当前位置: 仪器信息网 > 行业主题 > >

色谱分离分析

仪器信息网色谱分离分析专题为您提供2024年最新色谱分离分析价格报价、厂家品牌的相关信息, 包括色谱分离分析参数、型号等,不管是国产,还是进口品牌的色谱分离分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分离分析相关的耗材配件、试剂标物,还有色谱分离分析相关的最新资讯、资料,以及色谱分离分析相关的解决方案。

色谱分离分析相关的论坛

  • 白酒分析气相色谱仪分离条件的选择

    [align=center][b][size=24px]白酒分析气相色谱仪分离条件的选择[/size][/b][/align][size=18px] 气相色谱仪分析白酒时,除了选择适合的色谱柱和分析方法外,还要选择好分离的蕞佳操作条件,提高色谱柱的分离效能,增大分离度,获得好的分析结果。色谱技术人员根据实际经验总结出白酒分析气相色谱仪分离条件选择,供大家参考。1. 载气及流速、分流比的选择白酒的气相色谱分析,一般使用FID检测器,常用高纯N2做载气,H2做燃烧气,空气作助燃器。若使用一般填充色谱柱,内径在3~4mm,载气的流量在20~100m L/min。对于内径在0.25mm左右的毛细管色谱柱,载气流量在1~2m L/m in。流速太快会降低色谱柱的分离效能,一般高于蕞佳流速10%左右即可,既保证了色谱柱的分离效能,又能获得比较快的分析速度。H2的流速与载气N2流速相当(毛细管色谱柱载气流量+载气分流的流量),实验证明H2流量∶空气流量=1∶10时,FID检测器蕞灵敏。使用毛细管色谱柱时,分流比的选择直接影响到出峰的个数与分离效果。当分流比为30∶1时蕞为恰当,色谱柱分离效能较高,白酒微量成分分离效果好。载气中微量水分、氢气和空气中的微量杂质对色谱柱和检测器影响很大,严重时会使色谱柱失效,基线不稳,噪声增大,检测器灵敏度下降。所以在载气、H2、空气进入色谱仪之前,应当使用分子筛、硅胶等对气体进行净化处理。2. 色谱柱温的选择白酒中的大部分组分沸点都不高,但沸点范围较宽,为了使低沸点的组分有比较好的分离度,一般初始柱温在50℃。程序升温速度不宜过快,否则分离效果变差,程序升温速度太低,出峰时间长,峰形扁平。一般设定在1~8℃/m in,蕞佳程序升温速度在8℃/m in左右,以保证白酒中各组分在相应的温度下得到良好的分离。蕞终温度不能太高,一般不超过250℃,防止色谱柱温过高,引起固定液挥发流失,分离效能变差,出现基线漂移,或导致色谱柱失效。3. 气化室、检测器温度选择白酒的气相色谱分析中,气化室温度一般高于色谱柱温度50~60℃以上,一般控制在120~200℃,以保证进样时白酒试样中所有的组分都能瞬间变成气体。FID检测器的温度通常控制在150~250℃,避免水蒸汽在检测器中凝结,增大噪声而降低检测器的灵敏度,也可以避免出现检测器点火困难的问题。4. 进样量和进样速度的控制使用填充色谱柱时,柱容量比较大,进样量通常在1~5μL,使用10μL或5μL的微量注射器。采用毛细管色谱柱时,柱容量小,进样量通常在0.1~2μL。进样量低不利于使用低含量组分法进行检测,进样量过高则会导致部分组分峰发生重叠,分离不好。进样速度要求比较快,要求1 s内完成,以保证酒样瞬间气化。如果进样速度太慢,就会引起先插进去的针头部分的酒样先气化,导致色谱峰变宽或者异型,峰形不好,分析误差大的问题。每次进样时,应将微量注射器用被测酒样抽洗5次以上并排净气泡,保证待测试样浓度不发生变化,减少进样带来的误差。5. 其他注意事项为了尽可能地减少分析误差,保证分析结果的准确性,要定期老化色谱柱,在高于使用温度20℃,脱开检测器,通以载气10 h以上,让色谱柱中残留的高沸点组分流出,降低仪器噪声,减小高沸点残余物质的干扰。同时还要定期清理色谱柱头和衬管中积累的不挥发物,防止堵塞色谱柱。每进样50次左右就需更换气化室中的硅橡胶垫,保证气化室不漏气,避免出现色谱峰异常现象。在白酒的气相色谱仪分析中,适当地选择分析方法与测定条件,既可以提高色谱分析的分离效能与检测的灵敏度,又可以提高分析结果的准确度。这就需要我们在实际工作中不断探求与创新,找出每种酒样的蕞佳分析条件,做到准确而快速地分析白酒的微量成分,有效地指导白酒的生产、研发和质量监督,保障白酒的食品安全。[/size]

