当前位置: 仪器信息网 > 行业主题 > >

色谱纯化系统

仪器信息网色谱纯化系统专题为您提供2024年最新色谱纯化系统价格报价、厂家品牌的相关信息, 包括色谱纯化系统参数、型号等,不管是国产,还是进口品牌的色谱纯化系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱纯化系统相关的耗材配件、试剂标物,还有色谱纯化系统相关的最新资讯、资料,以及色谱纯化系统相关的解决方案。

色谱纯化系统相关的论坛

  • Waters 质谱/UV 引导的自动纯化系统 介绍

    Waters 质谱/UV 引导的自动纯化系统 介绍

    公司(上海********有限公司)现有waters 质谱/UV 引导的自动纯化系统一套。该系统具备:沃特世AutoPurification系统可以同时与UV,RI,ELSD,PDA,MS等多种检测器并联,从而一针进样可以同时得到多种检测信号,获得更多更完整的信息。并可以其中任何一个或多个信号触发收集。大大提高分离纯化通量和纯度。这套系统设计可以用单一指令来切换最多5根色谱柱(3根分析柱,2根制备柱)。 结合沃特世最佳柱床优化设计的OBD制备柱,可以对复杂的中药进行高效分离,并获得最佳的柱寿命。系统优势■ 是目前市面上唯一一款能够实现从粗品分析到馏分收MS/ UV 引导的自动纯化制备系统(AutoPurification system)在TCM中的应用集再到馏分纯度再分析的全自动化过程的纯化系统,具有独立的分析及制备进样阀及管路,可实现完全自动化的复杂物质的分析方法开发,制备方法开发,馏分纯度分析的功能■ 该纯化系统的二元高压梯度溶剂泵,具有专利的11条梯度曲线功能(梯度曲线:11条包括1条线性,2条阶梯,4条凹线,4条凸线), 对于复杂化合物的分离,如中药等具有快速,高效分离的特点。且该泵具有完整的,自动的,可编程控制的泵密封冲洗程序,有效提高泵的使用性能■ 该系统标准配置分析方法到制备方法开发的计算器,可以实现从分析到制备的无忧放大,保证复杂化合物的制备效率■ 具备完全独立的纯化软件系统,能自动对色谱峰形进行切割、区分,同时可采用分子量及紫外光谱纯度,保留时间或模拟信号等设定多种触发模式进行收集设置http://ng1.17img.cn/bbsfiles/images/2011/09/201109251936_319223_1929184_3.jpg

  • Waters 质谱/UV 引导的自动纯化系统 介绍(上海********二手)

    Waters 质谱/UV 引导的自动纯化系统 介绍(上海********二手)

    公司(上海************有限公司)沃特世AutoPurification 系统主要用于复杂基质中各种目标化合物的分析及制备。可以根据多种触发模式进行合成药,环境毒素,中药、天然产物、多肽等复杂基质组分的分离及纯化。众所周知中药成分复杂,采用传统分离制备方法,面临着上样量、分离度、回收率、分析到制备的无忧放大,高通量等多方面的挑战。沃特世AutoPurification系统可以同时与UV,RI,ELSD,PDA,MS等多种检测器并联,从而一针进样可以同时得到多种检测信号,获得更多更完整的信息。并可以其中任何一个或多个信号触发收集。大大提高分离纯化通量和纯度。这套系统设计可以用单一指令来切换最多5根色谱柱(3根分析柱,2根制备柱)。 结合沃特世最佳柱床优化设计的OBD制备柱,可以对复杂的中药进行高效分离,并获得最佳的柱寿命。系统优势■ 是目前市面上唯一一款能够实现从粗品分析到馏分收MS/ UV 引导的自动纯化制备系统(AutoPurification system)在TCM中的应用集再到馏分纯度再分析的全自动化过程的纯化系统,具有独立的分析及制备进样阀及管路,可实现完全自动化的复杂物质的分析方法开发,制备方法开发,馏分纯度分析的功能■ 该纯化系统的二元高压梯度溶剂泵,具有专利的11条梯度曲线功能(梯度曲线:11条包括1条线性,2条阶梯,4条凹线,4条凸线), 对于复杂化合物的分离,如中药等具有快速,高效分离的特点。且该泵具有完整的,自动的,可编程控制的泵密封冲洗程序,有效提高泵的使用性能■ 该系统标准配置分析方法到制备方法开发的计算器,可以实现从分析到制备的无忧放大,保证复杂化合物的制备效率■ 具备完全独立的纯化软件系统,能自动对色谱峰形进行切割、区分,同时可采用分子量及紫外光谱纯度,保留时间或模拟信号等设定多种触发模式进行收集设置http://ng1.17img.cn/bbsfiles/images/2011/09/201109251941_319224_1929184_3.jpg

  • 大孔树脂-高速逆流色谱法分离纯化地黄中毛蕊花糖苷

    [color=#333333]该文建立了大孔树脂-高速逆流色谱分离中药材地黄中有效成分毛蕊花糖苷的方法。考察了4种大孔树脂对地黄粗提物中毛蕊花糖苷的静态吸附与解吸情况,其中D101大孔树脂对目标成分的吸附率与解吸率最理想,实验结果表明体积分数为10%的乙醇洗脱得到的毛蕊花糖苷含量最高,目标成分含量从4.9%提高到32.6%。最后,部分纯化的样品(165 mg)采用高速逆流色谱进一步纯化,两相溶剂系统由乙酸乙酯-正丁醇-水(1∶4∶5,v/v/v)组成,分离得到45 mg纯度为96%的毛蕊花糖苷。 [/color]

