当前位置: 仪器信息网 > 行业主题 > >

色谱测量流量

仪器信息网色谱测量流量专题为您提供2024年最新色谱测量流量价格报价、厂家品牌的相关信息, 包括色谱测量流量参数、型号等,不管是国产,还是进口品牌的色谱测量流量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱测量流量相关的耗材配件、试剂标物,还有色谱测量流量相关的最新资讯、资料,以及色谱测量流量相关的解决方案。

色谱测量流量相关的论坛

  • 气相色谱中的机械阀和流量测量

    1 概述使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。以毛细柱进样口的流量/压力控制而言,具有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。检测器方面,控制氮气、氢气或者空气流量,使用的则是稳压阀-针型阀、稳压阀-气阻或者稳压阀-稳流阀-气阻等多种类型。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c0/8a/dc08a510e26cb533a22ac325ac839f7a.png[/img]2 常用的阀及其作用使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ea/2c/fea2c026008aafb95327a153da06791d.png[/img]对于控制阀而言,所有的阀都有进口和出口;如果需要显示压力,则会有另外一个出口,用于连接压力表。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/51/3cf51a8b9fc4b7b80188c69fbb8bbc51.png[/img]2.1 稳压阀稳压阀的作用是保证[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]内部各气路控制部件(如稳流阀、针型阀等)可以在稳定的气体压力下工作。稳压阀可以在气源压力(阀前)或者输出流量(阀后)发生波动时候,提供/保持恒定的压力。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中,稳压阀的作用主要可以体现在以下方面:(1)为针型阀提供稳定的气体压力,保证针型阀精密调节流速;(2)安装在稳流阀之前,提供恒定的气体压力,保证其正常工作;(3)安装在气阻(阻尼管、毛细柱等)之前,为其提供稳定的气体压力或者调节阀后输出压力,从而获得所需要的流速。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/73/77/373771bffeb7805fb7066f1e7c235519.png[/img]其使用方法是,通过调节旋钮可以调节(即设定)阀后的压力,压力可以在压力表上显示出来。气源压力(阀前)或者输出流量(阀后)发生波动时候,稳压阀均可保持恒定的输出压力。一般而言,气路管接入仪器之后的第一个机械阀便是稳压阀,以此来保证[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]内部各气路控制部件(如稳流阀、针型阀等)可以在稳定的气体压力下工作。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/f7/68/cf7684e36e7d7c42949a36f12d5d23e3.png[/img]2.2 稳流阀稳流阀的作用是保证在阀后的阻力发生变化的情况下,保证流量的稳定。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中分析中,填充柱由于内部填充了一定粒度的单体,毛细柱由于长度较长且内径较小,因此,气体在色谱中流动会有一定的阻力,而阻力的大小和色谱柱所处柱温箱的温度有关。温度越高,阻力越大。因此而言,如果在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的恒温分析中(柱温箱温度保持不变),温度不变则色谱柱阻力不变。因此采用稳压阀保持进入色谱柱的气体压力恒定,则可以保持流量恒定。此时柱前压(即稳压阀阀后压力)就可以表示流量。但是当[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]采用程序升温分析时,柱温按照一定程序不断增加,气体的粘度不断增大,色谱柱的阻力也随之增加,如在这个时候保持柱前压不变,根据压力、阻力和流量的关系,色谱柱的流量将会随之减小。为了保证分析过程中流量不变,则需要使用稳流阀。其作用是使色谱柱的柱前压随着色谱柱阻力的增加而自动增加,从而保持色谱柱的流量不变。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/51/a0/651a069fafff28b40f39f3f9f9a23b4a.png[/img]其使用方法是,在恒温条件下,通过调节旋钮可以调节(即设定)阀后的压力,压力可以在压力表上显示出来。一定的压力对应一定的的流量;当色谱柱温度升高时候,稳流阀自动调节(升高)压力以维持流量不变。一般而言,稳流阀均位于稳压阀之后,且在进样口进气管路之前,以此来保证进入进样口的载气流量的稳定。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/72/36/87236239dc1c62a84bea85bb1c0b437d.png[/img]2.3 背压阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,使用到背压阀的情况,一般是在毛细柱进样口的分流部位(但并非所有的分流出口都使用背压阀作为控制阀),使用方式是和稳流阀或者稳压阀连用。其作用主要是保持进样口的压力恒定,同时可以通过调节背压阀来调节进样口的压力(即柱头压),从而调节毛细柱的流量。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/90/1f/d901fe1d8277e41ef75c344b86df2608.png[/img]背压阀的基本原理是:当系统压力比设定压力小时,膜片在弹簧弹力的作用下堵塞管路,减小内部气体排放;当系统压力比设定压力大时,膜片压缩弹簧,管路接通,气体通过背压阀排出从而释放内部压力。简而言之,背压阀相当于一个可以自动开启和关闭的通路,通过开和关来保持阀前的压力不变。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/e9/70/3e9701509ad574f59ccd2d44d542fe15.png[/img]2.4 针型阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,常使用针型阀来调节空气、氢气以及尾吹气的大小。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/05/57/e05576a459581806d4c6219572feef82.png[/img]针型阀相当于一个可以调节阻力大小的调节器,一般用在稳压阀之后,在保持针型阀前端压力不变的情况下,通过调节针型阀开度(阻力)的大小来控制流量的大小。其简单内部结构如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/f1/eb/7f1eb3734bc9a143e221ef27d393f1bd.png[/img]3 稳压阀和背压阀的简单区别简单的说,稳压阀的作用是保持阀后的压力稳定,并且可以通过调节旋钮调节阀后压力的大小;背压阀的作用是保持阀前的压力稳定。背压阀是一个被动阀,在前端没有连用的控制阀(如稳流阀)的情况下,只能保证阀前的压力恒定,而不能调大前端的压力。4 流量测量的工具使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,在实际工作过程中,可能需要测量实际的流量大小。用来测量流量大小的工具一般是皂膜流量计等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c2/83/6c283541ca478b7cd69a3db279f00a2d.png[/img]使用的基本步骤是:(1)将橡胶头、乳胶管和皂膜流量计连接好;(2)将肥皂水倒入底部的乳胶滴头中,不要超过侧面连接乳胶管的侧口;(2)将乳胶管连接到要测量的气体的出口处;(4)挤压橡胶头,使产生一个皂泡;当皂泡上升到0刻度线时候开始计时,记录皂泡流经一定体积(如10ml)所须时间。(5)根据时间和对应皂泡所运行的体积,计算流量(单位一般是ml/min)。目前也有一些厂家提供电子式的皂膜流量计和使用质量流量计进行出口流量的测量,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/e6/93/1e69360e3c2e3c26c780118ab78526da.png[/img]4.2 小工具在使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器时候,有时候需要测量毛细柱的流量和分流流量以确定分析方法的分流比。相对于填充柱而言,毛细柱使用的流量较小,可能只有(1-3)ml/min,且毛细柱较细,不好和皂膜流量计连接测量。目前,不少厂家推出了用于计算毛细柱流量的软件工具,只需要输入使用的载气类型、柱前压、色谱柱的长度、内径和膜厚以及色谱柱的温度,就可以计算出来色谱柱的流量,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ad/93/1ad935a7dbbd7e1e75d65387de6ade04.png[/img]使用小工具进行压力流量计算,大大节省了使用仪器的复杂程度。以上便是《[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的机械阀和流量测量》的全部内容,使用机械阀控制仪器的流量和压力,虽然调节起来较为繁琐,但是有助于了解[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的气路控制原理和发展过程,有利于深入了解[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析