  • 色谱分析法之色谱分析法的分离原理及特点

    [b]色谱分析法的分离原理及特点[/b] 实现色谱分离的先决条件是必须具备固定相和流动相。固定相可以是一种固体吸附剂或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊的相互作用(若流动相为液体或超临界流体可与被分离的组分存在相互作用)。 色谱分离能够实现的内因是由于固定相与被分离的各组分发生的吸附(或分配)作用的差别。其宏观表现为吸附(或分配)系数的差别,其微观解释就是分子间相互作用力(取向力、诱导力、色散力、氢键力、络合作用力)的差别。 实现色谱分离的外因是由于流动相的不间断的流动。由于流动相的流动使被分离的组分与固定相发生反复多次(达几百、几千次)的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离。 此外,色谱分析法具有物理分离方法的一般优点,即进行操作时不会损失混合物中的各个组分,不改变原有组分的存在形态也不生成新的物质。因此若用色谱法分离出某一物质,则此物质必存在于原始样品之中。[align=center]色谱分离过程的平衡常数可用吸附系数KA、分配系数Kp和分配比k定量地表述。吸附系数KA[/align][align=center][img]http://www.gdkjfw.com/images/image/47711529908229.jpg[/img][/align][align=center]在一定柱温和色谱柱的平均压力下,m表示每1 cm?吸附剂吸附组分的量,单位为g/cm' Vw表示每1 mL流动相中所含组分的量,单位为g/mL。分配系数Kp[/align][align=center][img]http://www.gdkjfw.com/images/image/84381529908229.jpg[/img][/align][align=center]在一定柱温和色谱柱平均压力下,es 和CM分别为样品组分在单位体积固定液和单位体积流动相中的浓度( mol/L)。分配比(或称容量因子) k:k=Cs[img]http://www.gdkjfw.com/images/image/80521529908229.jpg[/img][/align][align=center]式中,Vs和Vm分别为柱温、柱平均压力下,色谱柱中固定相和流动相所占有的体积( L),填充色谱柱内流动相与固定相的体积比叫相比,用β表示,ρ=V。[/align][align=center][img]http://www.gdkjfw.com/images/image/56611529908229.jpg[/img][/align]