  • 深入解析蛋白质纯化系统的原理与应用

    [font=宋体]蛋白质纯化系统是一种用于从混合物中纯化目标蛋白的设备和方法。它结合了多种技术和步骤,可以有效地分离和纯化蛋白质,提供高纯度和高活性的目标蛋白。蛋白质纯化系统是实现蛋白质纯化的关键装置,它结合了各种分离、富集和纯化方法,帮助科研工作者实现蛋白质的高纯度提取。[/font][font=宋体] [/font][font=宋体][b]蛋白质纯化系统的基本原理[/b][/font][font=宋体]蛋白质纯化系统主要依据蛋白质的特性利用不同的物理化学方法进行分离和纯化。下面将介绍几种常见的蛋白质纯化系统的基本原理。[/font][font=宋体] [/font][font=宋体][font=宋体]①[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-ac][b]亲和层析[/b][/url][/font][/font][font=宋体]亲和层析是一种基于蛋白质的特异性与配体的亲和性相互作用来实现分离和纯化的方法。在亲和层析过程中,蛋白质溶液通过填充有配体的柱子,与配体结合形成复合物,而非特异性结合的其他组分被洗脱。最后,通过改变条件来破坏蛋白质与配体的结合,从而使得目标蛋白质得以纯化。[/font][font=宋体] [/font][font=宋体]②凝胶过滤层析[/font][font=宋体]凝胶过滤层析是一种基于蛋白质大小差异来进行分离的方法。在凝胶过滤层析中,待纯化的蛋白质溶液通过一系列的凝胶层析柱,大分子的蛋白质不能进入凝胶颗粒的内部,而小分子的蛋白质则可以进入凝胶颗粒内部。通过调整凝胶的孔径,可以实现对目标蛋白质的选择性分离和纯化。[/font][font=宋体] [/font][font=宋体][font=宋体]③[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec][b]离子交换层析[/b][/url][/font][/font][font=宋体][font=宋体]离子交换层析是一种基于蛋白质与固定在柱子上的离子交换基的电荷相互作用来实现分离和纯化的方法。在离子交换层析中,蛋白质溶液通过带有离子交换基的柱子,与柱子上的离子交换基之间发生相互作用。通过改变溶液的离子浓度和[/font][font=Calibri]pH[/font][font=宋体]值,可以实现对蛋白质的选择性吸附和洗脱。[/font][/font][font=宋体] [/font][font=宋体]④逆流层析[/font][font=宋体]逆流层析是一种基于分子质量和电荷差异来实现蛋白质分离和纯化的方法。在逆流层析中,蛋白质溶液通过填充有逆流层析介质的柱子,溶液在反向流动的情况下通过层析柱。由于不同蛋白质之间的分子质量和电荷差异,它们在逆流层析介质中的移动速度不同,从而实现对蛋白质的分离和纯化。[/font][font=宋体] [/font][font=宋体][b]蛋白质纯化系统的应用[/b][/font][font=宋体]蛋白质纯化系统在生物医药领域有着广泛的应用,下面将介绍几个常见的应用场景。[/font][font=宋体] [/font][font=宋体]①药物研发[/font][font=宋体]蛋白质纯化系统在药物研发中起到了非常重要的作用。通过蛋白质纯化系统,科研人员可以从复杂的生物样品中高效纯化出目标蛋白质,为药物研发提供了可靠的原料和工具。蛋白质纯化系统不仅可以提高药物研发的效率,还可以确保药物的纯度和质量,从而提高药物的疗效和安全性。[/font][font=宋体] [/font][font=宋体]②生物学研究[/font][font=宋体]在生物学研究中,蛋白质纯化系统被广泛应用于蛋白质相互作用研究、蛋白质结构解析和功能分析等方面。通过蛋白质纯化系统,科研人员可以从不同的细胞和组织中提取目标蛋白质,进一步研究它们之间的相互关系和作用机制。蛋白质纯化系统还可以用于蛋白质结构解析,帮助科学家揭示蛋白质的三维结构以及其功能。[/font][font=宋体] [/font][font=宋体]③临床诊断[/font][font=宋体]蛋白质纯化系统在临床诊断中也起到了重要的作用。通过蛋白质纯化系统,医生可以从患者的生物样本中纯化出特定的蛋白质标志物,用于疾病早期诊断、病情监测和治疗评估等方面。蛋白质纯化系统在临床诊断中的应用可以帮助医生及早发现疾病,提高诊断的准确性和效率。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]蛋白质纯化系统是实现蛋白质纯化的重要装置,它结合了多种分离、富集和纯化方法,帮助科研人员高效地提取目标蛋白质。蛋白质纯化系统的应用广泛,不仅在药物研发、生物学研究和临床诊断等领域发挥重要作用,还为科学家揭开蛋白质的结构和功能提供了有力的支持。通过不断的技术创新和优化,蛋白质纯化系统将更好地满足科研和临床的需求,推动生物医药领域的发展。[/font][font=Calibri] [/font]

