当前位置: 仪器信息网 > 行业主题 > >

质谱化吸附仪

仪器信息网质谱化吸附仪专题为您提供2024年最新质谱化吸附仪价格报价、厂家品牌的相关信息, 包括质谱化吸附仪参数、型号等,不管是国产,还是进口品牌的质谱化吸附仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱化吸附仪相关的耗材配件、试剂标物,还有质谱化吸附仪相关的最新资讯、资料,以及质谱化吸附仪相关的解决方案。

质谱化吸附仪相关的论坛

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

  • 【转贴】红外分光光度计--红外光谱研究吸附催化反应

    物理吸收电磁被附加分子以范德华力与吸附剂相结合。化学吸附则因被吸附分子和吸附剂间形成了离子键或共价键。这两种吸附情况,在红外光谱上的反映是不同的。物理吸附只看得谱带的位移、化学吸附由于形成了新的化学键,故出现新谱带。  (1)氮在低温多孔玻璃上的吸附是物理吸附。在未吸附氮分子的干燥多孔玻璃上,它的表面结构中羟基的倍频7326cm-1,引入氮分子后,它的倍频移到7257cm-1。并随时间的增加而加强。7326cm-1带则减弱,二十分钟后,7326cm-1源谱带完全消失。如加热到20℃ ,则7326cm-1带又出现了。这是因为加热使物理吸附的氮分子解吸了的缘故。     (2)乙烯催化加氢反应机理长久未能解决。最终还是用红外光谱解决了这个问题。有两种说法:①先打开双键CH2-CH2的缔合吸附再加氢。②先发生C-H断裂再加氢CH=CH+HM。      │  │              │ │      M  M              M M  由乙烯在镍上化学吸附后的红外光谱研究指出,这两种情况都有可能。而取决于实验条件——温度、压力、以及催化剂表面是否有一层预吸附层。如有预吸附层则为缔合吸附。这时在红外光谱上有2950-2880cm-1的饱和碳氢伸缩带及1465cm-1的亚甲基弯曲振动。  如催化剂表面无吸附层,则乙烯催化加氢的反应是离解型。红外光谱上有3030cm-1谱带出现,说明有v=CH伸缩振动带出现。

