当前位置: 仪器信息网 > 行业主题 > >

质谱电号探测

仪器信息网质谱电号探测专题为您提供2024年最新质谱电号探测价格报价、厂家品牌的相关信息, 包括质谱电号探测参数、型号等,不管是国产,还是进口品牌的质谱电号探测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱电号探测相关的耗材配件、试剂标物,还有质谱电号探测相关的最新资讯、资料,以及质谱电号探测相关的解决方案。

质谱电号探测相关的资讯

  • 搭载质谱仪的“卡西尼”号探测器检测到神秘粒子
    p   近日,美国宇航局(NASA)的“卡西尼”号探测器还在继续产生着令人惊讶的发现,而早在一个多月前,这架探测器已经在任务结束后于土星大气中烧毁。来自“卡西尼”号探测器的新数据表明,土星的宏伟光环正在将微小的尘埃颗粒注入到行星的上层大气中,从而形成了一种复杂且意想不到的化学混合物。 /p p   “卡西尼”号探测器上的一台质谱仪检测到这种奇特的化学物质——该探测器在最后的5个月里一直在土星和土星环之间环绕飞行。 /p p   马里兰州劳雷尔市约翰· 霍普金斯大学应用物理实验室行星科学家Mark Perry说:“我们真的是中头彩了。”10月17日,他在犹他州普罗沃市召开的美国天文学会行星科学分部的一次会议上报告了这一发现。 /p p   该项目科学家曾希望“卡西尼”号探测器的质谱仪能够在土星和土星环之间发现水分子的特征。在上世纪七八十年代,NASA的先驱者号探测器和旅行者号探测器在土星的最上层大气中发现了比预期更少的带电粒子。在这些数据的基础上,研究人员在1984年提出,脱离土星环的水分子——主要以冰的形式——起到催化剂的作用,将带电粒子从大气中分离出来。“卡西尼”号探测器的最后几个月给了科学家们第一次直接测试这个想法的机会。 /p p   但吸引卡西尼团队的并不是突然出现的水的证据。质谱仪的数据揭示了一个巫师般存在的化学物质,其中包括甲烷,这种分子可能是一氧化碳和更复杂的分子。这些化学物质的浓度在土星的赤道和高海拔地区是最大的,这表明这些物质正在从土星环中脱落。 /p p   “卡西尼”号探测器进入土星大气层的深度越深,测量值就愈发奇怪。Perry对与会者说,“卡西尼”号探测器以最近距离掠过土星表面揭示了大量的重分子。科学家还没有确定每种分子的类型,但很明显,除了水之外,还有很多其他分子。 /p p   通过分析可能从土星环上脱落的物质的类型,Perry的研究小组得出结论,这些碎片必定是微小的尘埃颗粒的片段,这些颗粒的尺寸仅为1至10纳米,但相对较重。当这些粒子从土星环上落下并撞击“卡西尼”号探测器的质谱仪时,它们被粉碎成小碎片。 /p p   这些粒子究竟是如何从土星环飘落到大气层的还有待观察。“我们有很多工作要做,以了解它们是如何到达那里的。”Perry说,“没有一个模型能预测到这一点。” /p p   在这些最后的俯冲过程中,“卡西尼”号探测器沿着土星的引力牵引,以每秒钟30公里的速度加速,这一速度超过了质谱仪设计所能承受的4倍之多。“这些速度比它所经历的任何时刻都要高。”Linda Spilker说,他是加利福尼亚州帕萨迪纳市喷气推进实验室的行星科学家,也是卡西尼项目科学家。 /p p   在如此巨大的速度下,“卡西尼”号探测器所撞击的任何东西都会分裂成碎片。 /p p   今年9月15日凌晨4时55分,数百名科学家见证了“卡西尼”号探测器在火焰中涅槃。“卡西尼”号探测器在土星的大气层中解体,这样做是为了防止探测器污染土星的卫星,包括土卫六和土卫二,这些卫星上可能存在生命迹象。 /p p   “卡西尼”号探测器1997年10月15日发射升空,沿途造访过金星、地球、月球、小行星和木星,并于2004年抵达环土星轨道。近20年间,“卡西尼”探测任务大幅刷新了人类对土星的认识,包括它的复杂光环、类型多样的卫星体以及磁场环境等。它曾获得一系列重大发现,如土卫二存在全球性海洋、土卫六上存在液态甲烷海洋、在土卫二喷出的羽流中探测到氢等。 /p p   与土星相伴的13年间,“卡西尼”号探测器曾发回大量数据资料,仅图像就差不多40万张。科学家依据这些信息,已发表了约4000篇科学论文。NASA还依据这些信息设计了前往木卫二的探测计划,以及未来十年间的其他太空探测项目。 /p p   尽管“卡西尼”号探测器已经结束了自己的使命,但科学家表示未来仍有可能带来重大发现,例如,来自探测器的数据将有助于确定土星环的实际年龄及其磁场的持久性。 /p p   (原标题:土星大气发现神秘粒子 卡西尼数据显示或来自土星环) /p p /p
  • 质谱蒸汽探测令机场安检更轻松
    p   在机场中,美国运输安全管理局(TSA)的工作人员扫描检测你的手以及笔记本电脑等等物品时所使用的技术正是“痕量检测”的一种形式——离子迁移谱(ion mobility spectroscopy)。在几秒钟之内,样品首先被汽化成了化学离子,然后探测器再通过其分子大小和形状来识别其是否为爆炸物,而如果确实是爆炸物就会触发警报。 /p p style=" TEXT-ALIGN: center" img title=" 1_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/a7e49f29-6fda-4c6b-8e08-171b8b3924c1.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 接触式取样可以是一种非常有效的方式,但其前提是恐怖分子必须在到达袭击目标前接受安检 /strong /span /p p   但当待测对象较多时,这种手段就变得既费时又费力,而且其有效性很大程度上依赖于工作人员的取样水平。此外,这种技术还需要接触式取样,也就是说安检人员不得不接触到那些有可能存在残留物的物体表面。因此,当不法之徒不打算通过安检,他们的个人物品也没有机会被搜查时,这种技术就毫无用武之地了。 /p p   还有一些安检小队则依靠训练过的狗,利用它们灵敏的嗅觉来嗅出爆炸物。可是例行部署探测犬的背后意味着极为繁重的后勤和训练工作。与此同时,直接用狗近身检测也可能使某些特殊文化背景的旅客感到反感。 /p p   于是,研究人员长久以来都致力于开发一种新型的,可以像犬类一样“嗅”出爆炸物蒸汽的化学探测技术。不过这些年来很多尝试都由于灵敏度不够而失败了。针对这个问题,我们的研究小组已经从事了近20年的研究工作并且取得了很大的进展。 /p p style=" TEXT-ALIGN: center" img title=" 2_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/28c5d07c-f408-4123-9e84-1af6f5300f37.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong   在机场里,炸弹嗅探犬是安检人员的好拍档 /strong /span /p p    strong 越来越灵敏 /strong /p p   想要设计一种能与狗鼻子相匹敌的技术,其最大的难点在于绝大部分爆炸物的饱和蒸气压都非常非常的低。某个材料的“平衡蒸气压”从根本上说是在一个特定温度的理想条件下,空气中该材料的含量有多少(也就是可供探测的含量有多少)。 /p p   全世界的军队普遍使用的含氮有机炸药(如TNT,RDX和PETN)的平衡蒸汽压只有万亿分之一左右。换句话说,如果想要在实际的工作环境中(如机场中拥挤忙碌的登机区)可靠地嗅出这些爆炸物的蒸汽,探测器的灵敏度必须达到千万亿分之一(ppq)的水平。 /p p   可是这已经超过了痕量检测设备的能力范围。要知道,拥有325ppq的探测水平就相当于能够在整个地球的范围内找到一棵特定的树。 /p p   不过,近期的研究已经将探测水平推进到了千万亿分之一这样的范围。在2008年,一个国际小组使用一种称为二次电喷雾电离质谱分析的先进电离技术,达到了比探测TNT和PETN所需的万亿分之一更优的探测水平。 /p p   在2012年,我们在美国太平洋西北国家实验室(PNNL)的研究组通过使用大气流管质谱分析(AFT-MS)成功对平衡蒸气压低于25ppq的RDX蒸汽进行了直接、实时的探测。 /p p   质谱仪的灵敏度取决于有多少目标分子能够被电离并转移进入质谱仪以供探测。这个过程进行的越充分,其灵敏度就会越高。我们的AFT-MS设计的特别之处就在于它利用时间来最大化爆炸物蒸汽分子与离子源产生的空气离子之间发生碰撞的几率。正是这些空气离子与爆炸物分子之间反应的程度决定了灵敏度的高低。AFT-MS的使用,让我们在今天有能力探测到一系列平衡蒸气压低于10ppq水平的爆炸物。 /p p style=" TEXT-ALIGN: center" img title=" 3_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/9942068c-b47e-4832-84ab-06d563e6f5da.jpg" / img title=" 3_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/e55e63e6-dc03-4db6-9737-4b229f5353ec.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 完美简洁的AFT-MS装置原理示意图 /strong /span /p p   strong  下一步:投入实际使用 /strong /p p   因此,我们目前研发出来的爆炸物化学探测仪器已经不必再受制于接触式取样,而是可以和犬类一样去“嗅”出炸药的味道。 /p p   该仪器为安全检查提供了令人振奋的新的可能性:第一,它具有与犬类相似的爆炸物蒸汽探测的能力,第二,它可以连续不间断地工作。痕量探测的取样不再需要直接接触待测的可疑物品。而工程师则可以设计出一种非侵入的“穿行式”爆炸物探测装置,一如那些我们常见的金属探测器。 /p p style=" TEXT-ALIGN: center" img title=" 4_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/40e61eee-2199-48e1-a666-1ea3cc793029.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong PNNL的研究人员Robert Ewing正在往探测器中放置痕量蒸汽样品 /strong /span /p p   这项技术真正的创新之处在于其极高的灵敏度,这使得它可以对蒸汽羽流进行直接探测。因此我们不用再先收集爆炸物颗粒,然后再将其气化(比如在过去的痕量探测技术中,为了取出人们身上的颗粒而使用噪音非常大的空气喷嘴)。现在,更高的灵敏度意味着当旅客们穿行而过时,我们就能够对空气中的爆炸物分子进行连续不断的采样了。 /p p   该技术手段毫无疑问会让机场安检变得更轻松,同时还能大大提高安检口的吞吐能力,改善旅客们的体验。我们也可以将该类型的装置置于机场航站楼或者其他公共设施的入口处,炸药一旦进入这栋建筑就可以立刻被探测到(而不是仅仅当炸药通过安检口时才能探测),这显然将大大提高公共场所的安全性。 /p p   通过增加一个扫描器可用的信息独立模块,该蒸汽探测性能也可以加强安全性。目前,包括X射线和毫米波成像等在内的大多数安检技术都是基于对异常状况的观测,也就是说TSA的工作人员们会从影像中找出那些看起来形状可疑的物体。而蒸汽探测技术可以为他们提供一个能够识别特定化学品的全新工具。 /p p style=" TEXT-ALIGN: center" img title=" 5_副本.png" src=" http://img1.17img.cn/17img/images/201610/insimg/ddef1337-8871-4ed1-b9b3-de39ba4dee9c.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px COLOR: #0070c0" strong 同一地点、同一时间进行两种检测——利用质谱仪进行的蒸汽探测和利用目前部署的全身扫描仪进行的视觉成像 /strong /span /p p   两种技术的整合将为我们提供一种双管齐下的爆炸物探测手段:当检测一个人或者包裹时,我们既能够观察爆炸物的影像,又可以“闻”到它散发出的蒸汽羽流。就好比如果你想认出一个久未谋面的人,你很可能既需要看一看他的近照,同时还需要听一听他的声音,而不是只需要这两样信息中的一种。 /p p   受到了狗鼻子那强大探测能力的启发,我们已经在发展能与之比肩的探测技术的道路上取得了可喜的进展。这种以爆炸物为目标的蒸汽探测技术既可以有效提高公共场所的安全系数,又可以让安检环境变得不那么扰人。下一步的研究则是在继续优化这项技术的同时尽量降低其成本,最终目的是让这些探测器能够在你身边的每一座机场中大显身手。 /p p & nbsp /p
