国公司做出来的。因为单分散硅胶色谱填料是该领域科学家长期追求而始终未实现的目标,是拥有众多人才及强大财力的国际最顶级公司一直想做却没能做出来的技术和产品,更何况中国色谱填料原来一直处于空白状况。今天,我们可以非常有底气地说,在色谱领域“断芯事件“在中国再也不会发生! 色谱芯崛起的反思与展望反思中国色谱“芯”的创新创造过程,我深深体会到,在中国,从新技术的研发到产业化,其路漫漫,需要克服不亚于“蜀道难”的重重难关,尤其是电子芯片和色谱芯这种长期被国外垄断的产业底层技术和产品!首先,产业底层技术壁垒高,工艺复杂,面对的又是世界上在该领域最顶级的公司,这些公司由于长期处于垄断地位,具有超额的利润和强大的财力,因此聚集了该领域最顶级的技术和工艺人才,同时还拥有通过多年研发形成的领先技术和极致工艺壁垒,以及强大的知识产权保护墙等,后来者要突破是极其困难的。如果要突破国外垄断公司的技术壁垒就必须要颠覆现有技术,而跨界或跨领域创新最有可能实现核心技术突破。其二,从实验室走向产业化,必然要经历一个相当漫长而艰难的过程,核心团队需要有强大的意志力和学习能力,方能在中国目前过于浮躁和急功近利的大环境中,坚守初心,做到长期坚持、专注研发,攻克核心技术,并及时解决产业化过程的层层困难。耐心、恒心、信心和决心,缺一不可。其三,在中国目前大环境尚不完善时,尤其是知识产权保护制度和税收体制不健全时,使得中国高科技企业必须要承担更高投入和更高风险,而且即使产业化成功了,却不能保证有高回报时,从事高科技产业化的科学家和企业家更需要有国家情怀,承当起国家和历史使命,明知道这条道路非常艰难和漫长,也要带领核心团队坚守初心,在浮躁的社会环境下,潜心奋斗,走出由于产业缺芯,任人宰割的被动和屈辱的局面。中国是具有创新和奋斗精神的民族,改革开放以来培养了大批优秀的科研人员,又有足够的经济基础和体量。本来过去的十年,是中国集中优势攻克产业核心技术的最佳时期,但由于过分追求经济增长,导致急功近利,重商轻技,赚快钱、快赚钱成为主流,错失了产业建“芯”的良机。“亡羊补牢,犹未晚矣”。此次中美贸易战,特别是中兴事件所引发的对核心技术前所未有的举国关注,使得国家可以更加清醒的认识到产业缺芯的致命短板,希望国家能痛下决心进行科研体系,知识产权,税收体制深化改革,创造一个有利于科技创新的大环境,同时,也将唤醒一批科学家,企业家及投资人,能够挺身而出,主动承担起国家和民族使命,用中华民族的智慧、耐性,去攻克产业核心技术难关,从根本上解决中国产业缺芯的问题。中国色谱“芯”已经闯出一条成功之路! 期盼更多的中国“芯”早日问世,希望有一天中国的电子芯片也能像色谱芯一样,从国外不愿意卖给中国,到需要从中国购买最先进的产品。当然这个过程并不容易,也没有捷径。致谢: 感谢纳微股东及员工长达十多年持续不断的努力和坚持才成就了中国的色谱芯,也感谢帮助过纳微的朋友及纳微工作过的员工,他们都曾为中国色谱芯崛起添砖加瓦过,更感谢纳微客户,没有他们的支持和合作中国色谱还是处于空芯状况。也特别感谢北大同班同学江庆红在文章的整理,修改和编辑中做了大量的工作。作者简介江必旺博士是国家千人计划特聘专家, 获北京大学化学系学士,State University of New York at Binghamton 博士,University of California at Berkeley 博士后, 被美国Rohm and Haas 聘为Senior Scientist。 回国后创建了北京大学深圳研究生院纳微米材料研究中心并任该中心主任, 目前中心已被评为深圳市和广东省重点实验室。江博士先后被评为科技部创新创业人才、江苏省创业创新人才、姑苏领军人才、苏州工业园区首届领军人才、苏州市十佳魅力科技人 荣获中国侨界创新贡献奖、江苏省五一劳动奖章、江苏省科技进步。申请国内外发明专利50多项,发表SCI 文章30篇。 江博士于2007年创建了苏州纳微科技有限公司专门从事高精度、高性能和高附加值微球材料的研发和产业化。开发出世界领先的纳微米球精准制造技术,成为世界上唯一一家可以大规模生产单分散硅胶色谱填料的公司,也是世界上唯一一家同时拥有单分散硅胶和聚合物色谱填料的公司,纳微产品涵盖了硅胶正相,反相,手性色谱填料,聚合物反相,疏水,离子交换,Protein A 亲和层析介质。纳微多项技术和产品不仅打破了国外垄断,填补国内空白,也开创了新一代色谱填料的精准制造技术,推动了世界色谱制造技术进步。关于纳微苏州纳微科技有限公司(简称:纳微)是专注于研发和生产高精度、高性能和高附加值微球材料的国家高新技术企业,致力于打造世界领先的纳微米球精准制备和应用技术平台,已成为世界上能够提供最多品种和规格的纳微米球材料的公司之一。纳微可以提供粒径从5 nm到1000 μm范围内、不同结构、不同材料组成、任意大小单分散微球,产品种类超过3000种,成为世界上提供最多跨领域应用的单分散性微球产品的公司。目前公司已拥有40多项发明专利,产品成功地应用在生物制药、食品安全检测、环境监测、医疗诊断、 液晶显示及LED照明等重要领域。纳微微球产品包括LCD间隔物塑胶球、边框硅球、导电金球、光扩散微球、标准颗粒、聚合物层析介质、硅胶色谱填料、磁珠等。公司生产的微球不仅具有精确的粒径大小和高度的均一性,且可对微球形态、孔径结构、比表面积及表面功能基团进行精准调控。纳微的多项技术和产品不仅打破了国外的垄断,填补国内空白,还开创多项世界独有的微球精准制造技术,赢得国际同行的高度认可。纳微科技位于苏州工业园区的色谱芯材料生产和研发基地纳微生产的色谱芯可以满足实验室分析检测到大规模分离纯化的需求,产品涵盖了单分散硅胶色谱填料,聚合物反相色谱填料,离子交换,疏水,分子筛及亲和层析介质等。
  • 高光谱成像技术在果蔬品质检测中的应用
    近年来,食品安全问题备受关注,人们对果蔬品质与安全标准的要求也越来越高,已成为社会关注的热点。通常,果蔬品质包括了形状、颜色、大小和表面缺陷等外部品质与糖度、酸度、硬度、可溶性固形物含量、淀粉含量、水分和成熟度及其他营养元素的含量等内部品质,其品质好坏是其市场销量的重要因素。传统果蔬品质检测方法如化学法、高效液相色谱法、质谱分析法等通常对待测物具有破坏性,且速度慢。机器视觉和光谱技术具有快速、无损、可靠等优点,近年来广泛用于果蔬品质检测中。其中,机器视觉技术通过提取和分析果蔬形状、大小、颜色及表面缺陷等空间信息进行外部品质检测,而近红外光谱技术主要对果蔬内部品质进行检测。高光谱成像技术将图像与光谱技术相结合,可同时获取反映待测物内外部品质的光谱信息与空间信息,近几年国内外对其在果蔬品质的无损检测中进行了广泛的研究。本文将从高光谱成像技术的基本原理与其在果蔬品质无损检测中的研究与应用等方面,介绍其在该领域的最新研究进展。1、高光谱成像技术原理高光谱系统中的每个像元均可获取同一个光谱区间内几十到几百个连续的窄波段信息,并得到一条平滑而完整的光谱曲线,同时整个成像系统还可获取被测物的空间信息,实现对待测物内部成分与外观特征的同时检测,具有光谱连续与分辨率高等特点。系统获取的高光谱图像可用一段连续波段的光学图像组成的立体三维图像来表示,如图2所示。其中XY平面的二维图像表示物体的空间信息,如形状大小、缺陷等。由于物品外部变化会影响反射光谱,故形状、颜色或缺陷在某一特定的波长下图谱会有变化。λ坐标表示物体的光谱信息,将反映出待测物成分结构等内部品质。本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS13进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。2、果蔬外部品质的检测市场上人们对果蔬的直接感受就是其外部品质的好坏,即对颜色、新鲜度、大小、机械损伤、冻伤与腐烂等方面的判断。传统的机器视觉技术在果蔬外部品质的检测中由于精度低、操作复杂,很难区分出机械损伤、冻伤、腐烂及新鲜度等方面外部特征。高光谱成像技术恰好克服了这一缺点,能够实现全方位的无损检测,而且精度高、易于操作,近年来逐步用于果蔬外部品质的检测中。新鲜度是反映果蔬品质的重要指标。刚采摘的果蔬通常需经过储存、运输,最终到达消费者,该过程将影响其新鲜度品质。一般而言,人们对果蔬新鲜度的主观判断是不准确的。分别在失水0、10、24、48小时状态下,利用成像光谱仪采集了小白菜、菠菜、油菜、娃娃菜等四种蔬菜叶片的光谱图像并进行对比分析。其中,小白菜叶片在不同失水时间下的高光谱图像与机器视觉图像的对比分析如图3、4所示。从中可以看出,随着时间的变化两幅图中的叶片状态均有明显变化,但机器视觉图像只能看出失水状态,而高光谱图像通过分析光谱信息的变化发现,叶片在失水过程中其外观形态及内部叶绿素均有变化,叶绿素相对含量值预测模型的相关系数r=0.76,说明高光谱技术可以有效辨别蔬菜叶片的新鲜度。利用高光谱技术和ANN预测模型对苹果冻伤进行了研究,如图5所示。实验采用如图6所示过程,在400-1000 nm波段的冻伤苹果高光谱图像中选择5个主成分波段(717,751,875,960和980 nm)进行ANN模型的建立,其训练集、测试集和验证集的相关系数分别为0.93,0.91和0.92,最终实现了98%以上的识别准确率。对80个苹果样本分别采集4块尺寸为2 cm×2 cm×1.5 cm区域中的高光谱图像,利用偏最小二乘回归法来估算可溶性固形物含量反射数据与近红外光谱数据之间的关系,得到交叉验证系数为0.89,均方根误差0.55%,最后成功绘制出主要波段的高空间分辨率SSC图像,如图7所示。从图中可以看出靠近苹果边缘部分相比于中心部分有着更高的SSC值。结果表明,可用近红外高光谱成像技术测量苹果的可溶性固形物含量。3、结论随着生活水平的提升,人们对健康食品的品质要求越来越高。传统的机器视觉技术和物理化学方法在测量果蔬品质方面操作复杂、破坏性强,难以满足检测需要。高光谱成像技术融合了机器视觉、光谱和图像处理技术,产生的图像是“图谱结合”的三维数据立方体,不仅包含了待测物的空间信息特征,同时还包含了待测物的光谱信息,能够准确、快速、无损的检测出农产品的品质,并且操作简单,近年来广泛应用于果蔬品质的检测中。但是高光谱成像技术在采集和处理图像数据的过程中,受限于仪器性能和处理速度的影响,该技术现目前主要应用于基础性研究,并未广泛应用于工业的在线实时检测中。针对这些问题,为了实现果蔬品质的商业化在线检测,还需要做到如下两点:一是改进并升级高光谱成像技术的相关设备比如成像光谱仪,提升其性能并降低其生产成本,利于高光谱成像技术在果蔬品质检测中的推广;二是针对全波段的、不同品种的果蔬高光谱图像进行特征波长选取,以降低数据冗余量,减少高光谱图像的获取以及处理时间。尽管如此,随着社会发展与科学进步,高光谱成像技术将不断提升和改进,未来在农产品、食品安全领域将具有更加广阔的发展空间和应用前景。
  • 得到完美的色谱图要跳过哪些坑?HPLC谱图常见故障及解决方法!