  • 【原创大赛】挥发性有机物固体吸附热脱附气相色谱—质谱法

    【原创大赛】挥发性有机物固体吸附热脱附气相色谱—质谱法

    [align=center][b]挥发性有机物固体吸附热脱附[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—质谱法[/b][/align][align=center]国联质检:高秋荣[/align]一、方法概述本方法使用无油采样器采集空气,是空气通过装有一种或者多种固体吸附剂的吸附管,然后将吸附管放入加热器中迅速加热,待分析的物质从吸附剂上被脱附后,由载气带入气象色谱的毛细柱中,经色谱分离后由质谱进行VOCs的定性定量分析。二、实验仪器1.吸附管三、试剂四、样品的采集采样时如果环境中尘,烟,气溶胶的含量很高,采样管入口端应接Tefion2-微孔过滤器或者连接一个金属管,管内塞一些干净的玻璃棉,街头使用聚四氟乙烯材料的短管。打开采样管两端的密封帽后,应马上采样,对于使用多层吸附剂的采样管,采样管气体入口段应为若吸附剂,出口端为强吸附剂。对于外径为6mm的采样管来说,最佳的采样流量为50ml/min,实际推荐采样流量为10~200ml/min,超过200ml/min或者低于10ml/min将产生较大的误差,采样所需时间应根据安全采样体积来确定,采集300ml的样品每个分析物质的检出限可达0.5ppb。对于大气环境的监测,典型的泵流量及采样时间: 1.用16ml/min的流量在1h采集960ml样品。 1.用67ml/min的流量在1h采集4020ml样品。 3.用40ml/min的流量在3h采集7200ml样品。 4.用10ml/min的流量在3h采集1800ml样品。 采集样品时,对同一批采样管需要设定两个实验室空白,既采样管老化后放在4度干净的环境中保存,在样品测定之前和样品测定之后分别测定一个实验室空白,每10个样品或一批样品低于10个样品时需要分析一个现场空白。 样品采集后,采集管应贮存在低于4度的干净环境中,在30d内分析完毕,采用多层吸附剂进行采样后,除非实现知道储存不对引起样品的明显缺失,否则应尽快进行分析。五、样品分析程序 1.标准物质的准备挥发性有机物的标准可以使用气体标准,也可以使用液体标准。(1)气体标准:使用高压管储存的气体标准,必须符合国家标准,使用国外的标准必须符合NIST/EPA认证的标准,并且样品必须在有限期内进行使用。稀释方法使用动态稀释法。(2)液体标准溶液:配置挥发性有机物的标准溶液,一般使用高纯度的甲醇为溶剂,配置液体标准时,分析物质的质量应与采样过程中进入采样管的量在同一个数量级上。(3)液体样品加到采样管的方法 将已老化的采样管作为色谱柱装到气象色谱的填充柱进样口上,调节载气的流量为100ml/min,对于挥发性低于正十二烷的物质,可以用5~10ul的微量进样器直接从为加热的进样口进样,对于挥发性高于正十二烷的物质,将进样口温度加热到50℃,以保证所有液体全部蒸发,这样后继续同载气,知道溶剂穿过吸附剂二分析的物质定量保留在吸附剂上,一般要5min,然后产下吸附管,立即盖上密封帽。如果溶剂不易从吸附剂上穿透,则应尽量减少液体的进样量,以减少溶剂对色谱的干扰。(3)热脱附进样器的操作热脱附进样器在工作之前首先核对系统是否漏气,然后根据仪器说明建立热托福条件,这些条件包括一级脱附温度,载气流速(一般在200~300℃脱附5~15min,载气流量为30~100ml/min)、二级脱附、一级脱附与二级脱附之间的分流比,二级脱附和毛细柱之间的分离比。 (4)色谱条件和质朴条件 可以根据需要选择内径0.25,0.32,0.53mm的30~50m的100%甲基聚硅氧烷毛细柱(DB-1)和5%苯基95%甲基聚硅氧烷毛细柱,所建立的色谱条件必须使本和四氯化碳达到基线分离。下面为DB-1 50m[img=,12,14]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps703.tmp.png[/img]0.32mm[img=,12,14]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps714.tmp.png[/img]1um毛细柱的色谱条件: 1.载气:99.999%的氮气,流速1~3ml/min:起始柱温30,保留时间两分钟,升温速度8℃/min,最后在200℃下所有峰出完为止。 2.质谱电子能量为70eV,质量范围为35~300amu,扫面时间每个峰至少扫面10此,每个扫描不超过1秒。 3.质谱的性能检查:通过4-溴氟苯进行核对,如果BFB调节的结果满足不了要求,必须对离子源等进行清洗和维护保养,以满足要求。 4.色谱柱条件:起始温度-50℃,保留2min,在200℃保留至所有化合物出峰完毕。六、标准曲线用标准气体向五个吸附管分别加入体积分数为10.100.1000ppb的标准,对标准液体分别加入1.0,1.0,5.0,1.0,2.0ul,在最佳条件下进行热脱附进样测定。有条件最好使用内标法,即向吸附管中加入含有甲苯-d8、全氟苯、全氟甲苯作为内标物的内标气体。[table][tr][td]管号[/td][td]1[/td][td]2[/td][td]3[/td][td]4[/td][td]5[/td][/tr][tr][td]标准(ppb)[/td][td]10[/td][td]100[/td][td]100[/td][td]1000[/td][td]1000[/td][/tr][tr][td] (ng)[/td][td]50[/td][td]100[/td][td]500[/td][td]1000[/td][td]2000[/td][/tr][/table][align=center]1.浓度为10ppm进样量5ul[/align][align=center]──────────────────────────[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]1 5.053 苯 0.05 1375[/align][align=center]2 7.912 甲苯 0.05 1555[/align][align=center]3 9.427 乙酸丁酯 0.05 926[/align][align=center]4 11.318 乙苯 0.05 1610[/align][align=center]5 11.658 对间二甲苯 0.1 3230[/align][align=center]6 12.299 苯乙烯 0.05 2167[/align][align=center]7 12.488 邻二甲苯 0.05 1764[/align][align=center]8 20.626 正十一烷 0.05 1232[/align][align=center]──────────────────────────[/align][align=center]总计 0.45 13859[/align][align=center] [/align][align=center]2.浓度为100ppm 进样量 1ul[/align][align=center]──────────────────────────[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]1 5.050 苯 0.1 3425[/align][align=center]2 7.914 甲苯 0.1 3348[/align][align=center]3 9.434 乙酸丁酯 0.1 1956[/align][align=center]4 11.328 乙苯 0.1 3582[/align][align=center]5 11.672 对间二甲苯 0.2 7295[/align][align=center]6 12.312 苯乙烯 0.1 3857[/align][align=center]7 12.500 邻二甲苯 0.1 4004[/align][align=center]8 20.647 正十一烷 0.1 2988[/align][align=center]──────────────────────────[/align][align=center]总计 0.9 30455[/align][align=center]3.浓度为100ppm进样量为5ul[/align][align=center]──────────────────────────[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]1 5.050 苯 0.5 16483[/align][align=center]2 7.912 甲苯 0.5 17175[/align][align=center]3 9.425 乙酸丁酯 0.5 9315[/align][align=center]4 11.323 乙苯 0.5 16743[/align][align=center]5 11.672 对间二甲苯 1 34301[/align][align=center]6 12.307 苯乙烯 0.5 16697[/align][align=center]7 12.498 邻二甲苯 0.5 18471[/align][align=center]8 20.642 正十一烷 0.5 14581[/align][align=center]──────────────────────────[/align][align=center]总计 4.5 143766[/align][align=center]4.浓度为1000ppm 进样量为1ul[/align][align=center]──────────────────────────[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]1 5.047 苯 1 32358[/align][align=center]2 7.905 甲苯 1 36502[/align][align=center]3 9.419 乙酸丁酯 1 21184[/align][align=center]4 11.317 乙苯 1 36881[/align][align=center]5 11.672 对间二甲苯 2 74231[/align][align=center]6 12.301 苯乙烯 1 37133[/align][align=center]7 12.491 邻二甲苯 1 40089[/align][align=center]8 20.633 正十一烷 1 27886[/align][align=center]──────────────────────────[/align][align=center]总计 9 306264[/align][align=center]5.浓度为1000ppm 进样量为2ul[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]序号 保留时间 名称 浓度 峰面积[/align][align=center]──────────────────────────[/align][align=center]1 5.053 苯 2 61361[/align][align=center]2 7.920 甲苯 2 68554[/align][align=center]3 9.438 乙酸丁酯 2 39994[/align][align=center]4 11.340 乙苯 2 67930[/align][align=center]5 11.703 对间二甲苯 4 138949[/align][align=center]6 12.331 苯乙烯 2 69720[/align][align=center]7 12.523 邻二甲苯 2 74534[/align][align=center]8 20.671 正十一烷 2 52446[/align][align=center]──────────────────────────[/align][align=center]总计 18 573488[/align]校准曲线:[align=center][img=,500,300]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031106208710_507_2904018_3.png!w500x300.jpg[/img][/align][align=center][img=,452,272]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031106336666_2133_2904018_3.png!w452x272.jpg[/img][/align][align=center][img=,425,255]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031106486090_2963_2904018_3.png!w425x255.jpg[/img][/align][align=center][img=,460,276]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031108055626_8909_2904018_3.png!w460x276.jpg[/img][/align][align=center][img=,481,289]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031108216056_5338_2904018_3.png!w481x289.jpg[/img][/align][align=center][img=,500,300]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031108588186_2998_2904018_3.png!w500x300.jpg[/img][/align][align=center][img=,500,300]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031110003930_8576_2904018_3.png!w500x300.jpg[/img][/align][align=center][img=,500,300]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031109371760_1947_2904018_3.png!w500x300.jpg[/img][/align]七、样品的分析次序 对于挥发有机物GC-MS分析,样品的分析顺序为: 1.50ng 4-溴氟苯的调节仪器, 2.标准曲线,曲线个点相对的校正因子RSD[img=,14,16]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps74B.tmp.png[/img]25%,相对响应因子[img=,14,16]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps75C.tmp.png[/img]0.010. 3.空白的分析 4.样品的分析 5.中间浓度检验八、分析浓度的计算 (1)气体中化合物浓度的计算[align=center] [img=,49,41]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031111146350_1269_2904018_3.png!w49x41.jpg[/img][/align]式中:C——气体中分析物质的浓度,ug/m[sup]3[/sup][sup] [/sup]A——样品总分析物质的含量,ng Vs——标况下的采样总体积[align=center] [img=,155,44]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031111316840_1153_2904018_3.png!w155x44.jpg[/img][/align]式中:V——是及采样体积,L P——采样时的大气压,Kpa T——采样的温度,℃(2)使用内标进行定量时相对影响因子(RRF)的计算[align=center] [img=,155,44]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031111546770_5455_2904018_3.png!w155x44.jpg[/img][/align]式中:Is——目标化合物的峰面积; Cs——目标化合物的浓度,ug/ml; Iis——内标化合物的峰面积 Cis——内标化合物的浓度,ug/ml。(3)样品中分析物质浓度计算[align=center] [img=,135,48]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031112124036_2347_2904018_3.png!w135x48.jpg[/img][/align]九、精密度与准确度 对标准样品(浓度为1000±20ug/ml)进行6次测定,。结果测定如下:[align=center][img=,654,397]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031117417016_622_2904018_3.png!w654x397.jpg[/img][/align][align=center][img=,648,373]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031118069018_9576_2904018_3.png!w648x373.jpg[/img][/align][align=center][img=,659,359]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031118231506_4987_2904018_3.png!w659x359.jpg[/img][/align][align=center][img=,653,350]http://ng1.17img.cn/bbsfiles/images/2018/08/201808031118369756_5075_2904018_3.png!w653x350.jpg[/img][/align]十、总结 本方法的相对标准偏差为0.6%~1.4%,相对误差为0.3%~1.05%。满足方法的要求。通过对方法精密度和准确度的评价,本方法挥发性有机物数据准确,结果可信。 此方法的准确性好,测定结果真实可靠,可用于挥发性有机物的检测。