  • “滨松中国质谱探测新技术”交流会成功举办
    p style=" text-align: justify "    strong 仪器信息网讯 /strong 2019年7月23日下午,“滨松中国质谱探测新技术”交流活动组织10余位国产质谱研发及应用专家、国产厂商研发负责人来到滨松光子学商贸(中国)有限公司(以下简称“滨松中国”)。 /p p style=" text-align: justify "   活动由仪器信息网与滨松中国联合主办,中国分析测试协会汪正范、天津大学教授汪曣、北京大学分析测试中心周江、中国仪器仪表行业协会苏岩松、清华大学分析测试中心杨成对、中国医学院药物研究所贺玖明、北京毅新博创生物科技有限公司陈莲莲、融智生物科技有限公司王战等专家出席活动。7月23日是二十四节气中的大暑,北京的天气也达到酷热的顶点,但烈日炎炎却丝毫没有减退各位专家参与活动的热情。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b9cebb51-5ff8-45a9-9ad9-4091672e0148.jpg" title=" 现场_meitu_8.jpg" alt=" 现场_meitu_8.jpg" / /p p style=" text-align: center " 交流会现场 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/201907/uepic/a5a13b10-25b4-4c6b-ab5a-e11cb1a1f033.jpg" title=" 石水华_meitu_13.jpg" alt=" 石水华_meitu_13.jpg" width=" 600" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center "   仪器信息网营销策划部经理石水华致辞 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/9cb086f5-12ad-47ef-a22c-25453cb70431.jpg" title=" 崔智建_meitu_2.jpg" alt=" 崔智建_meitu_2.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center "   滨松中国销售部经理崔智建致辞 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/8dc2a74a-e57f-4809-8f43-0a7601efdb03.jpg" title=" 范四国_meitu_3.jpg" alt=" 范四国_meitu_3.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center "   滨松中国分析& amp 计测领域负责人 范四国 /p p style=" text-align: justify "   活动伊始,滨松中国分析& amp 计测领域负责人范四国首先向与会专家介绍了滨松集团的基本情况。1926年,高柳健次郎先生第一次成功地在电视机屏幕上显示出一个日本片假名【イ】字,从而被誉为日本“电视机之父”。而后滨松集团一直执着于光子的研究,目前已将超过15000种光电产品销往全球100多个国家和地区,这些产品被广泛应用在生物医疗、高能物理、宇宙探测、精密分析、工业计测、民用消费等领域。多种产品以优质的口碑享有高市场占有率,如光电倍增管系列产品的市场占有率高达90%。此外,滨松集团基于中国市场的业务可以追溯到1988年。2011年滨松集团成立了滨松中国,作为面向中国市场的服务中心,全面负责滨松集团在中国所有产品的销售业务。 /p p style=" text-align: justify "   除此之外,滨松中国也致力为国产质谱厂商提供核心部件。质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。近年来,越来越多的业内专家开始从事质谱仪器研发及应用开发。而重视质谱仪器研发,首当其冲的就要关注其上游领域的核心零部件行业。滨松公司致力为国产质谱厂商提供相关探测器、离子化光源以及离子化基板等核心部件。 span style=" text-align: center "    /span /p p style=" text-align: justify "   接下来由滨松中国分析领域销售工程师凌世攀与周旭升带来无基质激光解析电离与成像技术及应用、新一代质谱探测器技术的报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/378db62f-d4ca-4f13-8d9f-681beb9f8fd7.jpg" title=" 凌世攀.JPG" alt=" 凌世攀.JPG" / /p p style=" text-align: center "   滨松中国分析领域销售工程师 凌世攀 /p p style=" text-align: justify "   凌世攀在报告中介绍了应用于MALDI-TOF MS中无需基质的离子化辅助基板(DIUTHAME)。DIUTHAME现有三种尺寸,包括1通道、9通道以及大孔的成像专用型。凌世攀在报告中着重介绍了该方法的质谱分析应用实例,其特点是可大幅度缩减样品处理时间、对于低分子区域的噪声较少、可实现高空间分辨率的成像,且成像重复性良好、对于不同的应用场景其拓展性良好。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/12d5992d-a35b-4af7-b69b-bb561a51737d.jpg" title=" 周旭升_meitu_6.jpg" alt=" 周旭升_meitu_6.jpg" / /p p style=" text-align: center " 滨松中国分析领域销售工程师/质谱项目负责人 周旭升 /p p style=" text-align: justify "   周旭升在报告中首先分析了目前质谱分析的应用市场及国内质谱探测器的现状,并介绍了滨松的新型质谱探测器件。他提到,滨松其实与质谱的渊源已有40多年,可为质谱仪器提供电子倍增器(EM管)、微通道板(MCP)、通道电子倍增器(CEM)、MSP(MCP+荧光体+PMT)等。周旭升介绍到滨松的新一代探测器产品,包括MIGHTION,为MCP和半导体探测器(AD)的混合探测器 CERARION,是不含铅的通道电子倍增管,采用陶瓷构造,对环境友好 以及可以再低真空度工作的MCP组件,适用于小型质谱。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 396px " src=" https://img1.17img.cn/17img/images/201907/uepic/095e1e6e-62aa-4260-9ad3-7dba2cb087bc.jpg" title=" zujinan.JPG" alt=" zujinan.JPG" width=" 600" height=" 396" border=" 0" vspace=" 0" / /p p span style=" text-align: justify "   整个交流过程非常开放,专家们就产品技术、应用等感兴趣的问题随时进行了咨询和探讨,同时专家们也就滨松的新产品提出了一些宝贵的建议。有位老师特别提到, /span 对于MALDI成像来说,神经基质(amu& lt 200)的质谱成像是其难点,如果DIUTHAME可满足其需求,相信未来会得到长足的发展。 /p p span style=" text-align: justify " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b0d512b0-0d90-4c07-b305-2cb290dffe91.jpg" title=" 交流会.jpg" alt=" 交流会.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ed5edbbc-a447-49ff-a3ed-75e4e1abe099.jpg" title=" IMG_7448_meitu_5.jpg" alt=" IMG_7448_meitu_5.jpg" / /p p style=" text-align: center " span style=" text-align: justify " 参观展厅 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/1498fce3-ac0a-4b27-abe0-b04b55af2c2a.jpg" title=" 合照_meitu_9.jpg" alt=" 合照_meitu_9.jpg" / /p p style=" text-align: center " 与会专家合影 /p p br/ /p
  • Aliben发布Aliben-TF-2030烟草探测质谱仪新品
    Aliben-TF-2030烟草探测质谱仪我司的车载式质谱仪采用适用工业现场和野外使用的坚固仪器外壳,整体重量小于45公斤。具有优异的灵敏度和测量精度,适用于烟草特定目标物质的动态在线检测。仪器可匹配不同的采样装置,满足大部分日常测试需求。仪器配有分析软件可以快速采集数据。1、技术规格1)电源:90-250 VAC,50/60 Hz, 2、技术特点1)满足车载使用,具备一定的抗震能力2)分析速度快3)可以用一台仪器测量数百种气体并实现同时测量。4)适于各种工业和野外现场使用5)可以测量从ppb到%的全部浓度范围6)多种进样口和进样方式可供选择7)具有适用于烟草霉变状态的判别模型,可用于烟草霉变状态的快速直接判定8)可用于紧密堆积的烟草直接探测3、本产品(Aliben-TF-2030烟草探测质谱仪)属于特定行业产品,目前只接受定制,价格根据客户定制要求在一定范围内浮动,具体详情请咨询: 成都艾立本科技有限公司 地 址:四川省成都市彭州工业开发区五贤路453号4栋1-2层 电 话:028-83821196 传 真:028-83821196 邮 箱:yang@aliben.cn 网 址:http://www.aliben.cn/创新点:我司的车载式质谱仪采用适用工业现场和野外使用的坚固仪器外壳,整体重量小于45公斤。具有优异的灵敏度和测量精度,适用于烟草特定目标物质的动态在线检测。仪器可匹配不同的采样装置,满足大部分日常测试需求。仪器配有分析软件可以快速采集数据。 Aliben-TF-2030烟草探测质谱仪
  • 滨松参展慕尼黑上海分析生化展,将发布全新质谱用探测器技术
    慕尼黑上海分析生化展将于2018年10月31日-11月2日在上海新国际博览中心开展。此次展会,滨松中国(展位:E3.3222)也将一如既往的从探测器到光源,全方位展示物质分析之“眼”——光电探测技术。应用覆盖光谱、色谱以及环保中的水质、大气、烟气监测等等。 而本次展会将重点呈现的,则为近年持续火热的质谱应用。滨松拥有65年光电探测器的研制经验,在质谱用探测器技术的耕耘也已有40年的历史,可提供离子化光源、微通道板(MCP)、电子倍增器(EM)、高速荧光体等产品。这些都将在此次的展会中全面呈现。2018年,滨松集中发布了一系列全新的质谱用探测器技术,包括:栅网阳极结构第三代MCP高气压下(达1Pa),仍可高增益正常工作。MCP复合雪崩二极管结构具备高速、高增益、宽动态范围的特点。通道式电子倍增器(CEM)具备无铅、宽动态范围、高气压的特点。辅助离子化基板DIUTHAME用于MALDI-TOF-MS,大幅缩短前期处理时间。从2018年5月开始,新品就陆续在日本、美国初步面世。而此次慕尼黑上海分析生化展,则是首次登陆中国,也是本次滨松中国展台中不可错过的一大亮点。欢迎莅临展台参观交流。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 滨松将于第二届质谱仪器研发论坛发布最新质谱用探测技术动向