  • AKTA蛋白纯化系统操作

    AKTA蛋白纯化系统是当前重组蛋白表达与纯化服务中经常用到的一组设备,自动化程度很高。AKTA系统依据不同的配置,可以分为AKTA EXPLORER、AKTA PILOT、AKTA PURIFIER等多种型号的设备。以下以AKTA EXPLORER为例简单介绍AKTA蛋白纯化系统的一般操作。

  • 高效液相色谱仪的分析纯化

    高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析过程中可以纯化溶剂么?还是这是两个过程,我听师姐说就是分析过程中就会有纯化过程,有点懵

  • 【分享】溶剂纯化系统产品介绍

    溶剂纯化系统http://www.zhonghuida.com/imageRepository/367772f9-d0a6-4513-ad18-97358b20c4ff.png产品特点 新型醇和胺类溶剂干燥柱及过滤设计 各种配置和尺寸 取代传统热蒸馏除水方法 完全避免蒸汽间交叉污染 可隔绝空气提取超干燥和无氧溶剂 可同时接收所有溶剂 顶部空出通风位置 可集成手套箱 带可移动支架及阻燃柜 标准 5 加仑溶剂储存罐采用惯用的防泄漏螺 旋盖子和 Swagelok 快速拆卸阀,便于操作和溶剂续装。系统通过一个可伸缩夹子接地,防止静电危害,保证安全操作环境。系统纯化柱处理容量为 800L,柱子可以再生或者更换。可选择台式、可移动式和固定式几种型号。http://www.zhonghuida.com/imageRepository/67eb511e-fa32-476d-aea6-601ddeaa72e9.gif 在低氮压力下,溶剂从储液罐中被迫进入分别装有活性铝(activated alumina)及铜(Copper)的纯化圆管进行除氧脱水,并通过过滤器除去微小颗粒。处理后的溶剂会排到已抽真空并被氮洗涤过的玻璃器皿中。 每种溶剂包含两条纯化圆管,不锈钢,经压力测试,可净化800升溶剂(再生程序需要之前)。技术参数材料框架材料:铝 处理方法:阳极化抛光 管件材料:304 不锈钢接头和阀门:Swagelok 不锈钢泄漏率氦质谱仪法未检测到有泄漏分配器不锈钢 24/40-14/20-29/24-Luer Lock 针型阀通风可选排风管气体参数内部气体压力:5 PSI 惰性气体:N2 – Ar 气体连接:只需一个气体供应点,可同时分配给不同溶剂纯化柱参数纯化柱材料:依溶剂不同而不同微粒过滤:纯化柱配备 7micron 不锈钢微粒过滤器净化能力:吸水能力为 5%重量含量 最终水氧含量水平:低PPM 级可净化溶剂芳香和脂肪族碳氢化合物:戊烷,己烷,环己烷,正庚烷,甲苯,苯 醚类:乙醚,四氢呋喃,二甲醚 含氯溶剂:二氯甲烷,氯仿,氯苯 胺类溶剂:三乙胺,吡啶,二异丙基乙基胺 醇:甲醇,乙醇其他通用溶剂:乙腈,DMF,DMSO,丙酮 其他定制溶剂阀门导向阀门:每种溶剂皆有 五通阀门以控制溶剂、气体和真空 安全阀门:歧管在外露铝质框架内,包含真空显示表,调节器及安全阀,避免玻璃器皿过分受压计量阀门:利用 计量阀门来控制输出流量 对比内容 传统蒸馏新型溶剂纯化系统纯化结果(正己烷中的水)20PPM1PPm使用安全性需要加热沸腾,有危险无须加热,密闭安全使用便利性较复杂简便,易掌握纯化所需时间几小时几分钟综合使用成本较高较低