  • 【国产好仪器讨论】之天津市先权工贸发展有限公司的全自动多用吸附仪(TP-5080)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C181578%2Ejpg&iwidth=200&iHeight=200 天津市先权工贸发展有限公司 的 全自动多用吸附仪(TP-5080)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 概述: TP-5080全自动多用吸附仪是集自动化、智能化、便携化为一体的催化剂动态分析仪,可以在加压(5 Mpa)、常压、正温(0oC至1000oC)、负温(-120oC至0oC)条件下通过程序升温还原(TPR)、程序升温氧化(TPO)、程序升温脱附(TPD)、氢气-氧气滴定(HOT)和程序升温表面反应(TPSR)等系列实验研究催化剂表面性质。该分析仪是全自动化操作仪器,可以完成微量连续流动法和脉冲法两大类反应,配有专用数据处理系统。与质谱、红外、色谱等连接后可以实现在线检测,定性定量反映催化剂在热状态下的动态信息。该分析仪广泛应用于矿藏成份分析,储氢、储氧材料的性能检测,以及物质对有机\无机气体、液体选择性吸附的研究,是各大院校及科研院所教学与研究的首选仪器。 技术优势: (1)全自动,装样后只需启动程序 (2)管路系统和阀门由零吸附、耐腐蚀、绝缘材料组成 (3)适合多种气体吸附质(H2、CO2、 CO、NH3、H2S、SO2等),液体吸附质(苯,甲苯,砒碇等)可以选配蒸发罐 (4)配备真空系统;连接质谱、色谱、红外等可同时得到质谱法、色谱法和化学法结果 (5)耗气量和耗电量分别是同类仪器的1/3、1/2 技术指标: (1)催化剂装样量:0-200 mg(适用于颗粒、粉体状催化剂) (2)程序升温速率:设计值0.5-90oC·min-1(九段程序升温具有独立的PID参数自整定,温度控制精度±0.2% FS) (3)吸附炉温度:室温-1100oC(1000oC以上短暂使用) (4)开机后仪器稳定所需时间:20min 请参阅各高校、研究所采用天津先权公司TP-5080全自动多用吸附仪发表的文章: (1)J.CATAL.2009(266),228-235. (IF=50787) (2)INT. J. HYDROGEN. ENERG. 2012(37), 14133-14142. (IF=3.548) 【了解更多此仪器设备的信息】

  • 关于HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法里的吸附管

    吸附剂:Carbopack C(比表面积10 m2/g),40/60目;CarbopackB(比表面积100 m2/g),40/60目;Carboxen 1000(比表面积800 m2/g),45/60目或其他等效吸附剂。4.5 吸附管:不锈钢或玻璃材质,内径6mm,内填装Carbopack C、CarbopackB、Carboxen 1000,长度分别为13、25、13mm。或使用其他具有相同功能的产品。这么复杂的三种东西一起的吸附管,而老标准里的吸附管都是TenaxTA居多。瞬间觉得这个标准号高大上啊。。。。

  • 大孔吸附树脂反复净化样品能用多久?