  • 气相色谱仪流量控制原理与维护 —— 压力测量元件 压力表和压力传感器

    气相色谱仪流量控制原理与维护 —— 压力测量元件  压力表和压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]压力测量元件[/font][/font][/align][align=center][font='Times New Roman'][font=宋体]压力表和电子压力传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统中的载气或者辅助气体控制器,一般需要装备有精确、可靠的压力测量元件,用以正确的显示流路压力。此外压力测量元件也是流量控制器[/font][font=Times New Roman]——[/font][font=宋体]尤其是电子流量控制器[/font][font=Times New Roman]——[/font][font=宋体]的重要组成部分,压力测量元件与比例电磁阀接受色谱系统的控制并协同工作,实现流路气体流量(或压力)的精确控制。[/font][/font][font='Times New Roman'][font=宋体]一般情况下,机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用机械式压力表,电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用压力传感器作为压力测量元件。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的外围气源、和某些外接设备中也会有压力测量元件,实时显示和辅助实现准确的压力(或流量)控制。[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]一[/font] [font=宋体]机械[/font][/font][font=宋体]流量[/font][font='Times New Roman'][font=宋体]式[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][/font][font='Times New Roman'][font=宋体]色谱仪的压力测量元件[/font][font=Times New Roman]——[/font][font=宋体]压力表[/font][/font][/align][font='Times New Roman'][font=宋体]压力表是一种以弹簧管为测量元件的指针式测量仪表[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]因其结构坚固、生产成本较低、性能可靠等特点,在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气流量控制和检测器流量控制器中较为常见。[/font][/font][font=宋体]压力表的工作原理为:[/font][font='Times New Roman'][font=宋体]当[/font][/font][font=宋体]待测[/font][font='Times New Roman'][font=宋体]气体压力发生变化时,表内的敏感元件(波登管、膜盒、波纹管)将会发生弹性形变,再由表内机芯的转换机构将压力形变传导至指针,引起指针转动来显示压力。压力表的结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709527102_9907_1604036_3.jpg!w616x435.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]压力表结构图[/font][/font][/align][font='Times New Roman'][font=宋体]压力表中的弹簧管(也称为波登管)的自由端是封闭,通过机械传动装置驱动压力表指针。其内部压力发生变化时,弹簧管发生形变,自由端产生位移,其位移量与被测压力的大小成正比。通过机械传动装置驱动指针偏转,在度盘上指示出压力值,如图[/font]2[font=宋体]所示。[/font][/font][img=,513,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709596556_7465_1604036_3.jpg!w690x236.jpg[/img][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]图[/font]2 [font=宋体]不同压力下压力表状态图示[/font][/font][/align][font='Times New Roman'][font=宋体]如果表壳内通有大气,压力表测出的压力为相对压力,如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力表均指示相对压力数值。[/font][/font][font=宋体]压力表一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气控制器、检测器气体控制器和气源减压阀上,需要注意其响应速度一般极低,不适合测定极速变化的气体压力。[/font][font=宋体]使用时需要注意气源清洁、气源的压力范围符合要求、尽量避免较为剧烈的压力冲击,以避免弹性元件发生故障造成压力显示数值不正确,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]关机或者长时间不使用时,需要将气源的压力表泄压以保护弹性元件。[/font][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]二、电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力测量元件[/font][font=宋体]——压力传感器[/font][/font][/align][font=宋体]机械流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],流量控制系统较为复杂,较为笨重,使用较多的气流控制阀和压力表,调节效率较低,并且重现性较差。电子流量式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],体积小,调控方法简易,重现性良好,目前在各个行业的实验室中逐渐得到较为广泛的应用。[/font][font=宋体][font=宋体]电子流量控制器主要由比例电磁阀、流量传感器和压力传感器以及对应的控制系统组成,如图[/font][font=Times New Roman]3[/font][font=宋体]所示(以压力传感器为例):[/font][/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151710067697_8338_1604036_3.jpg!w690x146.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子流量控制器组成结构图[/font][/font][/align][font=宋体]某些固体(常见的材质是单晶硅片)收到力的作用后,其电阻值(或电阻率)会发生相应变化,这种现象称为压阻效应。压阻式传感器是利用固体的压阻效应制成的一种测定装置。[/font][font=宋体][font=宋体]现代的压力传感器采用集成电路工艺制成,测量电路和半导体硅片扩散电阻可以集成到零点几毫米大小的尺寸,能够感知[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的压力变化,可以显著减小电子流量控制器的尺寸。压阻式传感器体积小、灵敏度较高,分辨率高,响应速度快,广泛的应用于航空、航天、化工、生物医学等多个领域。[/font][/font][font=宋体]需要注意压力传感器测定的气体,不能含有水、固体颗粒等杂质,避免剧烈的压力变化,长时间使用后,可能会产生一定的偏差,需要注意进行压力校准。[/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体][font=宋体]简单叙述机械流量和电子流量控制方式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的压力测量元件[/font][font=宋体]——压力表和压力传感器的基本原理和使用注意事项。[/font][/font]

  • 求助---怎样用气体流量计检测气象色谱仪的气体流量是否准确

    大家好,我用的是安捷伦的6850和7890,用的软件是chemstation 的,想请教大家怎么用气体流量计来测量色谱仪的各种流量是否准确1,检测器的燃烧气--氢气和空气,氢气我设定的是80ml/min,空气我设定的350ml/min,怎样测定是否准确呢 我的做法是直接把气体流量计插入监测器的口,把空气的流量关掉,氢气的流量打开,把气体流量计的模式调成氢气的,但是测出来的数值是180ml/min,不明白为什么会这么高,色谱主的流量我才设定2ml/min,进样的流量总的才35ml/min, 分流比试15:1,尾吹气时3ml/min

  • 为什么色谱柱流量是用柱头压控制,用差压式体积流量控制器不是同样也可以搞定吗?

    目前,我看到Alicat Scientific公司的体积流量控制器是一个差压式流量计+比例阀来实现流量控制,我们知道,对于色谱柱最终目的是得到我们要的流量,按我的理解,体积流量控制器应该是可以得到与EPC同样的效果的,请各位大虾指教!以下是Alicat Scientific公司的体积流量控制器介绍:ALICAT气体质量流量控制器和体积流量控制器采用一个比例调节阀与流量计相连,用户可以通过内置的PID控制软件来定位阀门位置以设定所需流量值。气体体积流量控制器仅用来设定和测量气体的体积流量,而气体质量流量控制器可以设定和测量气体的质量流量、体积流量和绝对压力,同时可以测量气体的温度。ALICAT气体质量流量控制器内置气体密度变化的补偿功能。标准结构的流量控制器比例调节阀在上游,但用户可选阀门在下游且无需付费,所有的标准产品具有动态显示屏。同时为了节省用户的时间,ALICAT工程师为用户提供了“配件和可选项”以及“ALICAT用户定制特殊功能”,请详见后面说明。