    p   液相色谱中的许多问题都能在谱图上反映出来,其中有一些问题可以通过改变设备参数得到解决 而其他的问题必须通过修改操作程序来解决。对于色谱柱和流动相的正确选择是得到好的色谱图的关键。 /p p   一、拖尾峰 /p p   1. 筛板阻塞,柱子两头的过滤筛板如果堵塞,样品就会在筛板部分受阻而形成时间延迟,使得样品在柱后流出时峰型形成拖尾。需要通过反冲色谱柱,或者更换筛板。 /p p   2. 色谱柱塌陷,是指色谱柱由于其它原因引起了柱效率丧失,不能对物质形成保留,使得物质不在固定相上保留而随流动相流出,但是又还有一点柱效,因此形成拖尾。需要重新填充色谱柱或者更换色谱柱。 /p p   3. 有污染,即样品不在同一起跑线起跑,从后面开始跑得到达终点稍晚,表现出拖尾。更换色谱柱或者采用有机溶剂梯度洗脱1h以上,以冲洗柱子。 /p p   4. 流动相PH值选择错误,如某PH下有的样品存在分子型和离子型的动态平衡,离子型的陆续向分子型转化就会表现出拖尾。调节PH值可抑制分子解离,改善拖尾,对于碱性化合物,相对较低的PH值更有利于得到对称峰。 /p p   二、前沿峰 /p p   1. 样品过载,被保留的样品在正常出峰时间前陆续出来,形成前沿峰。降低样品含量。 /p p   2. 样品溶剂选择不恰当,当样品溶剂的洗脱能力大大强于流动相时会出现前沿峰,例如,在反相色谱中用已腈做样品溶剂,而流动相的洗脱力较弱时会出现前沿峰。选择流动相或者接近流动相的比例作为样品溶剂。 /p p   3. 色谱柱损坏,色谱柱柱效损失,不能对物质形成保留。更换色谱柱。 /p p   4. 在大峰前有小峰出现,假象前沿峰,即大峰前包埋了没有分开的小峰。调整流动相洗脱梯度。 /p p   三、基线漂移 /p p   1. 柱温波动,即使是很小的温度变化都会引起基线的波动,通常影响示差检测器、电导检测器、较低灵敏度的紫外检测器或其它光电类检测器。使用柱温箱,控制好柱子和流动相的温度,在检测器之前使用热交换器。 /p p   2. 流动相不均匀,流动相条件变化引起的基线漂移大于温度导致的漂移。使用HPLC级的溶剂,流动相在使用前进行脱气处理。 /p p   3. 流通池被污染或有气体。用甲醇或其他强极性溶剂冲洗流通池。如有需要,可以用1N的硝酸(不要用盐酸)。 /p p   4. 流动相配比不当或流速变化。更改配比或流速,为避免这个问题可定期检查流动相组成及流速。 /p p   5. 样品中有强保留的物质,以馒头峰样被洗脱出,从而表现出一个逐步升高的基线。使用保护柱,如有必要,在进样之间或在分析过程中,定期用强溶剂冲洗柱子。 /p p   四、出现宽峰 /p p   1. 色谱柱污染或失效,造成塔板数降低。更换同样类型的色谱柱,如果新柱子可以提供对称的色谱峰,则用强溶剂冲洗旧柱子。 /p p   2. 柱子与检测器之间的管路太长或管路内径太大。更换内径较小的短管路。 /p p   3. 检测器对反应时间或池体积响应过大。减少响应时间或使用更小的流通池。 /p p   五、基线噪音 /p p   1. 在流动相、检测器或泵中有空气(尖锐峰)。流动相脱气,冲洗系统以除去检测器或泵中的空气。 /p p   2. 漏液。检查管路接头是否松动,泵是否漏液,是否有盐析出和不正常的噪音。如有必要,更换泵密封。 /p p   3. 流动相混合不完全。用手摇动使混合均匀或使用低粘度的溶剂。 /p p   4. 温度影响(柱温过高,检测器未加热)。使用柱温箱,减少温度差异或加上热交换器。 /p p   5. 在同一条线上有其他电子设备(偶然噪声)。断开LC、检测器和记录仪,检查干扰是否来自于外部,加以更正。 采用精密级稳压电源。 /p p   六、分离度不够 /p p   1.流动相梯度洗脱设置不合理。优化梯度洗脱程序。 /p p   2.流动相污染或变质(引起保留时间变化)。重新配置流动相。 /p p   3. 保护柱或分析柱阻塞。去掉保护柱进行分析,如果必要则更换保护柱 如果分析柱阻塞,可进行反冲 如果问题仍然存在色谱柱可能被强保留的污染物损坏,建议使用恰当的再生程序 如果问题仍然存在,进口可能阻塞了,更换入口处的筛板或更换色谱柱。 /p
  • 气相色谱仪进样口压力超压检测方法与解决方案
    导 语进样口是气相分析中必不可少的模块之一,而分流/不分流进样口(简称SPL进样口)是目前气相色谱分析系统中广泛使用的进样口。跟填充柱进样口相比,SPL进样口的气路控制相对更复杂,所以在使用过程中遇到的问题也自然多一些。在日常使用过程中,遇到最多的可能就是进样口漏气报警,不管是真漏还是假漏,根本原因都是实际流量没有达到设定值(详解请点击参考往期文章《CAR1 LEAKS、PURGE LEAKS是真的吗?》)。现在我们来谈论一下气相使用过程中进样口很少出现的另外一种情况~压力超过设定值。SPL进样口的结构和各气路的功能图一01C路(英文全称:CARRIER中文,载气流路):作用是为气相系统提供载气,载气经过分子筛过滤后进入进样口。02P路(英文全称:PURGE中文,吹扫气流路):吹扫流量设定值范围为1-6ml/min,我们通常设定为3ml/min,作用是避免进样隔垫挥发物的干扰,将进样针刺穿进样隔垫时产生的碎屑横向吹出,防止掉落到玻璃衬管中造成色谱柱的堵塞。03S路(英文全称:SPLIT中文,分流流路):调整进样口压力,进而满足仪器参数中设定的色谱柱流量或者线速度等实验条件,同时排掉多余的溶剂和样品。故障判断从图一中我们可以看出SPL进样口的气路走向为载气通过C路流入进样口后再通过P路(隔垫吹扫),S路(分流)和L路(色谱柱)流出,也就是我们简称的一进三出。所以进样口的压力稳定需要四个气路都工作正常,但是当发生压力超出设定值的故障时是否和其他三路有关呢?01载气流路气流过大:C路有流量传感器可以实时显示流量数值,由于传感器故障导致气流控制异常的情况很少发生。02吹扫流路和色谱柱堵塞:吹扫流量通常设定为3ml/min;内径0.25mm或者0.32mm的色谱柱流量一般设定为1-2ml/min, 内径0.53mm的色谱柱流量可以设置到10-20ml/min。因为吹扫流路和色谱柱流路的流量设定值都比较小,所以这两个流路即便完全堵塞也不会导致分流电磁阀对进样口压力无法调节的情况发生。03分流流路堵塞:在分流模式下,大多数的样品是经过分流流路排出的,所以为了保护分流电磁阀不会被样品堵塞,在分流气路中电磁阀前串联了过滤器对样品进行吸附(通常情况下过滤器6个月需要更换,做高沸点及室温下结晶样品时建议3个月更换),因为分流流路是在仪器的顶部,温度和室温相近,液化或者凝固的样品就会保留在分流气路中。所以分流流路是最容易堵塞的,当管路堵塞到一定程度,电磁阀的开合大小就起不到调节进样口压力的作用了,会出现如下的故障现象,如图二。故障排除既然判断出故障根源在分流流路,那么分流流路中的所有气体通道都可能是故障点,进样口适配器、管路、缓冲管、过滤器以及AFC整体。01更换缓冲管和过滤器,更换步骤可以参考岛津气相软件(Labsolution)中的维护向导。02检查清洗进样口适配器,确保分流通道畅通,如图三。03确认图四所示部位的管路是否有堵塞现象,如果出现堵塞可以在通气状态下高温加热堵塞部位,使附着的高沸点杂质高温气化后被载气带出(推荐使用高温喷枪或酒精喷灯,不推荐使用打火机加热,一是加热温度不够,二是长时间按着打火机,很容易烫伤)。如果没有酒精喷灯,也可以使用坚硬的金属丝进行物理疏通。疏通前先拆下衬管避免被损坏;将进样口端色谱柱取下,拆卸掉进样口适配器,让脱落的杂质掉入柱温箱内。疏通结束后可用丙酮擦拭进样口内壁,消除污染物的附着。图三 图四04如果上述排查结束后,进样口压力仍然不能回落到设定值,则大概率是AFC故障,就需要岛津工程师上门服务。
  • 新技术 新应用 新需求——ACCSI2019离子色谱发展论坛召开
    p style=" text-align: justify line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 2019年4月18-19日,中国科学仪器行业的“达沃斯论坛”——2019 (第十三届)中国科学仪器发展年会(ACCSI 2019)在青岛银沙滩温德姆至尊酒店召开,会议主题为“创新驱动 开放合作”。ACCSI 2019借助十二年的品牌积淀,发挥青岛的区位优势,吸引了来自“政、产、学、研、用”等方面的1000余位高端人士参会。 /p p style=" text-align: justify line-height: 1.5em "   离子色谱是色谱分析的重要组成部分,以往主要应用于环境检测领域阴、阳离子分析。随着技术的不断发展,目前离子色谱已经可用于糖类、氨基酸、有机酸、有机胺、生物碱和蛋白质等物质的检测,在食品、医药、化工、生命科学等领域有着广泛应用。近年来,我国离子色谱的技术和应用都取得了长足的进步,但相对于国际尖端技术及国内广阔的应用前景来说,仍有极大的发展空间。 /p p style=" text-align: justify line-height: 1.5em "   为促进广大离子色谱专业人士更加深入了解离子色谱技术及市场发展,进一步促进产业交流,2019年4月19日上午,“离子发展色谱论坛”邀请了来自科研院校、政府机构、相关厂商的6位报告嘉宾,共同就离子色谱最新的技术进展、最新的应用发展方向和需求以及离子色谱相关标准等大家关心的话题进行探讨。 span style=" line-height: 1.5em text-align: center "    /span /p p style=" text-align: center" img title=" IMG_0356.jpg" alt=" IMG_0356.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/0ec803da-1380-4663-8295-96a37f0c2f56.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 会议现场 /strong br/ /p p style=" text-align: center" img title=" IMG_0341.jpg" alt=" IMG_0341.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/4e2cc120-5c36-4e78-b0e7-a61c139498e8.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 刘开禄致辞 /strong /p p style=" text-align: justify line-height: 1.5em "   在论坛伊始,第一代离子色谱研究者、第六届“科学仪器行业研发特别贡献奖”的获奖者——中国核工业总公司北京核工业冶金化工研究院研究员刘开禄致辞。 /p p style=" text-align: center" img title=" IMG_0348.jpg" alt=" IMG_0348.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/0c070756-9c78-4be8-90fd-0b16137d4745.jpg" / /p p style=" text-align: center line-height: 1.5em "    strong 报告人:华东理工大学教授 杨丙成 /strong /p p style=" text-align: center line-height: 1.5em " strong   报告题目:离子色谱技术综述及最新进展 /strong /p p style=" text-align: justify line-height: 1.5em "   自1975年面世以来,离子色谱技术有了长足的发展。目前,离子色谱已经成为分析离子型组分最重要的分析技术之一,更是分析无机阴离子的首选技术。但是受分析方法和标准的限制,离子色谱技术还远远未被开发完全,市场还有很大潜力。 /p p style=" text-align: justify line-height: 1.5em "   杨丙成的报告主要从电致淋洗液发生器及相关技术、离子色谱固定相、电致膜抑制器、检测器、全处理技术、自循环离子色谱系统、开管式离子色谱系统等多个方面,对离子色谱相关技术的进行了全面的介绍,对离子色谱技术近年来的发展现状及最新的技术进展做了详细地梳理。 /p p style=" text-align: center" img title=" IMG_0358.jpg" alt=" IMG_0358.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/debdd905-c1cb-40f0-a0c6-88b8240784df.jpg" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:青岛海关技术中心研究员 崔鹤 /strong /p p style=" text-align: center line-height: 1.5em " strong 报告题目:国产离子色谱仪新进展 /strong /p p style=" text-align: justify line-height: 1.5em "   1983年我国第一代离子色谱仪由青岛崂山电子仪器实验所和原核工业部北京五所共同研制。此后三十多年间,我国离子色谱技术在色谱柱、抑制器、电致淋洗液发生器、检测器、在线柱切换、智能工作站、联用技术等关键技术上取得了多项突破。崔鹤在报告中介绍了目前我国国产离子色谱技术的产业化进程,以及目前我国国产离子色谱仪相关产品和技术的最新进展。 /p p style=" text-align: center line-height: 1.5em " img title=" IMG_0366.jpg" style=" text-align: center " alt=" IMG_0366.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/afb69af3-38cd-47b8-bd4a-7a2872e305c2.jpg" / /p p style=" text-align: center line-height: 1.5em "    strong 报告人:青岛盛瀚色谱技术有限公司总工程师 崔成来 /strong /p p style=" text-align: center line-height: 1.5em " strong   报告题目:国产离子色谱厂家在色谱柱方面的技术进展 /strong /p p style=" text-align: justify line-height: 1.5em "   色谱柱技术是离子色谱的关键技术之一,作为分离的场所和工具,色谱柱性能的优劣,决定着分离效果的好坏,是影离子色谱分析结果的重要因素之一。近年来,青岛盛瀚在离子色谱柱研发方面做了许多工作,取得了一定的成果。崔成来的报告简单回顾了我国离子色谱柱的发展历史,并主要介绍了盛瀚在离子色谱柱方面的技术进展。 /p p style=" text-align: center" img title=" IMG_0368.jpg" alt=" IMG_0368.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/010f00ec-834f-4536-a157-7fa8e900e51d.jpg" / /p p style=" text-align: center line-height: 1.5em "    strong 报告人:华东理工大学分析测试中心高级工程师 栾绍嵘 /strong /p p style=" text-align: center line-height: 1.5em " strong   报告题目:离子色谱技术的新应用新需求 /strong /p p style=" text-align: justify line-height: 1.5em " strong & nbsp & nbsp & nbsp & nbsp /strong 离子色谱技术持续、快速的发展推动着离子色谱新应用、新方法、新需求的不断出现,同时离子色谱应用技术的提高也在推动着离子色谱仪器技术的发展。