    检测中药材,比如黄芪测黄芪甲苷,就需要用大孔吸附树脂净化,我们一直都是反复活化使用,可是不知道这样反复使用能用多久,你有经验吗?大孔吸附树脂反复净化样品能用多久呢?

  • 【金秋计划】易吸附气体的分析

    [font=Arial, 微软雅黑, 宋体][color=#505050]在分析微量含硫、含氯、氨气、甲醇等标准气体时,经常出现分析数据忽高忽低,甚至分析不出来的现象,这主要是因为这些气体的吸附性极强,对取样管线,阀门、和管线中的水含量都有极高的要求,阀门和管线的要求前面已经提到,除此之外,对载气中的水含量要求也很高,载气中水含量过高也会让上述气体与之反应而吸附下来不能进入检测器,所以一定要选择水含量低的载气。同样如果湿度表较大时,进样系统长期暴露在空气中也会出现同样的问题,这就要求进样前最好用干燥氮气将管线将水吹扫干净。为了解决色谱柱的吸附问题,最好先进几个样品将色谱柱进行预饱和。[/color][/font]

  • 【原创】大昌华嘉“吸附仪在新材料上的应用”全国巡讲

    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。 在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。 日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116423.jpg 会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 物理吸附同步连接XRD、GC、磁悬浮天平 化学吸附仪链接质谱、红外、低温脉冲和TPR 高压吸附仪在储氢材料的应用   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116575.jpg

  • 吸附柱色谱的实验技术

    1. 吸附剂的选择及处理  吸附剂分为无机吸附剂如硅胶、氧化铝、活性炭、氧化镁、碳酸钙、磷酸钙,有机吸附剂如纤维素、淀粉、蔗糖、聚酰胺等。一般来说,所选择吸附剂应有较大的比表面积和足够的吸附能力:对欲分离的不同物质应有不同的吸附能力,即有足够的分辨力;与洗脱剂、溶剂及样品组分不会发生化学反应;吸附剂颗粒均匀。 吸附剂一般先经过筛获得均匀的颗粒(100-200目),对含有杂质的吸附剂可用有机溶剂如甲醇、乙醇、乙酸乙酯等浸泡处理或提取除去,有些吸附剂可用沸水洗去酸碱使呈中性,有些需经加热处理活化。  2. 溶剂与洗脱剂  两者常为同一组分,但用途不同。习惯上把用于溶解样品的溶液称为溶剂,把用于洗脱洗脱柱的溶液称洗脱剂。原则上所选的溶剂和洗脱剂要求纯度高,与样品和吸附剂不起化学反应,对样品的溶解度大,粘度小,易流动,易与洗脱的组分分开。常用的溶剂和洗脱剂有饱和碳氢化合物、醇、酚、醚、卤化烷、有机酸等。  3. 柱的装填和样品的加入  色谱柱一般为玻璃或有机玻璃管制成,柱下端装上一块2-4号烧结玻璃或垫一层玻璃丝以支持吸附剂,管内装吸附剂。有条件可附加压或减压装置,使流速保持恒定,色谱柱外也可配恒温管套。  装柱的方法通常是将一种在适当溶剂中的吸附剂调成糊状,慢慢地倒入关闭了出水口的柱中,同时不断搅拌上层糊状物,赶去气泡,并使装填物均匀的自然下降,装置所需要的高度后,打开出水口,让溶剂流出。注意柱的任何部分不能流干,即是说、再柱的表面始终保持着一层溶剂。  小心地用移液管把样品液绕柱内壁小心地加入,不要冲击着吸附剂的表面。加样的另一个办法是用一个注射器和蠕动泵把样品直接送到柱表面上。  3. 洗脱  在整个洗脱过程中,要使洗脱液通过柱时保持恒定的流速,可以用调节"操作压"来调控(操作压相当于在柱上面的贮液瓶中溶剂的水平和柱出口位置的水平之差)。另一个方法是时用蠕动泵。  洗脱过程中柱内不断发生溶解(解吸),吸附,在溶解,在吸附。被吸附的物质被溶剂解吸,随着溶剂向下移动,又遇到新的吸附剂又把该物质自溶剂中吸附出来,后来流下的新溶剂又在使该物质溶解而向下移动。如此反复解析,吸附,经过一段时间后,该物质向下移动至一定距离,此距离的长短与吸附剂对该物质的吸附力及溶剂对该物质的溶解能力有关,分子结构不同的物质溶解度和吸附能力不同,移动距离也不同,吸附较弱的就易溶解,移动距离较大。经过适当时间后,各物质就形成了各种区带,,每一区带可能是一种纯物质,如果被分离物质是有色的,就可以清楚地看到色层。随着洗脱剂向下移动,最后各组份按吸附力的不同顺序流出色谱柱,以流出体积对浓度作图,可得由一系列峰组成的曲线,每一峰可能相当于一个组分。