  • 【原创大赛】气相色谱仪流量控制原理与维护 (六-九) 进样口的三流量

    【原创大赛】气相色谱仪流量控制原理与维护   (六-九) 进样口的三流量

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](六)[/font] [font=宋体]柱流量[/font][/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口色谱柱流量的控制原理和注意事项。[/font][/font][font=宋体] [/font][font=宋体]用压力代替流量[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]常见的电子流量控制器,实际是通过控制进样口压力的方式来实现色谱柱流量的调节。在确定的柱温、载气种类、色谱柱尺寸之下,进样口压力和色谱柱流量之间存在确定的数学关系。[/font][font=宋体][font=宋体]柱[/font]liuliang [font=宋体]([/font][font=Calibri]Fc[/font][font=宋体])与进样口压力的关系如图[/font][font=Calibri]1[/font][font=宋体]所示。需要注意的是,该公式给出的柱流量([/font][font=Calibri]Fc[/font][font=宋体]),为平均流量。[/font][/font][align=center][img=,690,195]https://ng1.17img.cn/bbsfiles/images/2020/09/202009032045156121_4915_1604036_3.png!w690x195.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]色谱柱流量与压力的关系[/font][/font][/align][font=宋体]那么色谱仪面板或者色谱数据工作站设定的柱流量值,是根据色谱柱的尺寸规格和载气类型以及色谱柱温度条件计算出来的。那么在操作的时候,就需要注意,色谱工作站进行硬件配置的时候,特别重要的是色谱柱尺寸的正确输入。[/font][font=宋体]否则有可能色谱柱流量难以控制或者已经开发完毕的分析方法无法正常转移到其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上。[/font][font=宋体]例如工作站(或者色谱仪内置固件)中配置了小口径、长度较大的色谱柱,实际安装的色谱柱为大口径、长度较小的色谱柱,那么开机后,可能会造成进样口压力难以达到设定值,甚至出现泄漏的误报警。[/font][font=宋体]此外,如果色谱柱发生靠近检测器部分的断裂(有效色谱柱长度变化不大),或者色谱柱内部发生堵塞等问题,电子流量控制模块是无法识别的。[/font][font=宋体]建议色谱从业者,养成在分析之前确认色谱柱流量的习惯。常见的操作是这样的,安装好色谱柱的进样口部分,然后开启色谱系统的流量控制,然后将色谱柱的出口浸入装有溶剂的小瓶,观察色谱柱出口的气泡是否正常,然后在进行下一步的操作。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]色谱工作站或者色谱硬件给出的柱流量,需要加以确认。[/font][font=宋体] [b](七) 柱流量和线速度的选择[/b] 概述 两个问题,平均流速和柱后流速。线速度和柱流量的关系。 色谱分析时,需要根据色谱柱和分析条件的不同,选择合适的柱流速,已实现在较快速度下完成较高柱效的色谱分析。 经常可以在文献中看到色谱柱流量和线速度的提法,二者的区别可以参见: [url]https://bbs.instrument.com.cn/topic/4462136[/url] 常见的色谱理论书籍里面都会提到范德蒙特方程曲线,如图2所示:[img=,613,592]https://ng1.17img.cn/bbsfiles/images/2020/09/202009032108003666_9373_1604036_3.png!w613x592.jpg[/img][font=宋体]由于气体的粘度随温度上升而增加,如果宽范围的程序升温中使用恒压力方式,可能会造成高温段下的塔板数下降。例如氮气做载气的某色谱实验,初始柱温下设定线速度为20cm/s,随着柱温不断升高,色谱柱线速度会逐渐降低,工作点可能会达到[font=Calibri]U[/font]型曲线的左侧,使分析柱效降低。[/font][font=宋体]程序升温建议使用恒线速度方式,可以在整个分析过程中实现较高和较稳定的柱效。[/font][font=宋体]所谓恒线速度或者恒流量在仪器技术上也比较简单,只要根据色谱柱的温度程序,进样口电子流量控制给出对应的压力程序即可。此种情况下,因为进样口压力不断上升,需要注意色谱仪外接气源的压力是否满足要求。[/font][/font][align=center][font=宋体]小结[/font][/align][font=宋体]温度范围较宽的程序升温分析,建议采用恒线速度方式来控制柱流量。[/font][font=宋体][b](八)隔垫吹扫流量[/b] 概述 隔垫吹扫流量的作用,控制方式和注意事项 进样隔垫吹扫气的作用 进样隔垫在存贮过程中可能会吸附环境空气中的有机杂质而造成污染,或者污染来自进样隔垫的制造工艺,或者来自分析过程中样品的不断进样——进样隔垫在每次液体进样中,都会擦拭可能残留有样品和杂质的进样针外壁。 受污染的进样隔垫在较高的分析温度之下,可能会释放出某些挥发性物质,从而干扰色谱图。比较典型的现象是,在程序升温色谱分析条件下,谱图中出现较多强度接近,保留时间间隔相近的鬼峰。 在进样隔垫的下方,供给较低流量的隔垫吹扫气(常见的流量范围1-6ml/min),有助于减弱或者消除此类鬼峰。 进样口压力的限制 电子流量控制器中对隔垫吹扫气的控制原理和色谱柱流量比较近似,实际上都是在控制流路的压力。隔垫吹扫流路位于进样口出口之后,那么隔垫吹扫的压力必然会收到进样口压力的限制,这一点需要色谱工作者特别的予以注意。 例如在使用大内径、长度较短色谱柱的场合下,进样口压力设定值一般可能会低于30kPa(或者5psi),此时隔垫吹扫气的流量就不可以设定的过高。否则可能会出现隔垫吹扫气不能达到设定值,从而造成色谱系统的错误流量报警。 为避免错误报警,可以采用比较简单的设定方法,将进样口压力值(kPa)除以10,设置为隔垫吹扫流量值的上限,例如进样口压力为20kPa,那么隔垫吹扫气的流量不要超过2ml/min。 此外,在使用PTV/OCI进样口时,如果需要增大隔垫吹扫气流量以辅助排除进样口的大量低沸点溶剂时,可以设定隔垫吹扫气的流量程序。 小结 隔垫吹扫气是分流不分流进样口必要的气体,设定流量范围受操作条件限制。[/font][font=宋体][b](九)分流流量[/b] 概述分流流量的作用和进样口电子流量控制器中控制原理分流的作用和设定原则因其良好的分辨率和检测限,毛细管柱(尤其是小内径毛细管柱)目前使用的场合日益增大,但是由于毛细管的较小内径,使得毛细管的样品允许承载量降低。现在日常使用的微量注射器,难以准确和重现的将0.01ul级别体积的样品注入到色谱系统中。分流进样方式解决了这一问题,样品进入进样口受热气化之后被分成两部分,一般情况下小部分进入色谱柱,大部分释放到空气中,以适应色谱柱容量的要求。一般的,色谱柱内径越小,适合的分流比越大,反之则越小。这样来设置分析条件的原因有两个,其一是色谱柱容量的问题,色谱柱内径越小,柱容量就越小,那么就需要更多的释放样品。其二是物质起始谱带的原因,如果小口径柱使用较低分流比,那么样品在进样口衬管内气化之后的运行速度就会比较慢,可能会损失柱效。 电子流量控制器中分流的控制原理 与我们的想象不同,进样口电子流量控制器严格说来是不测量分流出口流量的。分流出口的控制器,只是通过流量的调控,来保证进样口压力的正确和稳定。所以如果存在较微弱的漏气,常规的分析条件下,可能无法察觉。此外,色谱工作者在使用某些外围设备的时候,需要对这个问题特别予以重视。例如顶空进样器,某些型号的顶空进样器自带气流控制(外观上一般是传输线插入进样口方式),相当于在进样口引入了第二个气源。进样口内部的工作状态不再满足 “总流量等于柱流量、分流流量和隔垫吹扫流量之和”,顶空进样器引入的气流,最终要从分流出口释放。这就可以解释某些顶空进样器接入系统后,分流比变得不正确,调节分流比之后,色谱峰的响应并不依照分流比的变化而变化。小结 电子流量控制器实际并不测量分流出口流量,需要引起注意。[/font]