栾绍嵘在报告中提到,近年来,离子色谱技术在新材料、电子行业、生物医药、环境保护、化学化工得到广泛的应用和发展。随着应用技术的提高,在样品前处理、仪器相关配置以及仪器性能等方面也对离子色谱仪器和技术提出了新的需求。 /p p style=" text-align: center" img title=" IMG_0374.jpg" alt=" IMG_0374.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/af859dec-1d42-4211-98da-7e165335b87f.jpg" / /p p style=" text-align: center line-height: 1.5em "    strong span style=" line-height: 1.5em " 报告人:赛默飞世尔科技(中国)有限公司产品市场经理胡忠阳 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" line-height: 1.5em "   报告题目:国际离子色谱技术创新及对行业发展的推动 /span /strong /p p style=" text-align: justify line-height: 1.5em " strong span style=" line-height: 1.5em " & nbsp & nbsp & nbsp /span /strong span style=" line-height: 1.5em " & nbsp 随着国家在食品、环境、工业以及公共安全等领域的关注加深,一系列政策的出台对于相关领域的检验检测提出了新的需求,同时科研以及生命科学等市场的蓬勃发展等,都为离子色谱的发展提供了新的契机。胡忠阳在报告中分享了赛默飞离子色谱技术的发展情况以及最新的应用进展。 /span /p p style=" text-align: center" img title=" IMG_0383.jpg" alt=" IMG_0383.jpg" src=" https://img1.17img.cn/17img/images/201904/uepic/020ce171-b398-40bc-a8ab-72748118e788.jpg" / /p p style=" line-height: 1.5em text-align: center " strong 报告人:武昌理工学院教授 崔海容 /strong /p p style=" text-align: center line-height: 1.5em " strong   报告题目:国内外离子色谱标准对离子色谱应用的推动 /strong /p p style=" text-align: justify line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 离子色谱技术在环境、食品、材料、制药、化工等领域有着极大的应用前景,但是受离子色谱相关标准的限制,离子色谱的应用还存在较大的限制,市场还有很大潜力。崔海容的报告主要介绍了目前国内外离子色谱标准的概况以及关于标准制定的一些情况。同时,在报告中,他还分享了课题组在离子色谱标准制定方面的工作进展并强调了离子色谱标准的制定对于相关应用的推动的重要作用。 /p
  • 色谱百问百答,掌握这些你就成高级工程师了
    1、网上对柱子是否可以反冲一直有争论,那什么样的柱子可以反冲,什么不可以?反冲后是正着用,还是反着用?具体到各型号柱子不仅是ODS柱,其他如正向柱、氨基柱、离子交换柱等,最好都有解释。   答:一般的正相、反相柱应该都能反冲,只有两端筛板孔径不对称的柱子不能反冲,不过目前这样的柱子已经比较少见了。反冲是为了把柱头的污染物冲洗掉,反冲后还是正着用比较好,以免柱子的两头都被污染。我们一直提倡的是:正向使用,反向冲洗。   2、我在做方法开发的时候,用乙腈和水作为流动相,在调整梯度的时候发现,刚开始用60%乙腈,RT为2.5分钟,调到40%乙腈,RT没有变化,30%也没有变化,一直调到20%的时候,RT突然变到了约13分钟,请问这是什么原因?我用的是离子交换柱。   答:离子交换柱的保留时间主要由洗脱液的离子强度和pH决定,你现在讲的比较简单,需要把你的方法说的详细一点才能做具体的分析。譬如分析物是什么情况,其含有极性电离基团和非极性基团是什么性质?离子交换柱是聚合物基质还是硅胶基质?水相是什么缓冲盐?对于一根常用的c18柱,拿到一根新柱的时候应该怎样进行活化及维护?为什么要这样做?   3、对于一根常用的c18柱,拿到一根新柱的时候应该怎样进行活化及维护?为什么要这样做?   答:新柱活化,实际上是一个平衡的过程,除了用流动相平衡外,有时候还必须用所测样品对新柱进行平衡,特别是测定分子量比较高的多肽,尤其重要。因为分子量高的物质分子,扩散速度慢,平衡所需时间也相应较长。具体平衡方式也很简单,多进几次样品,直到峰面积和保留时间稳定,再进行正式进样测定。如果要加快平衡时间,把前面用来平衡的进样样品浓度加大,或者不等洗脱完成,连续进样多针。用待测物对新柱平衡,目的是将硅胶基质填料表面具有非特异性吸附的位点的吸附能力饱和掉。   4、测定多肽,一般采用什么柱子?流动相是乙腈和水,还有微量的TFA。特别是像类似三肽的短肽,应该怎么选择柱子?   答:分子量不高的多肽一般选用常规C18柱就能测定,也有用离子交换柱、水性C18柱和Hilic亲水作用柱的。   5、氨基柱在进酸性样品时,很伤柱子,如使用一段时间后,柱效降低,峰形改变,如何恢复?   答:氨基柱测酸性样品,应该是用氨基柱的HILIC模式。酸的存在可能会使略带负电荷的氨基官能团质子化,导致使用一段时间后对于某些类的分析物保留性质有所改变或表现在柱效下降。建议:用5-10倍的柱体积的含0.5-1.0%NH3的乙腈-水(50:50)溶液冲洗该柱(冲洗后当然要再用不含碱的流动相洗去多余氨),之后再进行分析这类酸性分析物时建议在流动相中略微添加少许氨如0.1%。   6、色谱柱的技术都有哪些?比如封尾等,这些技术在应用时都体现在哪里?   答:色谱柱技术包括填料技术和装柱技术,填料技术自不待言,填料的好坏对色谱柱分离性能和选择性有决定性影响。装柱技术也没有想象中的这么简单,不同固定相、不同粒径、不同柱管内径和长度,装柱工艺都有所不同,要装出紧密、稳定、均一的柱床,更多是一门艺术,需要经验积累。国内和国外想比,我认为色谱柱的差距在于:国内公司以前都不会自己开发填料,一般买国外现成填料装柱,买到的填料质量控制权不在自己手里。另外因为装柱历史短,经验积累少,装柱工艺也没有完全达到国外水平。另外,对色谱柱性能很关键的基础材料-----裸硅胶,国产的还不过关,在纯度、粒径和孔径的均一性方面和国外产品相比,差距很大。   7、色谱柱技术的差距在哪里?   答:液相色谱柱装填实际上是有一定技巧和程序,可能还有一些运气。一般使用高压匀浆方法装填。也就是能让填料在溶剂内均匀地悬浮。然后用瞬间高压压实,这实际上用到了不同比例的匀浆液体,和合适的压力。压力太大,颗粒破碎,压力太小,塔板数少。同时压力需要稳定,不然分布不均,拖尾严重。同时还有头上平整程度。套上套,就可以用了。   8、柱子在什么情况下可以清洗一下筛板呢?原来也讨论过这个问题,我也拆下来清洗过,但我看到柱前段的污染更甚,于是就用刀片刮了刮,然后把清洗好的筛板安装上去。问题解决了,但使用寿命会不会减少呢?   答:柱头污染了,就取出污染的,再装一些填料。因为加入你刮了些填料,那么微观的塔板数就少了。假入你刮得不多,仅表面,可能就是一些脏物,所以,问题解决。但是今后还会有同样问题,再挂,那么不小心刮,影响柱效。建议还是装一个预柱。   9、如果柱子取下来放置一段时间,需要做什么保护吗?   答:对一般的反相柱,也就是洗干净后放到纯甲醇(乙腈)或者是80%左右的甲醇(乙腈)水中,然后用堵头塞紧柱两头,以免保存溶剂挥发,应该不需要做特殊的保护。   10、流动相中加入适量的四氢呋喃可以改善峰形的机理是什么?   答:《高效液相色谱方法及应用》于世林编著的上面说:甲醇为质子给予体、乙腈为质子接受体、四氢呋喃是偶极溶剂,应该除了极性影响,还有另外的影响因素,至于分离机理,还是比较复杂的,不能看成是个万能方法。   11、关于色谱柱的填装问题!我个人认为现在色谱柱的填装一般有3种情况:1.国外生产填料并填装完成成品卖到国内 2.国外生产填料,国内填装销售 3.国内生产填料,国内填装销售。一般情况下,第1种情况卖的最贵,也质量最好!可是我就不明白了:如果是填料的生产很复杂的话,那么填装上国内也跟不上去吗?为什么换在国内填装就会出现或多或少的一些小问题呢?   答:国内填装会出现质量小问题,和国内目前普遍做事没有国外严谨有关吧。如果工艺技术上没有问题,又能制订并切实执行一整套严格的生产质量管理措施,国内填装和国外填装并无区别。   12、什么原因导致峰比原来大,而且出现的早?   答:过快、过大的峰通常是由于从分流口和隔垫吹扫口排出的载气减少,而更多的进入色谱柱 因此增加柱头压力,可降低分流比。检查分流出品的气体流量,如需调整分流比则对调整此流量。如果问题依然存在,可卸下并清洁分流口。这个问题也可能由于柱头压调节阀有问题而引起。   13、预柱或保护柱用还是不用的问题!原来分析中药品种时,我一直都是用保护柱。但来到新公司后,发现大家都没有使用,几个实验室连保护柱都没找到一个,也就是说大家从来都没有用过。后来问一个老员工,说是有可能影响药品分析。我就想问:安装保护柱后会影响样品分析吗?我们做的大多是头孢类的抗生素。   答:应该这样说,加上保护柱,肯定有利于保护色谱柱不受一些颗粒物质的堵塞,肯定有害于分离度和柱效,因为保护柱中间有着死体积的存在,但是如果保护柱接得好,并且尽量控制其匹配性和经常更换,分离度和柱效应该影响并不大。头孢类的抗生素也要看到底是原料药还是制剂喽,有些原料药,可以根据色谱柱的损耗选择添加预柱(中间是个筛板),制剂的话,如果有辅料严重干扰或者流动相盐分比较大,那还是最好配个保护柱。   14、用的是四元梯度泵A50%甲醇B50%水,经常出现停或进气泡这是什么原因?   答:水/甲醇比例在55:45时,黏度和柱压有个极大值。50:50接近了这个极值,柱压是比较高的,但影响柱压最大的还是填料粒径和色谱柱内径,你这个实例中不知用的什么规格的色谱柱?系统压力高,可能会因溶剂泵中的过滤头供液速度跟不上而导致气泡进入系统,停机也应该是因为气泡进入压力下降的原因,可考虑更换液体通量更大的过滤头。   15、何时需更换隔垫或衬管?   答:通常比较好的隔垫至少能保证100次进样不发生问题。当色谱特征说明衬管有问题时,需要更换衬管。影响隔垫寿命的因素有注射器尺寸、进样口温度和压力,当然受压力影响的程度比较小。影响衬管寿命的因素通常是样品的清洁度。应该根据仪器维护历史记录来选择色谱需要的特定程序。   16、想请您具体说明一下反冲色谱柱的方法,是不连检测器吗?   答:反冲就是将柱子反向连到系统中。因为有污染物反冲出来,当然不连检测器,出液端直接接到废液瓶就可以。   17、如果不使用不锈钢接头,而改用PEEK头,是否可以完全解决接头匹配问题?   答:色谱柱接头其实大都不是色谱柱厂商自己生产的,供货商有多个,VICI,Upchurch,Parker等,他们的标准相互之间不统一,那色谱柱接头的标准就统一不起来。不过一般这个问题也不难解决的,换个接头就可以了,而且现在有了万用接头,可以配所有不同类型的柱头,不泄露,连接死体积又很小。   18、有的厂商为避免堵塞,使用了较大孔径(2-5um)的前筛板,这种情况反冲会将填料冲出。厂商一般在使用说明书中会说明前后筛板的孔径吗?   答:厂商如果前后筛板孔径不对称,肯定会在说明书里特别提到的。   19、我在做多肽药物时遇到下列问题:1).基线不稳定波动大,流动相A:1%TFA水溶液,B:1%TFA乙腈溶液,检测波长210nm 流速1.0ml/ml,什么原因?怎么解决?TFA有什么作用?流动相中不加TFA见不到主峰,基线良好。2)做完肽类样品时怎么冲洗C18比较好 3)药典上介绍测定分子量大于2000的样品,选择柱子填料的孔径为30nm,30nm与10nm对结果有什么区别?   答:应该是起&ldquo 离子对&rdquo 的作用吧。在做多肽类样品的时候,300A孔径的填料相对100A孔径肯定要选择性好点,也就是分离度相对比较好点。流动相加入TFA,在反相色谱分离多肽和蛋白质的实验中,使用三氟乙酸(TFA)作为离子对试剂是常见的手段。流动相中的三氟乙酸通过与疏水键合相和残留的极性表面以多种模式相互作用,来改善峰形、克服峰展宽和拖尾问题。三氟乙酸优于其他离子修饰剂的原因是它容易挥发,可以方便地从制备样品中除去。另一方面,三氟乙酸的紫外最大吸收峰低于200nm,对多肽在低波长处的检测干扰很小。   20、waters Atlantis C18柱可以用较高比例的流动相,那麽用完后应该怎麽清洗?在什麽体系中保存比教合适?   答:反相柱都可以用下面通用的方法清洗维护:流动相中不含缓冲盐分析完成后,用甲醇(或乙腈):水=90:10反向冲洗色谱柱45min流动相中含有缓冲盐,分析完成后,先用甲醇(或乙腈):水=10:90反向冲洗45min,然后再用甲醇(或乙腈):水=90:10反向冲洗色谱柱45min (注意:甲醇(或乙腈):水=10:90容易长菌,使用时间不可超过3天) 水性柱保存体系也不特别:短期保存在所用的流动相中(不含缓冲盐),中长期保存在纯甲醇(乙腈)或80%的甲醇(乙腈)/水中。   21、正相硅胶柱一般保存在什么溶剂里面比较合适?   答:短期和长期都建议保存在正相测定所用的流动相中,一般是正己烷和极少量的异丙醇。   22、磷酸盐缓冲盐渗透力强,为什么,是因为与醋酸盐,枸椽酸盐相比,基团小吗,使用磷酸盐缓冲液与其它缓冲液相比,会使色谱柱寿命缩短多少?   答:经常用磷酸盐,在其它条件差不多一样的情况下,柱子寿命肯定比不用磷酸缓冲盐相对短一些。但用磷酸盐也有不可取代的优点吧,否则不可能现在大部分人还在用。   23、反相离子对色谱法中,离子对是如何起作用的,是离子对试剂的非极性端溶解在填料的非极性端里,解离端伸向流动相,对含胺化合起离子交换作用,还是样品与离子对生成紧密的结合物,离子对试剂掩藏化合物中的极性基团,还是这种结合物是在解离与结合的动态平衡之中?   答:首先离子对试剂的解离端和目标离子形成离子缔合物,降低其极性,这样就能较好的在柱子上保留。再者,根据疏水效应理论,离子对试剂的疏水端是很容易和C18链相互作用的,这样更容易在柱子上保留,所以我认为离子对试剂作用是混合保留机制,即纯粹的反相保留和离子对保留机制共同作用。   24、四烷基季铵盐(如四丁基硫酸氢铵、四丁基溴化铵、四丁基氢氧化铵等)在水中电离后,也形成了类似N+H(CH2CH3)3的结构N+(CH2CH2CH2CH3)4,这种结构也能有效的与Si-O-产生较强的静电作用,此类离子对用的比较少,但它的作用仅是掩藏Si-O-吗,它对物质的保留性能有何影响,实验中发现检测胺化物时,流动相中加入磷酸缓冲盐有增加物质保留的趋势,而加入三乙胺则会降低物质的保留能力?   答:前面提到的四丁基氢氧化铵等离子对试剂确实不如辛磺酸钠等极性基是阴离子的离子对试剂用得普遍,原因是酸类极性物质很容易通过降低pH值的方法提高在反相色谱中的保留能力,降低pH可抑制酸的电离,使酸处于中性状态而与疏水碳链的作用力增强。而碱类分析物则受硅胶基质pH上限的严重影响(以前上限是8,后来抬到10,直到最近杂化硅胶才将pH上限提到12左右)。铵盐类离子对试剂确实有辛磺酸钠等所不具有的屏蔽硅醇基作用,但其主要作用还是疏水端和疏水固定相结合,外露的阳离子亲水端和酸阴离子作用,从而提高其保留能力。当然同样还有第二种解释机理,离子对试剂先和分析物结合,掩藏极性基,从而提高极性分析物在反相色谱中的保留能力。而且丁基比辛基疏水性差,这种情况下,认为后面的结合机理占上风的可能性更大。检测胺类化合物,加入三乙胺预先和硅醇基结合,胺和硅醇基作用被三乙胺取代,保留下降是肯定的。   25、同一根色谱柱在分析完三聚氰胺后,再分析苯甲酸、山梨酸、糖精钠时为什么保留时间会提前?   答:色谱柱被强保留物质污染后,保留时间提前和滞后的情况都有,具体要看污染物的性质,还要看分析物、固定相和污染物三者共同作用的情况,情况比较复杂,有时候比较难预测是提前还是滞后。