  • 【分享】搅拌棒吸附萃取

    【分享】搅拌棒吸附萃取

    1999年由比利时教授Sandra等人提出搅拌棒吸附萃取(Stir Bar Sorptive Extraction,SBSE)以来,搅拌棒萃取技术(SBSE)越来越受到人们的关注。目前,国外已将SBSE与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱和色谱-质谱等装置在线联用,并成功地应用于环境检测、食品分析以及生物样品等领域中的挥发性、半挥发性溶质的检测。但在国内应用还不广泛。SBSE的原理与固相微萃取(SPME)类似。在磁力搅拌器上放置一个特殊的磁力搅拌棒,搅拌棒表面带有一个聚二甲基硅烷(PDMS)涂层,可以很有效地从水基质中萃取有机组分。此方法用于大气POPs分析非常有效,对一些组分的分析灵敏度比SPME高上千倍,且萃取组分完全不用进行样品准备,可直接进行全自动热解吸附和分析。与 SPME相比,SBSE的固定相体积大,精密度高,重现性好, 具有更高的富集倍数,更适合于痕量物质的分析。目前 SBSE在环境、食品和生物等方面的分析应用引人注目。[align=left][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005121100_217674_1623180_3.jpg[/img][/align]SBSE在1999年由德国Gerstel公司商品化。在SBSE技术中,萃取固定相的制备非常重要,商品化固定相涂层仅有一种:采用厚度为0.5~1.0 mm的聚二甲基硅氧烷(PDMS) 橡胶管。但是在高于250 ℃时,萃取固定相有明显流失,造成色谱图上有鬼峰出现。

  • 实验室分析仪器--气相色谱固体固定相-无机吸附剂

    在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中对分离起主要作用的是固定相,可分为固体固定相和液体固定相,分别对应气固色谱法和气液色谱法,前者主要用于气体和低沸点化合物的分离。固体固定相有两类,分别由无机材料(包括以其为基质用化学键合方法制备的键合固定相)和有机化合物聚合制成。固体固定相的保留和选择性取决于两个因素:①材料的化学结构(极性),即表面官能团的类型和数目,与分子间相瓦作用有关。②几何结构(孔结构和分布),也即比表面积。在使用固体固定相时,应注意三个方面:①使用前要进行活化,使用时要避免一些有反应性或腐蚀性的气体使之失活。②对组分吸附性太强时,会发生不可逆吸附。在某些情况下,在固体固定相表面上涂渍少量固定液,不仅可减少吸附,而且可改变选择性,改进特定组分的分离。③不同批次的产品色谱性能有差异(特别是无机材料制成的产品)。[b]无机吸附剂[/b]由无机材料制成的吸附剂,用于色谱法的有分子筛、硅胶、氧化铝和碳素。[b]1、分子筛[/b]分子筛是天然或人工合成的硅铝酸盐,化学组成是[M[sub]2[/sub]M']OAl[sub]2[/sub]O[sub]3[/sub]xSiO[sub]2[/sub]yH[sub]2[/sub]O,其中M为Na[sup]+[/sup]、K[sup]+[/sup]、Li[sup]+[/sup]等一价阳离子,M'是Ca[sup]2+[/sup]、Ba[sup]2+[/sup]、Sr[sup]2+[/sup]等二价阳离子,分子筛Na型与Ca型之分在于前者1/4~3/4的Na[sup]+[/sup]被Ca[sup]2+[/sup]置换:X、Y型之分是Al[sub]2[/sub]O[sub]3[/sub]与SiO[sub]2[/sub]的比例有不同,其中数字表明平均孔径的大小(单位为?,1?=0.1nm,下同)。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中最常用的分子筛为5A与13X型分子筛,前者由Ca-Al-Si的氧化物组成,有效孔径为5?:后者则由NA-AL-Si氧化物组成,有效孔径为10?。分子筛可能是吸附剂中极性最强的,因此CO[sub]2[/sub]、H[sub]2[/sub]O应从载气中除去。同时使用前要活化好,否则分离性能不好,柱中的水量将影响CO和CH[sub]4[/sub]的分离状况及流出次序。活化方法是在550℃活化2h(或在减压下于350℃活化2h;300℃活化4h;250℃活化12h)。分子筛因吸水而失活,在250℃通载气一夜可除去吸附水。分子筛受欢迎是由于它们分离O[sub]2[/sub]/N[sub]2[/sub]的独特能力,在通常的长度(1~2m)和正常的操作温度(室温~100℃)即可。它们也能用于分离H[sub]2[/sub]、CH[sub]4[/sub]、CO、NO和惰性气体He、Ne、Ar、Kr、Xe等。5A分子筛适于分离Ar与O[sub]2[/sub],13X分子筛则特别适于C[sub]6[/sub]~C[sub]11[/sub]烃的族分析。[b](二)硅胶[/b]硅胶由硅酸凝胶制成,化学成分是SiO[sub]2[/sub]nH[sub]2[/sub]O,分析C1~C4烷烃和SO[sub]2[/sub]、H[sub]2[/sub]S、COS、SF[sub]6[/sub]等气体硫化物。新购入的硅胶要用盐酸(1:1)浸泡2h,然后用水洗涤至无Clˉ。使用前于160℃左右活化2h。硅胶的缺点是分离性能不稳定,不同批次生产的性能不一样。硅胶曾用于分离CO[sub]2[/sub]和其他永久性气体,CO[sub]2[/sub]在C[sub]2[/sub]H[sub]6[/sub]后流出,因而在多柱系统中很有用。但是,现在这方面的应用大多数已由多孔聚合物代替。新一代硅胶基质的固定相如Spherosil和Porasil有较好的标准化的色谱性能,这些材料是多孔小球,无论是否涂固定液均可使用。Chromosil特别适于痕量硫化物的分析。[b](三)氧化铝[/b]氧化铝的化学组成是Al[sub]2[/sub]O[sub]3[/sub],其晶型有五种,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法常用的为y型,其次为a型使用前要使用水、液体固定相或无机盐(如KCl或Na[sub]2[/sub]SO[sub]4[/sub])失活。氧化铝是轻烃分析的理想色谱柱,缺点是对极性化合物如醇、醛、酮等有很强的保留,即使在200℃,它们仍流不出来。因此,要防止高沸点化合物或极性不纯物进入柱子。即使用了KCl失活,H[sub]2[/sub]O和CO仍被Al[sub]2[/sub]O[sub]3[/sub]吸附导致保留时间减小。如果样品中水含量大于1μL/L,保留时间将减少,选择性发生变化。此时,柱子可在200℃以上活化15~30min再生柱子。第一次使用时需在450~1350℃活化2h。氧化铝具有中等吸附性,主要用于分离烃,它对不饱和烃异构体如C[sub]4[/sub]不饱和烃有独特的分离能力。经KCl改性的Al[sub]2[/sub]O[sub]3[/sub]PLOT柱稳定性大大提高,可进行C[sub]1[/sub]~C[sub]9[/sub]烃的分离分析。此外,Al[sub]2[/sub]O[sub]3[/sub]还能用于分离氢的自旋异构体。[b](四)碳素[/b]碳素的化学组成是碳,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法使用的有活性炭、碳分子筛及石墨化炭黑。活性炭由果壳或木材烧制而成,结构为无定形碳(微晶碳),具高比表面积(800~1500m[sup]2[/sup]/g),用于分析永久性气体及C[sub]1[/sub]~C[sub]2[/sub]烃类。新购的活性炭要用等体积的苯冲洗3次,通空气吹干后,改用水蒸气于450℃活化2h,降温至150℃用空气再吹干。再生时可不用苯处理。活性炭由于宽的孔分布和组成差异,制备重复性差使得色谱性能难重复,其吸附性能强使分离的组分拖尾严重,不太适合做[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]固定相。活性炭由于其批与批之间再现性差,在色谱上使用有限。Kaiser利用聚偏二氯乙烯高温热解灼烧后得到的残留物,发展了一个类似于分子筛孔结构的碳材料,称为碳分子筛,比表面积一般在400~1200m/g。与活性炭相反,孔径分布较窄。活化方法为在180℃通氮气4h。它对分离气体和很短链化合物有用。一根单柱就能分离永久性气体和C[sub]1[/sub]~C[sub]3[/sub]烃。分离O[sub]2[/sub]、N[sub]2[/sub]、CO[sub]2[/sub]具独特能力,也能用于H[sub]2[/sub]O、SO[sub]2[/sub]、H[sub]2[/sub]S等气体的分析,特别适于分析在有机物之前流出的微量水。烃根据其不饱和程度分离,饱和烃后出峰。石墨化炭黑是炭黑在惰性气体中于2500~3000℃煅烧而成的结晶形碳,比表面积为5~260m[sup]2[/sup]/g活化方法与活性炭相同。表面几乎完全除去了不饱和键、弧电子对、自由基和离子。吸附主要由色散力引起,其大小很大程度上取决于吸附剂表面和被吸附分子间的距离。因此,石墨化炭黑尤其适合于分离几何结构和极化率上有差异的分子。如用Carbopack或F-SL可将8个C[sub]5[/sub]醇异构体分离开;用Carbograph ISC可把SF[sub]6[/sub]、SO[sub]2[/sub]、H[sub]2[/sub]S、COS、硫醇、二硫化合物很好地分离开。能使难分离化合物如间/对二甲酚、戊醇的所有八个异构体得以分离,同时对C[sub]1[/sub]~C[sub]10[/sub]范围的有机物如游离脂肪酸、醇、胺、烃等有杰出的分离能力,也能分离含硫小分子,许多在普通条件下易被吸附的痕量化合物可流出,出峰次序取决于几何结构和极化率。石墨化炭黑的缺点是机械强度较低。石墨化炭黑的吸附性能比活性炭小,最好在分析酸性物质时,用磷酸作削尾处理;分析碱性物质时,用碳酸钠处理。还可以用苦味酸、Carbowax1500、Carbowax 20ML改性。