  • 【分享】使用非常方便的一个气相色谱电子流量自动换算软件

    随着电子技术的迅猛发展,电子流量控制器(EPC)已经应用于新上市的一些[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上,如安捷伦的GC-7890A、GC-7820A,岛津的GC-2010,在使用这些仪器时,不必再像以前那样使用皂膜流量计来测量柱子的流量及尾吹流量。但以前购置并一直使用的很多[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],以岛津为例,从GC-14C到GC-17A,要准确设定柱子流量,还是离不开皂膜流量计,实际工作中非常麻烦。这里向大家提供一个使用起来非常方便的[color=#DC143C]电子流量自动换算软件[/color],使用时你只需将柱子长度、柱径、温度、气体种类等输进去,软件会自动为你换算出你想需要的数据。 不信?那就安装上去试试看吧。顺便说一句,这款小软件可是日本的色谱工程师编写的,一次一位售后工程师来我这里拜访,大家很谈得来,临走时他才给我的。

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • 【资料】容积式流量计-流量测量方法和仪表的选用

    容积式流量计-流量测量方法和仪表的选用容积式流量计又称排量流量计(positive displacement flowmeter),简称PD流量计或PDF,在流量仪表中是精度最高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据计量室逐次、重复地充满和排放该体积部分流体的次数来测量流量体积总量。PD流量计一般不具有时间基准,为得到瞬时流量值需要另外附加测量时间的装置。定排量测量方法可追溯到18世纪,20世纪30年代进入普遍商业应用。

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 质量流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 质量流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器中的流量传感器 [/font][font=Times New Roman]—— [/font][font=宋体]质量流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的电子流量控制单元的流量测量原理和常见流量传感器(质量流量计)的原理[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]质量流量计[/font][/font][/align][font='Times New Roman'][font=宋体]工业监控中常见的容积式、叶轮式、涡街式流量计都被用来直接测定流体的体积流量(压差式流量计可以通过流体参数的转化计算获得质量流量),质量流量计与其不同,可以用来直接测定流体的质量流量,而不受流体密度、温度或者压力的影响。[/font][/font][font='Times New Roman'][font=宋体]质量流量计的压力损失较低、流量测量范围较大。内部无可动部件,可靠性和精度较好,可以用于较低气体流量的测量和控制。[/font][/font][font='Times New Roman'][font=宋体]质量流量计可以分成科里奥利质量流量计和热式质量流量计两类,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/font][/font][font=宋体]的电子流量控制器[/font][font='Times New Roman'][font=宋体]中气体流量测定的是热式流量计([/font]Thermal Mass Flowmeters[font=宋体],[/font][font=Times New Roman]TMF[/font][font=宋体])。[/font][/font][font='Times New Roman'][font=宋体]热式质量流量计利用流体流过外热源加热的管路时产生的温度场变化来测量流体的质量流量;或者利用加热流体时流体温度上升某一数值所需能量与流体质量之间的关系来测定流体质量流量。[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计利用[/font][/font][font='Times New Roman'][font=宋体]热[/font][/font][font='Times New Roman'][font=宋体]传导原理测定气体的质量流量,即气体的放热量或者吸热量与该气体的质量成正比[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]被测定[/font][/font][font='Times New Roman'][font=宋体]气体流过[/font][/font][font='Times New Roman'][font=宋体]对称排布的两个或者多个温度传感器[/font][/font][font='Times New Roman'][font=宋体]表面[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]在不同的质量流速下,温度传感器表面温度会发生不同变化。在一定的流量范围之内,温度变化与气体质量流量存在确定的对应关系,可以利用此原理来进行流量测定,其基本结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,352,249]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513235212_6069_1604036_3.jpg!w624x442.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]质量流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体]如图[/font]1-a[font=宋体]所示,在气体流经的管路中安装有加热器[/font][font=Times New Roman]Heater[/font][font=宋体],在其前后对称的位置,各安装一个温度传感器[/font][font=Times New Roman]TS[/font][/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]和[/font]TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]当气体流速为[/font]0[font=宋体]时,由于温度场分布是对称于加热器[/font][font=Times New Roman]Heater[/font][font=宋体],那么两个传感器的[/font][/font][font=宋体]测定[/font][font='Times New Roman'][font=宋体]温度相同,均为[/font]T[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]气体质量流量[/font][/font][font=宋体]逐渐增加时[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]气体将逐渐[/font][font='Times New Roman'][font=宋体]携带[/font][/font][font=宋体][font=宋体]加热器[/font][font=Times New Roman]Heater[/font][font=宋体]表面的[/font][/font][font='Times New Roman'][font=宋体]部分热量,[/font][/font][font=宋体]流量计内部[/font][font='Times New Roman'][font=宋体]温度场[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]对称性被破坏,温度传感器[/font]TS[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]表面温度下降[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变成[/font]T[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]温度传感器[/font][font='Times New Roman']TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]表面温度上升[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变为[/font]T[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]在一定的[/font][/font][font=宋体]气体[/font][font='Times New Roman'][font=宋体]流量范围内,两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]([/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [font=Times New Roman]= [/font][/font][font='Times New Roman']T2[/font][font=宋体] [/font][font='Times New Roman']-[/font][font=宋体] [/font][font='Times New Roman']T1[/font][font=宋体] [/font][font='Times New Roman'][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与流体的质量流量有确定定量关系[/font][/font][font=宋体]。[/font][font=宋体]两个温度传感器温度差[/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]会随着质量流量的增加而增加,[/font][font='Times New Roman'][font=宋体]当气体的质量流量趋向于无穷大时,两个温度传感器接触到的几乎都是未被加热的气体,温差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]也趋向于[/font]0[font=宋体],如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,372,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513338640_4809_1604036_3.jpg!w690x307.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]温差与质量流量的关系特性[/font][/font][/align][font=宋体][font=宋体]由温差[/font][font=宋体]——质量流量关系特性曲线可知,[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计[/font][/font][font='Times New Roman'][font=宋体]不适合分析[/font][/font][font=宋体]过高[/font][font='Times New Roman'][font=宋体]的气体流速。[/font][/font][font=宋体]测量微小气体流量由于信号微弱,也存在测量精度较低的问题。[/font][font=宋体]质量流量计测定的[/font][font='Times New Roman'][font=宋体]气体的质量流量[/font]F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'][font=宋体]与两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]关系式为:[/font][/font][align=center][img=,143,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513409949_3356_1604036_3.jpg!w690x138.jpg[/img][font='Times New Roman'] [font=宋体]([/font]1-1[font=宋体])[/font][/font][/align][font='Times New Roman'] [font=宋体]公式[/font]1-1[font=宋体]中:[/font][/font][font='Times New Roman'] F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]气体的质量流量[/font][/font][font='Times New Roman'] E —— [font=宋体]加热器的功率值[/font][/font][font='Times New Roman'] Cp —— [font=宋体]气体的比热容[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [/font][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]温度差[/font][/font][font=宋体][font=宋体]随着现代微电子[/font][font=Times New Roman]-[/font][font=宋体]微机械技术的发展,出现了微型热分布式质量流量计,外观尺寸可以缩小到[/font][font=Times New Roman]cm[/font][font=宋体]级别,可以作为一个单独的电子元件,方便的安装在色谱仪电子流量控制器的线路板上,并且可以成功解决测定微小气体流量的问题。[/font][/font][font=宋体][font=宋体]其基本原理与热式质量流量计相同,但是加热部件和温度传感器部件的排布方式有所不同,其结构原理如图[/font][font=Times New Roman]3[/font][font=宋体]所示[/font][/font][align=center][img=,338,104]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513483717_5810_1604036_3.jpg!w690x213.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热分布式质量流量计结构图[/font][/font][/align][font=宋体]流量计的温度传感器在内部电气线路设计方面被连接成电桥方式,可以感知极微弱的温度差异,并且由于总体部件尺寸的缩小,微型热分布式质量流量计可以测定微小的气体流量。与热式流量计相似,热分布式质量流量计不太适合直接测定过高的气体流量。当需要测定较大流量时,需要配备有分流部件,可以较大范围扩展其测量范围。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]质量流量计的特点和[/font][font='Times New Roman'][font=宋体]使用注意事项[/font][/font][/align][font=宋体]质量流量计具有较高的流量测定精度,比较适合测定微小的气体流量,测量灵敏度较高,使用性能稳定可靠。可以安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口载气电子流量控制器中。[/font][font=宋体][font=宋体]比较差压式流量计,质量流量计的惯性较大,不容易实现迅速的流量控制;[/font][font=宋体]’气体的温度和压力变化对流量计的测量准确性影响较小。[/font][/font][font=宋体]质量流量计的使用注意事项:[/font][font='Times New Roman']1 [font=宋体]气体[/font][/font][font=宋体]的类型设置[/font][font=宋体][font=宋体]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],不同的载气具有不同的比热容,会对流量计的温度[/font][font=宋体]——流量响应关系带来一定的影响[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]在设定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析方法时,需要在色谱仪硬件和色谱数据工作站软件中设置正确的载气类型。[/font][font='Times New Roman'] [/font][font='Times New Roman']2 [/font][font=宋体]质量[/font][font='Times New Roman'][font=宋体]流量[/font][/font][font=宋体]——压力[/font][font='Times New Roman'][font=宋体]校准[/font][/font][font=宋体][font=宋体]与差压式流量计相同,配置有质量流量计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]随着运行时间的增长,电气部件性能会发生逐渐变化,流量计内的管路散热情况也会因为堵塞、污染等问题产生差异,都会影响流量计的温度[/font][font=宋体]——质量流量关系,从而影响流量测定的准确性。[/font][/font][font='Times New Roman']3 [font=宋体]气源的要求[/font][/font][font=宋体]气源要求洁净、不含有油污、水分或者固体颗粒物,尽量避免气源压力和流量的瞬间剧烈变化造成流量计的损坏。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器内置质量流量计的基本原理和使用[/font][font='Times New Roman'][font=宋体]注意事项。[/font][/font]