    p 第二届质谱仪器研发论坛将于2019年10月10日-12日在江苏昆山举办,本届会议由中国仪器仪表学会分析仪器分会质谱仪器学术组主办,分析测试百科网协办,昆山禾信质谱技术有限公司承办。届时将有众多质谱研发领域资深专家与会,共同讨论质谱核心技术的创新开发及应用问题。 /p p br style=" box-sizing: border-box " / /p p 滨松中国将出席本次会议,并发表“质谱探测新技术,为质谱仪研发带来更多可能”的报告(10月11日,15:45-16:00)。报告将介绍本年ASMS中发布的滨松应用于质谱分析仪器的探测技术动向,以及产品升级和最新应用信息,其中包括了高气压下(达1Pa)仍可高增益正常工作的栅网阳极结构MCP、大幅缩短TOF-MS(MALDI)前处理时间的无基质辅助电离基板(DIUTHAME)、复合雪崩二极管结构的MCP、通道式电子倍增器(CEM)。 /p p br style=" box-sizing: border-box " / /p p 滨松拥有65年光电探测器的研制经验,享誉世界,在质谱用探测器技术的耕耘也已有40年的历史,可为质谱提供离子化光源、电子倍增器(EM)、微通道板(MCP)等产品。此次会议,滨松将在现场进行包括新品在内的多类系列产品的展示,欢迎届时莅临展位参观与交流。 /p p br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 248px " src=" https://img1.17img.cn/17img/images/201909/uepic/4099d281-187b-489a-b6c4-300cc6e4b733.jpg" title=" 质谱新品.png" alt=" 质谱新品.png" width=" 600" height=" 248" border=" 0" vspace=" 0" / /p
  • 向质谱领域进军 滨松重点推广离子源、探测器等新品
    p   第十七届北京分析测试学术报告会暨展览会(BCEIA & nbsp 2017)已于10月10日-13日在北京国家会议中心举行,科学仪器核心零部件厂商滨松带着众多新产品新技术参展。其中质谱相关器件很是亮眼,就滨松如何看待质谱市场与技术发展趋势等问题,仪器信息网编辑采访了滨松中国分析领域质谱项目推进负责人周旭升先生。 /p p style=" TEXT-ALIGN: center" img title=" 滨松展位.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/99fe9b3e-edd1-462e-91ff-07f52812cff1.jpg" / /p p style=" TEXT-ALIGN: center" 滨松展位 /p p   滨松用于原子吸收、原子荧光等光谱仪器的光电倍增管盛名已久,其实滨松的质谱相关器件也已经有40多年的历史。不过由于某些原因一直没有“走”出日本,直到这两年,才开始不断在中国等市场宣传推广。 /p p   至于为什么选择这个时候进行推广,以及作为零部件供应商,滨松是如何看待质谱市场的前景、以及技术与应用的发展方向,周旭升谈到,如今质谱技术与应用非常“热”,升势迅猛。尤其是中国市场,由于环境大气颗粒物源解析、以及相关的VOC分析等都需要质谱技术。相关标准制定时,涉及了大量的质谱方法。 /p p style=" TEXT-ALIGN: center" img title=" 周旭升.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/18c8613b-4cb7-4d54-8d2e-b5576ec8ad72.jpg" / /p p style=" TEXT-ALIGN: center" & nbsp 滨松中国分析领域质谱项目推进负责人周旭升 /p p   近年来,解读一些大公司财报时都会发现,质谱业务保持着很好的增长。尤其是2008年金融危机后,质谱市场增长趋势越发迅猛,而且中国市场增长情况更加“剧烈”。几乎各大公司财报中都专门提到,中国环境、健康等相关市场中质谱仪器销售额大幅增长。 /p p   从另一个角度来看,国产质谱企业的数量越来越多,而且除了像东西分析、普析通用、聚光科技、天瑞仪器、广州禾信等,还出现了很多新企业,如宁波华仪宁创、北京清谱、青岛融智等。这些新型公司从MALDI或小型便携质谱开始,这也体现着质谱仪器的两个发展方向。小型便携质谱在环境、执法等领域有着很好的前景。MALDI质谱更专注于医疗、临床,而医疗临床领域也是近年来质谱应用的热点;最早奥巴马提出精准医疗战略,去年习主席在G20公告上承诺减少抗生素滥用,MALDI是鉴定身体里细菌、微生物、血细胞、组织的分析一种很好的手段,可以读取细胞中蛋白质的全面信息,是遗传疾病等诊断的好手段。另外,从利益角度来说,国内的三甲医院有实力、也有意愿配备MALDI等仪器设备展开更多的服务。 /p p   “如能将质谱技术用到更多领域或是人们的生活中,那将是对分析技术或仪器市场非常大的革新。”周旭升说到。 /p p   “应对这些市场需求,滨松开始大力在中国推广质谱相关器件。”至于滨松推广的手段,周旭升介绍到,国产质谱企业中多数已经是滨松光谱等器件的客户,当知道滨松有这些质谱器件时也都愿意尝试使用。而滨松的产品,如真空器件微通道板(microchannel plate, MCP)产品“身上”有着滨松60多年真空技术的积累,在产品一致性等大批量生产时的品质有很好的保证。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 电子倍增器(electron multiplier, EM)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   MCP是一种可以二维探测和倍增电子的电子倍增器。MCP也对离子、真空紫外射线、X射线和伽马射线等敏感,因此MCP可以应用在这些物质的位置和能量的探测器件中。 /span /p p   除了MCP、EM的固有产品,滨松不断进行着革新,几乎在每年的ASMS上都会发布一款最先进的技术信息。周旭升介绍了近两年来推出的几款新技术。如,2016年发布了复合型MCP,由于增加了一个1000倍增的雪崩管使得其使用寿命提升7-10倍。2017年专门针对大分子分析的MALDI质谱推出了另一种复合型MCP,与传统MCP相比其信噪比大幅提高。另外还有一种用于小型化离子阱质谱的检测器CEM(连续式倍增电极,Channel electron multiplier)在真空度低的情况下仍能耐高压;而且器件不含铅对环保或仪器认证方面具有一定优势。不过,周旭升也提到,“这些新技术目前都还处在开发阶段,不过已提供给国内质谱企业试用,进行评估反馈,直到性能稳定下来能达到用户的要求,才会进行批量生产。” /p p   质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。因此,在此次BCEIA 2017上,滨松就重点展出了离子源、检测器相关产品。 /p p   如全新光致电离离子源——VUV氘灯 L13301,基于MgF2窗材的VUV氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。它的电离能可达到10.78eV,电离效率提高,且相对于传统PID灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。在VOCs监测等领域有着较好的应用,VUV氘灯最大至10.78ev的电离能可电离绝大多数VOCs。 /p p   针对TOF-MS的特点及对MCP探测器的要求,滨松最新的F12396-11、F13446-11、F1094-11作为代表在此次BCEIA中登场。这几款MCP具有响应速度快、极小的后脉冲、鲁棒性\无畸变、漏斗型MCP\保持更高探测效率的特征,其还可结合荧光屏进行电光转换、后端加CCD相机可显图像。 /p p   近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,ICP-MS得到更加广泛的应用,ICP-MS面向的是痕量无机元素的测定(检出限ppt级别)。针对ICP-MS的特点及对探测器的需求,本次展会滨松展示了具有大动态范围双模式输出(模拟输出和计数输出)的EM R13733。 /p p style=" TEXT-ALIGN: right" 撰稿:刘丰秋 /p p & nbsp /p
  • 天宫一号将对地球进行光谱探测
    10月4日,记者从中国载人航天工程网获悉,载人航天工程空间应用系统副总设计师张善从表示,天宫一号将安排开展空间材料科学、空间环境探测和对地观测三个方面的空间科学实验。在对地观测方面,天宫一号将实验一种高分辨率光谱相机,实现对地球进行光谱探测。   光谱观测设备注重实验性质   据介绍,这次天宫一号对地观测将首次实验短波红外光谱仪探测,天宫一号上使用的对地观测设备与遥感系列卫星星载对地观测设备不同,后者使用的技术与设备都具有较高的成熟度,可直接应用 前者则注重实验性质,实验成功后观测设备才会用于卫星使用。   张善从说,未来中国的载人空间站也将是一个长期有人照料的国家级太空实验室,将支持几十个到上百个学科空间实验的开展。   探测设备分辨率最高可达10米   据悉,目前天宫一号已进入距离地面354千米的近圆轨道,并展开在轨测试工作。   张善从介绍,比如最近渤海漏油事件,普通的相机看不出来海面的变化情况,通过光谱仪可探测石油泄漏影响的海域面积,以及对海洋生态环境的破坏情况等。   据悉,这种光谱相机是国内第一种短波红外光谱探测设备,也是目前国内空间分辨率最高的一种设备,其空间分辨率最高将达到10米,而国外同类型仪器的空间分辨率都是百米量级的,甚至有1000米量级的。   据悉,在空间材料科学方面,将开展复合胶体晶体生产实验,复合胶体晶体生产是目前空间材料科学研究的热点,其中最具代表性的是光子晶体,被比喻为21世纪可能会带来信息技术革命的新材料。
  • 看滨松解析:质谱探测器与新一代真空紫外电离源
    仪器信息网主办的第七届质谱网络会议(ICMS 2016)将于2016年11月22日拉开帷幕。本次滨松中国将首次参会,并有滨松分析领域高级销售工程师,于11月23日的质谱新技术论坛发表《滨松质谱探测器简介与新一代真空紫外电离源》报告。全面介绍滨松用于质谱的探测器和新型离子化光源产品。 会议时间:11月23日 10:40-11:10 会议地点:仪器信息网质谱网络会议线上会场 会议详情及报名:敬请关注仪器信息网第七届质谱网络会议(ICMS 2016)专题页面内容预览:在质谱应用中,滨松提供了离子化光源、mcp、电子倍增器三种产品。离子化光源相对于质谱仪常规使用的pid灯而言,其能量在峰值处更强。而软离子化的方式具有没有碎片的特征,因此广泛适用于各种大分子的生物分析。在探测端,MCP(微通道板)和EM(电子倍增器,已有40年的历史)分别具有定性和定量的功能,作为支持高度定制化的“高端人士”而受到关注。其中,mcp对于使用环境比较“娇气”,易受潮形变,相对于同类产品来说,具有机械鲁棒性的滨松mcp抗潮性较强,保证了仪器的可靠性,也降低了维护的成本。而其组建也具快速时间响应的特性,可达45皮秒的级别。用于定量的滨松em则广泛用于四极杆系统以及离子井系统,具有较宽的动态范围,并支持正负离子的同时探测。更多内容,敬请关注11月23日10:40仪器信息网第七届质谱网络会议(ICMS 2016)质谱新技术论坛《滨松质谱探测器简介与新一代真空紫外电离源》报告!