  • 循环伏安中如何区分是氧化还原峰还是吸附脱附峰?

    循环伏安中如何区分是氧化还原峰还是吸附脱附峰?

    下图是pt电极在硫酸中的循环伏安图(来自文献):http://ng1.17img.cn/bbsfiles/images/2011/08/201108231116_311672_1828132_3.jpg根据什么判断哪个是H+吸附脱附峰,是不是只要找不到对应氧化还原反应的都可以认为是吸附脱附产生的?谢谢!

  • 【求助】色谱柱对样品有吸附?

    现有一个测定吸附率的方法如下,各位高手看看此方法是否可行啊?或者哪里需要改进啊?1. 配置样品标准溶液(A)以及空白溶液(B)2. 把样品标注液(A)进样到色谱系统,待得出结果3. 第二次将样品标准液(A)进样到色谱系统,待得出结果4. 用空白液(B)将定量环清洗干净5. 将空白液(B)进样到色谱系统,待得出结果如果色谱柱对样品有吸附,那么在第5步将空白液(B)进样到色谱系统时,会将吸附的样品洗脱出来,对照第2步和第3步的结果,可以推算出吸附率。

  • 商业化固相提取的吸附剂类型

    商业化固相提取的吸附剂类型吸附剂类型分子作用十八碳烷基(C18)疏水辛烷基(C8)疏水环已烷基 (CH)疏水乙烷基(C2)疏水、氢键苯基 (PH)分散、疏水丙烯酸 (Acrylic acid)离子交换、氢键丙烯酰胺 (acrylamide)离子交换、氢键氰丙基(CN)分散、疏水二醇基 (2OH)氢键氨丙基(NH2)氢键(质子受体)苯磺酰丙基(SCX)阳离子交换磺酰丙基(PRS)阳离子交换羧甲基(CBA)阳离子交换二乙氨丙基(DEA)阴离子交换三甲胺丙基(SAX)阴离子交换硅胶氢键中性氧化铝氢键弗罗里硅土氢键