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 气相色谱仪流量控制原理与维护 —— 转子流量计的原理和注意事项

    气相色谱仪流量控制原理与维护 —— 转子流量计的原理和注意事项

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 转子流量计的原理和注意事项[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体] 转子流量计也可以视为一种特殊的差压式流量计,结构简单,使用方便。是较为传统的流量计,目前在某些低成本[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器和应用场合下还可以见到。[/font][font='Times New Roman'] [/font][align=center][font=宋体]转子流量计的原理[/font][/align][font=宋体] 转子流量计又名浮子流量计(或面积流量计),是通过改变流体流通面积来改变流量的仪表。结构较为简单、使用维护方便,流量计压力损失小并且固定等优点,在工业流量控制系统中应用广泛。[/font][font=宋体][font=宋体] 转子流量计由向上扩张的锥形管和置于锥形管中可以自由上下移动的浮子组成,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。流量计垂直安装在测量管路上,流体自下而上流过流量计推动浮子。流量增大时,浮子位置上升,使流体流过的面积增大,反之则减小。[/font][/font][font=宋体][font=宋体] 在稳定的状态下,浮子悬浮的高度[/font][font=Times New Roman]h[/font][font=宋体]与通过流量计的流体流量[/font][font=Times New Roman]F[/font][font=宋体]之间存在一定的比例关系,所以可以根据浮子的高度直接读取流量计的流量值。[/font][/font][font=宋体] 为了避免浮子在锥形管中运动时碰到管壁,通常会在浮子上开出几条斜槽,流体流过浮子时,浮子会旋转以保持稳定和居中,因此浮子也被称为转子[/font][font='Times New Roman'][font=宋体]。[/font][/font][align=center][img=,150,225]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958081389_3749_1604036_3.jpg!w523x782.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]转子流量计结构[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]浮子在流量计内高度的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,135,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958159796_4045_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [font=Times New Roman]F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体体积流速[/font][font=宋体] [font=宋体]α [/font][/font][font='Times New Roman'] [/font][font=宋体]—— 浮子流量计的流量系数[/font][font='Times New Roman'] [/font][font=宋体] [font=Times New Roman]D[/font][/font][sub][font=宋体][font=Times New Roman]f[/font][/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 流量计锥形管零刻度位置内径[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=Times New Roman]C[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 常数(与流体密度、浮子体积、浮子迎流面积有关)[/font][/font][font=宋体][font=Times New Roman] h[/font][/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— 浮子高度[/font][/font][font=宋体][font=宋体] 该公式中的常数[/font][font=Times New Roman]C[/font][font=宋体]与流体的温度、压力、密度和粘度有关,使用中需要根据流体物理性质的不同,测量流量时应该予以修正。[/font][/font][font=宋体] 转子流量计适合于较小管径下较低流速的测量,压力损失较低,流量测定范围宽,结构简单,价格低廉,使用和维修比较方便。[/font][font=宋体] 但是需要注意转子流量计的流量刻度,仅仅在流量计的标准标定状态下才是准确的,如果流体介质、流体温度、流体压力与标定状态不同,那么流量刻度值需要进行转换,否则读取到的流量不正确。[/font][align=center][font=宋体]转子流量计在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器中的应用[/font][/align][font=宋体] 随着现代电子技术的发展,采用电子流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在实验室中越来越常见。但是采用手工流量控制模式(机械阀加流量计模式)的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],目前还依然存在于某些实验室中。[/font][font=宋体][font=宋体] 虽然不如电子流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]那样具有良好的流量[/font][font=Times New Roman]/[/font][font=宋体]压力重复性和精密度,但是手工流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]价格低廉,可靠性高,维护成本较低。并且实验对象的样品如果性质不良(浓度较高、沸点较高、粘度和稳定性不良),采用手工流量控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]日常维护成本都低,发生故障后的维修比较方便。[/font][/font][font=宋体]转子流量计一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气(尤其是填充柱系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url])或者尾吹气的测量,流量数值读取方便。[/font][font=宋体] [/font][align=center][font=宋体]转子流量计的安装位置[/font][/align][font='Times New Roman'] [/font][font=宋体] 转子流量计在手工控制模式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统中常见的安装位置常见有以下三种方式:[/font][font=宋体][font=宋体] 方式[/font][font=Times New Roman]1[/font][font=宋体]:转子流量计安装在载气控制部分的气源稳压阀之后,进样口的流量调节阀之前。[/font][/font][font=宋体] 在这种安装方式下,转子流量计读取流量数值比较方便。但是流量计需要在特殊条件下(流量计的入口压力确定)进行标定,一般需要使用厂家专用的定制流量计。[/font][font=宋体] 使用时必须保证流量计的输入压力和气体的类型与标定时的压力一致、,否则读数不准确。[/font][align=center][img=,454,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958288505_9534_1604036_3.jpg!w690x252.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]1[/font][/font][/align][font=宋体][font=宋体] 方式[/font][font=Times New Roman]2[/font][font=宋体]:转子流量计安装在载气的流量调节阀之后,进样口之前[/font][/font][font=宋体] 在这种情况下,可以使用普通型转子流量计,但是需要进行读数修正。在不同的进样口压力、不同载气类型的情况下,需要进行流量刻度值的转换。[/font][font=宋体] [/font][align=center][img=,373,122]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958350951_5526_1604036_3.jpg!w690x226.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]2[/font][/font][/align][align=center][font=Calibri] [/font][/align][font=宋体][font=宋体] 方式[/font][font=Times New Roman]3[/font][font=宋体]: 转子流量计的出口直接连接检测器[/font][/font][font=宋体] 在这种情况下,转子流量计的流量刻度接近标定状态,一般情况下可以直接读取流量数值。[/font][align=center][img=,374,139]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010958405395_2107_1604036_3.jpg!w690x256.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]转子流量计安装位置 方式[/font][font=Calibri]3[/font][/font][/align][align=center][font=Calibri] [/font][/align][font='Times New Roman'] [/font][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体] [/font][align=center][font=宋体]转子流量计的特点和使用注意事项[/font][/align][font=宋体] [/font][font=宋体][font=宋体] 转子流量计结构简单,性能可靠,拆解和维修方便,一般情况下不需要进行校准,运行不需要电源和控制线路的支持,可以独立适用。目前在低成本的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和某些进样或采样设备[/font][font=宋体]——例如热解析进样器——中还可以见到。[/font][/font][font=宋体] 使用转子流量计的过程中需要注意如下问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型和工作状态的修正[/font][/font][font=宋体] 实际工作环境与流量计标准标定状态不同时,需要对流量计进行压力、温度和密度流量转换。某些流量计的说明书或者标签明确标识有可以测量的气体种类,如果用于测定其他气体,必须予以校准。[/font][font=宋体] 例如带有氮气标签的转子流量计,不建议用于测量氢气。如果一定需要测定氢气流量,那么必须进行转换。[/font][font=宋体] 转子流量计安装于进样口前端时,由于流量计内压力大于大气压力,流量计的显示数值可能不准确,可能需要进行压力校准。[/font][font=宋体] 某些型号的转子流量计预先规定了操作压力,如果流量计安装于气源之后,载气流量调节单元之前,可以不做校准。[/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]安装位置[/font][/font][font=宋体] 一般情况下,转子流量计必须垂直安装在系统中,系统无明显振动。[/font][font=宋体][font=Times New Roman] 4 [/font][font=宋体]最大截面积读数[/font][/font][font=宋体] 读取流量刻度时,应该选取转子截面积最大的部分。[/font][font=宋体][font=Times New Roman] 4 [/font][font=宋体]气源要求[/font][/font][font=宋体] 气源应该洁净、无大量水、油污或固体颗粒物,避免流量突然变化的剧烈冲击。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体] 转子流量计的基本原理和使用注意事项。[/font]