不过你平时维护的时候,注意在测定后将污染物用有机溶剂反冲清洗,就可以减轻或避免这种情况的出现。建议每个分析方法用专门的色谱柱,长远看,这样更节省色谱柱的费用。   26、HPLC柱前衍生和柱后衍生的相关问题?1)为什么要衍生?2)衍生化的分类?3)进行衍生,适用的化合物有哪些?4)进行衍生化的要求有哪些?5)柱前衍生和柱后衍生的优缺点?   答:色谱技术中的化学衍生法系指在色谱过程中用特殊的化学试剂(一般称为衍生化试剂或标记试剂)使样品成分转变相应的衍生物之后进行分离检测或进行检测的方法。目的为:1.将紫外&mdash 可见强吸收功能基团引入被检测对象或将其转变为荧光衍生物,以提高检测灵敏度 2.提高对分析样品的分离和选择性。从是否与HPLC系统联机的角度,化学衍生法分为在线on line)与离线∣Off line)两种。从发生衍生化的场合,分为柱前衍生法pre-column derivatization)与柱后衍生法(post-column derivatization)两种。目前,在HPLC中,以离线的柱前衍生法(简称柱前衍生法)与在线的柱后衍生法(简称柱后衍生法)使用居多。   27、多个样品不好不离的时候,请问该怎么通过选择合适的柱子来提高分离度?   答:提高分离度可从三个主要影响因素来考虑,柱效、选择性和保留因子。可通过减小填料粒径和增加柱长提高柱效 选择性和固定相选择以及pH条件有关,通过选择合适的色谱柱和合适的pH,可以提高选择性 有时候适当延长出峰时间增加保留因子,也可提高分离度。   28、苯基柱,氰基柱该什么时候考虑用?   答:苯基柱用于含苯环的芳香族化合物的测定时,具有较高的选择性。CN柱可作为一个保留能力最弱的反相柱使用,也可作为一个活性降低的正相柱使用(保留时间比硅胶柱和氨基柱低很多)。   29、同样类型柱子还有长度,粒径等差异,这些该怎么去选择?   答:长度和粒径都是用来改变柱效的,选择原则是够用就好。  30、我前几天刚刚装上一个新的C18柱,在进样之前我用100%的甲醇冲了半个多小时。刚才看到上面写的要活化什么的?不知道我只冲洗半小时就开始用对柱子有没有影响?对出峰什么的有没有影响呢?   答:不是所有的测定,都需要对新柱子用所测样品老化。但先按方法程序进样几针,观察到峰面积保留时间不再有明显变化,再开始正式测定,这是一个好习惯。按你现在的做法,如果第一针和第二针的峰面积、保留时间没有变化,就继续做没影响吧。   31、现在色谱柱和仪器的接口还没有标准化吗,除了检测池的出入管较小外,色谱柱的接口与PEEK头不匹配的有哪个型号的色谱柱,以后使用的时候需要注意一点。同时发现使用过金属接头的色谱柱再换成PEEK头,常易漏液,这是因为金属头易使色谱柱接口变形吗?   答:色谱柱接头其实大都不是色谱柱厂商自己生产的,供货商有多个,VICI,Upchurch,Parker等,他们的标准相互之间不统一,那色谱柱接头的标准就统一不起来。不过一般这个问题也不难解决的,换个接头就可以了,而且现在有了万用接头,可以配所有不同类型的柱头,不泄露,连接死体积又很小。   32、普通的C18柱能作为正相色谱柱使用吗?正相色谱体系中最常用也最普通的是那种色谱柱。正相柱在使用过程中与反向柱相比有什么需要注意的地方?   答:普通C18柱作为正相柱使用,我还没听说过。正相色谱分离模式是指固定相的极性比流动相的极性大,反过来,流动相极性大就是反相。C18固定相属于疏水性相对比较强的,疏水性强就是极性很弱,应该找不出极性比它更弱的流动相了。正相体系常见的柱子有:硅胶柱、氨基柱、CN基柱和Diol二醇基柱,最普通的应该就是硅胶柱。正相柱和反相柱比,最需要注意的是水分,正相柱对水分非常敏感,流动相中水分含量的些微变化对保留时间影响很大,因此正相柱测定前平衡时间需要几个小时甚至更长。   33、色谱柱的柱头类型与不锈钢毛细管接头有6种连接方式(在讲义里面提到),那么我们用户一般是液相色谱仪是固定某一个厂家,而是根据样品检测需要更换不同类型的色谱柱,那么怎么判断我所购买的色谱柱是否与不锈钢毛细管是否匹配呢,我之前只是知道安捷伦和waters都有规定他们自己家的柱子与自己家的仪器配套是最合适的,而其他厂家的色谱柱都很少提及,在不知道的情况下,我们该怎么选择?   答:不锈钢毛细管接头有个缺点,用过一次后卡匝位置和距离毛细管末端的长度就固定死了。如果下次用的色谱柱的柱头接口深度和原来的不同,就容易产生死体积和泄漏。产生的死体积一般不大,如果只引起柱效的稍微下降而没引起拖尾,这个问题就容易被忽略。引起大家关注的是泄漏,如果用了新柱子,发现和毛细管的接口处有泄漏,就可以判断是接头的匹配问题。最好的判断方法还是:询问一下厂商色谱柱柱头的类型和柱头接口的深度,然后和毛细管接头的规格比较。如果用PEEK接头,发生问题的情况就大大减少,因为PEEK接头卡匝位置是不固定的。接头与色谱柱的匹配,并没有在实际色谱应用中造成很大的问题,有很多人都没有关注到这个问题。一方面原因是使用PEEK接头的情况很普遍,另外如果发现不匹配,换个毛细管接头还是非常方便的。   34、相对于气相色谱,液相的优势在哪里?做防腐剂分析时,流动相加入乙酸铵才可以出峰,原理是什么?   答:液相和气相相比的优势有很多,我认为主要在于应用范围更广。气相只限于容易气化的低分子量物质的分析测定,对象大部分是基础化工原材料 而任何能溶解于某溶剂的物质都能用液相分析,适用对象是分子量从几十到几万的广大范围。在制药、化工、环保、食品和刑侦等诸多重要领域,液相都已成为主导的分析分离工具。也有两者都能应用的交叉情况,但液相的制样更简单。液相色谱的出现克服了气相色谱不能直接用于难挥发、热不稳定及高分子化合物的弱点。   35、您提到&ldquo 磷酸盐缓冲盐渗透力强,有加快硅胶溶解的副作用,它的存在会降低pH使用范围。&rdquo ,既然这样,经常使用,柱子寿命是否也下降的快呀?   答:经常用磷酸盐,在其它条件差不多一样的情况下,柱子寿命肯定比不用磷酸缓冲盐相对短一些。但用磷酸盐也有不可取代的优点吧,否则不可能现在大部分人还在用。   36、CN柱的保存需要在低温条件,但是又不能太低,使固定相冻结,怎么控制这个温度?怎么判断固定相是否被冻结?固定相冻结后会是什么样的现象?   答:所谓低温储存,就是放到阴凉处或者放到冰箱的冷藏室。储存液只要不是纯水,冰点都比较低,纯甲醇的冰点是零下90度以下了。   37、我们测试样品时,经常会关心柱压是否太高,但是在购买色谱柱时,并没有说每一根色谱柱的最大使用压力是多少?针对这样的情况,用户怎么判断柱压是否超过该柱的极限?   答:装柱时的压力比使用时高很多,所以柱压对色谱柱本身在使用时没有极限问题存在,倒是一般仪器有个40Mpa的上限。如果色谱分离度还能满足分析方法要求,柱压只要仪器能承受就OK吧。   38、使用缓冲液不当,使硅胶溶解并重新形成粉末后,会出现什么样的异常情况?怎么处理?   答:出现异常就是柱压升高。小粉末在流动相不断冲洗带动下,最后会聚集在柱子出口端,沉积在后筛板。处理方法只有拆下后筛板进行清洗或更换,但这样做会影响到柱床,处理后柱效会下降。   39、今天才知道滤膜的材质分了这么几种:再生纤维素、聚四氟乙烯、硝酸纤维和醋酸纤维等,之前只知道有有机系和水系之分?各种不同材质的滤膜适合于什么样的样品?   答:再生纤维素膜:具有蛋白质吸收低,适用于水溶性样品和有机溶剂 聚四氟乙烯:适用于所有有机溶剂,酸和盐 尼龙66:适用于绝大多数有机溶剂和水溶液,可用于强酸,70%的乙醇,二氯甲烷,不适用与二甲基甲酰胺 醋酸纤维:不适用有机溶剂,特别适用水基溶液。   40、我原来遇到个这样的问题,一直不知道原因。刚拿柱子做,色谱条件是成熟的,绝对没问题,但是该条件下保留的物质变的不被保留,比如本来保留时间15分钟却怎么调比例都是2-3分钟就出峰了,维护后,下次再使用又正常了,什么样原因啊?   答:最大可能是发生相塌陷了。C18柱和高密键合封尾的C8柱,在高含水流动相下会发生相塌陷,后果就是保留能力大幅下降。用有机相比例较高的流动相冲洗后,又可恢复正常性能。   41、UPLC色谱柱可以反冲吗?HPLC的色谱柱可以简单反冲,但是,UPLC的色谱柱.也是一样的吗?如果压力偏高,该怎么办?   答:如果两端筛板孔径对称,UPLC柱应该也是可以反冲的。发现压力偏高,当然也可以用反冲清洗的方法维护,UPLC柱和普通色谱柱比,只是压力高一点,不应该有什么特殊吧。   42、常规LC的柱子粒度小,柱效高,现在有3.5um的常规柱,不知道用3.5um*250的压力与4.6um的压力相差多少?   答:一般柱子4.6mmx250mm指的是其内径和长度。粒径才用um的单位,但一般标的是5um,也有3.5um的。其它条件一样,光粒径是3.5um和5um的柱压差别,理论上3.5um柱子的柱压是5um柱子的(5/3.5)平方倍数,即2.04倍,简单说就是2倍。   43、因为不知道流动相已走完,液相色谱柱空走了大概一晚上,请问这种情况下柱子还能用吗?如果可以应该如何再生?   答:能用的!可能柱子里会有气泡进去,但之后多用流动相冲冲,看到基线稳定,就没问题了。用色谱柱的保存液低流速长时间冲洗,然后再检测一下柱效,看柱子是否恢复,液相最好设置一下最低压限,这样就不怕流动相走光而会损伤色谱柱。   44、在梯度洗脱的时候,如果整个时间程序越长,保留时间的重现性越差,尤其是后出的峰重现性差更明显,我猜估计是流量本身的误差引起的,但是怎么尽量避免这种情况的出现,使保留时间重现性更好?而且最好将THF冷藏、干燥和避光保存,使用前最好能检测一下过氧化物的含量。
  • 全国大比武,谱育科技全方位提供设备与技术保障服务
    吹响号角,迎战大比武第二届全国生态环境监测专业技术人员大比武(以下简称“全国大比武”)来了,为全面落实习近平生态文明思想和全国生态环境保护大会精神,全面提高全国生态环境监测技术人员的能力和水平,各省各级环境监测部门积极响应号召,落实举办省级、地方选拔赛,组织开展各类环境监测实操培训,迎战第二届全国大比武。 大比武中的生态环境监测综合比武包括对地表水、地下水、温室气体、声、海洋、大气、固体废物、土壤、生态(含生物)等环境要素的监测,重点考核的是参赛人员的理论知识、仪器分析、质控技术、评价技术和综合分析能力。在综合比武4个项目中,“便携式气相色谱-质谱法测定空气中挥发性有机物”一项尤其受到大家关注,其作为连续两届全国大比武的竞赛项目,在突发性环境污染事件的应急监测中发挥着极其重要的作用。空气质量的好坏时刻牵动着老百姓的心。便携式GC-MS分析仪可在现场快速开展应急检测,第一时间判断当地污染情况,尽快疏散人群,比如在天津港爆炸、江苏响水爆炸的现场应急检测等。省级决赛,全方位保障在刚结束的江苏、福建省级大比武决赛现场,谱育科技EXPEC 3500 便携式GC-MS 分析仪已在“便携式气相色谱-质谱法测定空气中挥发性有机物”的竞赛项目中大量使用,其中福建16支决赛队伍中有8支队伍使用了我司设备参赛,均取得了不错的成绩。福建省级选拔赛期间,谱育科技积极响应省环境监测中心站的需求,在赛前多次为全省技术人员开展“便携式气相色谱-质谱法测定空气中挥发性有机物”竞赛项目的实操技能训练,并在决赛提供了大量便携式GC-MS分析仪及耗材的设备支持与技术保障工作,有力保障了福建省级决赛的顺利进行。千锤百炼,专业团队实训谱育科技应用服务团队具有丰富的现场实战经验、极强的技术能力,携带EXPEC3500 便携式GC-MS分析仪先后服务于国家重大会议的现场保障工作(如杭州G20峰会、青岛AEPC会议、厦门金砖会议)和重大的环境污染事故的应急处置工作(如天津港爆炸、江苏响水爆炸现场应急检测)。2013年至今,谱育科技应用服务团队累计开展便携式GC-MS用户培训班26期,参与培训人次400余人次;针对大比武活动,团队已先后为山西、四川、浙江、福建、宁夏、湖北等全省决赛队伍开展“便携式气相色谱-质谱法测定空气中挥发性有机物”竞赛项目的实操技能训练,安排充足时间进行仪器实操训练,有效提升环境监测技术人员的现场应急监测能力。团队能够为用户提供包括新方法开发协助、基础知识和仪器操作培训、应急演练和技术比武保障、环境污染应急事故支援、现场检测分析协助在内的多种技术服务培训,确保用户使用便携式GC-MS得到准确可信的结果。谱育科技,中国便携式GC-MS制造商最后,随着大比武活动的各省级选拔赛进入决赛阶段,预祝所有的参赛人员都能在省级决赛中赛出成绩、赛出水平,以最好的姿态迎战全国大比武,载誉而归!
  • 分析仪器电源的核心技术指标及测试方法
    摘要:电源是各类分析仪器最重要的、最常用的关键部件之一;本文重点讨论了分析仪器中使用最多的空心阴极灯、氘灯、钨灯等的直流电源、交流电源、脉冲电源等及其核心技术指标的测试方法和有关问题;这些问题对有关仪器的研发者、制造者、维修者、使用者都有非常重要的参考意义。0、前言目前,国内外许多科技工作者对分析仪器中最重要的的电光系统(包括电源和灯泡)普遍重视不够;大家认为只要灯泡好就行。其实不然,如果电源不好,仪器灯泡再好对仪器整机是没有用的[1];当然如果灯泡不好,电源再好也同样是不行的。本文只讨论有关电源;例如:原子吸收分光光度计(AAS)、原子荧光光度计(AFP)、紫外可见分光光度计(UVS)、旋光分光光度计(ORD)、高效液相色谱(HPLC)等仪器中使用最多的空心阴极灯、氘灯、钨灯等电源;如果这些仪器中的电光系统(灯泡和电源)中有一个元件不稳定或出现故障,整个仪器就不可能稳定。特别是电光源系统中,所有灯泡都依赖于电源,没有电源,灯泡就不能发光;即使有了电源,如果电源的核心性能指标不好,整个分析仪器就不可能稳定可靠。例如:各类空心阴极灯、氘灯的电源的触发电压、工作电压、工作电流、预热时间、电源的纹波、电流调整率等核心指标中,只要某一个指标出现问题,灯泡就不能发出稳定可靠的光。所以,AAS、AFP、UVS、ORD、HPLC等所有光谱仪器和色谱仪器的研发者、制造者、维修者、使用者,都必须高度重视分析仪器的电光源系统中的电源。本文将对各类光谱、色谱仪器中使用最多的空心阴极灯、氘灯、钨灯等的电源组成及其核心性能技术指标的测试方法和有关问题进行讨论。一、空心阴极灯电源1、直流电源空心阴极灯系统发光的稳定性,既依赖于灯泡的质量,又依赖于电源的稳定性。空心阴极灯必须要求电源有足够高的起辉(又称触发)电压(250~500V)才能点亮,同时必须要有足够高的工作电压(150~300V)和工作电流(4~20mA)才能维持正常工作。空心阴极灯的电源分直流电源和交流(脉冲)电源两类。目前,空心阴极灯在大多数情况下,都是使用脉冲电源。但是也有人使用直流电源;如果使用直流电源,对其稳定性要求很高。通常采用如下图所示的空心阴极灯恒流电源,并要求电流稳定性(电流调整率)达到(或优于)0.05%以上。 空心阴极灯的恒流电源组成图2、交流电源或脉冲电源一般来讲,空心阴极灯的电源如果是采用直流电源,其发光效率低,并且电流大到一定程度时,会产生自吸现象,同时还容易受到干扰。因此。为了提高空心阴极灯的输出效率,减少自吸现象、谱线变宽和减少干扰,目前,国内外的大多数的AAS都普遍采用脉冲电源供电。脉冲电源的脉冲调制频率和占空比根据不同仪器各异;一般都是采用400Hz以上的调制频率,例如作者使用过的TAS-986/990仪器的空心阴极灯电源的调制频率就是400Hz、其占空比为 4:1。一般空心阴极灯的脉冲供电电流波形如下图所示。 空心阴极灯的脉冲供电电流波形图脉冲供电方式可使用很大的峰值电流,但是平均电流很小。这样,可以延长空心阴极灯的寿命。例如:作者的实践表明:假设采用400Hz的脉冲供电,脉冲宽度为15µ s,峰值电流300mA,则可得到比直流供电时大150倍的输出光强度;但是,自吸现象和谱线宽度并无明显增加。这足已说明脉冲供电的优越性。二、 氘灯恒流电源及其性能技术指标的测试方法1、电路组成氘灯及其电源是UVS的电光系统的关键部件(对AAS仪器而言,氘灯主要用来扣背景,也非常重要)。氘灯的好坏直接影响UVS整机质量和AAS扣背景的能力,影响仪器整机的灵敏度和质量。所以,对氘灯电源要认真测试;特别是用直流恒流电源的氘灯,更加要注意重视对有关核心性能指标的测试。众所周知,氘灯属于气体放电的光源,它需要一个稳定的氘灯恒流电源,其输出电流一般为100-500mA。而氘灯工作时,其工作额定电流一般恒定为300mA,所以称为氘灯恒流电源。氘灯恒流电源是UVS和AAS(一般5mA)的关键部件之一。下图为作者研制的一种非常适用于高精度氘灯恒流电源的电路组成图。