  • 空气净化器滤网吸附性能更换时间分析

    [color=black]空气净化器滤网吸附性能更换时间分析[/color][color=black]一.前言[/color][color=black]随着人们的生活水平不断提高,对家居生活环境要求也在不断刷新,空气净化器逐渐进入大众家庭,家用净化器每年都在增加。大家在使用空气净化器时,滤网是不可长期使用的,需及时更换,由于各地,各区域环境不同,虽然空气净化器在使用说明上有提示滤网更换周期,但是这个仅是推荐性,不能作为更换滤网的依据。那下面跟大家讲讲滤网在什么情况下需要及时跟换,避免滤网上附着的有害微生物再次污染家居环境。[/color][color=black]二.首先要聊聊为什么要更换滤网[/color][color=black]通常大家使用空气净化器都会直接插电使用,而不会注重滤网的清洗和更换。通常空气净化器的滤网组成由粗滤网、活性炭滤网以及最关键的hepa滤网,其中粗滤网主要用于过滤空气中较大的灰尘颗粒,毛发(也就是我们常说的防尘网)。粗滤网可以选择水洗或吸尘器清洁。活性炭滤网主要用于吸附空气中的甲醛和有害气态污染物以及异味。当吸附达到饱和时即寿命终止,否则会造成二次污染。而hepa滤网的材质一般是聚丙烯或其它复合材料,是不可水洗的,水洗会破坏滤网结构。hepa滤网的净化原理并不简单的像筛子一样过滤掉比网眼大的颗粒来净化空气尘埃。而是依靠细颗粒物与滤网间的范德华力形成吸附效果。因此,当hepa滤网脏了以后,必须要及时更换,否则吸附的尘埃在环境湿度大是容易滋生细菌造成二次污染。[/color][size=18px][color=black]三[/color][color=black].如何判断滤网是否需要更换[/color][/size][color=black]其实,除了参考说明书上3-6个月的滤网更换周期以外,在使用净化器的过程中也是有迹可循的。[/color][color=black]3.1.净化效果衰减[/color][color=black]滤网吸附空气污染物饱和后,就无法继续吸附,如果在使用一段很长时间后,突然感觉净化器出风口有异味,那就别再犹豫,赶紧换滤网吧。[/color][color=black]3.2.风量变小[/color][color=black]随着长时间使用净化器,滤网吸附颗粒物数量的增多,大量的颗粒物也会堵住滤网进风的通道,通过滤网的风量会变得越来越小,那么空气净化器出风口的风量自然会减小,当我们感受到出风口风量明显变小的时候,可能滤网已经在提醒你更换。[/color][color=black]3.3.噪音变大[/color][color=black]空气净化器的噪音是一个不可避免的话题,但如果你发现家里的空气净化器有噪音变大的异常现象,有可能是滤网太脏所致。当滤网凝聚大量颗粒物,阻力会变大,风机在运行时,风通过滤网会产生更高分贝的噪音。[/color][color=black]四.滤网维护[/color][color=black]当滤网长时间不用,可以将初中高效滤网上浮灰用吸尘器吸吸,然后晾晒之后,放入塑料袋中,保持干燥。下次使用放入净化器内。如有异味,只能更换新的。[/color]

  • 求助吡啶红外吸附问题

    本人做催化剂酸性表征,采用吡啶吸附的原位红外表征方法,样品在400度下抽真空预处理2小时,降温至200度吸附吡啶,之后程序升温至400度,吸附吡啶前后分别采集200度、300度、400度的红外谱图,计算1450cm(L)和1540cm(B)酸对应的峰面积。按说随着温度升高,酸量会减少,为什么相应的峰面积反而变大呢?这种情况不止遇见一次。

  • 模块化吸附式干燥机—压缩空气干燥设备

    模块化吸附式干燥机—压缩空气干燥设备

    压缩空气系统:压缩空气中有很多污染物,包括水、油、固体颗粒等。因此,需要在应用前净化压缩空气,将这些污染物排除掉。NANO吸附式干燥器可以满足含水量1-3级,油和固体颗粒等污染物也可以通过合理的过滤设备去除(可以联系我们)。压缩空气的干燥程度可以用压力露点来表示,露点:简单来说就是压缩空气含水量饱和时的温度,如果气体的温度低于饱和温度,就会有液态的水析出。  压缩空气模块化吸附式干燥器干燥后的压缩空气露点可以达到:-70度、-40度、-20度,分别达到ISO8573.1湿度的1/2/3级。当压缩空气的露点低于-40度的时候,气体就已经是非常干燥了,有很多因素会造成吸附剂不良,干燥器如果不能正常工作,很容易造成气体露点问题。  NANO压缩空气吸附式干燥器变压吸附原理:采用两筒切换工作,当A塔吸附干燥时,B塔利用从A塔来的小部分干燥空气在稍稍大雨大气压力的情况下反向流过吸附剂,带走吸附在吸附剂表面的水分。当A塔吸附剂趋向饱和时,A塔和B塔经均压而后切换,A塔减压再生,B塔干燥压缩空气。这样反复,实现压缩空气的连续不间断干燥。  模块化吸附式干燥器设计简约,相对于传统的双塔吸干机具有更小的体积,更轻的重量,更便于安装和搬运,几乎不需要特殊的搬运工具,不需要特殊的安装位置。[img=压缩空气模块化吸附式干燥机,500,350]https://ng1.17img.cn/bbsfiles/images/2020/05/202005091414372379_5760_3251553_3.jpg!w500x350.jpg[/img][img=压缩空气模块化吸附式干燥机,500,350]https://ng1.17img.cn/bbsfiles/images/2020/05/202005091414372379_5760_3251553_3.jpg!w500x350.jpg[/img]