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 凝胶色谱的流量显示

    如题,大家的凝胶色谱有实时显示流量吗?假设设定1.0ml/min,误差相差多少?我觉得流量对标准曲线的建立有很大关系。我的凝胶色谱没有显示实际流量是多少,我发现有时会流量变很小,这是怎么回事?单向阀有问题?

  • 【讨论】气相色谱流量调节

    [color=#00008B] [size=4]想重新制作标准曲线,在调节流量时发现流量无法调节,不管是开大还是开小,皂膜流量计毫无反映,气体发生器正常产气,色谱压力阀也有压力,单就是流量不对[/size][/color]

  • 色谱载气流量公式

    各位大佬们,请问下色谱的载气流量是怎么算的,跟 设定流速ml/min、色谱柱直径、长度是什么关系啊 也就是计算公式是什么

  • 气相色谱氢气流量和出峰

    [color=#444444]更换PLOT柱进行烯烃气体检测,更换完以后,色谱出现点火-熄火-点火一直这样重复(氢气流量30mL/min,空气流量300mL/min),氢气发生器的流量一直不稳定,将氢气流量换成50mL/min,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]显示成功点火,并且不出现熄火的问题,但是打入标准气后,结果中没有任何峰出现,之前打标准气是有相应的峰出现的。测试进样针和色谱柱都没有堵塞的条件,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]参数除燃气流量和空气流量外也跟之前一样,这样的问题该如何解决?[/color]

  • 测量污水流量用什么流量计好

    现在工业发展,排放污水的量控制,污水环境治理等等需要测量污水流量的测量,那么到底用什么流量计来测量污水比较好,污水流量计应该怎么样选型?污水电磁流量计应该选择怎么样的材质? 现在在工业中普遍使用的污水刘流量计是由电磁流量计传感器和转换器配套组成,用以测量管道内各种导电流体或者液固两项的介质的体积流量。电磁流量计,污水电磁流量计广泛的被应用于化工、冶金、造纸、水利、环保、印染、石油、煤炭等工业领域中,用来测量污水导电液体介质的体积流量。 为什么选择电磁流量计做污水流量计比较好呢? 流量的测量不受流体的密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。测量管道内无阻流件,因此没有附加的压力损失;测量管道内无可动部件,因此传感器寿命极长。由于感应电压信号是在整个充满磁场的中间中形成的,是管道载面上的平均值因此传感器所需的直管段较短,长度为5倍的管道直径。多种电极及内衬材料,可满足耐腐蚀、耐磨损的要求。HSBLDE转换器采用国际最新最先进的单片机和表面贴装技术,性能可靠、精度高、功耗低、零点稳定、参数设定方便,点击中文显示LCD,显示累积流量,瞬时流量、流速、流量百分比等。双向测量系统,可测正向流量,反向流量,采用特殊的生产工艺和优质材料,确保产品的性能在长时间内保持稳定。 电磁流量计特点造就点了电磁流量计广泛的用途,用在污水流量测量上绝对是首要选择,那么在测量的时候应该要怎么选择电磁流量计型号,电磁流量计的电磁,这些都可以直接联系成丰仪表流量计厂家咨询。 电磁流量计提供防护等级IP67(防尘防浸水级)或IP68(防尘防潜水级)。在污水厂中大口径流量计传感器大多安装在地下,所以建议选择IP68(防尘防潜水级)。通常电磁流量对安装场所有以下要求: 测量混合相流体时,选择不会引起相分离的场所;测量双组分液体时,避免装在混合尚未均匀的下游;测量化学反应管道时,要装在反应充分完成段的下游;尽量满足前后直管段分别不小于5D和2D; 尽可能避免测量管内变成负压; 选择震动小的场所,特别对一体型仪表; 避免附近有大电机、大变压器等,以免引起电磁场干扰; 易于实现传感器单独接地的场所; 尽可能避开周围环境有高浓度腐蚀性气体; 尽可能避免受阳光直照可用于流体流量的常规显示和计量及贸易结算

  • 气相色谱空气与氢气流量低

    今天早上在给[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]点火时发现点不着火,氢气流量和空气流量达不到设定的流量值,恳请各位大神帮忙解决!!!该[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]使用fid检测器,设定的空气流量为350,氢气流量为28.在刚控温时,空气流量可以达到650,氢气流量为20,但是在一分钟内氢气流量会先降到1左右,氢气流量降下来之后,空气流量开始从650往下降,同样是降到个位数。更换了空气发生器和氢气发生器后的密封圈,没有任何变化,请各位大神帮忙解答以下,谢谢。

  • 如何选择气相色谱流量?