  • 揭秘好奇号火星车上的微生物探测仪器
    好奇号火星车结构 MastCam是“好奇号”的眼睛,它可以环顾四周,让地面控制人员引导火星车行进的方向。 它由两套高分辨率彩色摄像机组成。 MAHLI是火星车的高性能的”放大镜“(环境搜索器),安置在2.1米长的悬臂上,能够帮助地面科学家近距离地观察火星地面的石头与泥土,能够分辨12.5微米的景象,比人的头发丝还要细微。这等于说,科学家爬在火星地面上用高倍放大镜“钻牛角尖”,看起来,有点儿“滑稽可笑”。 MAPDI是一台高速摄像机(每秒5幅),告诉地面指挥人员火星车目前所在的位置(周围160米以内的环境),以便决定火星车的下一步的行程。 SAM是“好奇号”的取样分析中心,里面有三套仪器设备:质谱仪、气象色谱和分光光度计。该取样中心的任务是:探明火星上是否存在碳的化合物以及氢、氧、氮等元素。此举是前所未有的,科学家为此激动不已。 CheMin是识别火星矿石类型的仪器,可以帮助科学家分析、理解火星的过去及其演变历史。这台仪器装有X射线,用以探测矿石的晶体结构。科学家为此而骄傲。在“好奇号”上,科学家什么能耐都使出来了。 CheGam是一台高功率的激光枪,可以局部气化9米远的火星矿石,再分析其中的化学成分。要是“好奇号”遇上真的火星人(Martian),激光枪就是战斗的武器。 DAN是探测火星冰与水的仪器。它向火星地表以下2米深处发射中子束以便探明侵入矿石中的水份。 APXS是探测火星表面存在哪些化学元素的装置。 RAD是专门探测火星表面各种射线的装置,为今后人类登陆火星做准备。 REMS是探测火星气候的仪器,测量火星大气的温度、湿度和气压,以及风速与风向。还有测量火星的紫外线辐射。 MEDLI是探测火星大气温度与压力随高度而分布的仪器。
  • 红外成像光谱仪为嫦娥四号探测与研究保驾护航
    p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201901/uepic/f6ecdf60-26f2-46c4-9e49-d11e1e7dc460.jpg" title=" 201911117400730.jpg" alt=" 201911117400730.jpg" / /p p style=" text-indent: 2em text-align: center " 嫦娥四号红外成像光谱仪(来源:中科院上海技术物理研究所) /p p style=" text-indent: 2em text-align: justify " “嫦娥四号探测器拟着陆于月球背面的艾特肯盆地,在多台科学有效载荷中,红外成像光谱仪是唯一一台服务于月球矿物组成探测与研究的科学仪器,将获取毫米级空间分辨率的月壤高光谱图像及红外光谱数据。” 中科院上海技术物理研究所红外成像光谱仪副主任设计师徐睿说起有效载荷红外成像光谱仪如数家珍。 /p p style=" text-indent: 2em text-align: justify " 嫦娥四号红外成像光谱仪是由中科院上海技术物理研究所研制的一台能够感知人眼无法察觉的红外光谱的成像探测设备,其安装在月球车正前方,就像一只敏锐的眼睛,将仔细察看月面的矿物组成。 /p p style=" text-indent: 2em text-align: justify " 徐睿进一步解释说,红外成像光谱仪光谱范围0.45 ~ 2.40微米,光谱分辨率2 ~12纳米,具备在轨定标及防尘功能,能适应-20~+55º C工作以及-50~+70º C存储的温度环境,重量小于6公斤,是一台高性能、轻小型、高集成的仪器。 /p p style=" text-indent: 2em text-align: justify " 红外成像光谱仪采用新型分光技术——射频驱动声光可调滤光技术,新型电机——超声电机,两者均由嫦娥三号红外成像光谱仪实现在轨首次应用。相对于嫦娥三号,在经历了多年的技术积累后,通过内部软件不断迭代,当前单次获取月表光谱信息的时间周期缩短了一半,探测效能与定量化水平均得到了提高,从而更好地为月球化学演变研究的科学家服务。 /p p style=" text-indent: 2em text-align: justify " “在巡视器与着陆器分离后,红外成像光谱仪择机工作。” 中科院上海技术物理研究所红外成像光谱仪主任设计师李春来告诉《中国科学报》记者,依靠巡视器的移动能力,到达指定科学考察点时,红外成像光谱仪对月球车前方0.7m的月表进行精细光谱信息获取,为月面巡视区矿物组成分析提供科学探测数据。 /p p style=" text-indent: 2em text-align: justify " 据介绍,红外成像光谱仪由可见近红外的成像光谱仪、短波红外光谱仪及定标防尘组件高度集成而成,具体包括声光调制分光光学系统、超声驱动定标防尘隔热一体化组件、轻型复合结构、数据获取及处理模块,主控系统等。其中定标防尘组件对于红外成像光谱仪就如同相机的镜头盖,在光谱仪不工作的时候,它自动关闭,在对系统隔热保温的同时,保护光学不被月尘污染。需要月面探测时,定标防尘板全部打开,获取月表的光谱图谱科学数据;而定标模式则是将定标防尘板开启至水平位置,以太阳作为定标源,监控仪器状态。 /p p style=" text-indent: 2em text-align: justify " 事实上,上海技术物理研究所在嫦娥四号红外成像光谱仪任务立项之初,基于嫦娥三号的设计与在轨数据成果情况,就提出了保持接口与硬件设计沿用,软件优化升级的产品研制技术路线,尽可能的利用近年来声光调制光谱探测研究的技术积累,提升嫦娥四号产品的在轨探测能力。李春来带领研制团队,严谨了落实每一步优化的技术状态,将飞行件产品性能调整至最佳。 /p p style=" text-indent: 2em text-align: justify " 而承担光谱仪的系统定标工作的徐睿表示,光谱仪的研制过程就好比生产了一把“尺子”,而定标则是为“尺子”刻上精确的刻度,这样产品才能为科学家所用。 /p
  • 140万!复旦大学宽谱光电探测低频噪声分析系统采购项目
    项目编号:0705-224002028090项目名称:复旦大学宽谱光电探测低频噪声分析系统采购国际招标预算金额:140.0000000 万元(人民币)最高限价(如有):136.0000000 万元(人民币)采购需求:1、招标条件项目概况:宽谱光电探测低频噪声分析系统采购资金到位或资金来源落实情况: 本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028090招标项目名称:宽谱光电探测低频噪声分析系统采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1宽谱光电探测低频噪声分析系统1套频率范围不窄于:2 Hz to 50 GHz预算金额:人民币140万元 最高限价:人民币136万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 140万!复旦大学宽谱光电探测低频噪声分析系统采购国际招标
    项目编号:0705-224002028090项目名称:复旦大学宽谱光电探测低频噪声分析系统采购国际招标预算金额:140.0000000 万元(人民币)最高限价(如有):136.0000000 万元(人民币)采购需求:1、招标条件项目概况:宽谱光电探测低频噪声分析系统采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028090招标项目名称:宽谱光电探测低频噪声分析系统采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1宽谱光电探测低频噪声分析系统1套频率范围不窄于:2 Hz to 50 GHz预算金额:人民币140万元 最高限价:人民币136万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。
  • 上海交大张月蘅课题组在新型超宽谱光电探测器方面获进展
    近日,Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。A. 量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图. 近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。A.暗电流随温度变化 B. 暗电流与常用太赫兹探测器对比 C. 零偏压下微观响应机制 D. 量子棘轮探测器光响应谱. 应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。 该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。 该工作近日发表于Science Advances (Sci. Adv. 8, eabn2031 (2022))上。共同第一作者北京应用物理与计算数学研究所助理研究员白鹏和张月蘅课题组博士研究生李晓虹,共同通讯作者为应用物理与计算数学研究所楚卫东研究员、上海交通大学张月蘅教授和清华大学赵自然教授。研究工作得到了国家自然科学基金、上海市科技自然科学基金、博士后基金和上海交通大学“人工结构及量子调控”教育部重点实验室开放课题的经费支持。上海交通大学张月蘅课题组承担并参与了器件设计、器件性能测试表征及论文写作方面的工作。
  • 合肥工业大学研发新型深紫外光电探测器 光谱选择性优异
    目前,我国深紫外光电探测技术由于受传统器件结构等限制,仍存在易受环境影响、光电性能较差、器件响应速度和信号利用率难以兼顾等问题。  近日,合肥工业大学电子科学与应用物理学院科研团队,成功研发出新型深紫外光电探测器,开创性地将透光性好、电子迁移率高且电阻率低的电子材料石墨烯和高质量β -氧化镓单晶片引入深紫外光电探测器中,并提出一种全新的器件MSM结构,实现了对半导体与金属电极接触性能的大幅提升。器件光谱响应分析结果表明,该器件具有优异的光谱选择性,在深紫外光区域响应非常明显。器件性能分析结果则显示,该器件能够在深紫外光区域的光电转化效率及探测率大幅度提升。该深紫外光电探测技术将在刑侦检测、电网安全监测、森林火灾告警等领域应用前景广阔。
  • 风云三号F星发射成功 将开启紫外高光谱探测新篇章
    8月3日11时47分,长征四号丙运载火箭在酒泉卫星发射中心成功发射,顺利将风云三号F星(又称:风云三号06星)送入预定轨道,发射任务取得圆满成功。风云三号F星由中国航天科技集团八院抓总研制。记者从八院了解到,作为上午轨道卫星风云三号C星的接替星,风云三号F星上搭载了10台功能强大、性能先进的遥感仪器,观测能力得到显著提升,尤其是新研的2台紫外高光谱探测仪,将开启我国风云卫星紫外高光谱探测新篇章。王淇俊 摄台风暴雨捕捉更精准近年来,极端气象灾害给全球带来巨大的生命财产损失。台风暴雨区域的大气温湿度分布可以描绘台风暴雨位置及强度等信息,台风暴雨区域大气温湿度分层越精细,台风暴雨信息刻画越精准。卫星高频次、高精度获取大气温湿度廓线信息,不仅对数值天气预报精度的提高和气候变化预测与评估具有重要的意义,还对区域和中小尺度天气、短临天气,特别是台风、暴雨等重大灾害性天气预报精度的提高具有重要贡献。风云三号F星搭载了先进的微波温度计、微波湿度计、红外高光谱大气探测仪三台仪器探测大气温湿度廓线。相比风云三号C星,F星的大气垂直探测通道数量提升近47倍,微波温度计大气探测通道17个,微波湿度计大气探测通道15个,红外高光谱大气探测仪探测通道达3000多个。通道越多,大气垂直分层探测越精细,也就意味着这台大气温湿度“CT机”垂直分层能力显著提升,对大气温湿度分层认知更精准。同时,微波和光学大气探测仪器深度联合,将充分发挥微波通道不受天气影响及高光谱探测通道更精细的优势,可探测人眼难以捉摸的大气温湿度廓线信息,为大气做更精准的“三维扫描”,可提示未来几小时哪些区域将会发生强对流等极端天气,更加精准地捕捉台风、暴雨等大气温湿度分层信息,全面提升我国在全球数值预报、防灾减灾等方面的综合能力。风云三号F星在轨效果图(中国航天科技集团八院供图)“俯瞰、侧视”双管齐下痕量气体是大气中浓度低于十万分之一的粒子,主要有臭氧、一氧化碳、二氧化碳、二氧化硫等,对全球大气环境及气候变化起着潜移默化的作用。卫星对全球大气痕量气体时空分布特征和变化趋势进行动态监测,能对全球大气环境治理和应对全球气候变化起到重要作用。风云三号F星装载了2台新研制的紫外高光谱遥感设备。其中,紫外高光谱臭氧天底探测仪用于紫外可见光波段探测。仪器正面“俯视”地球大气,犹如一台“超广角CT机”,可以实现每天一幅全球大气微量成分探测图像,能为气候变化研究和环境监测提供重要数据支撑。该仪器探测通道数量近千个,幅宽达2900公里,空间分辨率优于7公里,相比国内外同类型紫外探测仪器,其在光谱分辨率和空间分辨率均有大幅度提升,达到国际同类载荷先进水平。紫外高光谱臭氧临边探测仪则是通过对大气侧面扫描,获取大气垂直廓线信息。这是我国首台利用临边观测模式进行紫外可见波段高光谱大气探测的业务载荷,主要用于气候变化、大气化学以及大气环境研究。该仪器探测通道数量达2000余个,垂直分辨率优于3公里,性能指标达到国际同类载荷先进水平,填补了我国风云卫星紫外高光谱临边大气探测的空白。