氘灯恒流电源的原理图目前,我国的许多计量部门,经常在有关的光谱仪器检定标准中规定:电源波动对测试结果影响的技术指标;如:1990年9月1日开始实施的中华人民共和国国家计量检定规程-JJG682-90中,明确提出“电源电压变化的影响:外电电源电压在220±22V范围内改变,仪器100%透射比的最大变化应小于0.5%”。又如:1997年6月1日开始实施的中华人民共和国国家计量技术规范,JJG375-96中,提出“电源电压的影响:电源电压(220±22)V变化时对仪器的影响应符合具体规定的要求”。而该要求示值变化只允许±0.5%(对A级光栅式的仪器要求示值变化±0.3%;B级要求±0.5%)。这样规定的技术指标一是太低,二是不大科学。因为外电电源就产生±0.5%的分析误差,如果再加样品前处理、噪声、光谱带宽、环境干扰等引起的误差,仪器的分析测试结果总误差就会大得惊人,连一般分析工作的最低要求也达不到。这种技术指标的仪器根本不能满足使用要求。我们说这种技术指标不科学,主要是指它是一个电子学的技术指标,应该用电子学的指标(电流调整率、纹波系数、漂移等)来衡量,而不应该用“示值变化±0.3%”等来表示。当然也可以归一到吸光度(Abs)来表示。作者在实践中,计算了自己研发的AAS和UVS在紫外区工作时微光信号的大小,发现AAS、UVS的光信号在紫外区一般为毫微流明(nLm)级;所以,AAS、UVS属于微光测试范畴。为了保证AAS、UVS仪器的稳定性,一般高质量的AAS和UVS,其氘灯恒流电源的电流调整率要求达到0.05%,纹波系数要求在0.5% 以内。作者曾研究过一种高性能的氘灯恒流电源(DLPS-3型氘灯恒流电源),其电流调整率达到0.0006%,获得了上海市的科技进步奖。为了延长氘灯的寿命,在点燃氘灯以前,氘灯的灯丝一定要事先经过预热;预热时间可以从10秒到30秒均可,使用者可以自选。但一般科技工作者大都取10秒左右的预热时间。否则,如果氘灯不经过预热而直接点亮,氘灯的寿命肯定会缩短。作者在实践中发现,一般国产氘灯的氘灯触发电压为200到400伏,最低170伏也能点亮;一般进口氘灯的触发电压为350伏到650伏。如果一开机,氘灯不经过预热,氘灯的触发电压一下就直接加到阳极上,就会严重缩短氘灯寿命。氘灯电源向氘灯提供的灯丝电压和灯丝电流,一定要与氘灯灯泡的要求相一致。目前国际上一般都是两种类型;一种是2.5V(伏),4A(安培);一种是10V,0.8A。从氘灯电源的制作来讲,因为电流小,10V,0.8A比较好作。而2.5V(伏),4A(安培)的灯丝供电,因电流很大,氘灯的电源比较难制作,同时,因为电流大,容易因为发热而产生漂移。所以,作者认为在AAS中,最好不要选用2.5V(伏),4A(安培)的灯丝供电的氘灯。为了延长氘灯的寿命,还可将氘灯用在半功率点上;即将氘灯恒流电源的工作电流调节到180mA左右。作者的实践证明,最好使用在150到200mA范围内。这样作可大大延长氘灯寿命。有时可使氘灯的寿命延长好几倍。本人研制的优质氘灯电源,在中国科学院组织的专家鉴定会上,用户使用“坏了”的废弃氘灯带到现场当场测试,都可以点亮,并且很稳定!使用者可以对氘灯恒流电源的稳定性作简单的测试,以便判断氘灯电源的稳定性是否合格。最重要的是测试三个指标;其一是电流调整率。其二是漂移,其三是纹波系数目前国际上几种高水平的氘灯电源及其主要技术指标2、氘灯恒流电源的电流调整率的测试方法氘灯是分析仪器中使用最多的光源之一,氘灯也是对电源要求最高的光源之一。因此,对氘灯电源的指标测试也要求非常严格。特别是对电流调整率的测试更是如此;其测试方法如下:通过一只0.5KV的调压变压器,将交流电源引入恒流电源;通过恒流电源点亮氘灯,在氘灯电源的输出端用分压器取采样电压约取1.8V左右(直流信号电压),用数字电压表监控。氘灯电源预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的1.8V直流电压的变化(即记录交流供电电压220V变化±10%时,所对应的输出直流电压的变化值)。例如:作者在研制DLPS-3型氘灯恒流电源时,实际测量数据的结果如下表所示:DLPS-3型氘灯恒流电源时的实际测量数据 VS V0 V0 V0 V0 V01981.74801.74781.74791.74781.74792201.74791.74791.74791.74791.74792421.74791.74791.74791.74791.7480由上表可计算出,作者研制的氘灯恒流电源的电流调整率为:SI=ΔV0/ V0=0.0001/1.7479=0.0000572=5.72×10-5式中:ΔV0=V0242-V0198差值中的最大者;即1.7479-1.7478=0.0001V0为220V对应的直流输出电压根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05% (即 5.0×10-4)。3、氘灯恒流电源漂移的测试方法首先点亮氘灯,电源预热半小时后,在上述电流调整率测试的条件下,固定输入电压为220V左右,用高精度的数字电压表记录1.8V左右的直流输出电压在一小时内的变化值V0,即是氘灯电源的漂移。目前国际上氘灯电源的漂移一般为1×10-3~5×10-4。4、氘灯恒流电源的纹波系数(或纹波电压)的测试方法在点亮氘灯或假负载的情况下,用交流毫伏表或示波器直接测量。作者采用的氘灯恒流电源的纹波系数的简单测试方法有两种:第一,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,直接在氘灯的阴极和阳极之间测试。例如:作者[2]在研制DLSP-3型氘灯恒流电源时,曾采用这种方法测得纹波电压15mV,测得氘灯两端的直流工作电压为69.11V;由此计算出纹波系数SR=15mV/69.11V=2.17×10-4。第二,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,在采样电阻上测得纹波电压3mV,测得采样电阻上的直流工作电压为1.7675V;由此计算出纹波系数SR=3mV/1.7675V=1.7×10-3;但是,这是一个假数据;如果采样电压变为为69.11V(增大39倍),则纹波电压也增大到117mV。纹波系数还是一样的。作者的实践表明,在一般情况下,第一种方法较接近实际,比较可靠。一般要求氘灯电源的纹波系数在0.5%以内。三、开关电源的核心技术指标及其测试方法目前,很多企业采用开关电源做氘灯供电电源;其测试方法如下:目前很多科技工作者们,经常使用开关电源。但是,不注重对开关电源的性能技术指标的测试,这是很不妥当的;因为开关电源的组成主要包括:输入电网滤波器、输入整流滤波器、电压变换器、输出整流滤波器、控制电路、保护电路等。开关电源的工作原理是将220V的市电(交流电)先变成直流,而后通过变换器将直流变成交流,再将交流变成直流。它有体积小、重量轻(只有线性电源的25%左右)、功耗小、转化效率高(一般为60-79%;而线性电源一般只有30-40%)等优点。但是,它的输入电压调整率、纹波电压、电流调整率、漂移等指标也很重要,如果不经过测试,不知道这些性能技术指标的情况,就会影响正确使用 ,或者说不能将开关电源用在最佳状态;特别是输入电压调整率、纹波电压、电流调整率和漂移这四项核心性能技术指标,会影响开关电源的使用质量。直至影响仪器的整机的稳定性、噪声和漂移,影响整台仪器的质量。开关电源的输入电压调整率、电流调整率(负载调整率)、纹波电压、漂移和噪声的测试方法简述如下:1、电压调整率测试方法:输入电压调整率是指的输入交流电压变化时,输出电压相应变化的情况(或变化率)。其测试方法如下式所述:LRV=(V242-V198)/V220;式中:LRV为输入电压调整率;V242为输入电压为交流242V时的输出电压(直流);V198为输入电压为交流198V时的输出电压(直流);V220为输入电压为交流220V时的输出电压(直流);只要测出相应的交流电压、直流电压,代入式中,就可算得输入电压调整率。具体操作方法如下:开关电源的输入交流电压通过一只0.5KV(或1 KV)的调压变压器;采用假负载,在电源的输出端用分压器取采样电压约取1.5V-1.8V的直流信号电压,用4位半以上的数字电压表监控。冷态开机预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的直流电压(即记录交流供电电压220V变化±10%时,所对应的输出直流电压),代入上式即可得到电压调整率。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电压调整率SV达到0.05% (即5.0×10-4)。2、电流调整率(负载调整率)的测试方法氘灯的电流调整率(负载调整率)是指输出电流在额定范围变化时(一般在测试时采用假负载,取工作电流为50mA-350mA变化),输出电压的变化率。其测试方法如下式所述:LRI=(V50-V359)/VH;×100%;式中:LRI为电流调整率(负载调整率);V50为最小负载时(50mA时)的输出电压(直流);V350为最大负载时(350mA时)的输出电压(直流);VH为半载时(200 mA时)的输出电压(直流)。只要测出V50、V359和VH等相应的直流电压,代入式中,就可算得电流调整率LRI。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05%(即5.0 × 10-4)。3、纹波电压的测试方法所谓纹波电压,就是指直流电压上叠加的50-100Hz的交流电压的最大值(P-P值或有效值);因此,可以用交流毫伏表直接测量。一般用LR表示。是指的在负载电流为350mA时,叠加在负载上的直流电压上的交流电压值。纹波电压还可以用示波器直接测量。纹波指标也可以用纹波系数表示;其测量方法如下式所述:SR=LR/V直;式中:SR为纹波系数;LR为直流电压上叠加的交流电压的最大值,即纹波电压值;V直(又有人叫V0)为最大负载时的直流电压值(也可以采用额定电压75V)。根据作者的实践经验,一般光学类分析仪器的纹波系数要求得到1.0*10-3左右。4、漂移、噪声的测试方法:漂移和噪声是开关电源最重要的关键核心性能技术指标之一,它直接影响开关电源的质量。目前国内外的科技工作者,对各类分析仪器的漂移和噪声的定义、测试方法的理解尚未完全统一。尤其对开关电源的测试,很多科技工作者都较陌生。作者在总结目前国内外科技工作者对各类电子仪器的漂移、噪声测试方法的基础上,提出了对开关电源的漂移、噪声的测试方法如下:冷态开启开关电源,预热2小时后,在开关电源的输出端采用假负载(电阻),从分压电阻上采取取样电压约1.8V(直流信号电压)左右,用4位半以上的数字电压表监控。连续测试1小时;取这一小时里的最大值与最小值之差,即是漂移。在这一小时内任取10分钟(哪里最差取哪里;或者说哪里的峰-峰值最大取哪里;总共有无数个10分钟),在这10分钟里的峰-峰值(最大值减最小值),前面加“”符合,即是噪声。我们还必须记住:噪声不同于纹波。纹波是出现在输出端子之间的一种与输入频率和开关频率同步的成分,一般指50周或50周的倍频,用峰-峰(P-P)值表示。而噪声是出现在输出端子之间的纹波以外的一种高频成分;也用峰-峰(P-P)值表示。但是,二者的数值不会相同,肯定是噪声大于纹波。也有很多科技工作者采用脉冲电源给氘灯供电,因篇幅所限,此不赘述。主要参考文献[1] 李昌厚,略论光谱色谱仪器五大系统的创新切入点,仪器信息网,2024-4-25.[2] 李昌厚,DLPS-2型多功能氘灯恒流电源,《电子科学技术》,1987,第5期.[3] 李昌厚,仪器学理论与实践,北京:科学出版社,2008.[4] 李昌厚,紫外可见分光光度计仪器及其应用,北京:化学工业出版社,2010.[5] 李昌厚,原子吸收分光光度计仪器及其应用,北京:科学出版社,2006.[6] 李昌厚,高效液相色谱仪器及其应用,北京:科学出版社,2014.[7] 李昌厚,分析仪器应用中常见的12个有关技术问题的探讨,仪器信息网,2023-05-31作者简介李昌厚,男,1963年毕业于天津大学精密仪器系光学仪器专业;中国科学院上海营养与健康研究所原仪器分析室主任、生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授、天津大学兼职教授;国务院政府特殊津贴终身享受者。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等方面有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家发明奖和省部级(中国科学院、上海市、科技部)科技成果奖5项;发表论文280篇,出版《仪器学理论与实践》、光谱和色谱仪器及其应用等专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长兼光谱仪器、高速分析等多个专业委员会的副主任;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组组长、上海市科学仪器专家组成员、《生命科学仪器》副主编、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体和专家委员会成员,和北京瑞利、北京普析、上海科哲、美国ISCO等十多家公司的技术顾问或专家组组长等职务。
  • 岛津:完美的用户体验是未来气相色谱的核心竞争力
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 气相色谱法经多年的发展历史,现在已成为一种成熟且应用广泛的分离复杂混合物的分析技术,在医药、食品、石油、环境等分析领域均得到广泛应用。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 气相色谱法的出现和发展在分析化学乃至整个化学史上都有着里程碑式的意义,了解其发展历史及新技术新应用有助于更好的认识和运用气相色谱法。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: center " span style=" font-family: 宋体, SimSun " 为此,仪器信息网特别制作了“ a href=" https://www.instrument.com.cn/zt/qxsp" target=" _self" style=" color: rgb(84, 141, 212) text-decoration: underline " span style=" font-family: 宋体, SimSun color: rgb(84, 141, 212) " strong ‘解码’气相色谱新技术新应用 /strong /span /a ”专题,并邀请气相色谱仪主流厂商来分享气相色谱最新技术及应用进展的看法。此次,我们特别邀请 strong 岛津分析计测事业部市场部GC产品专员温焕斌 /strong 谈一谈气相色谱仪新技术及发展情况。 /span img src=" https://img1.17img.cn/17img/images/202006/uepic/cafd70d0-73ef-4498-b646-46c01832fb6b.jpg" title=" 岛津温_副本_副本.jpg" alt=" 岛津温_副本_副本.jpg" style=" text-align: center text-indent: 2em max-width: 100% max-height: 100% " / /p p style=" text-align: center " strong style=" text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 14px " 岛津分析计测事业部市场部GC产品专员 温焕斌 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 气相色谱技术由于其高效、快速的分离特性,已成为医药、食品、环境、石化等领域中不可缺少的分析工具。近年来,气相色谱技术的发展已渐趋成熟,虽然革命性变化较少,但是技术性的进步一直在进行着,尤其是与产品性能和操作体验相关的设计创新仍然十分活跃,这些也代表着目前最先进的气相色谱技术发展。在这些创新中,岛津推出了一系列围绕“用户体验”的代表性技术。