    请问,如果用0.53内经,30米长的色谱柱,流量选择应该多少合适?要不要分流,分流比为多少(FID检测器)。我做油酸甲酯,色谱峰很宽,以前没有用过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],各位同门帮帮忙,谢了。

  • GCMS色谱柱流量问题。。

    假如我在柱箱安装了一个型号XXX的色谱柱,在工作站上配置了一个参数相似的但不同种类的YYY色谱柱,设置流量为1ml/min,压力为P1,这个流量是我安装的色谱柱的真实流量吗?还是安装的XXX色谱柱,配置了ZZZ色谱柱,设置流量为1ml/min,但压力为P2,P1不等于P2,该如何解释呢?

  • 【原创大赛】毛细管色谱柱柱前压与柱流量换算工具的微信小程序开发

    【原创大赛】毛细管色谱柱柱前压与柱流量换算工具的微信小程序开发

    摘要:本文分为三部分,第一部分介绍[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器的流量/压力控制现状;第二部分介绍毛细管色谱柱压力和流量换算的原理;第三部分介绍小程序的开发思路。[b] 1 概述[/b]在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析过程中,我们需要各种各样的气体供应用以保证仪器的正常运行,例如需要载气以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离,需要空气(助燃气)、氢气(燃气)来保证氢火焰离子化检测器的燃烧,并需要氮气(尾吹气)稀释火焰调节灵敏度。一般而言,[b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器内部[/b]涉及到气体控制的描述,都是以流量的数值和描述来表示;涉及到压力的描述,常见的就是[b]柱头压[/b](又称之为柱前压)。柱头压指的是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口处的压力,[b]在色谱柱[/b](以毛细柱为例,包括色谱柱长度、内径和膜厚)[b]、载气类型和温度条件固定的情况下,一定的柱头压对应的色谱柱的流量值是固定的[/b]。对于目前市面上常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],其进样口的流量/压力控制采用的控制装置一般分为两类:即[b]手动调节流量/压力的机械阀控制系统[/b]和可以[b]自动调节流量/压力的电子流量控制系统[/b](如带EPC装置的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url])。对于使用[b]自动调节流量/压力的电子流量控制系统(EPC)[/b]的仪器,如安捷伦的7890B等,可以直接在工作站软件上进行色谱柱流量、分流流量等的设定,操作起来简单、快捷和方便。对于使用[b]手动调节流量/压力的机械阀控制系统[/b]的仪器,可以通过调节柱前压来调整通过色谱柱的流量(并可以使用皂膜流量计在色谱柱出口测量实际流量)。但是当使用毛细管柱分析时候,一方面需要通过[b]调整柱前压来控制通过毛细管柱的流量[/b]来改善分离条件,另一方面需要调整分流来控制分流比;在这两个过程的操作中,常常要根据国家标准设定毛细管色谱柱的柱流量值,由于机械阀仪器显示的是柱前压,毛细管色谱柱使用皂膜流量计测量实际流量非常不方便(还涉及到柱箱温度的问题),因此方便快捷的将柱前压换算成柱流量是一个较为迫切的需求。目前市面一些厂家推出了进行毛细管色谱柱柱前压和主流量换算的小工具,只需要选择分析使用的[b]载气类型[/b]、[b]出口压力[/b]以及[b]柱温箱的温度[/b]、[b]柱前压[/b]、[b]毛细管色谱柱的长度、内径和膜厚[/b],即可计算出毛细管色谱柱的出口流量等,见下图:[img=,690,465]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011459564436_2049_1856270_3.png!w690x465.jpg[/img]但是上述小工具需要在电脑上进行安装,一些[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器连接的电脑是不允许安装其他软件的,因此如果有一款在线的工具可以直接在手机上操作则非常方便。目前,微信平台的小程序非常流行,使用率较高,因此本文简单的进行了毛细管色谱柱柱前压与柱流量换算工具的微信小程序开发。[b][color=red][/color][color=red]声明:本文涉及的小程序未上线推出,未来一段时间也不寻求上线推出;本文介绍开发思路。[/color]2 毛细管色谱柱的压力流量换算公式[/b]目前各个厂家的电子流量控制装置进行压力和流量换算,主要依据的是[b]泊肃叶方程[/b](Poiseuille’sEquation)和理想气态方程(PV=nRT)共同推导出来的压力流量计算公式(参考文献:蓝云峰,陈正夫.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的电子压力控制技术.上海环境科学,1997(11):40-41),见下图:[img=,660,576]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011501314146_7015_1856270_3.png!w660x576.jpg[/img][img=,690,162]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011501535016_2115_1856270_3.png!w690x162.jpg[/img]综上,涉及到计算的主要项目包括[b]七个参数[/b]:载气类型项(m/d),出口压力项、毛细管柱的长度、内径和膜厚,柱温箱温度和柱前压。[b]3 微信小程序的开发3.1 最终界面展示[/b]打开之后进入主界面,点击《进入色谱计算器》按钮可以进入计算界面[img=,690,554]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011509300285_6173_1856270_3.png!w690x554.jpg[/img][b]3.2 小程序开发界面[/b]小程序开发界面主要包括下图红色方框内的四个文件,用来进行代码编辑、页面配置,页面布局和页面的样式(如字体、颜色等)的编辑。[img=,690,636]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011509478125_4318_1856270_3.png!w690x636.jpg[/img][b]3.3 小程序的开发和代码3.3.1 界面内的控件和作用[/b]最后显现出来的前端页面包括的内容和主要作用如下:[img=,690,563]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011503238056_3845_1856270_3.png!w690x563.jpg[/img][b]3.3.2 界面控件代码示例[/b]两个radio-group(单项选择器)和五个slider(滑动选择器)通过选择或者滑动获取设置的数值,然后点击按钮输出结果。以slider控件(用于色谱柱长度的选择)为例,点击或者选择后,发生以下计算过程,代码为:[img=,690,273]https://ng1.17img.cn/bbsfiles/images/2019/09/201909011503551326_4621_1856270_3.png!w690x273.jpg[/img]编辑完以上各个控件(两个radio-group(单项选择器)和五个slider(滑动选择器))的代码之后,再编辑[b]点击按钮[/b]的相关代码,代码内容就是上述压力流量计算公式。最终的录屏结果参见视频。[b]4 结语[/b]通过微信小程序的开发,可以实现在在手机上方便快捷的进行毛细管柱柱前压力和流量的换算。目前只设计了柱前压→柱流量的功能,还可以增加线速度、柱流量→柱前压的功能,最终使毛细管色谱柱柱前压与柱流量换算更加完善。

  • 气相色谱压力与柱流量

    我苯系物的(对间邻)二甲苯分不开 想调调压力和柱流量 哪个大侠可以告诉我具体的 恒压和恒流有什么关系 压力的高低或柱流量的快慢对色谱出峰有什么影响 万分感谢!!