  • 新型色谱分离材料在分离分析中的应用

    新型色谱分离材料在分离分析中的应用

    [align=left][font='times new roman'][size=16px]新型色谱分离材料[/size][/font][font='times new roman'][size=16px]在分离分析中的应用[/size][/font][/align]随着分离科学研究从传统的单一领域转向复杂样品的分离分析,这对高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的分离选择性提出了更高的要求。近年来,针对待分离样品的结构特征,通过专一设计不同结构特性的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]固定相,可实现不同的分离分析目的,完成不同的分离分析任务。因此,制备高性能、高选择性的新型色谱分离材料成为分离科学的重点研究领域之一。Qiu等以溴化1-乙烯基-3-十八烷基咪唑([C[font='times new roman'][sub][size=16px]18[/size][/sub][/font]VIm]Br)离子液体及其衍生的碳点(ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs)为功能单体,分别接枝到二氧化硅表面,制备了Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]固定相和Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs固定相。此外,将两种功能单体共接枝到二氧化硅表面,制备了Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs固定相。与填充Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]和Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs色谱柱相比,填充Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱在反相色谱模式中对四环/三环多环芳烃(PAH)异构体和丁基苯异构体的分离具有更高的选择性。与商品化C18色谱柱相比,Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱对烷基苯、多环芳烃、芳香胺和酚类化合物的分离效果较好。作者进一步将Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱应用于黄芪提取物中毛蕊异黄酮苷、芒柄花苷、毛蕊异黄酮和刺芒柄花素的定量测定,四种黄酮化合物的含量依次为0.25 mg/mL、0.15 mg/mL、0.13 mg/mL和0.30 mg/mL,显示了良好的应用潜能。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153412574_4489_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px] ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]CDs[/size][size=13px]、[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]、[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]/CDs[/size][size=13px]和[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]CDs[/size][size=13px]的制备示意图[/size][/align][align=center][/align]Qiu等以乙烯基吡咯烷酮(NVP)和十一烯酸(UA)为功能单体,采用原位聚合的方式将其固定在二氧化硅微球表面,制备了Sil@NVPUA色谱固定相。填充Sil@NVPUA色谱柱表现为典型的RPLC/亲水作用色谱(HILIC)混合模式保留机制,并可对五种模型分析物实现分离,包括多环芳烃、烷基苯、核苷/核酸碱基、人参皂苷和恶唑烷酮。Sil@NVPUA固定相合成过程不需要硅烷化试剂,可直接在二氧化硅表面原位聚合而成,此外,长链UA结合短链NVP使得Sil@NVPUA色谱柱性能显著提高。Qiao等采用硫醇-烯烃点击反应首次制备了苯乙烯-马来酸酐共聚物包覆二氧化硅核壳型色谱固定相,进一步通过L-半胱氨酸盐酸盐或十二醇进行后修饰,通过亲核开环反应成功制备了具有RPLC/HILIC/离子交换(IE)混合模式保留特性的Sil-SMA-氨基酸和Sil-SMA-十二醇固定相。两种色谱柱对疏水和亲水性化合物表现出不同的分离选择性,相比于Sil-SMA-十二醇柱,Sil-SMA-氨基酸色谱柱的效果更好,能够实现对不同类别和不同种类磷脂混合物的双重分离,并对胃癌细胞膜脂提取物等复杂样品具有一定分离潜力。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153427577_1428_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px] Sil-SMA[/size][size=13px]衍生物色谱固定相的合成[/size][/align][align=center][/align]Guo等利用物理包覆和化学包覆相结合的方法对二氧化硅表面进行水凝胶涂层,并进一步在二氧化硅水凝胶表面引入正十八烯功能基团,制备了双水凝胶包覆介孔二氧化硅色谱固定相([color=#000000]DL-hydrogel@SiO[/color][font='times new roman'][sub][size=16px][color=#000000]2[/color][/size][/sub][/font])。填充[color=#000000]DL-hydrogel@SiO[/color][font='times new roman'][sub][size=16px][color=#000000]2[/color][/size][/sub][/font]色谱柱具有一定的温敏响应性,而十八烯的引入提高了色谱柱对多种亲水性分析物的分离选择性,可实现核苷/核酸碱基类、苯甲酸类、磺胺类、氨基酸类和碳水化合物的分离分析,其中对苯二甲酸的柱效高达139,000 N/m。进一步将DL-hydrogel@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱用于柏树叶提取样品的分离分析,结果显示至少有10个成分被成功分离,这为柏树叶中活性提取成分的鉴定提供了初步的依据。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153431743_3135_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px] DL-hydrogel@SiO[/size][font='times new roman'][sub][size=13px]2[/size][/sub][/font][size=13px]固定相的合成图和色谱分离图[/size][/align]Bai等将N-甲基咪唑接枝到氯丙基功能化的二氧化硅表面,制备了N-甲基咪唑修饰的硅胶固定相(SilprMim)。填充SilprMim色谱柱显示了RPLC/IE混合模式色谱保留机制,SilprMim色谱柱可以将8种酸性蛋白质分离。SilprMim色谱柱与商品化的C4色谱柱相比,其对酸性蛋白质具有更好的分离选择性和拆分能力。进一步将SilprMim色谱柱和C4色谱柱用于牛血清白蛋白(BSA)裂解样品的分离,C4色谱柱可得到20多个色谱峰,而SilprMim色谱柱只得到6个色谱峰,实验结果表明C4色谱柱不能选择性将酸性和碱性蛋白质及多肽进行分离,而使用SilprMim色谱柱得到的6个色谱峰对应的组分均为酸性蛋白。因此SilprMim色谱柱在复杂样品中酸性蛋白的分离与分析中具有广阔的应用前景。