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在硬件操作体验方面,一个很重要的发展方向是极简操作,主要表现为两点:一是将复杂的操作和检查功能完全简化或自动化;二是将以往藏得比较深的功能移到表层,方便用户调出和使用。比如岛津推出的ClickTek技术是贴近用户操作体验的典型设计之一,对于气相色谱仪来说,维护和操作最频繁的部位应该就是进样口和色谱柱了,特别是色谱柱的安装和拆卸工作,近两年逐渐发展起来了简化安装和拆卸程序的设计。ClickTek技术不仅让色谱柱的安装和仪器维护实现了徒手操作,更实现了由“仪器智能判断”代替“用户主观感受”,即使初学者操作也能确保高温高压下的完美密封,提升了用户分析体验。再比如岛津在2017年推出的旗舰级气相色谱仪Nexis GC-2030,创新设计了体感如个人移动设备的7英寸大液晶彩色触摸屏,包含进样口、柱温箱、检测器等各个部件的温度、流速、压力等信息,一目了然,轻松操作。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 近两年越来越多的国产和进口品牌气相色谱仪将主机上的操作屏幕从以往的按键式升级到完全触摸屏式的方式,这对于用户来说,带来了全新的操作体验。在仪器可靠性测试方面,岛津创新设计了的微漏诊断技术“两点测定法”,可将不同仪器个体差异的因素降到最低,实现微小漏气检测。无需特别设定,在正常分析状况下仅需一键点击“载气泄漏检查功能”,即可实现载气的自动“微漏诊断”,自动输出结果。让以前不曾发觉的GC微量漏气成为历史。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在软件操作体验方面,现在的发展方向是自动化和流程化,最大化减小用户的操作难度。以岛津在2019年推出的硫化学发光检测器Nexis SCD-2030为例,传统上SCD控制单元较多,需要用户手动操作从开机、启动真空、打开臭氧发生器、调整气体流量、稳定基线、分析到关机等。针对这个操作体验的痛点,岛津将这整个过程全部自动化,而且与工作站软件无缝对接,可以在所设定的时间自动启动,系统检测、最佳参数设定、分析的开始\结束、设备停止等,极大降低了操作难度并提升了分析效率。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在仪器性能方面,气相色谱朝着更高精度、更高灵敏度、更高抗污染性能的方向发展。岛津最新一代电子流量/压力控制技术AFC/APC-2030在控制精度、范围和调节性能方面均有不同程度的提升。通过改进的独立CPU处理器设计,获得了非常精准的流路控制性能,通过改善流路机械加工制作工艺,确保输出的气体更加洁净,噪声抑制达到最大化。即使在各种极端环境下(添加额外的阻力实验)测试,其流量的控制精度仍然非常好。这种精准的流路控制性能对即使是配置了自动阀切换的复杂气相检测而言也游刃有余,可以最大化释放气相色谱仪的潜能。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在色谱柱技术上,岛津创新设计了板式色谱柱,颠覆传统色谱柱概念,在厚度不足1mm的不锈钢板上进行精细化雕刻(光蚀刻),再通过流动路径的内表面失活并进行固定液的涂覆,实现了紧凑且坚固的不锈钢板柱。与之匹配的采用平板加热器,构造了岛津独有的柱盒结构,可实现高效快速分析和多维色谱,这些均是重要的技术革新。此外岛津还推出了气相色谱的降温控制、检测器结构的再优化、氢气安全性保障、移动端远程访问工具等众多创新技术。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 气相色谱仪作为现代实验室的普及型分析仪器,未来会朝着使用简便(分析流程简化、前处理自动化)、网络化、智能化(自检、使用、维护)等方向发展,所有这些方向的核心均是围绕“打造完美的用户体验”。通过新科技的引入(5G技术、AI& amp Iot技术、材料技术、色谱柱技术、软件设计等),不断将硬件、软件等进行优化,实现操作体验和产品性能的完美融合。同时岛津也提出了Analytical Intelligence“分析智能”新概念,其核心在于仪器可以如同熟练的技术人员一样进行系统和软件操作,自动判仪器状态和结果的好坏,并反馈给操作者,同时可弥补不同操作者在分析仪器知识和经验上的差距,确保数据的可靠性,目前体现该设计思想的功能已经越来越多的融入到岛津色谱类产品中。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 在应用方面,气相色谱的热点市场主要在环境监测、能源化工、医药卫生、食品安全、教育科研等领域,热点应用项目主要有:环境领域挥发性有机物VOCs和半挥发性有机物SVOCs分析、医药领域溶剂残留及成分分析、食品领域农药残留/生活饮用水/营养成分分析、能源化工领域传统能源/新能源/化工产品分析等,未来几年这些热点市场的应用将依然活跃。此外,针对一些社会突发的应用需求,气相色谱也提供了强大的支持,比如受新冠肺炎COVID-2019的影响,全球医疗防护用品和消杀用品的需求增长,随之而来的是气相色谱在环氧乙烷残留量检测和乙醇及杂质含量分析等方面需求旺盛。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 岛津在气相色谱领域深耕六十余年,是世界上气相色谱历史最悠久的品牌之一,一直致力于气相色谱仪的技术创新。岛津生产和研发气相色谱的历史可以追溯到1956年,成功研发了日本第一台商用气相色谱仪GC-1A,并于1957年实现商品化生产,为溶剂、药品、石油产品、食品原料等的成分分析带去了革新。后续随着化学产业及食品产业的发展,GC逐渐得以广泛普及,在这期间,岛津陆续推出了超过35款型号的气相色谱仪,其中一些有代表性的型号,比如:1973年发布的最多自动进样100个样品的GC-6A,实现了全自动分析;1981年推出的简洁、专一、单检测器型气相色谱仪GC-8A,这是岛津气相的一款常青树,至今在国内石油化工领域有非常广泛的应用和极佳的口碑,其生产一直延续到2019年;1987年推出的GC-14A,特征是双路填充柱系统,在分析时气相色谱存在基线不稳定的问题,有效抵消柱温箱高温时基线上升对分析造成的影响,加上其耐用性方面的口碑,成为当初市面上卖得最好的气相色谱仪之一;1992年推出的搭载岛津第一代先进流路控制器AFC/APC的GC-17A,正式开始电子化流量控制的新时代;随后的GC-2010,GC-2014等为岛津现代气相色谱产品线奠定了坚实的技术基础; 2013年发布的介质阻挡放电等离子体技术(BID检测器),实现简单操作和高灵敏度的融合;2017年发布的新一代革新驱动型气相色谱仪Nexis GC-2030,以“传承经典,触启未来”为主题,融合了多种创意设计,全面提升用户分析体验;2019年发布的新一代硫化学发光检测系统Nexis SCD-2030, 其以卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,使实验室的效率攀上新的台阶。在深耕气相色谱创新技术的过程中,岛津也作为气相色谱的全球顶级制造商,一直在持续开发能够满足时代要求的产品。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/d6b41355-d297-4fb7-bd19-97a1e206845e.jpg" title=" 岛津1_副本.png" alt=" 岛津1_副本.png" / /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 目前岛津在售的气相色谱仪共有5个型号,分别针对不同的用户和应用定位: Nexis GC-2030:尖端旗舰机型,主要针对追求极佳操作体验和极佳性能的用户,融合多种革新技术。GC-2010 Pro:高端旗舰机型,继承了高性能毛细柱气相色谱GC- 2010 Plus的基本性能,主要针对追加极佳性能的用户。GC-2014:毛细管柱和填充柱通用机型,集高性能、高扩展性和高可靠性为一体。GC-2014C:毛细管柱和填充柱通用机型,集高性价比、高扩展性和高可靠性为一体。GC-2018:基础普及机型,主要针对追加高性价比和高可靠性的用户。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7b63248a-960e-47f5-a66c-703f783b4224.jpg" title=" 岛津2_副本.png" alt=" 岛津2_副本.png" / /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 近年来岛津气相色谱研发团队一个很重要的理念就是“与家电相媲美的易用性”,研发时完全以用户的立场作为出发点,以此来开发真正能诠释气相色谱分析技术的内涵和潜能的创新设计。未来的气相色谱技术将不仅仅被用于研究和专业领域,还有可能成为消费者用来自主分析与健康相关的日常工具。我们相信“完美的用户体验是未来气相色谱的核心竞争力”,通过对操作体验的精益求精,可以使分析回归本质,而不再受限于方法开发、操作过程或分析可靠性的探讨,让用户能真正着眼于 “从样品到结果”上。 /span /p p br/ /p
  • FlavourSpec 气相-离子迁移谱仪用于香水质量鉴别
    FlavourSpec 气相-离子迁移谱仪用于香水质量鉴别 香水宛如让人迷醉的酒,品质越好的其味道才越醇厚悠长,让人回味无穷。劣质廉价的香水味道是无法与优质的香水味道比拟的,因此香水鉴别很重要。那么如何鉴别香水的质量好坏呢?看包装?看色泽?No,这些都是太肤浅了!我们怎么可以只关注外表呢,我们要看本质!对,你猜对了,我们打开包装闻一下,说的高大上点叫品香,嗯,这个有点薄荷味,这个有点薰衣草味.......闻了几个之后怎么觉得每个香水都一样了?非常抱歉您的嗅觉疲劳了。这可怎么办?不用惊慌!交给专业的FlavourSpec气相-离子迁移谱仪,仅需一滴香水,十分钟,检测出所有成分,快速比对出任意不同香水的成分差别。这么神奇?对!就是这么神奇!FlavourSpec气相-离子迁移谱仪首先通过气相色谱柱对分析物进行初步的分离,被初步分离的分析物电离后,进入漂移管,漂移管内有与分析物运动方向相反的漂移气气流,由于各分子的体积大小不同,使得他们与漂移气之间的碰撞效率不同,最终到达检测器(法拉第接收盘)的时间不同,从而实现了对分析物的二次分离。该设备不仅可以快速鉴别香水的质量好坏,品牌的伪劣,批次的差异,而且在仿香工艺方面也大有帮助!芬美意,德之馨两大香精香料公司也强烈推荐使用该设备。 名类新闻不得在内容中添加任何联系方式,新闻底部会自动添加联系我们的功能
  • 半个多世纪 他与色谱相伴相随——缅怀卢佩章院士
    p   “人总是要死的,一个科学家最大的幸福是能对社会、人类做出些贡献。科学家要有创新,必须有坚实的理论和技术基础。有一颗热爱科学的心,才能选准方向,坚持下去。”卢佩章院士在他的书中曾这样写道。 /p p   8月23日,中国科学院大连化学物理研究所对外发布:我国著名分析化学家、中国色谱分析的先驱者之一、中国科学院院士卢佩章于8月23日13时25分在大连逝世,享年92岁。 /p p   卢佩章院士,我国第一台体积色谱仪的设计者。他开创了中国色谱科学,被誉为“中国色谱之父”,为色谱技术在我国的发展和国民经济建设的应用做出了不可磨灭的贡献。半个多世纪,他执著于以色谱为主的分析化学研究,发表了300余篇论文以及大量专著。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/2a38fe2b-3724-4004-80e1-39c0647f92bc.jpg" title=" 40ab56f9314b4fc28f2d0a8b22c55b9e_副本.jpg" / /p p    strong 色谱分析技术为“两弹一星”牢把燃料关 /strong /p p   新中国成立初期,我国的气相色谱研究还是空白。 /p p   色谱,作为一种快速、高效、灵敏的分析、分离技术,是分析化学的重要组成部分,在工农业生产、进出口贸易、国防、科研、医学、生物制药、基因分析学科等方面有着广泛的重要应用。 /p p   1953年,卢佩章和他的研究小组设计出我国第一台体积色谱仪,发展了腐蚀性气体色谱等一系列国防分析技术和仪器,使分析石油样品的速度由原来30多小时缩短为不到1小时,所用样品量仅是原来的千分之一,这项色谱分离技术很快被全国的石油化工企业采用。 /p p   抗美援朝期间,卢佩章接受国防科研分析任务,协助鞍钢焦化厂制取甲苯,为前线生产急需的TNT炸药,为提高炸药产量做出重大贡献。 /p p   六十年代,是我国核工业发展的最关键时期,在前苏联专家撤走、我国自己制造原子弹最困难时,卢佩章和他的研究小组承担了测定金属铀235和铀238同位素中气体杂质的科研课题。在卢佩章的领导下,研究小组在极短的时间里,完成了原子能工业应用的气相色谱研究,创建了固体中痕量气体的色谱分析,准确测定出金属铀235和铀238这两种同位素气体杂质的含量,为中国第一颗原子弹的爆炸成功做出分析化学工作者应尽的责任。 /p p    strong 解决液氢用于火箭燃料的关键技术 /strong /p p   卢佩章出生于1925年10月。1948年,他从同济大学理学院化学系毕业后在同济大学化学系任教,1949年9月来到中国科学院大连化学物理研究所工作。 /p p   最初来到所里时,卢佩章是想搞催化方面研究,但国家任务的神圣感和科学家的责任感很快使他改变了专业兴趣和研究方向,与我国国防工业发展和色谱研究结下不解之缘。 /p p   核潜艇需要在水下连续航行数月以至一年以上,但艇上的空气净化、再生以及含氧量是制约各国核潜艇技术发展的一大要素。七十年代,卢佩章接受了为我国第一艘核潜艇密封舱气体分析的紧急任务,随后他带领科研小组研制出当时世界上最先进的船用色谱仪。 /p p   拥有先进可靠的运载火箭武器系统是当今世界强国的重要标志。当时国家迫切需要生产液氢及稀有气体,卢佩章又组建了超纯气体分析组,研制开发了国际上只有个别发达国家才有的新型分子筛催化剂,使我国先于其他国家成功研制出脱氧分子筛105催化剂,制备出6个“9”以上的超纯氢、氦、氩等气体以及相应的测试方法,满足了核工业、航天工业和电子工业对超纯气体的需要,解决了液氢生产制备的关键技术环节,为液氢用于火箭燃料做出贡献。 /p p   strong  历经磨难“痴心”未改 /strong /p p   童年时经历过抗日战争,曾因参加地下党组织的反饥饿反内战运动而被捕入狱,青年时又被关过“牛棚”,历经各种磨难,但卢佩章从未改变热爱祖国、热爱科学的心。经过几代人的努力,中国色谱技术已跻身国际一流。 /p p   改革开放后,他将工作重点转向对年轻一代的培养,并提出发展环境污染、中药复方、疾病诊断用液体等复杂混合物的智能分析方向。 /p p   1980年,卢佩章以他在新中国分析化学方面、尤其是在开创色谱学科领域、并把这种先进的色谱分析分离技术运用到国防工业和国民经济建设中所取得的卓越成就,当选为中国科学院学部委员(院士)。1999年,他参加了党和国家为研制“两弹一星”做出重大贡献的科技专家庆功大会。 /p p   上世纪90年代初,卢佩章主动提出不再担任研究所领导和学会的领导工作,而是让更多的年轻人能挑起更重要的担子。 /p p   “卢院士弟子并不是特别多,但挑大梁成为国际色谱界著名专家的多。”人们曾这样评价卢佩章院士和他的弟子。他的学生中,有8名已是博士生导师,其中张玉奎是22岁师从卢院士,后又协助他带研究生,2003年,张玉奎当选为中科院院士。 /p p   提起他的弟子们,卢佩章曾由衷地说:“看到他们干出成绩,比我自己成功还高兴。” /p p   “卢院士始终关心我们年轻人的成长,并尽可能为我们创造良好的科研环境,提供最新的科研方向,他严谨的科学作风,豁达开朗的人生态度,非常值得我们学习。”他的学生、中科院大连化物所许国旺研究员说 。 /p p   作为同济大学的毕业生,他曾多次回到校讲学,亲自指导化学学科的硕士、博士研究生,对同济大学的化学学科发展提出指导性意见。 /p p   “科学家应该有一颗热爱祖国、热爱科学的心。我不相信一个只追求个人名利的人,能在科学上作出更大的贡献。”他曾无限感慨地说:“我只是集体中的一个兵,一个小兵,成绩都是集体团结协作,开拓进取的结果,我不过是尽到了一个分析工作者的责任而已。” /p
  • 阿蛋学仪器 | 质谱的分子涡轮泵坏了怎么办?