  • 揭秘风云四号卫星如何获取高光谱大气探测数据
    大气辐射亮温垂直分布动态图。来源:国家卫星气象中心  干涉式大气垂直探测仪是国际上第一台在静止轨道上以红外高光谱干涉分光方式探测大气垂直结构的精密遥感仪器。通过该探测仪,我们成功获取了全球首幅静止轨道地球大气高光谱图。作为第一次露出真容的大气高光谱图,应该如何解读图像和展开数据应用呢?这非常值得探析。  探什么?  很多人都知道“探空”:气球带着测量仪器从地面不断升高,包含温度、湿度等传感器,边上升边测量并把数据传回给地面跟踪和接收雷达。这好比用温度计,在一个高度上量一下,在下一个高度上再量一下。它能把大气的温湿度测量得非常准确,本质上属于直接测量,一般测量高度为30公里,能够对对流层和平流层在各垂直高度上进行测量。  地面探空近乎直接测量,其精度很高。但是,这些探空站在海洋上是没有的,而陆地上也只能在约200×200公里设置一个,一般每天全球统一在世界时00时和12时两个固定时间进行两次探空。  怎么探?  大气结构是三维的,又是随着时间快速变化的。由于探空站在地理、空间分布密度和观测频次上的局限性,其探测数据无法支撑快速发展的数值天气预报模式。  探测大气三维结构的方法除了地面探空外,天基(卫星)红外和微波被动探测已经成为国际主流。在卫星上进行大气温湿度三维结构探测的优势在于可以全球覆盖,而静止气象卫星的优势在于获得高频次的观测数据。  在卫星上利用红外遥感怎么测大气三维结构呢?进行三维大气温度湿度探测,主要基于光谱通道选择。比如,选择大气混合比稳定的二氧化碳红外吸收带,探测大气的温度廓线 选择水汽红外吸收带探测大气的湿度廓线。不同的二氧化碳吸收通道探测到的红外辐射主要来自于特定的高度层,对该高度的大气温度变化敏感,利用此原理可以获得大气的温度垂直分布信息。同样,不同的水汽吸收通道对不同高度层的大气湿度变化敏感,从而可以获得大气的湿度垂直分布信息。  要满足数值预报对大气探测精度的要求,在技术上高光谱红外探测是必选的技术途径。高光谱探测的优势在于探测通道的光谱分辨率越高,即通道的权重函数越窄,受到的臭氧、水汽等其它吸收气体的污染就越小,对特定高度层的敏感程度也越高,不仅提高了大气温湿度探测精度,而且也提高了大气探测的垂直分辨能力。  “风云四号”干涉式大气垂直探测仪采用迈克尔逊干涉分光的方式实现大气红外高光谱探测,可以获取高频次区域晴空和云顶以上的大气三维结构。  那么,云内部和云底以下大气怎么实现高频次探测呢?这就需要气象人期盼的“风云四号”微波星在未来发挥其功效。  怎么用?  国际上没有利用静止轨道高光谱大气探测数据的成功先例,我国气象应用势必要经过从试用到业务应用的过程,特别是要根据应用需求(观测精度、区域范围和观测频次等)来确定仪器观测模式,需要应用部门和地面应用系统鼎力合作。  干涉式红外大气探测仪数据主要的应用包括以下几个方面:该仪器具有对我国及周边地区1小时一次、间隔仅16公里的密集的大气温湿分布垂直探测能力,其探测数据可以同化到全球和区域数值预报模式,改进数值预报初始场,特别是像海洋上等缺少常规探空观测的区域,对于提高预报的精细化能力起到促进作用 利用该仪器反演得到大气不稳定指数,可以提前数小时有效监测到暴雨系统发生前环境条件的变化,在还是晴朗无云的大气中提前发现极端天气的蛛丝马迹,直接提供给预报员进行天气分析和预报 可以对小尺度强对流天气系统进行高频次探测,直接服务于短临天气预报预警。  怎么读?  干涉式大气垂直探测仪有超过1600个探测通道,不同高度的大气对不同探测通道的红外辐射贡献存在差异。根据这些差异可以反演出大气温度、湿度的三维结构。下图所示为选取该仪器观测到的7个长波红外通道在权重高度的红外辐射亮温垂直分布图。
  • 紧贴热门分析应用,滨松将在BCEIA给您光电探测新视野
    中国分析领域两年一度的盛会——北京分析测试学术报告会暨展览会BCEIA,将于10月27日-30日在北京国家会议中心举办。滨松中国本次将展出质谱、光谱、色谱三大分析应用中多款光源、光电探测器等产品。另外,量子级联激光器(QCL)、MOEMS微型化产品也将重点登场。可用于质谱仪的离子探测器 R4146-10 紧凑的紫外-可见S2D2光源模块 为了增加参观者对产品的体验,展台专门设立了DEMO演示区。由红外探测器和QCL组成的气体分析DEMO将在这里迎来中国首展,为观众生动诠释如今在环保领域中气体分析监测这一热门应用。另外,观众除了可再次见到尘埃探测器DEMO(可测PM2.5),也将有机会和极具潜力新品——笔头大小MEMS-FPI的DEMO进行“亲密接触”,现场将准备多种样品,供观众体验。MEMS-FPI DEMO 现场有多种塑料样本供测试体验随着社会的发展和环境的变化,分析仪器也出现了许多来微型化、便携化的需求,而想要真正把握改变的机遇,来自于核心器件的支持是必不可少的。滨松中国分析领域销售工程师张顺斌,将于10月27日13:20在V馆进行名为“&lsquo 微&rsquo 型大义,滨松微型化新品为分析仪器带来更多应用可能”的现场报告,针对滨松利用MOEMS等技术开发的一系列微型化新品进行介绍,届时欢迎您的莅临。 滨松展台为P20、P22,报告地点位于V馆“厂商秀”区域
  • 重磅!华人科学家发明笔形质谱探测器,能精准判定癌灶与正常组织的界限
    p   担心肿瘤切除不彻底?外表看不出异常的组织该不该切?这样的担忧和疑问恐怕不止一位病人和医生有过。 /p p   9月6日著名期刊《科学转化医学》杂志以封面的形式发表的重磅研究成果,也许将打消这些顾虑。德克萨斯大学奥斯汀分校的研究人员开发了一种方便快速的笔形探测器,能在10秒之内确定手术切缘组织的良恶性状况,用时是现行病理诊断手段的1/150[1]! /p p style=" text-align: center " img title=" 1.gif" style=" width: 600px height: 338px " src=" http://img1.17img.cn/17img/images/201709/insimg/ec6e1f36-58a7-42a7-9ee7-bdc28f5350e7.jpg" width=" 600" vspace=" 0" hspace=" 0" height=" 338" border=" 0" / /p p style=" text-align: center " strong 哪里不清楚?那就点哪里! /strong /p p   手术切除实体肿瘤时,对切缘性质的判断是非常关键的。以乳腺癌治疗的保乳术为例,要判定癌灶与正常组织的界限,既要保证尽可能全部切除癌组织,让手术切缘没有癌细胞残留,又要尽可能保留正常组织,以达到外表美观的目的。而对肺癌、卵巢癌等癌症,若手术切除后仍留有癌灶残余,原处复发往往预后不良。因此,完整切除肿瘤并进行准确的切缘判断是手术高质量的体现。 /p p   但到底切除范围多大,才能实现完整切除不留后患呢?临床实践中并没有统一的标准,手术中更多要依靠术者根据术前检查结果、肿瘤形态、切除组织量对正常生理功能的影响等因素进行判断,这就为癌症复发留下了可乘之机。 /p p style=" text-align: center " img title=" 2.jpg" style=" width: 316px height: 400px " src=" http://img1.17img.cn/17img/images/201709/insimg/4f903cba-8933-43a5-a74c-777fa6eaf912.jpg" width=" 316" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p p style=" text-align: center " strong 本期《科学转化医学》封面 /strong /p p   当然,医生们也并非全靠着经验和感觉行事,冰冻切片检查可以在手术过程中快速提供病理诊断,但这一方法也存在明显的局限性。冰冻制片过程会影响组织结构和癌细胞形态,因此阅片医生需要丰富经验进行精准判断。虽然相对快捷,但冰冻切片检查过程一般也需要30-40分钟,手术时间延长也会带来病人出现麻醉意外的风险。而如果将病理诊断放到术后进行,若手术切缘的确有癌组织残留,病人可能又要再次经历手术,医疗花费增加、手术并发症风险等一系列问题随之而来[2]。 /p p   针对这一问题,近年来也不断有新的技术手段和理念被提出,如术中荧光染色法[3]、拉曼光谱技术[4]、质谱分析法[5]等。基于质谱分析法的多种手段已在开发和应用中,如电喷雾解析质谱(DESI-MSI)、基于快速蒸发电离质谱的智能电子手术刀iKnife[6]等。 /p p style=" text-align: center " img title=" 3.jpg" style=" width: 300px height: 168px " src=" http://img1.17img.cn/17img/images/201709/insimg/93861f9f-876c-45a5-9843-afd3e950cec1.jpg" width=" 300" vspace=" 0" hspace=" 0" height=" 168" border=" 0" / /p p style=" text-align: center " strong 智能手术刀iKnife /strong /p p   这些方法虽然有着较高的准确性,但也有着各自的局限性。DESI-MSI需要高电压产生电喷雾,限制了其进入手术室实时应用的能力,而iKnife则需对组织进行切除后再作判断。能否有一种无创且便于推广的手段,实现手术过程中的快速病理定性呢? /p p   Livia Ebervin带领的德克萨斯大学奥斯汀分校研究团队也许找到了答案。她们开发出了一种实时组织学诊断设备,命名为MasSpec Pen。这支“神笔”是多学科共同努力的结晶,Ebervin带领的化学团队、Thomas Milner教授带领的生物医学工程团队、贝勒大学医学院和MD安德森癌症中心的病理学研究人员携手完成了开发工作。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/3623ab76-a0d0-4934-a9cb-0d1d87ecbe84.jpg" / /p p style=" text-align: center " strong Livia Eberlin教授(左)和论文第一作者张佳玲博士(右) /strong /p p   MasSpec Pen的整套设备主要由三个部分组成:一台微量注射泵、双向活瓣导管和形状与一支笔相似的手持探测器。当然,旁边的质谱分析仪也是必不可少。相信看过示意图,很多外科医生会对它的控制方式感到颇为亲切。这不就像整天握在手中的电刀嘛! /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/fbd3740f-46a1-4e92-b55b-309ac97f1170.jpg" / /p p style=" text-align: center " strong MasSpec Pen设备示意图 /strong /p p   用Eberlin教授自己的话来简单介绍一下MasSpec Pen的工作原理:“随着生长失控,肿瘤细胞的代谢会出现明显失调,与正常细胞的差异极大,因此我们用MasSpec Pen对组织进行像采集指纹一样的提取和分析。通过简洁和平缓的化学过程,MasSpec Pen就能在不造成组织损伤的状况下迅速提供给我们诊断所需的分子信息。[7]” /p p   以下两张动图可以更好地诠释MasSpec Pen的工作流程。 /p p style=" text-align: center " img title=" 6.gif" src=" http://img1.17img.cn/17img/images/201709/insimg/28d33f75-a63b-4422-ac15-1cb7d4248c21.jpg" / /p p style=" text-align: center " strong 探测器注入极微量的水,提取出病人体内的小分子物质 /strong /p p style=" text-align: center " img title=" 7.gif" src=" http://img1.17img.cn/17img/images/201709/insimg/a148e006-072a-49fd-91f7-9f9482041389.jpg" / /p p style=" text-align: center " strong 提取物传递到质谱分析仪,进行良恶性的判断 /strong /p p   整个过程中,探测器接触组织的时间仅需3秒,而判断可在10秒钟之内完成。 /p p   当然,为了实现良恶性的判断,还需要首先收集到用来判断的数据。研究人员先从正常的组织中获取了相关的数据图谱,并与DESI-MSI法的结果进行了比对,结果基本一致。再用同样的手段进行对癌组织的检测,标定出与正常组织明显不同的图谱表现,就让“神笔”有了判断的基础。 /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/9a9b744a-221a-4422-ad01-96337d6420a6.jpg" / /p p style=" text-align: center " strong 正常组织(上)和癌症组织(下)的质谱图对比 /strong /p p   在实现快速判断的同时,MasSpec Pen的损伤也是极小,相比大手术时动辄十几公分的切口,下图里400微米的取样,基本可以称为完全无创了。 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/e62bdc51-095d-4a34-972b-987989d028f3.jpg" / /p p    /p p & nbsp /p p & nbsp /p p   是时候把“神笔”投入实战了。使用MasSpec Pen,研究人员对包括肺、卵巢、甲状腺、乳腺在内的253份人体组织样本进行检查,其中近半为癌症组织,而这些癌症每种都会出现不同的质谱图。MasSpec Pen的表现没有让人失望,数据分析的结果显示,它的诊断特异性达到了96.2%,敏感性为96.4%! /p p style=" text-align: center " img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/1a547d9d-c020-40f6-9fc4-562dbcc17d04.jpg" / /p p style=" text-align: center " strong MasSpec Pen对不同类型肿瘤的判断精确度均很高 /strong /p p   研究人员随后对MasSpec Pen能否准确区分组织学上的良恶性区域边界进行了测试,同样得到了令人满意的结果,MasSpec Pen的判断与病理诊断结果几乎完全相同。 /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/b4ebf04d-e3cf-453f-b827-4a22a027ae5a.jpg" / /p p   为继续验证MasSpec Pen的准确性,研究人员决定在小鼠模型上进行进一步的活体试验。在向小鼠植入乳腺癌细胞并培养后进行手术切除,再用MasSpec Pen进行取样检测,分析的结果也清晰地显示出了正常组织与癌组织的不同。 /p p   Livia Eberlin教授对“神笔”的临床前景抱有很高的期待。“和术后的癌症病人交谈时,很多人说的第一句话就是:‘希望医生们把肿瘤彻底切干净了’。若情况并非如此,就真的很让人伤心。我们的成果可以大幅提高外科医生手术中真正彻底切除肿瘤所有部分的概率。” /p p   Eberlin团队成员,毕业于北大化学与分子工程学院的论文第一作者张佳玲则说:“在设计MasSpec Pen时,我们就确定只有探测器的探头和注入的水会与组织产生接触,从而保持组织的完整性。它有很高的生物兼容性和自动化水平,我们对将它转入临床使用极其兴奋。”[7] /p p style=" text-align: center " img title=" 12.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/aac8e4b8-0659-4431-92f7-2344e1592fa8.jpg" / /p p   Eberlin教授希望,这一研究成果能在2018年进入临床开展初步的验证[8]。不过只研发出“神笔”,并不能解决投入临床实践面临的所有问题,首当其冲的拦路虎就是质谱分析仪的配备问题。由于价格高昂(在美国可达50万美元一台),质谱分析仪往往多见于实验室,在手术室中相当少有。 /p p   对此Eberlin教授表示,她设想开发一种体积更小、仅保留MasSpec Pen配套功能,从而更加廉价的质谱分析仪,应用于手术室环境。这一想法也并非不切实际,佐治亚大学的研究人员今年就曾在《自然· 纳米技术》上发表相关的研究[9]。 /p p   MasSpec Pen的功能或许不仅限于判断肿瘤的切除程度。在获取更多数据建立大规模的数据库后,研究人员还希望将它与腹腔镜手术系统、机器人手术系统等微创技术和可视化技术结合,从而促进更广泛的临床应用。 /p p   《科学转化医学》用“笔比手术刀还神奇?”来形容此次的成果。奇点糕衷心希望,这样一种简洁、快速、准确的诊断手段能尽快进入临床,帮助外科和肿瘤医生。 /p p   参考资料: /p p   1.http://stm.sciencemag.org/content/9/406/eaan3968 /p p   2.Buchholz T A, Somerfield M R, Griggs J J, et al. Margins for breast-conserving surgery with whole-breast irradiation in stage I and II invasive breast cancer: American Society of Clinical Oncology endorsement of the Society of Surgical Oncology/American Society for Radiation Oncology consensus guideline[J]. Journal of clinical oncology, 2014, 32(14): 1502-1506. /p p   3.Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial[J]. The lancet oncology, 2006, 7(5): 392-401. /p p   4.Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science translational medicine, 2015, 7(274): 274ra19-274ra19. /p p   5.Chughtai K, Heeren R M A. Mass spectrometric imaging for biomedical tissue analysis[J]. Chemical reviews, 2010, 110(5): 3237-3277. /p p   6.Balog J, Sasi-Szabó L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry[J]. Science translational medicine, 2013, 5(194): 194ra93-194ra93. /p p   7.https://news.utexas.edu/2017/09/06/new-device-accurately-identifies-cancer-in-seconds /p p   8.https://spectrum.ieee.org/the-human-os/biomedical/devices/handheld-mass-spectrometry-pen-identifies-cancer-in-seconds-during-surgery /p p   9.Li A, Zi Y, Guo H, et al. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry[J]. Nature Nanotechnology, 2017, 12(5): 481-487. /p
  • 超快高敏光电探测器问世 用于安检及生化武器探测
    据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然纳米技术》杂志上。   科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。   而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。   通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。   研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。   新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。   虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。
  • 中国电科11所多谱段长波红外探测器组件随高光谱综合观测卫星成功入轨
    高光谱红外热成像可以获取地物的热辐射精细光谱信息,更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用。12月9日,中国光学光电子行业协会理事长单位、红外分会理事长单位中国电科11所研制的多谱段长波红外探测器作为宽幅热红外成像仪载荷的核心红外器件随高光谱综合观测卫星(高分五号01A)进入预定轨道,将实现每天3次大气环境、红外全球覆盖,通过卫星的应急观测能力,实现对全球热点区域的快速高光谱重访观测,以高新红外技术,为我国航天事业发展做出新的重要贡献。2022年12月9日02时31分,长征二号丁遥四十五运载火箭在太原卫星发射中心点火升空,成功将高光谱综合观测卫星(高分5号01A)送入预定轨道,发射任务取得圆满成功,标志着高分辨率对地观测系统重大专项空间段建设任务圆满收官。高光谱综合观测卫星将在生态环境动态监测、自然资源调查与监测、大气成分探测等方面发挥重要作用。高光谱综合观测卫星搭载的宽幅热红外成像仪载荷的核心红外器件是由中国电科11所自主研制的一款多谱段长波红外探测器,探测器具有以下特点:4个长波红外谱段。8um-12.5um的长红外波段细分为4个波段,通过分裂窗的反演算法实现高精度、高稳定性定量温度反演。优于50mk的温度分辨率。在波长12.5um的红外探测器中,温度分辨率达到了国际先进水平,可以直观、清晰地迅速捕捉地表广域范围内的昼夜热红外图像。优于10%的响应非均匀性。拍摄的每一幅图像是通过扫描机构将不同区域的图像扫描拼接而成,卓越的非均匀性为百米量级数据提供了保障。该探测器的成功入轨,为我国空间光学遥感领域再添红外“新丁”,将为热红外定量遥感提供百米量级数据,提升红外数据应用效能。▲11所自主研制的多谱段长波红外探测器组件高光谱综合观测卫星是高分5号系列的最后一颗卫星。2012年起,11所开始高分5号卫星用红外组件研制工作,并经过6年努力,红外组件于2018年随高分5号01星成功发射;2021年新研制组件再次随高分5号02星入轨。2022年12月9日,我们又一次见证了载有11所探测器组件的高光谱综合观测卫星成功入轨,它既是高分5号系列的最后一颗,也是高分工程的收官星。高分5号系列卫星发展的十年,也是11所宇航用红外组件研制水平快速发展的十年。未来,11所将继续发挥自身优势,为我国航天事业的发展做出新的更大贡献。
  • 飞行时间质谱探测到高空冰云内生物粒子