  • 色谱技术:分离与分析的神奇科学

    [b]色谱技术:分离与分析的神奇科学[/b] [color=initial]一、引言[/color] 色谱技术,在现代化学分析领域中占据着至关重要的地位,宛如一位技艺高超的神奇魔法师,能够巧妙地将繁杂的混合物拆解为清晰可辨的组分,为科学研究、工业生产以及质量控制等众多领域赋予了强大的支撑力量。 [color=initial]二、色谱的基本原理[/color] 色谱的原理立足于不同物质在固定相和流动相之间的分配差异。通俗来讲,当混合物中的各组分穿过填充有固定相的色谱柱时,鉴于它们与固定相和流动相的相互作用存在差别,致使其在柱内的迁移速率出现差异,进而达成分离的目的。 例如,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]当中,气体充当流动相,携带样品穿梭于涂有固定液的柱子;而在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]里,液体流动相推动着样品在固体或液体固定相的柱子里移动。 [color=initial]三、色谱的分类[/color] 色谱技术种类丰富多样,常见的包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](LC)、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url](IC)等等。 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]适宜用于剖析易挥发、热稳定性良好的化合物,像是石油化工产品里的烃类。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]则在分析难挥发、热不稳定以及大分子化合物方面表现出色,比如生物样品中的蛋白质和药物。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]主要针对离子型化合物进行分离与检测,诸如环境水样中的阴离子和阳离子。 [color=initial]四、色谱的应用领域[/color] [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]医药行业[/color][/list] 色谱技术在药物研发、质量把控和药代动力学研究中扮演着关键角色。它能够助力确定药物的纯度、杂质含量,还能对药物在体内的代谢过程进行监测。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]环境监测[/color][/list] 用于侦测空气、水和土壤中的污染物,例如农药残留、重金属离子等,为环境保护提供了有力的数据支撑。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]食品安全[/color][/list] 检测食品中的添加剂、农药残留、真菌毒素等,为公众的饮食安全保驾护航。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]石油化工[/color][/list] 对石油产品的组成和纯度加以分析,优化生产工艺,提升产品质量。 [color=initial]五、色谱技术的发展趋势[/color] 伴随科技的持续进步,色谱技术也在不断演进与创新。未来,色谱技术将朝着更高的灵敏度、更快的分析速度、更小的样品量需求,以及与其他分析技术联合运用的方向发展。 举例来说,微流控芯片色谱的诞生,使得色谱分析能够在微小的芯片上进行,极大地减少了样品和试剂的消耗,同时显著提高了分析效率。 [color=initial]六、结论[/color] 色谱技术作为一种威力强大的分析工具,已经深深融入我们生活的各个角落。它不但为科学研究提供了精准的数据,还在保障我们的健康和环境安全方面发挥着无可替代的作用。坚信在未来,随着技术的持续发展,色谱技术将继续展露其神奇的魅力,为人类创造更多的福祉和价值。