  • 凝胶过滤色谱纯化

    凝胶过滤色谱摘要:本文主要讲解了凝胶过滤色谱法(分子筛)在蛋白纯化实验中的应用,包括纯化原理、实验方案设计、技术操作以及相关案例介绍和问题分析。基本原理凝胶过滤色谱蛋白纯化法,又称为空间排阻色谱,分子筛等。其原理是应用蛋白质分子量或分子形状的差异来分离。当样品从色谱柱的顶端向下运动时,大的蛋白质分子不能进入凝胶颗粒从而被迅速洗脱;而较小的蛋白质分子能够进入凝胶颗粒中,且进入凝胶的蛋白在凝胶中保留时间也不同,分子量越大,流出时间就越早,最终分离分子大小不同的蛋白质。http://www.detaibio.com/assets/image/topics/gel-filtration-chromatography-theory.jpg通常,多数凝胶基质是化学交联的聚合物分子制备的,交联程度决定凝胶颗粒的孔径。常用的色谱基质有:葡聚糖凝胶(Sephadex)、琼脂糖凝胶(Sepharose)、聚丙烯酰氨凝胶(Bio-Gel P)等。高度交联的基质可用来分离蛋白质和其他分子量更小的分子,或是除去低分子量缓冲液成分和盐,而较大孔径的凝胶可用于蛋白质分子之间的分离。选用合适孔径的凝胶很大程度取决于目标蛋白的分子量和杂蛋白的分子量。实验方案设计凝胶介质的选择凝胶介质的选择主要是根据待分离的蛋白和杂蛋白的分子量选择具有相应分离范围的凝胶,同时还需要考虑到分辨率和稳定性的因素。比如,如果是要将目的蛋白和小分子物质分开,可以根据他们分配系数的差异,选用Sephadex G-25和 G-50;对于小肽和低分子量物质的脱盐,则可以选用Sephadex G-10、G-15以及Bio-Gel P-2或P-4;如果是分子量相近的蛋白质,一般选用排阻限度略大于样品中最高分子量物质的凝胶。具体凝胶过滤色谱介质应用如下:常用凝胶过滤色谱介质的分离范围凝胶介质蛋白质的分离范围/103凝胶介质蛋白质的分离范围/103Sephadex G25Sephadex G50Sephadex G100Sephadex G200Sepharose 6BSepharose 4B1~51.5~304~1505~60010~400060~20000Sepharose 2BBio-Gel P-4Bio-Gel P-10Bio-Gel P-60Bio-Gel P-150Bio-Gel P-30070~400000.5~45~1730~7050~150100~400凝胶介质的预处理凝胶在使用前应用水充分溶胀(胶:水=1:10),自然溶胀的耗时较长,可采用加热的方法使溶胀加速,即在沸水浴中将凝胶升温至沸,1~2h即可达到溶胀。在烧杯中将干燥凝胶加水或缓冲液,搅拌,静置,倾去上层混悬液,除去上清液中的凝胶碎块,重复数次,直到上清澄清为止。色谱柱的选择色谱柱的体积和高径比与色谱分离效果密切相关,凝胶柱床的体积、柱长和柱的直径以及柱比的选择必须根据样品的数量,性质和分离目的进行确定。组别分离时,大多采用2~30cm长的色谱柱,柱床体积为样品溶液体积的5倍以上,柱比一般在5~10之间;而分级分离一般需要100cm左右的色谱柱,并要求柱床体积大于样品体积25倍以上,柱比在20~100之间。凝胶柱的填装凝胶色谱柱与其它色谱方法不同,溶质分子与固定相之间没有力的作用,样品组分的分离完全依赖于他们各自的流速差异。装住时关住柱子下口,在柱内加入约1/3柱床体积的水或缓冲液,然后沿着柱子一侧将缓冲液中的凝胶搅拌均匀,缓慢并连续的一次性注入柱内。待凝胶沉积约5厘米左右时,打开柱子下口,控制流速在1ml/min。样品的处理与上样根据样品的类型和纯化分析,需要选择合适的缓冲液,为了达到良好的分析效果,上样量必须保持在较小的体积,一般为柱床体积的1%~5%,蛋白质样品上样前应进行浓缩,使样品浓度不大于4%(样品浓度与分配系数无关),但需要注意的是,较大分子量的物质,溶液粘度会随浓度增加而增大,使分子运动受限,影响流速。上样前,样品要经滤膜过滤或离心,除去可能堵塞色谱柱的杂质。洗脱与收集凝胶过滤色谱的缓冲液用单一缓冲液或含盐缓冲液作为洗脱液即可,主要考虑俩个方面的原因:蛋白的溶解性和稳定性。所用的缓冲液要保证蛋白质样品在其中不会变性或沉淀,PH应选在样品较稳定、溶解性良好的范围之内,同时缓冲液中要含有一定的盐(NaCL),对蛋白质起稳定和保护作用。洗脱过程中始终保持一定的操作压,流速不可过高,保持在0.5~3.0mL/min即可。案列介绍AKTA凝胶过滤色谱分离蛋白质材料色谱介质:Sephacryl S-200,蛋白质分离范围(5~250)×103 色谱柱:XK16/60预装柱色谱设备:AKTA Explorer混合样品:含单克隆抗体,分子量180000;牛血清白蛋白(68000),溶菌酶(14000)NaOH 0.5 mol/LNaCl 200 mmol/LPB 20 mmol/LPH7.0 缓冲液方法凝胶除菌处理超纯水冲洗柱子后,用0.5mol/L NaOH正向冲洗柱,流速3mL/min,冲洗3柱体积平衡NaOH处理完毕后,用超纯水冲洗2柱体积,接着用含200mmol/L NaCl和20mmol/L PB的7.0PH缓冲液冲洗5~10倍柱体积上样平衡完毕后,选择样品泵进行上样,上样流速3mL/min,上样体积为1mL洗脱上样结束后,用平衡缓冲液进行洗脱清洗与保存纯化结束后,用0.5mol/L NaOH反向冲洗2柱体积,冲洗时间30~60min,冲洗结束后,用超纯水正向冲洗5柱体积,再用20%乙醇冲洗3柱体积,然后拆下柱子,俩端封死,低温保存。问题分析和解决方案色谱分离前如何净化样品在色谱分离前,对样品进行离心和过滤,离心能除去大部分块状物,如果离心后样品仍不清澈,可用滤膜过滤。由醋酸纤维薄膜或PVDF材料制成的滤膜能够非特异性的结合少量蛋白。溶液交换不彻底严格控制上样体积,上样体积不超过柱体积30%。若样品溶液体积较多,可以分多次上样,注意每次上样时间间隔,可根据电导色谱峰确定下一次上样时间。分辨率不高1)提高装柱质量,使色谱柱装填匀实; 2)提高柱床高度; 3)控制上样体积,最大上样体积不超过柱床体积5%; 4)控制样品黏度与洗脱溶液黏度保持一致; 5)根据样品特点选择合适的洗脱溶液,调节洗脱溶液的离子强度或亲水性; 6)选择合适的凝胶柱(如何选择请参照上文)色谱峰对称性差1)提高装柱质量,装柱匀实——若柱装的太松,容易引起拖尾,装的太紧,会引起前沿;2)柱较脏,再生色谱柱肩峰出现的原因及解决方法1)柱床松动,重新装柱或反向冲洗柱2)柱筛板堵塞,超声清洗筛板3)柱干裂,重新装柱

  • 美国高麦氩色谱之纯化器

    请问有用过美国高麦氩色谱(GM100)的吗?其中有一个载气(氩气)的纯化器。有换过的吗?原装的太贵了将近3万,请问是否有可替代的厂家或者设备?Parameter is not valid.