    据物理学家组织网报道,一支由美国加利福尼亚州大学圣地亚哥分校挂帅的大气化学研究员小组向被视为的气候变化学的“圣杯”又迈进了一步:在研究过程中,他们首次直接探测到了冰云内部的生物粒子。   研究小组由大气化学教授金姆普拉瑟(Kim Prather)的博士生克里普拉特(Kerri Pratt)领导,普拉瑟任职于斯克里普斯海洋学研究所以及加州大学圣地亚哥分校的化学与生物化学系。2007年秋季,研究小组搭乘一架飞机穿过怀俄明州上空的云层,在高速飞行的情况下,提取了水滴和冰晶残余样本。   对冰晶进行的分析显示,它们几乎完全由尘埃或包括细菌、真菌孢子和植物材料在内的生物粒子构成。长久以来科学家便知道,微生物或微生物的某些部分可进入空中并借助空气传播这种方式进行长途旅行。但在直接获得有关其参与云冰形成过程的现场数据方面,这项研究还是第一次。   普拉特领导的研究小组进行的层状云内冰实验(以下简称ICE-L)获得美国国家科学基金会以及国家大气研究中心的资助。实验结果刊登在5月17日的在线版《自然地球科学》杂志上。普拉特说:“如果我们了解使云集结的粒子来源及其丰富程度,我们便能确定不同来源对气候的影响。”   当时,研究人员搭乘由国家大气研究中心操作的一架装有特殊仪器的C-130飞机飞越怀俄明州上空,并在飞行过程中对研究对象进行观测。借助这架飞机,斯克里普斯海洋学研究所领导的研究人员第一次直接探测到了云中靠空气传播的细菌,探测结果同样刊登在5月17日的在线版《自然地球科学》杂志上。   靠空气传播的微小粒子——浮质对云形成的影响是有关天气和气候问题中科学家最难理解的部分。在气候变化学领域,很多预测均来源于有关气候现象的电脑模拟,而在通过建模对未来气候进行预测时,浮质对云形成的影响则是科学家眼中最不确定的因素。   国家科学基金会大气学分部的安妮-玛丽娜斯库莫尔特纳(Anne-Marine Schmoltner)表示:“通过从飞机上对云进行实时取样,这些研究人员能够获得有关云中冰粒子细节空前的信息。通过确定单个冰粒子核心的化学成分,他们得出惊人发现——矿物质尘埃和生物粒子在云形成过程中扮演了重要角色。”   浮质包括尘埃、烟灰、海盐以及有机材料,其中一些的传播距离可达到数千英里。浮质形成了云的“骨架”。在这些凝结核周围,大气中的水和冰不断液化和成长,最后形成降水。科学家一直试图了解这一过程,原因很简单:云在冷却空气和影响地区性降水过程中扮演了至关重要的因素。   ICE-L第一次利用飞机部署飞行器浮质飞行时间质谱仪(A-ATOFMS),这个昵称“雪莉”的仪器是最近由加州大学圣地亚哥分校研制的,研制过程获得国家科学基金会资助。ICE-L小组将“雪莉”以及一个由科罗拉多州大学研究员保罗德莫特(Paul DeMott)负责的冰库安装在C-130上,而后进行了一系列穿越波状云的飞行。在此过程中,研究人员对云冰晶残余进行了现场测量,结果发现一半由矿物质尘埃构成,大约三分之一含有氮、磷以及碳——构成生物物质的主要元素。   以秒计算的分析速度允许研究人员实时区分水滴与冰核残余之间的差异。冰核较水滴核相比更为罕见,同时更有可能形成降水。“雪莉”则允许研究人员对云冰内的生物粒子进行准确测量。此前,科学家曾根据在实验室进行的模拟以及对降水的测量得出结论——生物粒子扮演了冰核的角色。根据模型以及经过测量的尘埃化学成分,ICE-L小组得以确定尘埃来自亚洲还是非洲。   普拉瑟说:“对于我们来说,能够进行这种测量如同找到了基督教的‘圣杯’。了解哪些粒子形成冰核,哪些粒子在浓度极低时出现同时又极难进行测量,意味着我们可以进一步了解导致降水的过程。我们获取的任何新信息都具有非常重要的意义。”   研究发现显示,在尘暴中被卷走的生物粒子可帮助促进云冰的形成。普拉瑟表示,初步证据显示来自亚洲的尘埃可以影响北美的降水。研究人员希望利用ICE-L获取的数据设计未来的研究。在以后的日子里,类似这样的粒子可能在引起降雨或降雪中扮演越来越重要的角色。
  • 嫦娥三号探测器大揭秘:携带多种激光仪器
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年12月份择机发射,它将实现中国航天器首次在地外天体的软着陆,从嫦娥三号着陆器中释放的月球车还将完成中国首次在月表的巡视探测。   昨日,探月与航天工程中心启动为中国第一辆月球车全球征名的活动,要求名称体现探月理念和月球车特点。参与者除了要选好名称,还要提交一份不多于300字的创意说明和背景阐述,每人最多允许提交5个方案。从昨日开始到10月25日,参与者可以提交方案,11月上旬,将确定最终入选名称。部分获奖者将有机会免费亲临西昌发射中心现场观摩嫦娥三号发射。   目前,包括月球车,以及嫦娥三号着陆器等组件,都已经被运抵西昌卫星发射基地。嫦娥三号已经进入到了发射前在前方发射场的调试、测试、准备阶段。   一、嫦娥三号探测器揭秘   看着像辆车 实为机器人   正在向全球征名的月球车将跟随年底择机发射的嫦娥三号&ldquo 着陆探测器&rdquo 展开对月球表面的探测。探月工程总设计师吴伟仁说,这不仅是我国第一辆月球车,且全部为中国制造,国产率达到100%。   嫦娥三号探测器   二、长相:身背太阳翼 脚踩&ldquo 风火轮&rdquo   月球车的专用名称叫做&ldquo 月面巡视探测器&rdquo ,设计质量是140公斤,由移动、结构与机构、导航控制、综合电子、电源、热控、测控数传和有效载荷等分系统组成。   在活动现场,记者看到了月球车1:2的模型,从模型上看,它的大脑袋上有一个定向天线和几个太阳敏感器,两侧为太阳翼,尾巴上很多天线,右后侧是导航相机和全景相机。它脚踩六个&ldquo 风火轮&rdquo 似的移动装置。腹部的&ldquo 秘器&rdquo 最多:包括红外成像光谱仪、避障相机、机械臂、激光点阵器等。   中国航天科技集团公司宇航部部长赵小津说,从严格意义上来说,月球车并不是一辆车,而是一个长着轮子,能够适应恶劣空间环境并开展空间科学探测的航天器,是一个小型化、低功耗、高集成、高智能的机器人。   据了解,月球车驶下着陆探测器后,可通过地面遥操作控制和自主规划路径,自主导航等开展长期的科学探测。   三、落月靠"3只眼"   嫦娥三号任务是我国探月工程&ldquo 绕、落、回&rdquo 三步走中的第二步,是承前启后的关键一步。在&ldquo 绕月&rdquo 阶段,中科院上海技术物理所、上海光学精密机械所为嫦娥卫星研制了&ldquo 激光眼&rdquo &mdash &mdash 激光高度计,为我国首幅全月面三维图提供了高程,相当于地球上的海拔高度。即使在无可见光的月面环境下,激光计也能&ldquo 拍摄&rdquo 自如。   但比起距离月面一两百公里外的绕月,零距离接触的落月对激光测距精度和速度提出了极高要求。在我国探月初期,嫦娥卫星对月发射一束激光,在月面形成的&ldquo 激光足印&rdquo 约有120米方圆范围,而嫦娥三号激光测距的&ldquo 足印&rdquo 将小到米级,测量精度进一步提高,可实时监测嫦娥三号着陆器距离月面的高度。   除了这束&ldquo 大激光&rdquo ,&ldquo 嫦娥&rdquo 还有一道灵敏度极高的&ldquo 小激光&rdquo 。当&ldquo 嫦娥&rdquo 向月面释放着陆器,着陆器将在接近月面时,通过激光三维成像,进一步&ldquo 观察地形&rdquo ,获取正下方图像。如下方不适合降落,它就马上换一块地方,确保着陆点相对更为平坦。这种接近&ldquo 现场直播&rdquo 的实时成像需在数秒内完成,为此中科院上海技物所研制的三维成像系统采用了多源激光并扫、实时成像方法,这种实测方式是在着陆月球时首次应用。   两只&ldquo 激光眼&rdquo 之外,&ldquo 嫦娥&rdquo 另有一只&ldquo 红外眼&rdquo &mdash &mdash 红外成像光谱仪。这台仪器置于俗称&ldquo 月球车&rdquo 的月面巡视器上,当巡视器从着陆器中驶出,便开启这一关键探测设备。这只&ldquo 眼睛&rdquo 不但能在可见光范围获得上百个光学波段的图像,还能用来探索可见光之外的&ldquo 光&rdquo ,捕捉月球物质资源放出的红外线光谱。因为每种物质都有其独特的&ldquo 红外图谱&rdquo ,红外成像光谱仪以极高的光谱分辨率&ldquo 拍摄&rdquo 月表物质,并能通过计算机直接将物质分门别类。   对于登月任务以及其后实施的返回任务,卫星发射重量越轻越好,因此&ldquo 嫦娥&rdquo 严格控制体重。相关项目负责人上海技物所研究员王建宇透露,此次星载的红外成像光谱仪只有5公斤多,是&ldquo 嫦娥&rdquo 3只眼中最轻的,而机载的同类光谱仪重量可达百公斤。今后,这种超轻型成像光谱仪器还能用于火星、小行星等更遥远的深空探测任务。   四、性能:耐极限温度 能爬坡越障   月球车以太阳能为能源,能够耐受月球表面真空、强辐射,以及从正150摄氏度到负180摄氏度,温差超过300摄氏度的极限温度和环境。工作时的舱内温度可以控制在零下20摄氏度至零上50摄氏度之间。   月球车凭借六个轮子可实现前进、后退、原地转向、行进间转向、20度爬坡、20厘米越障。   &ldquo 月面松软、崎岖不平、障碍物很多。月球车能够对月面环境和障碍进行感知和识别,然后对巡视的路径进行规划。月球车在月面巡视时采取自主导航和地面遥控的组合模式。&rdquo 探月工程副总指挥、探月与航天工程中心主任李本正说。   五、作息:大干3个月 一觉14天   月球上的一天相当于地球上的27天多,月球昼夜间隔相当于地球上14天。李本正说,月球车具备月球表面环境的生存能力,该休息的时候自动进入休眠状态,然后又能自动唤醒重新工作。据新华视点消息,月球车在月球上是连续工作14天,然后&ldquo 睡&rdquo 14天再重新工作。   在月球表面巡视的3个月中,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析,开展月壤厚度和结构的科学探测,对月表物质主要元素进行现场分析。它传回来的数据,将帮助人们更直接、更准确地了解神秘的月亮。   六、月球车探月过程:   1、动身   今年12月,中国将在西昌卫星中心用长征-3B增强型火箭发射&ldquo 嫦娥三号&rdquo 。   2、着陆   当&ldquo 嫦娥三号&rdquo 完成发射、飞行到达月球时,着陆探测器采取不同制导方式,从距月面15公里处开始动力下降,经过主动减速、调整接近、悬停避障等飞行阶段,实现路径优、燃料省、误差小的安全着陆。   &ldquo 到达月球轨道后,月球车将由着陆器背负,由变推力液体火箭发射器控制,通过各种光学、微波等敏感器测量,在月球表面百米高度上进行悬停和平移,以规避岩石和深坑等障碍,选择最佳着陆点缓慢降落月球表面。&rdquo 中国航天科技集团公司宇航部部长赵小津说。   3、准备   着陆器为月球车充电,对月球车进行初始化 之后月球车与地面建立通信链路,控制连接解锁机构解锁,走上转移机构 着陆探测器将控制转移机构运动到月面,月球车驶离转移机构,开始勘查。   4、勘查   为期3个月,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析 开展月壤厚度和结构的科学探测 对月表物质主要元素进行现场分析。
  • 天宫二号紫外临边探测专项载荷研制通过验收
    p   6月23日,天宫二号紫外临边探测专项载荷在轨指标评价评审会在北京召开,评审组一致同意紫外临边探测专项载荷通过评审。 /p p   评审组由北京大学、国家卫星气象中心、北京应用气象研究所、中科院空间总体部、西安光机所、长春光机所和大气物理所等单位专家组成。 /p p   评审组专家认为:紫外临边探测专项在国际上首次提出并实现了环形探测新模式,采用环形+前向联合探测新体制实现了多方位、多波段同时大气成份探测,两台载荷的功能和性能指标满足研制任务书要求,考核评定为成功。 /p p   天宫二号紫外临边探测专项载荷由中科院长春光学精密机械与物理研究所负责研制。该专项载荷搭载于天宫二号,于2016年9月15日发射升空。发射成功后10小时,该专项载荷加电,1小时10分钟后温控达到稳定状态。中科院大气物理所作为用户单位,在测试项目及内容覆盖了全部功能、外部、内部接口,并满足任务书要求的基础上开展了在轨指标评价工作。空间实验室在轨运行期间,该载荷对地球边缘大气层进行紫外-可见-近红外光谱临边探测,获取地球临边光谱数据。通过大气成分临边反演技术,获取大气成分如O3的垂直分布,并对大气气溶胶等信息进行反演试验性探索。 /p p   天宫二号紫外临边探测专项载荷由紫外前向光谱仪和紫外环形成像仪构成,如下图所示,二者具有强互补性。环形成像仪提供大气辐射多方位空间分布与动态的宏观结构,前向光谱仪提供某一方位的精细结构。这是国内首次采用临边观测方式进行大气探测,并且可以实现对大气密度和臭氧等大气痕量气体浓度的同时遥感。 /p center img alt=" 天宫二号紫外临边探测专项载荷研制通过验收" src=" http://images.ofweek.com/Upload/News/2017-07/10/nick/1499658005903068332.jpg" width=" 400" height=" 141" / /center p style=" TEXT-ALIGN: center"   紫外前向光谱仪和紫外环形成像仪 /p p   紫外临边探测专项的研制与空间实验室的在轨试验,为地球环境与气候预测、空间天气学应用和紫外姿态敏感单元研究等开辟了新方向,为空间大气临边成像光谱探测的业务化运行奠定基础。该专项载荷在大气痕量气体监测、大气与环境预报、空间天气等领域具有广泛的应用前景。 /p
  • 嫦娥三号将携多种仪器落月 实现多项首次探测
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年底择机发射。记者从4日举行的首届北京月球与深空探测国际论坛上获悉,即将软着陆月面的嫦娥三号将携带多种&ldquo 独门武器&rdquo ,实现多项首次探测。   探月工程领导小组高级顾问欧阳自远院士介绍说,嫦娥三号着陆器上除了装配有各种照相机外,还携带了近紫外月基天文望远镜,将在国际上首次实现在月球上观测恒星、星系和宇宙。由于月球没有大气层、电离层和磁层的干扰,近于真空状态,没有各种人为活动和污染,也没有全球性磁场,因此这台望远镜将&ldquo 看&rdquo 得更远更清晰,可能会有一些新发现。   他介绍说,着陆器上还有一台极紫外相机,也是首次在月球上应用,将对地球等离子体层的整体变化进行监测,反映地球的环境变化。   嫦娥三号月球车将在月球表面自主&ldquo 行走&rdquo ,进行巡视探测。欧阳自远表示,在月球车上除了各种照相机、红外光谱仪和粒子激发X射线谱仪外,还在车底安装了雷达,将探测月球地表以下100至200米左右深度的地下结构。   嫦娥三号2008年2月立项,目前已完成研制建设工作,飞行产品基本就绪,探测器系统完成总装、各种大型试验和出厂评审,将于今年底由西昌卫星发射中心择机发射。   此外,中国科学家正在开展月球以远深空探测的论证工作,并正在积极进行技术储备。有专家建议,中国应尽快实施月球以远的深空探测计划。