  • 【原创大赛】液相色谱、气相色谱、离子色谱分离分析之差异-我的粗浅理解

    在测试中心液相色谱组呆了20多年,见过无数的客户,不同的客户对色谱的理解不一。很多人认为色谱就是打一针,出个谱图而已,容易的很,跟他们的科研档次无法比。觉得样品给你了,你必须做出来,而且很快得到其所需要的结果,全然不管你的仪器能否满足要求。做不好或者不想做,就会去告状,服务态度不好之类的。所以一旦征求意见,必然出现各种各样的服务问题。测试人员的地位在学校可见一斑。也有少数本身做液相色谱的,这些人沟通起来非常融洽,因为知道其实际做起来不容易,可惜这类的客户仅有百分之几。在色谱分析的三大分支中,我对液相、离子熟悉,对气相只是很了解,没动手做过。对于这三大类型,其实在实际中做的差别是很大的。先以我精通的离子色谱而言,我几乎涉及了所有的类型,离子色谱能否做关键在于设备,常规的很简单,特殊的全靠设备支撑,因为大部分离子色谱的分析都是优化的方法,固定的模式做起来并不难。但非常规的样品,则难度大大增加,即使同一个组分,由于基体差别,分析方案也是千差万别。也就是常规的很简单,特殊的则很难。现在厂家离子色谱方法开发就是一种特化的过程。离子色谱主要分析离子以及一些极性的化合物,表面上看应用范围比较窄,其实在很多领域有很好的应用,可以解决液相色谱无法解决的一些问题。对于气相色谱,复杂性比离子色谱要高,因为被测的有机化合物种类大大增加,但从气相的结构看,其载气的选择是非常有限的,主要靠色谱柱(极性,非极性,弱极性等),分离则依赖温度的程序升温,它真正的变化在色谱柱,在一般的分析中,大多变化在温度,柱子的变化并不多。因此对于气相色谱,基本就几根柱子。当然一些特别的检测则需要更高级特殊的装置,这跟离子色谱一样。由于受沸点的制约,气相色谱的应用受到很大的限制。而对于液相色谱,就我20年的经历,我认为其复杂性远远高于离子色谱和气相色谱。因为其变化比前二者更多,一是液相色谱分离有很多机理,每种机理都有对应的色谱柱类型,液相色谱的分离机理大约有十来个,很少有人会用过全部机理类型的色谱柱。虽然反相是最常见的分离手段,但由于反相的广泛使用,C18柱的变化类型极多差异很大,这不同C18柱之间的差异有时不亚于不同机理之间的差异。二是,液相色谱最大变化是流动相,不仅有机相类型有变,添加剂类型和浓度有变,不同pH差别很大,面对变化无穷的样品,这个流动相选择变化规律全靠长期的经验积累,很难用文字一言以蔽之。三是,液相色谱的检测器类型最多,离子色谱就三种,气相四五种,而液相色谱的检测器有十来种,相互之间差别极大,不同的检测器对色谱分离机理也有很大的选择性。因此要做好一张液相色谱图,很多情况下只能是你现有条件下的最佳分离,并不是这个化合物的最佳分析条件。对于特殊样品的分析,液相色谱更多的依赖于检测器和柱子的变化,同离子色谱不同。给你一个样品,用那类色谱(液相、气相还是离子),什么柱和条件,则完全依赖你的功底和阅历,当你拥有尽可能多的仪器装备,你才能充分发挥你的能力,依据化合物的特点,样品的特性,选择合适的仪器和配置,做出最佳的色谱图。

  • [分享][下载]:光谱色谱分离与分析软件peakfit

    Peakfit 色层分析及光谱研究软件广泛用于色谱和光谱分析,侦测、测定及分析隐藏在未解决峰值数据中的峰值,分离出重叠隐藏的尖峰,省略复杂的数学积分技巧,被认为是最好的峰分离与分析软件,目前最高版本为4.12,售价约$600~700.http://www.instrument.com.cn/download/shtml/025060.shtml

  • 如何用气相色谱法分离分析苯系物?

    小弟在此请教给位大虾FFAP毛细柱是否可以用来分离分析苯系物? 现有天美7890II型气相色谱仪(国产),无EPC控流,配有FID检测器,FFAP毛细柱。如果可以的话,能不能提供一些方法经验供小弟参考。 谢谢!

  • 液相色谱分析中如何才能提高分离度?

    液相色谱分析中如何才能提高分离度?