  • 一个有关用液相色谱分离纯化的问题

    [color=#444444]用液相跑某一个样品,发现杂质峰比较多,欲将主峰物质进一步分离纯化,收集相应峰馏分。用普通的分析检测型的HPLC可以做到吗?还是用制备型色谱?只要收集到一点点就可以,然后可以做定性分析...我查文献里说都是用制备型色谱分离,希望懂色谱的高手指导一下,多谢[/color]

  • GMP | 20个常见的纯化水设备系统GMP验证问题

    新版GMP认证出台后,许多制药企业在纯化水设备系统的GMP认证会遇到一些问题,以下是整理收集的20个常见的制药纯化水设备系统GMP认证问题。1.纯化水设备没有安装PID图;2.纯水设备没有贴取样点编号;3.纯化水系统中需要加上用水点编号;纯化水储罐上面管道无流向标识;4.纯化水理化检测记录中:不挥发物检测称重无原始打印记录;电导率的检测应加入单位;其整张记录太粗,可操作性不强;5.纯化水系统从EDI出来就是纯化水,但现场的管路及阀门、送水泵、压力表都没安照纯化水的标准做,存在污染风险;6.纯化水系统验证时没有验证自动电磁阀的动作是否准确无误;7.安装纯化水在线电导率监测时没有图纸;8.纯化水无管理设计图,管路非卫生连接,无日常监控,管路设计不利于取样;9.纯化水灌及焊接不符合要求,应该采用一面焊两面的成型工艺,并提供纯化水管道的内窥镜照片;10.纯化水设备系统无取样记录;纯化水回水处应安装流量计;11.纯化水系统需要对总送、总回、储罐、最远用水点进行每周全检,其余用水点每月全检;12.纯化水系统的验证,对纯化水设备系统的IQ\OQ\PQ等性能进行验证;13.纯化水的设计、安装、臭氧消毒依据、焊接、验证确认等部分不符合要求;14.纯化水设备的图纸与实际设计不相符,各控制阀应在图纸上注明;15.管道、储水罐、电焊问题;16.储备出水口,回水口应有温度计,以便对其温度变化进行控制,应有流量监控计;17.纯化水管道接口连接方式应该采用卫生级卡箍连接方式,并且杜绝使用丝牙连接方式;18.纯化水区段管线为应采用自动焊接工艺以及专业的切管工具;19.循环管线安装没有坡度,未设计最低点为排放点;20.纯化水系统管道存在死角,容易滋生微生物及细菌。

  • 【资料】高速逆流色谱介绍---天然产物资源分离纯化和制备中的应用(引言)

    随着全球“回归自然”的热潮,对天然植物活性成分的研究开发也就成了当前医药、食品、化妆品等领域的热点,基于天然产物资源开发的产业已被认为是世界上最有前途、最具生机的行业之一。从天然植物资源中分离天然活性成分具有很多的困难和问题,因为大多数植物资源中所含有的活性成分含量低,且存在于复杂的介质中,色谱分离法一直是天然产物成分分离的常用的方法,例如有柱色谱法和制备型高效液相色谱法等,但是,物质在固态填充物的不可逆吸附和变性是固相色谱所遇到的共同问题。另外,从分析到制备规模的放大,所需费用也相当昂贵。逆流色谱是一种无需任何固定相支撑体的液-液分配色谱分离技术,不存在对样品组分的吸附、变性、失活、拖尾等不良影响,节省填充材料和溶剂消耗;它的操作简便,重现性好,分离量较大,粗提物样品可以直接进样分离。目前已有许多成功应用的实例作为参考,所以在操作时溶剂系统的变换更为方便、快捷。对天然产物的分离纯化,是高速逆流色谱非常适合的应用领域。我国是世界上最早将逆流色谱技术应用于天然植物和中草药成分分离纯化的国家。早在1980年,张天佑教授就自行研制出了国产的逆流色谱仪,并开创了在天然植物和中草药领域的应用研究工作 。此后的20多年中,越来越多的中国科技工作者利用我国的资源优势和技术优势,在这一技术领域和应用领域做出了成绩和贡献。 不同种类天然产物的分离虽然已有文献总结,但系统性和更新程度还有待完善。山东省科学院分析测试中心王晓研究员的研究团队以在天然产物分离方面取得的优异成绩为基础,对不同种类的天然产物分离正在进行全面的最新的总结。不日,最新的不同种类天然产物的分离总结及独有的相关见解将面世。