  • 火星探测中的近红外光谱矿物表征
    北京时间2月19日凌晨4时55分,在“天问一号”进入火星轨道一周后,“毅力”号(Perseverance)火星车不经变轨直接突入火星大气层,并成功着陆。本轮火星探测季也进入了新的阶段。毅力号火星车毅力号的着陆地点是位于北纬18度的耶泽罗陨击坑(Jezero crater)。有证据表明曾经有河流流入耶泽罗陨击坑,形成了一个早已干涸的三角洲。而毅力号在此处着陆,一项重要目标便是识别和收集该地区的沉积岩和土壤样本,探寻可能存在的火星生命迹象,同时测试人类在火星生存的技术。火星表面矿物分布提供了火星起源、地质及环境演化线索,火星表面卤水种类及分布提供了火星气候/水文演变信息。此外,毅力号还将通过对表面岩石、土壤物理化学特征的分析,帮助人类理解火星地质以及大气环境。Raman(拉曼)与NIR(近红外)光谱技术是从分子层面识别火星表面及次表面物质成分、丰度及分布特征的重要手段,是多国火星车的必备科学设备。位于毅力号火星车桅杆单元的SurperCam(超级相机)搭载了Raman和NIR光谱仪对火星进行巡视探测,将Raman与NIR数据融合进行联合矿物表征分析,并开展火星表面卤水及其它与水相关物质的分析具有重要科学意义。对地外行星探测来说, 近红外光谱技术具有几乎无需样品制备、信号易获取、探测矿物种类丰富、对H2O/OH探测响应灵敏等特点。马尔文帕纳科(Malvern Panalytical)旗下ASD TerraSpec Halo矿物近红外光谱分析仪以其宽广的光谱范围(350-2500nm)、超高光能动态范围、高光谱分辨率及重现性及体积小巧坚固结实等特性被选择使用于为人类重返月球、探測火星准备的多项重要研究中,以提高人类勘探行星资源的能力。其中之一是由NASA赞助的研究项目,地理发现操作策略测试(GeoHeuristic Operational Strategies Test-GHOST),选择了由马尔文帕纳科赞助和提供的涵盖VIS-NIR-SWIR波段的ASD TerraSpec HALO,以提高火星车样品收集的速度、效率和科学回报。该项目使用光谱仪模拟火星科学实验室(MSL)的ChemCam和2020火星车的SuperCam.SurperCam(超级相机)于毅力号火星车位置示意图分子在红外光谱内的吸收产生于分子振动或转动的状态变化或分子振动或转动状态在不同的能级间跃迁。能量跃迁包括基频跃迁(对应分子振动状态在相邻振动能级之间的跃迁)、倍频跃迁(对应于分子振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。由于近红外光谱谱峰较宽,实际样品中各种成分的吸收峰重叠严重,需要用化学计量学方法对近红外光谱进行化学成分的定量分析。蒙脱石/黑色,伊利石/亮蓝色,白云母/深蓝色的可见-近红外光谱曲线SuperCam超级相机桅杆单元内部(装配前)TerraSpec Halo矿物近红外光谱分析仪是勘探地质市场上最便携的近红外(NIR)仪器,它是手持一体式全量程的仪器。扣动一下扳机,这款创新性的仪器可以即时在仪器上获得矿物分析结果。这些近乎实时显示的结果极大地加快了勘探的工作力度,提高了效率,有助于进行分析和决策,最终为采矿经营者节省了宝贵的时间和金钱。TerraSpec HALO还被广泛地应用于例如考古和采矿行业中,包括陶瓷、陶器的成份分析,艺术品的鉴定和修复,矿藏的勘探,开采和加工等等。TerraSpec HALO矿物分析近红外光谱仪TerraSpec HALO光谱库内置超过150种矿物质的700种以上的光谱,来源于大学、个人采集、国际研究所、以及美国地质勘探局(USGS)的矿物质目录,并可由客户自定义添加光谱库,以进行矿物质的快速识别,且具有GPS和语音备忘录功能。TerraSpec HALO采用专利的矿物质匹配算法,通过将未知物质光谱与内置矿物质谱库匹配,计算匹配矿物后,将其从未知物质光谱中被扣除。使用扣除后的未知物质光谱,继续匹配,最多可以生成7种相关矿物成份的识别。将获取光谱导入计算机Halo Manager软件中可分析多达9种矿物成份。随机自带矿物质评级显示于屏幕右侧,描述矿物结晶程度或构成性质,允许地质学家了解地质或地热的情况,以指引潜在的矿物。参考文档:1. https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/2. https://finance.sina.com.cn/tech/2021-02-19/doc-ikftssap6896673.shtml3. http://www.globenewswire.com/news-release/2019/07/16/1883283/0/en/Renowned-Researchers-Leverage-Malvern-Panalytical-s-ASD-TerraSpec-Halo-Mineral-Identifier-to-Advance-Investigation-of-Life-on-Mars.html4. https://www.materials-talks.com/blog/2019/07/10/asd-terraspec-halo-used-in-space-based-research/5. 徐伟杰 火星表面模拟矿物和卤水的光谱鉴别研究[D] 山东大学 2018年
  • 滨松MPPC,光电探测的优质“潜力股”
    如今在光电探测器中,硅光电倍增管(Silicon Photomultiplier,SPM)是一颗正在冉冉升起的闪亮新星。自二十世纪九十年代末被发明以来,经历了几代产品的技术革新,在近几年终于实现了商业化,并且在高能物理、粒子探测、医疗检疫、核医学等领域开始崭露头角。 目前MPPC虽然在噪声水平、极微弱光探测能力方面还不及传统的光电倍增管产品,不过由于其 低操作电压、抗机械冲击能力强、结构紧凑性、高温稳定性和耐曝光等特点,获得了高度的关注和认可。滨松公司基于61年光电探测器的研制技术和经验,对硅光电倍增管这种新一代探测器技术进行了潜心研究,并且在技术上保持着领先地位。在2006年正式将滨松高性能的硅光电倍增管产品——滨松MPPC(Multi Pixel Photo Counter)投放市场。滨松MPPC阵列以及单元素产品(“MPPC”为滨松公司注册商标) MPPC是由多个工作在盖革模式的APD像素组成,与传统的APD相比,在室温下MPPC也可用获得106增益,并且对噪声也进行了有效的控制。MPPC作为半导体探测器产品中的一员,他继承了半导体探测器的大部分优势,并且在增益、信噪比、响应速度方面有更好的表现。此外,MPPC亦拥有高光子探测效率、反应快速、优秀的时间分辨率、以及较宽的光谱响应范围等性能优势。因此它可以满足众多领域的探测需求。滨松MPPC的光子计数图 另外,MPPC磁场不灵敏,具很高的抗机械冲击能力,并可以不用担心因入射光饱和而产生老化(这是固体器件独有的优势)。因此它有着一定替代传统光子计数探测器的潜力。而易操作,高性能的特点,使它可以应用于医疗诊断、分析测试以及学术研究之中。 模块化:更快捷,更简便 为了更加方便使用,滨松研发推出了MPPC模块产品。滨松MPPC模块是可测量从光子计数级到毫微瓦级的较宽范围光强(10个数量级)的光学测量模块产品,其中包含了一个信号放大电路,一个高电压供给电路,以及其他的MPPC工作所需的原件,在连接电源后模块就可进行工作了。 在滨松最新研制的MPPC阵列模块C12677/8/9系列中,含了一个MPPC阵列,电流电压变换器电路,一个高压供给电路和一个温度修正电路。滨松MPPC阵列模块C12677/8/9系列 根据不同的的需求,滨松可提供不同后缀的产品,分别包含不同类型的阵列MPPC,其中有一维线性的产品,可以满足多通道分光光度测量的设备,例如各类光谱仪、流式细胞分析仪等;另外还有装配二维MPPC阵列,可以满足大尺寸探测器需求的测试,配合闪烁体也可以用在核辐射成像领域,例如PET、SPECT等设备上。滨松MPPC阵列模块C12677/8/9系列流质细胞计数,以及荧光分析法应用示例 滨松C12677/8/9系列另外一个突出的特点,就是共有三种不同输出形式(各为模拟量输出、数字量输出、多通道分析输出),其有效光感区域,即通道阵列排列方式则有四种可选择的的类型。客户则根据不同的需求选择不同输出和性能的模块产品。 滨松MPPC作为新型的探测器已经“小荷露角”,如今我们看到了其高增益、低操作电压、抗机械冲击能力强、结构紧凑性、高温稳定性和耐曝光等传统探测器无可比拟的优势。相信在未来,随着滨松研发的不断推进,其蕴含的潜力将更多地被发掘并体现在医疗检测、分析测试、高能物理等众多领域。
  • 科学岛团队研制高性能金属减振器助力“陆地探测四号01星”实现高分辨探测
    8月13日,长征三号乙运载火箭携载“陆地探测四号 01星”成功发射。中国科学院合肥物质院固体所研制的高阻尼孪晶型金属减振器作为关键减振件应用于“陆地探测四号 01星”,助力对陆资源调查监测。 此前,该减振器已应用在 “高分七号”卫星和“ 5米光学卫星 02星”上。 “陆地探测四号01星”是《国家民用空间基础设施中长期发展规划(2015-2025年)》中陆地探测四号星座计划中的首颗星,是全球首颗全天候、高时间分辨率、宽视场的高轨、高分辨率地球同步轨道遥感卫星。与传统低轨SAR卫星、光学卫星相比,“陆地探测四号01星”可将高轨观测重访周期短、成像幅宽大等优势与微波观测不受气候限制(全天候)、不受光照限制(全天时)的优势结合起来,实现对我国本土及周边区域进行全天候、全天时的观测,满足防灾、减灾与地震监测、国土资源勘察以及海洋、水利、气象、农业、环保、林业等行业的应用需求。   针对“陆地探测四号01星”中高精度定轨加速度计在轨服役中遭受的低频、微振动干扰问题,固体所高阻尼材料研究团队在葛庭燧院士发现并提出的晶界内耗研究基础上,基于“高密度孪晶界面运动耗能”的高阻尼材料设计原理,研制了兼有金属刚性和橡胶高阻尼特性的微振动抑制敏感型减振合金,并与航天五院总体部合作,成功将其研制为高精密加速度计用低频、微振动抑制敏感的减振构件,实现对低频振动能的抑制高于99%,创新性地拓展了高阻尼合金的航天应用范围。   2015年1月,固体所同航天五院总体部合作开展了高分卫星微振动减振效应研究。2018年1月,“陆地探测四号01星”用高阻尼减振构件研制任务正式启动。近5年来,经过多次的方案论证、优化,研究团队突破了材料减振性能、高低温适应性、表面防腐处理等关键指标及工艺技术难题,最终研制出各项性能指标及空间环境适应性均优于技术要求的材料及产品。在项目执行过程中,研制测试材料、阻尼构件共计300余件,实现产品初样、正样一次性交付,建立了完善的材料工艺体系和质量控制体系,有效地保证了减振器服役性能的可靠性、稳定性和一致性,保障了航天任务的顺利完成。   未来,研究团队还将在轻质、高强韧、极低温、宽温域、宽频谱等方面开展新型高阻尼材料的基础理论和工程应用研究,持续为我国航天及民用减振降噪领域做出努力和贡献。交付的高性能金属减振器
  • 从光到电的转换!新型光电探测器能模仿光合作用
    美国密歇根大学研究人员在《光学》期刊发表论文称,他们使用被称为极化子的独特准粒子开发了一种新型高效光电探测器,其灵感来自植物用来将阳光转化为能量的光合复合物。该设备将光能的远程传输与电流的远程转换相结合,有可能大大提高太阳能电池的发电效率。在许多植物中发现的光合复合物由一个大的光吸收区域组成,该区域将分子激发态能量传递到反应中心,在那里能量转化为电荷。极化子将分子激发态与光子结合在一起,赋予它类光和类物质的特性,从而实现远距离能量传输和转换。这种新型光电探测器是首次展示基于极化子的实用光电设备之一。  为了创建基于极化子的光电探测器,研究人员必须设计允许极化子在有机半导体薄膜中长距离传播的结构。此外,他们必须将一个简单的有机检测器集成到传播区域中,以产生有效的极化子到电荷的转换。  研究人员使用特殊的傅里叶平面显微镜来观察极化子传播,以分析他们的新设备。结果表明,新的光电探测器在将光转换为电流方面比硅光电二极管更有效。它还可从大约0.01平方毫米的区域收集光,并在0.1毫米的“超长”距离内实现光到电流的转换——这个距离比光合复合物的能量传递距离大3个数量级。  到目前为止,观察的大多数极化子为封闭腔中的静止准粒子,顶部和底部都有高反射镜。这项新研究揭示了极化子如何在单个镜子的开放结构中传播,新设备还允许首次测量入射光子转换为极化子的效率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制