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦! 阿蛋学渣,毕业于某大学化学院。屌丝男一枚,无才无貌,不文艺也不爱运动,五音不全,唯一的爱好是LOL。 百草阿蛋的师姐,学霸。标准白富美,善良、有爱心。娇滴滴的外表下有着一颗女汉子的心。质谱的分子涡轮泵坏了怎么办?阿蛋是个标准的学渣,走的后门才找到的某出入境的检测工作。老板让他管理API4000三重四极杆液质联用仪 (老板心真大) 。阿蛋看到这台大家伙也惊到了,“太高大上了,这东西即使在一线城市也可以换套房啦,装逼神器啊,够我玩好几年拉!”老板眼一瞪:“认真点,以后别整天就撸啊撸的,跟着你百草师姐好好学!”阿蛋赶脚这是要走上人生巅峰的节奏啊,“老板,我一定跟师̷̷姐好好学!”阿蛋拿起了天天撸的劲头,努力学习《仪器人的自我修养》,24小时不停的操机,结果........几个月后仪器基本没有维护挂了!仪器无法启动??!!!阿蛋彻底懵逼,赶紧找师姐救命,师姐也很紧张,“你也太会玩了,挑这么贵的坏,先找一下AB维修工程师看一下能否修好,一定要尽力减少损失,咱们单位是要做成本核算的,仪器坏了要扣你工资的!”“What?扣工资?要扣我几年吗?”“你算错了,就你那点工资,扣到你退休都不够”阿蛋顿时胸口浪潮翻涌,当场吐血三升!联系上了AB的王工程师,上门一通检测后.....“这仪器十几年了,可以考虑换新的了!” 阿蛋再吐血̷̷“让我去屎吧”好在师姐见过世面 “王̷哥̷,您再看看,您是我见过的技术最牛掰的工程师啦,您一定能修的好嘛!人家都没钱买化妆品拉,L”王工 “那是,你王哥修不好就没人能修好了,质谱没有坏,问题是出在分子涡轮泵负荷过热,泵油也没及时更换,烧坏了,我们厂家是不修泵的,消耗件而已,你只要买个新的就行啦,很便宜的!”(据说因为离子源设计导致AB的真空负荷相比其他品牌更大,AB的分子泵相对其他品牌更容易坏!)“那得多少钱呢?”“分子泵18万不打折,安装调试费3万,一共21万,货期6周”师姐:“那比整台仪器还是便宜很多,谢谢王哥,我先跟老板商量一下,到时再给你消息!”听到这里阿蛋又活过来了:“师姐,那我们赶紧跟老板申请费用吧”师姐小声回复“不要捉急,我听朋友说广州绿百草公司能修分子泵,就是做色谱耗材和仪器很知名的那家。”“广州绿百草吗?和你名字好像哦,师姐,不会是你开的吧?”“滚粗̷̷”阿蛋马上联系上广州绿百草公司,内外兼修的技术专家了解情况后给了两个方案“方案一、换新泵,这个分子泵型号是Varian TV801NAV,现在属于Agilent公司,我们打完折12万,包安装调试费。方案二、修泵,如果没有配件更换,维修费3万即可,1-2周搞定,质保期一年,如果需要更换配件,按照实际配件价格收费,大概5千-2万不等。”阿蛋把几个方案详细情况汇报给了老板,经过爱抠鼻和抠门的老板再三思虑后决定:“让广州绿百草修吧,跟他们耗材仪器合作的挺好的,售后一直很靠谱。”阿蛋主动要求将功折罪,陪同监督修理,作为随行记者,做了记录,并拍了照片。拆卸过程:分子泵标准维修项目:*超声波全面清洗转/定子叶片及腔体 并烘干 *马达线圈阻值测量,转子定子间隙测量*更换全套原装进口陶瓷轴承,密封件等损耗品 *6000-39000rpm/分钟全速动平衡分析及校准*根据ISO1940/1& ANSI S2.19,调整测试动平衡至G0.16标准*测试极限真空值*氦质谱检漏仪检漏,保证分子泵渗漏率小于2.0*10-9mbar*L/S*0-20KHz震动频谱加速度分析安装方式为:垂直90度异常更换部件:无分子泵TV801 SN:207962真空度5.40*10-7mbar隔膜泵测试分子泵对应电流为917mA分子泵渗漏率为9.0*10-10mbar*1/s结论:分子泵TV801SN:207962,启动时间,分子泵电流,分子泵0-20KHz振动频谱,极限真空值等都在标准范围;维修测试项目全部通过,特批准出厂。最终,阿蛋在广州绿百草公司的帮助下花了3万元修好了质谱,他又可以开心的玩耍了!想知道阿蛋好不容易修好仪器后又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 仪器选型篇 | 一文了解“气相色谱”的前世今生和庞大家族
    气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。它是一种新的分离、分析技术,在工业、农业、国防、建设、科学研究中具有广泛应用。今天我们就其发展史、检测原理、结构及应用等和大家进行探讨,一起来学习一下吧~(还有哪些您想听的知识点文中没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎积极留言~)0一、“气相色谱仪”的诞生和发展GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。从仪器来看,历史上最早的气相色谱仪是实验室自建仪器。1947年,捷克色谱学家Jaroslav Jank发明的“杨那克型气相色谱仪”,在历史上曾经流行过一段时间。该仪器以CO2为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CO2进入测氮管之前,通过KOH溶液吸收掉CO2,按时间记录气体体积的增量。不足的是,它只能测室温下为气体的样品,样品中的CO2不能被测定,没有实现自动化;另外它结构简单,很多实验室自行搭建,没有发展到“让非专家能轻松使用”的商品化仪器阶段。▲ 图源网络虽然Jaroslav Jank的发明对于气相色谱的发展有很大的利好,但是真正气相色谱的发展要从诺贝尔化学奖得主英国的马丁(A.J.P.Martin)和辛格(R.L.M.Synge)聊起......▲ 属于“气相色谱”的关键时间点(图源网络)1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD出现了衡电流、衡热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。▲ 图源网络20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。▲ VARIAN 气相色谱仪(图源网络)二、“气相色谱仪”的结构及原理气相色谱仪的六大系统气相色谱仪的种类繁多,功能各异,但其基本结构相似。气相色谱仪一般由气路系统、进样系统、分离系统(色谱柱系统)、检测及温控系统、记录系统组成。▲ 图源网络1. 气路系统气路系统包括气源、净化干燥管和载气流速控制及气体化装置,是一个载气连续运行的密闭管路系统。通过该系统可以获得纯净的、流速稳定的载气。它的气密性、流量测量的准确性及载气流速的稳定性,都是影响气相色谱仪性能的重要因素。气相色谱中常用的载气有氢气 、氮气 、氩气,纯度要求99.99% 以上,且化学惰性好,不与相关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。气相色谱选择载气,是根据色谱柱系统及色谱仪的检测器等条件来确定的。氢气(H2)具有相对分子质量小、热导系数大、黏度小等特点,是热导检测器常用的载气、氢火焰离子化检测器中必用的燃气,但氢气易燃、易爆,使用时要特别注意安全。氮气(N2)相对分子质量较大、扩散系数小、柱效相对较高、安全、价格便宜,因此,氮气是最为常用的载气,在氢火焰离子化检测器中常用,但由于其热导系数低、灵敏度差、定量线性范围较窄,因此在热导检测器中少用。氦气(He)相对分子量小、热导系数大、黏度小、使用时线速度大,与氢气相比,更安全,但成本高,常用于气一质联用分析。氩气(Ar)相对分子量大、热导系数小,但由于成本高,因而应用较少。2. 进样系统(1)进样器:根据试样的状态不同,采用不同的进样器。液体样品的进样一般采用微量注射器。气体样品的进样常用色谱仪本身配置的推拉式六通阀或旋转式六通阀。固体试样一般先溶解于适当试剂中,然后用微量注射器进样。(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,其作用是将液体或固体试样瞬间气化为蒸气。为了让样品在气化室中瞬间气化而不分解,因此要求气化室热容量大,无催化效应。(3)加热系统:用以保证试样气化,其作用是将液体或固体试样在进入色谱柱之前瞬间气化,然后快速定量地转入到色谱柱中。3. 分离系统分离系统是色谱仪的核心。其作用就是把样品中的各个组分分离开来。分离系统由柱室、色谱柱、温控部件组成。其中色谱柱是色谱仪的核心部件。色谱柱主要有两类:填充柱和毛细管柱。柱材料包括金属、玻璃、融熔石英、聚四氟乙烯等。色谱柱的分离效果除与柱长、柱径和柱形有关外,还与所选用的固定相和柱填料的制备技术以及操作条件等许多因素有关。4. 检测系统检测器是将经色谱柱分离出的各组分的浓度或质量(含量)转变成易被测量的电信号(如电压、电流等),并进行信号处理的一种装置,是色谱仪的眼睛。通常由检测元件、放大器、数模转换器三部分组成。被色谱柱分离后的组分依次进检测器,按其浓度或质量随时间的变化,转化成相应电信号,经放大后记录和显示,绘出色谱图。检测器性能的好坏将直接影响到色谱仪器最终分析结果的准确性。根据检测器的响应原理,可将其分为浓度型检测器和质量型检测器。(1)浓度型检测器:测量的是载气中组分浓度的瞬间变化,即检测器的响应值正比于组分的浓度。如热导检测器、电子捕获检测器。(2)质量型检测器:测量的是载气中所携带的样品进入检测器的速度变化,即检测器的响应信号正比于单位时间内组分进入检测器的质量。如氢火焰离子化检测器和火焰光度检测器。5. 温度控制系统在气相色谱测定中,温度控制是重要的指标,直接影响柱的分离效能、检测器的灵敏度和稳定性。温度控制系统主要指对气化室、色谱柱、检测器三处的温度控制。在气化室要保证液体试样瞬间气化;在色谱柱室要准确控制分离需要的温度,当试样复杂时,分离室温度需要按一定程序控制温度变化,保证各组分在最佳温度下分离;在检测器要使被分离后的组分通过时不在此处冷凝。控温方式分恒温和程序升温两种。(1)恒温模式:对于沸程不太宽的简单样品,可采用恒温模式。一般气体分析和简单液体样品分析都采用恒温模式。 (2)程序升温:程序升温是指在一个分析周期里色谱柱的温度随时间由低温到高温呈线性或非线性地变化,使沸点不同的组分,各在其最佳柱温下流出,从而改善分离效果,缩短分析时间。对于沸程较宽的复杂样品,如果在恒温下分离很难达到好的分离效果,应使用程序升温方法。6. 记录系统记录系统是记录检测器的检测信号,进行定量数据处理。一般采用自动平衡式电子电位差计进行记录,绘制出色谱图。一些色谱仪配备有自动积分仪,可测量色谱峰的面积,直接提供定量分析的准确数据。三、“气相色谱仪”的分类按固定相状态不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱,在实际气相色谱分析中,气液色谱占90%以上。 按色谱分离原理,可分为吸附色谱和分配色谱两类。吸附色谱是利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱;分配色谱是利用不同的组分在两相中有不同的分配系数以达到分离的色谱。气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱柱外观形态,可分为填充柱色谱和毛细管柱色谱两类。一般填充柱是将固定相装在一根玻璃或金属管中,管内径为2~6毫米。毛细管柱色谱通常为常用内径0.1~0.5mm的玻璃或弹性石英毛细管。毛细管柱比填充柱有更高的分离效率,但因其内径小,柱容量小,且对进样技术要求高,载气流速控制要求更为精确。四、“气相色谱仪”的应用气相色谱仪利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。气相色谱法作为近代迅速发展起来的一种新型分离分析技术,具有分离效能高,分析速度快,样品用量少等特点,被广泛用于石油化工、环境监测、医药生产、以及食品分析等领域。1、石油化工气相色谱常用于石油化工行业中常量气体组成及痕量杂质分析,一般采用热导池检测器(TCD)和氢火焰离子化检测器(FID)色谱法。汽油馏分组成分析也石化分析的一个重要部分,主要包括汽油中烃族、芳烃、含氧化合物、含硫化合物的组成分析,均离不开气相色谱的身影。2、环境监测气相色谱技术在土壤中的应用主要体现在对有机污染物的检测,包括农残、多氯联苯、多环芳烃等持久性污染物的分析等。环境水和生活饮用水中卤代烃、苯系物、有机酸、挥发性有机物(VOCs)等沸点较低,易汽化,气相色谱技术在上述物质的分析检测中具有广泛应用。伴随着工业生产,不可避免的会有有毒有害的挥发性有机物分散到空气中,利用空气采样管吸附,然后通过石油醚解析,并使用气相色谱外标法定性定量,可满足大气中多种有毒有害组分的分析。3、医药分析气相色谱在中药定性鉴别、杂质检查、含量测定、中药挥发油分析、中药农药残留量等各项指标分析中都有广泛应用。随着气相色谱与质谱、红外光谱等技术的联用,为未知试样的定性分析提供了新的手段,特别是与质谱联用适合于中药中挥发性成分指纹图谱的研究。中药的安全性控制,包括毒性成分、有害元素、农药残留等是其质量评价的重要内容。《中国药典》附录中收载有“农药残留量测定法“,对有机磷、有机氯类以及拟除虫菊酯类农药采用GC法测定。4、食品分析食品安全检测一直是重要的民生问题之一,气相色谱因其灵敏度高、分离效果好,在食品检测中已经得到广泛应用。主要应用之一为对水果蔬菜农药残留方面的检测。使用气相色谱法,可以对几十种农药同时进行检测。一般来说,主要通过毛细管色谱柱分离并使用ECD或FID进行检测,该方法具有速度快、结果准确的优势。主要应用之二为对食品添加剂的检测,如甜味剂、防腐剂等,一般都是采用GC/FID气相色谱技术。气相色谱还可以用于食品理化性质的分析,如白酒中甲醇含量、酯类成分分析等,以此来确定白酒品质和等级。五、“气相色谱仪”的安装及调试(一)色谱仪的安装准备 1、对色谱仪分析室的要求a. 分析室周围不得有强磁场,易燃及强腐蚀性气体。b. 室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的实验室最好安装空调。c. 准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般要求高0.6~0.8米,平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修。d. 供仪器使用的动力线路容量应在10KVA左右,且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线,电源必须接地良好。2、气源准备及净化a. 气源准备一般用氮气,氢气,空气这三种气体,有的实验室使用氢气发生器和空气压缩机也可以,但空压机必须无油。当钢瓶气压下降到1~2Mpa时,应更换气瓶。上述气体一般要求纯度达到99.99%,电子捕获检测器必须使用高纯气源(纯度达99.999%及以上)。b. 气源净化为了除去气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。气相色谱净化装置装填的主要有5A分子筛(吸附气源中的水分和低摩尔质量的有机杂质),在5A分子筛之后装入少量变色硅胶(当分子筛失效时,水开始被变色硅胶吸附),硅胶变红说明分子筛需要重新活化。还需装入一些活性炭(吸附烃类杂质)。应定期进行各种净化剂的更换或烘干,以确保气体纯度。注意:净化管的出口和入口处应加标志;出口处应当用少量纱布或脱脂棉塞上,防止净化机粉尘流入气相色谱仪。(二)色谱仪成套性检查及安装仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接记录仪和数据处理机。注意各接头不要接错。1、外气路的连接a. 减压阀的安装有的仪器随机带有减压阀,若没有的则要购买。所用的是2只氧气,1只氢气减压阀。将2只氧气减压阀,1只氢气减压阀分别装到氮气,空气和氢气钢瓶上(注意氢气减压阀螺纹是反向的,并在接口处加上所附的O形塑料垫圈,以便密封),旋紧螺帽后,关闭减压阀调节手柄(即旋松),打开钢瓶高压阀,此时减压阀高压表应有指示,关闭高压阀后,其指示压力不应下降,否则有漏,应及时排除(用垫圈或生料带密封),有时高压阀也会漏,要注意。然后旋动调节手柄将余气排掉。b. 外气路连接把钢瓶中的气体引入色谱仪中,有的采用不锈钢管(φ2×0.5mm),有的采用耐压塑料管(φ3×0.5mm)。从钢瓶到仪器的管路长度视需要而定,不宜过长,然后用不锈钢管或耐压塑料管把气源和仪器(气体进口)连接起来。c. 外气路检漏把主机气路面板上载气,氢气,空气的阀旋钮关闭,然后开启各路钢瓶的高压阀,调节减压阀上低压表输出压力,使载气,空气压力为0.35~0.6Mpa(约3.5~6.0kg/cm3),氢气压力为0.2~0.35 Mpa。然后关闭高压阀,此时减压阀上低压表指示值不应下降,如下降,则说明连接气路中有漏,应予排除。2、色谱仪气路气密性检查气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生爆炸的危险,故在操作使用前必须进行这项工作。方法是,打开色谱柱箱盖,把柱子从检测器上拆下,将柱口堵死,然后开启载气流路,调低压输出压力为0.35~0.6Mpa,打开主机面板上的载气旋钮,此时压力表应有指示。最后将载气旋钮关闭,半小时内其柱前压力指示值不应有下降,若有下降则有漏,应予排除。若是主机内气路有漏,则拆下主机有关侧板,用肥皂水(最好是十二烷基磺酸钠溶液)逐个接头检漏,最后将肥皂水擦干。3、仪器开机检查及调试仪器的调试把气路,仪器等按上述接好,安置好后,便可进行下面检查和调试工作。a. 将接通载气,调节主机面板上的载气旋钮(即:载气稳流阀),使载气流量为20~30ml/min。b. 启动主机,检查是否有异样声响及仪器运转情况;若无异常,检查仪器温控准确度,包括柱温箱、进样器、检测器温度控制精度,一般要求温控精度达到0.01度。