  • 【第三届原创参赛】老生常谈——开放ODS柱色谱在分离纯化中的应用

    维权声明:本文为环烯醚萜原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。老生常谈——开放ODS柱色谱在分离纯化中的应用什么是ODS? ODS是英文octadecyl silane的缩写,意思是十八烷基硅烷,是以硅胶为基质键合的C18填料,属于反相色谱。ODS柱色谱,简单地说,就是指用ODS装成的色谱柱啦。“开放”一词,是指未对色谱柱施加任何压力,让其在重力作用下洗脱;相对于开放ODS柱色谱,有中低压柱色谱,高低柱色谱等等。 我们平时所说的反相HPLC,一定程度上来说,其实也可以说是ODS柱色谱,只不过它的分离效果更好,还配备了紫外或者示差等高级地检测手段,其实质还是属于反相柱色谱。适用范围有哪些? 首先需要说明:ODS在分离纯化的过程中,起着极为巨大的作用!! 就化合物极性而言,ODS适合分离极性中等偏大的化合物类型。对于极性较小的化合物,应该考虑用硅胶、凝胶等手段进行分离纯化,绝对不要尝试ODS,唯一的后果只能是:样品全部死吸附,根本不可能洗脱!! 某些行业,前处理一般是萃取,比如环己烷/石油醚、乙酸乙酯/氯仿、正丁醇、水。水层的、正丁醇层的样品,一般都可以用ODS进行分离纯化;乙酸乙酯层的样品,极性偏大的部分可以考虑用ODS;至于环己烷层的样品,千万不要使用ODS,那将是:上样量多少,死吸附就有多少!! 就化合物分类而言,ODS对于黄酮苷类、环烯醚萜苷类、糖苷类等成分都能有一定的分离效果,也有很多成功的分离纯化实例。但是,对于苷元类化合物,则需要慎重考虑,其实还是极性大小的问题:苷元类化合物,一般极性较小。如何装柱、上样、洗脱? 装柱:新买来的ODS,用甲醇浸泡过夜后即可装柱。具体的装柱方法,跟硅胶的装柱子法是一样的,记得用甲醇装柱就行。装完以后,置换成起始流动相系统,即可投入使用了。 上样:分为两种,一种是湿法上样,另一种是拌样。湿法上样,不必多说,就是将样品溶解至一定体积(强烈建议用起始流动相溶解,但体积不可过大,太大相当于原点变大,分离度变差),然后上样;至于拌样,很多的观点表示ODS不应该拌样,我在这里指出,依我个人经验来看,拌样是可以的,尤其对于一些溶解性较差的样品,拌样后分离的效果,比湿法上样好很多,大家可以尝试。(所谓拌样,就是指将你的样品溶解,然后从柱子里面掏出小部分ODS,然后进行拌匀,注意不要过载) 洗脱过程:如果你有ODS薄层板,你可以先点板看看样品大概的极性大小。如果你没有ODS板,你拿到的是“盲样”,一般可以采取常规的梯度洗脱,如水——30%甲醇/水——50%甲醇/水——70%甲醇/水——100%甲醇,然后依据各流分样品量的大小进一步进行细分;经过常规的梯度洗脱以后,假设,你的样品集中在50%的甲醇/水部分,进行细分的时候,你就可以选择40%甲醇/水——45%甲醇/水——50%甲醇/水——100%甲醇这样的梯度。 流动相的选择:其实就是反相流动相,无非就是甲醇/水,乙腈/水,流动相中也可以加入一些其他物质。我曾经很多次加入乙酸,用来改善拖尾的现象(点ODS薄层板分析过)。至于缓冲盐,我没有试过,具体情况不太了解。洗脱样品的如何处理? 洗脱下来的样品,可用硅胶薄层板进行点板分析,然后将相同流分进行合并,也可以采用HPLC检测合并。 我认为,对于一些量小的流分,相差不是很大的,尽量合并,避免样品的分散; 对于一些量大的流分,可合可不合,反正量大,合与不合的效果是一样的(无非就是多占点空间); 从ODS上洗脱的流分,很可能是纯品;易结晶的样品,会在溶剂挥发的过程中结晶析出来,要注意观察;柱子被污染如何处理? 污染是正常的,见过那么多,也用过那么多ODS柱子,没有哪一根能在使用一段时间后保持“洁白无瑕”的。 被污染,一般情况下就是用甲醇冲洗,一直到冲洗液蒸干没有杂质为止,就可以进行下一批样品的分离了。 也许有人问:你这么处理彻底吗?回答是否定的,但是,对于ODS柱色谱,这样的处理已经足够了。 道理很简单,用ODS进行分离的样品,一般极性不会很小,70%甲醇/水基本能全部冲洗下来。现在已经用甲醇冲洗得差不多,在你对下一批样品进行分离的时候,上一批残留的杂质也就只有100%的甲醇能洗脱下来,根本不会影响。 如果一定要处理,可以采用甲醇:异丙醇=1:1冲洗,这种做法,算是终极做法了。

  • 制备色谱纯化技术服务

    目前,新药研发市场竞争如火如荼,大小药物研发公司都在奋力一搏,但是真正能成功的如凤毛麟角。本公司提供制备色谱分离纯化包括SFC手性、非手性服务,反相制备,杂质制备服务及技术咨询服务可以真正加快你得到你的目标化合物的速度。欢迎大家跟帖