  • ,静态吸附是室温下吸附30分钟。

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。

  • 常用吸附剂的种类与性质

    吸附剂的种类与性质常用的吸附剂有硅胶、氧化铝、活性炭、聚酰胺、硅藻土等。 (1) 硅胶:是一种酸性吸附剂,适用于中性或酸性成分的柱色谱。同时硅胶又是一种弱酸性阳离子交换剂,其表面上的硅醇基能释放弱酸性的氢离子,当遇到较强的碱性化合物,则可因离子交换反应而吸附碱性化合物。 硅胶作为吸附剂有较大的吸附容量,分离范围广,能用于极性和非极性化合物的分离,如有机酸、挥发油、蒽醌、黄酮、氨基酸、皂苷等,但不宜分离碱性物质。天然物中存在的各类成分大都用硅胶进行分离。(2) 氧化铝:氧化铝是一种强极性吸附剂,与硅胶类似,在高pH值条件下,氧化铝比未键合官能团的硅胶更稳定。更细的颗粒能确保好的萃取效率。 有碱性氧化铝、中性氧化铝和酸性氧化铝。①碱性氧化铝,因其中混有碳酸钠等成分而带有碱性,对于分离一些碱性成分,如生物碱类的分离颇为理想,但是碱性氧化铝不宜用于醛、酮、酯、内酯等类型的化合物分离,因为有时碱性氧化铝可与上述成分发生次级反应,如异构化、氧化、消除反应等。②中性氧化铝是由碱性氧化铝除去氧化铝中碱性杂质再用水冲洗至中性得到的产物。中性氧化铝仍属于碱性吸附剂的范畴,不适用于酸性成分的分离。③酸性氧化铝是氧化铝用稀硝酸或稀盐酸处理得到的产物,不仅中和了氧化铝中含有的碱性杂质,并使氧化铝颗粒表面带有 NO3- 或 Cl- 的阴离子,从而具有离子交换剂的性质,酸性氧化铝适合于酸性成分的柱色谱。 氧化铝是一种典型的路易斯酸。 酸性氧化铝的路易斯酸特性被增强,对富电子化合物具有更好的保留性,更易保留中性或带负电荷物质(如电中性酸或酸性阴离子),不能很好保留带正电荷的物质。 中性氧化铝具有电中性表面,偏向于保留芳香族和脂肪胺类等富电子化合物,对电负性基团(如含氧、磷、硫等原子的官能团)的化合物有一定保留能力。 碱性氧化铝的表面偏向于保留带正电荷或含氢键类物质。具有阴离子特性,并有阳离子交换功能。能保留给电子体样品(如中性胺类化合物),碱性氧化铝有强氢键作用,对极性阳离子样品作用十分明显。 保留机理:路易斯酸/碱、极性作用、离子交换(3) 活性炭:是使用较多的一种非极性吸附剂。一般需要先用稀盐酸洗涤,其次用乙醇洗,再用水洗净,于 80℃ 干燥后即可供柱色谱用。柱色谱用的活性炭,最好选用颗粒活性炭,若为活性炭细粉,则需加入适量硅藻土作为助滤剂一并装柱,以免流速太慢。 活性炭是非极性吸附剂,其吸附作用与硅胶和氧化铝相反,对非极性物质具有较强的亲和能力,在水溶液中吸附力最强,在有机溶剂中较弱,因此水的洗脱能力最弱而有机溶剂较强。从活性炭上洗脱被吸附物质时,溶剂的极性减小,活性炭对溶质的吸附能力也随之减小,洗脱剂的洗脱能力增强。主要分离水溶性成分,如氨基酸、糖、苷等。(4) 聚酰胺: 商品聚酰胺 (polyamice) 均为高分子聚合物质,不溶于水、甲醇、乙醇、乙醚、氯仿及丙酮等常用有机溶剂,对碱较稳定,对酸尤其是无机酸稳定性较差,可溶于浓盐酸、冰醋酸及甲酸。 聚酰胺对有机物质的吸附属于氢键吸附,一般认为,通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离氨基与醌类、脂肪羧酸上的羰基形成氢键缔合而产生吸附。吸附的强弱则取决与各种化合物与之形成氢键缔合的能力。主要用于分离黄酮类、蒽醌类、酚类、有机酸类、鞣质类等成分。(5)硅藻土:化学名:硅酸镁 物化特性:表面积300m2/g;pH=8.5;粒状。 硅藻土(Florisil)是一种高选择性的吸附剂。这种吸附剂主要有三种成分组成,二氧化硅(84%),氧化镁(15.5)和硫酸钠(0.5%)。是一种效果良好,成本经济的常用固相萃取填料。 氟罗里硅土柱是硅胶键合氧化镁的吸附剂,与硅胶相似,是强极性吸附剂,可以从非极性溶液中萃取极性化合物。当样品粘度较大时,可以代替硅胶柱。 Florisil吸附剂常用于前期色谱分析、薄层色谱分析、残余农药分析(PR)、标准样品定级等。 应用范围: 极性化合物的吸附萃取,如乙醇、醛、胺、药物、染料、除草剂、农药、PCBs、含氮化合物、有机酸、苯酚、类固醇

  • 【金秋计划】+固体核磁共振新进展!揭示固体催化剂表面物种吸附状态

    [size=16px][font=arial][color=#222222]近日,中国[/color][/font][font=arial][color=#222222]科学院[/color][/font][font=arial][color=#222222]大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。 [/color][/font] 氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。 固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。 本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。 该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制