4、色谱柱安装及老化色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤:a. 检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。b. 将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平。c. 将色谱柱连接于进样口上。(色谱柱在进样口中插入深度应视仪器不同而定)正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后,如果针尖与色谱柱入口相差1-2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4~1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,还有可能对色谱柱造成永久损坏。d. 接通载气当色谱柱与进样口接好后,通载气, 调节柱前压以得到合适的载气流速。将色谱柱的出口端插入装有己烷的样品瓶中,正常情况下,我们可以看见瓶中稳定持续的气泡。如果没有气泡,就要重新检查一下载气装置和流量控制器等是否正确设置,并检查一下整个气路有无泄漏。等所有问题解决后,将色谱柱出口从瓶中取出,保证柱端口无溶剂残留,再进行下一步的安装。e. 将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。f. 确定载气流量,再对色谱柱的安装进行检查。(注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。)g. 色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。将色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10-20℃左右,但是一定不能超过色谱柱的温度上限。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5-10分钟开始下降,并且会持续30-90分钟。当到达一个固定的值后就会稳定下来。如果在2-3小时后基线仍无法稳定或在15-20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。六、“气相色谱仪”的使用注意事项1、使用纯度满足要求的载气:载气一定要用高纯级的,以避免干扰分析和污染色谱柱或检测器。2、及时更换进石墨密封垫:石墨密封垫漏气是GC常见故障之一。尽量不要在不同色谱柱上重复使用同一密封垫,即使同一根柱卸下重新安装时,最好也要换新密封垫,这样能保证更高的工作效率。3、定期更换气体净化器填料:变色硅胶可据颜色变化来判断其性能,但分子筛等吸附有机物的净化器就不好用肉眼判断了,所以须定期更换,最好3个月更换一次。如果硅胶与分子筛装在一起,则更换硅胶时也要更换分子筛。4、使用性能可靠的气体减压阀:新的减压阀在使用时一定要试漏,在长期的使用过程中也要经常检漏。如果不注意该问题,轻则造成气体浪费,重则出现安全问题。5、定期更换进样衬垫:进样口衬垫漏气也是GC常见故障之一。另外,衬垫的老化降解也会给色谱分析带来干扰。比如其碎屑掉进汽化室内也可能导致鬼峰。至于多长时间换一次衬垫,则要看所分析的样品性质和分析条件而定。一般不建议,一个衬垫连续使用时间超过一周。6、及时清洗注射器:保持注射器清洁能避免样品记忆效应的干扰。更换样品时要清洗,用同一样品多次进样时也要用样品本身清洗注射器。一支注射器暂时不用时,更要彻底清洗,否则残留其中的样品可能将针芯粘牢,造成注射器报废。7、定期检查并清洗进样衬管:仪器长期使用后,进样衬管内会有焦油状物质,这是样品中的不挥发成分造成的。此外还会有颗粒状物质积存(隔垫碎屑,样品中的固体物质)这些都会干扰分析的正常进行。因此要定期检查,及时清洗。在衬管中填充一些经硅烷化处理的石英玻璃毛,既可提高样品的汽化效率,又能防止隔垫碎屑进入色谱柱造成堵塞。8、做好仪器使用和分析记录并定期归档:这是仪器的履历,应逐日记录,包括操作者、分析样品及条件、仪器工作状态等,一旦仪器出现问题,这是查找原因的重要资料。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》七、“气相色谱仪”的常见故障及排除1、进样后不出色谱峰气相色谱仪在进样后检测信号没有变化,不出峰,输出仍为直线。遇到该情况,应从进样针、进样口到检测器的顺序逐一检查。a. 首先检查进样针是否堵塞;b. 再检查进样口和检测器的石墨垫圈是否紧固、不漏气;c. 检查色谱柱是否断裂或漏气;d. 检测器是否出现故障,如堵塞或者未点火。2、基线出现负峰a. 载气不纯:当样品中的物质含量比载气低时便会有负峰,此时更换纯度更高的载气;b. TCD中,样品热导率大于载气热导率,或使用氮气作载气,或TCD电源接反;c. 积分仪或记录仪输入线接反,倒相开关位置改变;d. 在双柱系统中,进样时进错色谱柱;e. 离子化检测器输出选择开关的位置错误,放射源或电极被污染;f. 脉冲发生器不正常,收集极接触不良或短路。3、基线漂移在温度不变的情况下,若基线有漂移通常可考虑以下几种情况:a. 检查色谱仪本身和积分仪的接地线是否良好,保证接地可靠;b. 载气漏气、流速不稳也会使基线漂移,检漏;c. 柱箱密封性要好,使箱体周围没有间隙,防止室内空气进入箱内而造成温度不稳定;d. 载气阀(包括色谱内部阀)有故障,气源压力不稳;e. 从进样系统到检测器的连接管,或者TCD的池体受到污染需要清洗掉污染物;f. 若色谱柱填充物流失,需要重新老化色谱柱。在高灵敏度操作时,由于柱流失使基线漂移是正常现象;g. TCD 故障,检修或更换;h. 检测器的温度过高(或过低)。对于TCD,检测器质量较大,当温度改变时,热容大,温度平衡慢,允许有一定时间使基线稳定;i. 检测器检测元件被氧化,用不锈钢管或铜管替代四氟乙烯管,这样空气中的氧气不会渗透到载气管线中,从而减少元件的氧化;j. 基线漂移很大,色谱柱老化不充分,再次进行老化,色谱柱被污染也会发生大的漂移,只有充分老化色谱柱才行。色谱柱老化后又出现了大的基线漂移,可能是有高沸点液体样品在程序升温过程中没有被吹出去,在色谱柱允许的最高使用温度下,通载气,升温清洗;k. 如果是双柱系统操作时,两路载气不平衡,设置相同的柱流速即可。4、程序升温过程中基线上升在程序升温过程中基线上升,可能的原因以及排除方法如下:a. 色谱柱内固定相流失现象相对上升,可以老化色谱柱并进行柱补偿;b. 两柱的流速不一样,设置相同的柱流速;c. 色谱柱有可能被污染,充分老化色谱柱2h以上。5、基线不在零位基线不在零位,故障原因较多,主要考虑以下几种:a. 积分仪零点没调合适,重调其零点;积分仪接线错误,检查各条连接线,特别检查屏蔽线的接法;积分仪滑线电阻故障,检修或更换;b. TCD 电源故障或没有调平衡,检修或更换新件,重调平衡;c. 柱的固定相流失大,改用低流失柱;d. 检测器可能被污染,需要清洗。6、基线出现尖峰基线出现无规律或有规律的尖峰,其原因有:a. 房间内的开关门,排气扇的启动等使大气压迅速改变,拨打手机时产生的电磁信号流也会影响,可以通过改善仪器放置环境来解决这一问题;b. TCD电源故障,检修或更换新件;c. 热丝老化不好,充分老化;d. 温度不稳,桥流过大,设置合适的参数;e. 载气被污染,用大流量载气吹洗管路,净化载气或更换过滤器,或更换新的载气钢瓶;f. 有其他高沸点液体残留在TCD 检测器出口,将检测器温度升高,但不能超过其使用温度,使凝聚物蒸发, 或在检测器排气口注入少量的丙酮等溶剂热清洗,除去管内的凝聚物;g. TCD的检测器元件故障或桥流不稳定,更换有故障的元件。7、出现拖尾峰出现拖尾峰,可进行如下几种操作:a. 减少样品的进样量;b. 进样器气化管有残渣或破损,清洗或更换,检查检测器是否被污染,必要时清洗;c. 检查载气流量、隔膜清洗流量是否设置正确,分流比或其他条件设置是否合理;d. 气化温度设置是否正确,若柱箱温度过低,增加其温度,提高检测器温度;e. 色谱柱安装方法是否正确,在柱入口端切除1~2 m,使用的柱不合适,致使样品和固相担体相互作用,更换合适的色谱柱,填充柱使用时间过长,重新装填柱子。8、出现圆顶或平顶峰出现圆顶或平顶峰,有如下可能:a. 操作超出检测器输出范围,针对此种情况可以减小进样量,降低灵敏度;b. 积分仪故障或重新调整。9、信号陡然下降到原基线信号陡然下降到原基线,故障原因如下:a. 样品量过大,减小样品量;b. 检测器信号值太高,调零;信号线发生短路,或检测器已坏,进行修理更换;c. 载气流速太大,调整流速。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》八、“气相色谱仪”的采购建议气相色谱仪厂家众多,我们如何从众多气相色谱仪厂家之中找出合适自己样品分析的气相色谱仪呢?下面针对以上问题,为大家列举你在购买气相色谱仪的时候需要考虑的事情。1、被分析样品情况a. 样品本身的组成和状态,是气态,液态,固态还是混合态,能直接用气相色谱仪分析吗?b. 被测组分是热不稳定,易分解,还是易催化反应。时间,温度,压力等变化是否会引起被测组分的变化;c. 样品中是否有烟尘,悬浮物,高佛点组分和有腐蚀性成分。以考虑样品如何采集获得,如何进行样品的预处理;d. 样品来源容易吗?允许样品的消耗量,有利于选择进样方式;e. 不需分析的组分及大致的浓度范围;f. 每天需要分析样品的次数,两次分析的间隔时间。2、分析的目的a. 做定性分析:被分析组分已知或未知,有无标准物;b. 定量分析:在哪个范围—常量(10-1~10-3);半微量(10-3~10-5);微量(10-5~10-7);痕量(10-6~10-9)或超痕量(≤10-9);c. 定量精度和分析准确性,若是半定量要求就简单的多。3、单位需求定位a. 科研院所——各方面要求高;b. 监测和分析中心——数据准确可靠;c. 在线的现场分析用——重现性高。4、检出限仪器的检出限表示在一定的置信范围内能与仪器噪音相区别的最小检测信号对应的待测物质的量,是评价仪器的重要指标——简单的说,检出限越低,那么检测出来低浓度物质含量的能力越强。因此,在痕量分析中,应当尽可能的选择检出限较低的仪器。目前来说,国内外气相色谱仪中,FID和ECD检测器的检出限差别不大,其他检测器则有一定的差距。 5、相关标准及同行咨询寻找有无被分析样品的国标、行标、企标或国外有关参考资料,若有,在标准中会给出在一般场合下,应使用气相色谱仪的功能和技术要求。同行有无做同类样品的分析者,若有,对选型和日后建立色谱分析方法会有直接帮助。6、同一种样品,从理论上讲可能有用多种仪器的分析方法,从仪器的性价比,操作特性,维修服务等多方比较,列出选用气色谱仪分析的理由。7、实用性实用性指标某种程度上来说就是性价比。评价实用性应该从两个方面来谈:一方面是自己的仪器预算是多少,在预算的范围内购买合适档位的仪器;另外一方面是能不能满足自己分析要求,只要可以满足自己的分析要求,不一定要购买贵的。九、“气相色谱仪”检测器的分类及选择1、气相色谱仪检测器分类检测器是气相色谱仪的重要部件,其作用是将色谱柱分离后各组分在载气中浓度或质量变化转换成易于测量的电信号,然后记录并显示出来。根据检测原理的不同,气相色谱检测器可分为浓度型检测器和质量型检测器。浓度型检测器测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如热导检测器和电子捕获检测器。质量型检测器测量的是载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的量成正比。如火焰离子化检测器和火焰光度检测器等。根据样品是否被破坏,气相色谱检测器又可分为破坏性检测器和非破坏性检测器。破坏性检测器有:FID(氢火焰离子化检测器)、NPD(氮磷检测器)、FPD火焰光度检测器)等;非破坏性检测器有:TCD(热导池检测器)、PID(光离子化检测器)、ECD(电子捕获检测器)等。根据对被检测物质响应情况,气相色谱检测器又可分为通用型检测器和选择性检测器。常见的通用型检测器有:TCD(热导池检测器)、FID(氢火焰离子化检测器)、PID(光离子化检测器)。常见的选择性检测器有:FPD(火焰光度检测器)、ECD(电子捕获检测器)、NPD(氮磷检测器)。2、气相色谱常见的6种检测器a. 氢火焰离子化检测器(FID)通过有机化合物在氢气-空气的扩散火焰中燃烧形成离子流,产生电信号,经过放大,然后由记录器记录电压随时间的变化,从而得出色谱图。其特点是只对含碳有机物有明显的响应,而对非烃类、惰性气体或在火焰中难电离或不电离的物质,则讯号较低或无信号,如一些氮的氧化物(NO、N2O等)、一些无机气体(SO2、NH3等)、CO2、CS2和H2O等,甲酸因氧化态较高不易在火焰中形成离子也不产生显著的信号。FID检测器具有灵敏度高,线性范围宽,响应快等特点,常用于微量有机物分析。b. 热导检测器(TCD)根据各种物质均具有不同的热传导系数,当载气中混入其他气态物质时,热导率发生变化,利用被测组分与载气的热导率不同来检测组分的浓度变化。其结构简单,性能稳定,对无机和有机物都有响应,通用性好,而且线性范围宽,可用于常量、半微量分析。c. 电子捕获检测器(ECD)利用放射性同位素作为放射源轰击载气生成正离子和自由电子,在所施电场的影响下,电子向正极移动,形成了一定的离子流,称为基流。当载气带着微量的电负性组分(含卤素、硫、磷、氰基等的化合物)进入时,这些亲电子的组分将捕获电子形成负离子而使基流下降,从而产生检测信号。ECD检测器对电负性物质有极高的灵敏度,对非电负性的物质则没有响应。常用于有机氯农药残留分析。d. 火焰光度检测器(FPD)通过燃烧分解从色谱柱中流出的含P和S的化合物分子,使之碎片化,然后把这些碎片激发到高能级,这些激发态的分子回到基态,发射出特征的带状光谱。这些发射光谱通过392nm(对于硫)或526nm(对于磷)处的滤光片,用光电倍增管测定其强度。FPD检测器对含硫、磷化合物有高选择性和高灵敏度,常用于有机磷农药残留量测定、大气中痕量硫化物的微量分析。e. 氮磷检测器(NPD)具有与FID相似的结构,只是将一种涂有碱金属盐(如硅酸钠或硅酸铷)的陶瓷珠放置在燃烧的氢火焰和收集气之间,当试样蒸汽和氢气流经碱金属盐表面时,含N、P的化合物便会从被氢气还原的碱金属蒸汽上获得电子而离子化;失去电子的碱金属则形成盐再沉积到陶瓷珠表面上。这个碱金属陶珠是作为电子转移反应的催化剂来起作用的。NPD检测器只对含磷和氮化合物有很高的选择性和灵敏度,用于有机磷、含氮化合物的微量分析,主要用于食品、药品、农药残留以及亚硝胺类等物质的分析。f. 光离子化检测器(PID)是一种非破坏性的检测器,通过光子激发使载气中的样品分子电离而产生信号。10.2eV的光源使用得最广,它能使大多数分子电离(永久性气体、低于5个碳数的烃类、甲醇、乙腈和各种氯代甲烷除外)。PID检测器已经成功用于测定工业环境中的CS2、H2S、CH3SH和四乙基铅,水中芳香烃,无机组份,农药和药品中的含硫、氯组分等。十、“气相色谱仪”的常见品牌看到这里,相信各位已经对‍‍‍‍‍‍‍‍‍‍气相色谱仪有了较深的了解。那么目前,气相色谱的品牌都有哪些呢?最受关注的又是哪些呢?(以品牌简称首字母排序)A. 安捷伦产品:Agilent 8890 气相色谱系统Agilent 7890B 气相色谱仪等▲ Agilent 8890 气相色谱系统B. 北分瑞利产品:SP-3420A气相色谱仪北分瑞利气相色谱仪SP-3500等▲ SP-3420A气相色谱仪C. 岛津产品:岛津旗舰级气相色谱仪 Nexis GC-2030岛津气相色谱仪 GC-2010 Pro等▲ 岛津旗舰级气相色谱仪 Nexis GC-2030D. 东西分析产品:GC-4100系列气相色谱仪东西分析GC-4000A系列气相色谱仪等▲ GC-4100系列气相色谱仪E. 福立产品:福立GC9790Plus气相色谱仪福立GC9720 plus气相色谱仪等▲ 福立GC9790Plus气相色谱仪F. 磐诺产品:磐诺A91 Plus实验室高端气相色谱仪磐诺V5000实验室气相色谱仪等▲ 磐诺A91 Plus实验室高端气相色谱仪G. 珀金埃尔默产品:气相色谱仪PerkinElmer Clarus 680气相色谱系统PerkinElmer Clarus 590/690等▲ 气相色谱仪PerkinElmer Clarus 680H. 赛默飞产品:赛默飞TRACE 1300系列 模块化气相色谱仪赛默飞TRACE 1310 气相色谱仪等▲ 赛默飞TRACE 1300系列 模块化气相色谱仪I. 上海炫一产品:炫一M6物联网气相色谱分析平台等▲ 炫一M6物联网气相色谱分析平台J. 上海仪电分析产品:上海仪电分析-GC128 气相色谱仪(GC)上海仪电分析-GC126N 气相色谱仪(GC)等▲ 上海仪电分析-GC128 气相色谱仪(GC)K. 舜宇恒平产品:舜宇恒平GC1120气相色谱仪舜宇恒平GC1290 气相色谱仪等▲ 舜宇恒平GC1120气相色谱仪L. 天美产品:天美GC7980气相色谱仪Scion GC气相色谱仪436-GC/456-GC等▲ 天美GC7980气相色谱仪本文出现品牌由仪器信息网仪器导购专场大数据(品牌指数、3i指数等)综合计算得出最终解释权归仪器信息网所有十一、小结 以上,就是小编为大家整理的气相色谱百科知识大全,附上部分市场主流仪器品牌及型号,更多仪器,请点击进入“气相色谱仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,900余个仪器品类,收录3万+台优质仪器。也可微信扫描下方二维码关注仪器信息网公众号观看更多资讯及内容
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制