  • 【资料】逆流色谱技术在抗生素分离纯化中的应用

    一. 逆流色谱技术简介现代逆流色谱技术起源于上世纪50年代的逆流分溶法(Counter Current Distribution, CCD),它利用不同物质在所选择的两相溶剂中的分配系数不同而通过多次逆流分溶对物质进行分离。它采用数百个分离管进行操作,每一次操作后,上层液体被转移至盛有新的下层溶剂的分离管中,而往原分离管中加入新的上层溶剂,看起来好似两相的液体以相反的方向流动,故称为逆流分溶法。逆流分溶法存在许多缺点,如使用易破碎的玻璃仪器,分离时间长,需要连续稀释样品等。但与液相色谱相比,它无需固体作固定相,从而避免了因此而带来的一系列问题。因此,在CCD基础上发展起来的逆流色谱(Counter Current Chromatography, CCC)在采用了与液相色谱相似的连续洗脱、检测和分布收集技术后从上世纪70年代开始得到迅速的发展,并在天然和合成化合物的分离纯化中发挥了日益重要的作用。上世纪70年代出现的液滴逆流色谱(Droplet Counter Current Chromatography, DCCC)使流动相形成液滴,通过作为固定相的液柱而达到分离纯化的目的。其装置主要由输液部分、检测收集部分和玻璃管液柱部分(300-500根60cm X 1.8mm的玻璃管)组成。由于流动相形成液滴,在细的玻璃管中与液体固定相有效地接触,摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,所以分离效果好,而且不产生乳化现象。对于易氧化的物质,还可用氮气驱动流动相。采用DCCC分离纯化了许多包括中草药和抗生素在内的天然产物如柴胡皂甙和短杆菌肽, 短杆菌酪素和四环素等。液滴逆流色谱解决了操作自动化的问题,但仍存在分离时间长,使用易破碎的玻璃管,分离度还不高等问题。逆流色谱技术的重大突破出现在上世纪80年代,根据被分离混合物的理化特性,选择二元或多元的两相溶剂体系,以上相或下相为固定相,将其注满色谱柱后使色谱柱作特定的高速旋转运动,并用由此产生的离心力场支撑柱内的液体固定相,然后以另相为流动相,携带溶解的混合物由输入泵推入色谱柱,穿过两个液相对流的管柱,各组分根据在两相中的分配系数不同而得到分离。根据离心力场的不同可将现代逆流色谱分为离心分配色谱(Centrifugal Partition Chromatography, CPC),也称盘管行星离心色谱(Coil Planet Centrifuge, CPC)和高速逆流色谱(High Speed Counter Current Chromatography, HSCCC),前者属流体静力平衡系统,色谱柱由一系列刻在圆盘或圆筒内的导管相联的柱体组成,通过单轴旋转产生恒定的重力场,两个旋转密封的接口分别连接流动相的进口和出口;后者属流体动力平衡系统,由聚四氟乙烯软管绕制成的色谱柱除绕离心轴旋转外,还围绕自轴旋转,产生变化的重力场,并采用无旋转密封的连接方式。分离时两相液体被剧烈振动的离心力场依其界面特征被甩成极细的微粒,样品各组分在两相微粒的表面上分配并在微粒振荡与对流的环境中有效传递,相当于把通常的溶剂萃取高效(13次/秒以上)、自动、连续地予以完成。泡沫逆流色谱(Foam Counter Current Chromatography, Foam CCC)技术是在HSCCC的基础上发展起来的。使用时,氮气和流动相同时从相反方向注入管柱中形成气体和流动相的逆流,然后从盘管中部注入的混合物根据形成泡沫的能力得到分离,易形成泡沫的的组分随[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]被洗脱收集在泡沫流出部分,而其它组分则随流动相流出。在盘管行星离心色谱基础上还发展了交叉轴盘管行星离心色谱(Cross-axis Coil Planet Centrifuge, X-axis CPC),这种仪器在使用中产生一种行星式运动,使得盘管支架在围绕离心中轴转动(公转)的同时还沿着自己的水平方向轴旋转(自转),使得部分的离心力矢量作用于盘管的半径方向,以防止因两相乳化而降低固定相保留率的现象出现。因此,X-axis CPC大大稳定了固定相的保留率,特别适用于大量制备性分离纯化。现代逆流色谱技术为化合物的分离纯化提供了一个新的手段,与HPLC等液-固色谱技术比较,由于分离原理不同,二者间存在很强的互补性。它无需固体作固定相,不存在固体对样品组分的吸附、玷污、变性、失活、拖尾等现象,能实现很高的回收率,节省昂贵的材料消耗和溶剂消耗(HPLC的1/10以下),运行使用的后续投入较低。逆流色谱在无需更换不同极性的色谱柱情况下,通过提高极性溶剂或非极性溶剂比例的方法,可以实现流动相从弱极性到强极性或相反的转化。由于色谱柱容积大,无填料,柱内空间全部是有效空间,因此,样品负载能力强,制备量大,重现性好。实验室规模的盘管总体积为100mL的逆流色谱仪一次可分离0.5-2克的粗品,而3000mL容量的制备型逆流色谱仪一次可分离15-60克的粗品。但是,与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和高效液相色谱等相比,逆流色谱的分离效率即理论塔板数还不高(一般在1000以下),一次分离所需时间还较长(以小时计),因此,还不宜用于组成复杂的混合物的全谱分离分析。逆流色谱技术在基本原理以及溶剂系统选择等方面还有待于进一步的普及、研究、开发与应用。目前,HSCCC等技术在生物化学、医药学、农业、环境、材料、化工、海洋生物以及无机离子等众多领域已得到成功应用,1996年美国出版的《High-Speed Countercurrent Chromatography》一书被选编为著名的分析化学丛书第132卷,2000年9月在英国Brunel大学召开了逆流色谱技术第一届国际学术会议,每年一度的国际分析化学与应用光谱学学术会议上,都设有CCC的专题组,“Journal of Chromatography” ,“Journal of Liquid Chromatography” 等重要学术刊物都有这一技术的论文发表。我国在CCC技术及其应用研究方面与国际发展同步,1980年研制出了我国第一台逆流色谱仪,并用于国产抗敌素成分的分离与分析检定,发表了一大批用HSCCC等分离制备中草药和茶叶等天然产物活性成分的论文,引起国际同行的瞩目,2002年在北京召开了逆流色谱技术的第二届国际学术会议。但是,在逆流色谱技术应用于抗生素的分离纯化方面,我国与国际上发展趋势相比还存在很大差距,相关论文甚少,因此,在我国开展高速逆流色谱技术分离纯化抗生素的工作有着广阔的应用和发展前景。二. 溶剂选择无论是用HPLC或CCC技术分离混合物,分离度(Rs)是一个很重要的参数,如下图所示,在HPLC中,提高分离度是通过使峰形变窄的方法达到的,而在CCC或CPC中,则是通过改进选择性来实现的,这种选择性主要取决于样品在两相溶剂中的分配系数。因此,溶剂系统的选择在CCC技术中尤为重要。 选择溶剂时要考虑到样品的极性、溶解度、电荷态和形成复合物的能力等,溶剂体系的沉降时间应小于30秒,以得到满意的固定相保留率。测定方法如下,各取2毫升平衡后的上相和下相液体移入一个5毫升的刻度玻璃管中,密封上下摇动5次后静置于水平面上并测定两相分层的时间即沉降时间。样品的分配系数K值(K=上相中样品浓度/下相中样品浓度,可由HPLC方法得出)最好在1左右,一般在0.2到2之间。以上相作固定相时为例,若K《《1,样品很快随流动相流出,达不到分离效果;若K》》1,样品出峰时间拉长,形成宽峰。由于CCC的理论塔板数在800左右,因此要得到高的分离度,样品各组分间的分离因子( , 各组分的K值之比)应大于1.5。此外,两相溶剂的体积应尽量相同以避免溶剂的浪费,溶剂最好挥发性强,这样完成操作后只要将洗脱液浓缩即可得到纯样品。 选择溶剂体系时,首先选出一个能使样品全部溶解的溶剂体系,然后调整各溶剂的比例使得被分离各组分满足K值和 值的要求,以提高分离度。可以采用相图来研究改变某一相的组成对另一相组成的影响,Sø rensen等人对近百种三元溶剂相图研究后,总结归纳出三类溶剂体系:乙酸乙酯—正丁醇—水(EtOAc—BuOH—H2O),适用于极性弱的样品;水—二甲亚砜—四氢呋喃(H2O—DMSO—THF),适用于极性强的难溶性样品如两性霉素B;氯仿—甲醇—水(CHCl3—MeOH—H2O),适用于大部分样品。此后又发展了其它通用的多元溶剂体系如正戊烷—乙酸乙酯—甲醇—水(Heptane—EtOAc—MeOH—H2O)体系和正戊烷—甲醇—甲基叔丁基醚—甘醇二甲醚—水(Heptane—MeOH—MtBE—Glyme—水)体系等。常用溶剂体系的选择可参考表1,首先根据样品的理化特性选出最佳溶剂,然后在左右两栏中再选择相应的数种溶剂,以组成选择性最好的多元溶剂体系。