  • 【求助】色谱柱流量问题

    我们用的是A的7890GC-5795MSD我们的柱流量设置的是2.0,但近段时间发现在进样后,色谱柱流量变为3.6,之后到运行升温大约1分钟左右又回到2.0,不晓得是什么原因引起的,也不晓得对测试结果或仪器有没有影响。请高手指点一下

  • 【讨论】气体流量测量仪表选型问题介绍。。。

    测量气体流量的仪表,测量介质是普通空气是用什么呢?电磁?涡街?转子?    如果管道直径比较小,比方只有8厘米以下可以用转子流量计或者叫旋翼流量计涡轮流量计    如果是管道截面或者直径比较大,比方1米*1米或者2米*3米可以用PBS空气流量计,这种流量计具有防堵塞抗磨损测量效果好免维护的特点。    如果温度比较高比方是蒸汽,可以用各类巴类的流量计比方威力巴阿牛巴等或者孔板    这里只是简单的举出了几个例子,实际上,你可以先告诉我你的测量要求。我来告诉你用什么的最好。    比方温度是多少?气体用来做什么?管道直径如何?静压大概多少?流速大概多少?管道振动的厉害不?什么气体有没有腐蚀性?

  • 长弧形电极测量法在电磁流量计上的应用

    为了实现测量非Furupaipu,提高传感器的需要,在传统的电磁流量计的应用领域是满管流的量度。为了同时检测的流通面积流量乘以由水平传感器的两种类型之一,以测量流速由流量传感器电磁和面积法速度传统的能力(或对电极的流量传感器的电磁制根据其结构),配备了一个特殊的转换器通过流量。的电位的电极的横截面从电磁流量计检测器的原理的视图,感应的信号电极电压的观点考虑,是所有的点的集合。是否超过如何改变颗粒的热水总是有一个潜在的流体流检测,满管传感器,它必须是的电极电位,这些集合的范围。它没有明确不能以下方式获得,从流体中分离出来的电极,或电极诱导的流量信号。 在这之后,根据上述原理,总结了实验和长期的以往的经验的基础上改进的电极长弯曲着放置在原始电极的电磁流量计。电极的弯曲的长,向上延伸的管道横截面的液体表面,流体的电极相对应的纯电阻性的等效阻抗值对应于不同的液体水平的高度的10%,90%的液体水平长弧之间的电导值进行偏压从电磁流量计长管弧电极原始程序对得到的磁性部件的有效电压激励电平信息差距。通过使用技术双激发来消除干扰偏振,平行泵送模块,它相当于只传感器两端的电极的电弧长的管道,以这种方式,它们是低频率区域的低电压纯电阻Rx可以忽略的电容的,简化的电路图部分压力测量值的影响。此外,可以考虑水的电导率的等效阻抗之间的关系中的液面非Furupaipu不同的实验测量。由于不同的导电液体水,基本上相匹配,通过实验发现,和数据相对阻抗比的不同高度。此外,时的液面Furupaipu或更多的非-90%,高度不接触的小的变化相对电极圆弧状的长从流体组的测量数据被发现从仔细分析多个的液面非Furupaipu相对阻抗比,为约10%,因为流体的高度是在与电极相对阻抗比的变化只是长弧接触。 为了能够以对应于以下条件的情况下,相对应的纯电阻,我们,如果管道是筒管充满的状态,长加上的电弧管中的流体的流体的电极之间被证明的等效阻抗的电阻并联连接,被假定为相当于纯的3。电极板的电压的信号高于或低于10%的90%,比管平行的液体表面的原因,因为集管部电位点全部的电极板的横截面中诱导它是像一个三个电阻,被绑定到无接触的等效阻抗的电极板之间的差异是与流体和在中间的电极板接触。通过计算流体的等效阻抗,电极之间的,在实际应用中,是基于上述模型计算出的液体相的相应高度的比率测量的电压值的圆弧长是一个复杂的,但它的计算量也是相当大的。执行许多的导电性比较的实验不同,因此,孔板流量计数据的阻抗比相对数据的每个的相同的液体,液体与不同的拟合曲线的相对高度的高度的液面几乎发现的基础上是相同的阻抗比的数据,作为一个表单创建。与表中的数据相比,电极除以因子,后调零后的电压值,并过滤,很长一段时间来测量电弧可以快速,简单和有效的液体水平的速率。当然,通过除以不同的导热系数,I是不同的。检测方法电磁流量计满管双鼓励非知识产权的基础上,增加激励源电压,简单的改变一些电磁流量计的事情是完全独立的下来,为了实现了非Furupaipu的测量的电磁流量计测量液体通过一个多参数测量,的长弧电极,水平的管道。

  • 色谱柱流量设为多少合适?

    色谱柱流量设为多少合适?平常用柱流量为3mL/min,见文献上说HP-1(30*0.25*0.25),柱流量为1mL/min,这个合适吗?会不会太小了?

  • 测量污水流量为什么首选用电磁流量计?

    测量污水流量为什么首选用电磁流量计?

    电磁流量计由传感器和转换器两部分构成。它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μS/cm导电液体的体积流量,是一种测量导电介质体积流量的感应式仪表。除可测量一般导电液体的体积流量外,还可用于测量强酸强碱等强腐蚀液体和泥浆、矿浆、纸浆等均匀的液固两相悬浮液体的体积流量。[img=电磁流量计使用范围,600,177]http://ng1.17img.cn/bbsfiles/images/2017/08/201708040938_01_3066291_3.jpg[/img]电磁流量计是一种根据法拉第电磁感应定律来测量馆内导电介质体积流量的感应式仪表,采用单片机嵌入式技术,实现数字励磁,同时在电磁流量计上采用CAN现场总裁。电磁流量计在满足现场显示的同时,还可以输出4-20mA电流信号供记录、调节和控制用,现已广泛地应用于化工、环保、冶金、医药、造纸、给排水等工业技术和管理部门。电磁流量计除可测量一般导电液体的流量外,还可测量液固两相流,高粘度液流及盐类、强酸、强碱液体的体积流量。为什么测量污水,我们往往首选电磁流量计,是什么原因能使得电磁流量计受到如此的肯定, [url=http://www.jskmyb.com][color=#000000]电磁流量计[/color][/url]除可测量一般导电液体的体积流量外,还可用于测量强酸强碱等强腐蚀液体和泥浆矿浆纸浆等均匀的液固两相悬浮液体的体积流量。电磁流量计由于仪表测量管内部无阻碍流动部件,与被测流体接触的只是测量管内衬和电极,其材料可根据被测流体的性质来选择。例如,用聚四氟乙烯做内衬,可测量各种酸、碱、盐等腐蚀性介质;采用耐磨橡胶做内衬,就特别适合于测量带有固体颗粒的、磨损较大的矿浆、水泥浆等液固两相流以及各种带纤维液体和纸浆等悬浊液体。工业用电磁流量计的口径范围极宽,从几个毫米一直到几米,而且国内已有口径达2m的实流校验设备,为电磁流量计的应用和发展奠定了基础。电磁流量计的压力损失小,只要选对衬里及电极材质,使用寿命长那自然是不在话下。其更可进行正反方向流体的流量测量,并且反应灵敏,对前后直管段的要求不高,是今后流量测量界很有发展前途的一种仪表。

  • 【求助】气相色谱电子流量计

    各位路过的大虾米: 本人跪求有关[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]电子流量计的相关知识,请各位不吝赐教。 1. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]电子流量计的工作原理以及作用 2. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]电子流量计是否每种检测器都需要单独配置 3. 农残测定时[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]自动进样器的位数如果为21位实验时是否够用比较急,请路过的高手指教,谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制