  • 温度对制药纯化水设备系统微生物控制的影响

    制药纯化水系统通常应用连续的方法控制微生物,并进行周期性消毒。以热系统、冷系统以及常温系统讲述制药纯化水设备系统在不同温度时对连续微生物控制的影响。1.“热”系统防止细菌生长的最有效和最可靠的方法是在高于细菌易存活的温度下操作。如果制药纯化水设备分配系统维持在热状态下,常规的消毒可以取消。有很多的历史数据表明系统在80℃的温度下操作,能防止微生物的生长。目前很多企业在70℃的温度下验证水系统。在较低的温度下操作的优点包括节约能源、对人体伤害风险低、减少红锈的生成。系统在这个范围内的较高温度下操作在微生物污染方面具有更高的安全性。但在80℃以下的有效性必须在实例的基础上用检测数据来证明,需要注意的是,这个温度范围不会去除内毒素。2.“冷”系统通常情况下,“冷”系统是在4~l0℃(我国药典附录中提及的是低于4℃)的温度下操作。在15℃ 以下,微生物的生长率明显降低,因此与常温系统相比,冷系统的消毒频率可能要降低。特定温度下的有效性与否,在任何特殊系统中相关的消毒频率必须在实例的基础上通过统计分析来确定。虽然“冷”系统被证明是有效的,但是其需要能耗及与其相关的成本很高。3.“常温”系统任何制药用水系统的循环温度都是通过需要达到的微生物标准或需要达到的使用温度来确定的。在行业中,“常温”的纯化水设备系统通常使用臭氧或热消毒,与“热”或“冷”系统相比,通常需要较低的生命周期成本,并且还减少了能量消耗。然而,在没有提高系统消毒水平的情况下,在储罐和分配循环中缺少温度控制会导致系统内生物膜的形成,偶尔或不可预测地产生微生物不符合规定的水,以及导致不在计划内的水系统停机。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制