    今天有客户咨询,他在做产品有关物质时,它的色谱峰分离度有时好,有时不好。流动相的比例我也做了适当调整。到底还有什么因素会导致它分离度不好呢?关于这个问题,我们首先要看影响分离度的因素有哪些?各个因素起到的作用分别是?哪一个因素是主导的?根据这些我们在来想办法,改善分离度。下面俺就为大家分析分析一下哈~~,供参考~~下式为分离度计算公式http://ng1.17img.cn/bbsfiles/images/2015/05/201505051000_544743_2452211_3.jpgN:柱效(Efficiency)反映色谱柱性能,柱效越高,分离度越好。在其他条件恒定的情况下,塔板数增加一倍,分离度仅提高40%。操作中,可通过下面两种方式增加塔板数进而提高分离度:其一,使用长柱或双柱串联,但也会使分离时间大大延长;其二,使用细粒径填料的色谱柱,但这需要耐更高压力的液相色谱系统。相比之下后者更为可取。α:选择性(selectivity)是指色谱柱-流动相体系分离两个化合物的能力。选择性主要与固定相、流动相组成以及柱温等因素有关,与保留值也密切相关,其中固定相和流动相组成影响较大。以最常见的反相模式为例,反相柱(包括C18、C8、PH等)是以分配作用对化合物进行保留的,不同化合物的分离是基于它们在键合相与流动相中分配系数的差异,如果两种化合物的水溶性、在烷烃-水体系的分配系数等方面存在明显差异,那么这些化合物通常是能够利用反相柱达到分离;PH柱对具有苯环的化合物具有特殊保留。正相模式下,硅胶柱、胺基柱、氰基柱与带有极性基团的化合物之间存在极性相互作用,对化合物的基团具有选择性,常常用于结构类似物、异构体化合物的分离。流动相方面,降低流动相的洗脱强度通常可以增大分离度;而有机溶剂类型也会影响分离,比如反相条件下,乙腈和甲醇的选择性就存在很大差异,这种差异需要在实践中摸索,但无论如何,多种溶剂类型带给我们更多的实现分离的可能。k:容量因子随着容量因子k的增大,分离度也随之增加,这种影响在k值较低时非常明显,当k值大于10时,k值增加对分离度的影响就不再显著,这就告诫无原则地提高k值以增大分离度是没有意义的。增加键合相密度能够提高k值;另外改变键合基团类型也能改变k值,比如在反相色谱中,随着键合相碳链长度的增加,k值逐渐增大。

  • HPLC分析7种苯系物谱图求分离效果更佳的色谱柱

    HPLC分析7种苯系物谱图求分离效果更佳的色谱柱

    http://ng1.17img.cn/bbsfiles/images/2015/05/201505071149_545130_2328678_3.jpg图为甲醇中的7种苯系物,邻二甲苯与乙苯以及间对二甲苯分离效果不??http://ng1.17img.cn/bbsfiles/images/2015/05/201505071149_545129_2328678_3.jpg图为平行样分析,可以看出平行跑的很好!侧面可说明色谱仪没有问题,外部环境也没有问题!于是更改梯度继续验证:http://ng1.17img.cn/bbsfiles/images/2015/05/201505071152_545132_2328678_3.bmp分别用不同梯度: 方法名称流速(ml/min)运行时间(65min)流动相(水)A%流动相(甲醇)B%201505060.532356565307020150506-10.532356565406020150506-20.53235650.865356520150506-30.5323565652575发现梯度效果不明显!基本上没有达到优化分离的效果,谱图基本重合,因此考虑更换色谱柱,目前使用的柱子是 ZORBAX Eclipse-PAH 4.6mm*250mm*5um,请大家推荐或者提供建议!

  • 色谱柱的分离能力对LC-MS/MS分析物质影响大不大

    [color=#444444]既然MRM模式能选择特定的离子对来代表某种化合物,那么色谱分离能力影响应该不大吧。[/color][color=#444444]有没有必要选择分离能力强的色谱柱?[/color][color=#444444]如果色谱柱的分离能力更强,对物质分析有哪些好处?[/color]

  • 液相色谱分析中如何才能提高分离度?

    下式为分离度计算公式http://www.dikma.com.cn/Public/Uploads/images/R.JPGN:柱效(Efficiency)反映色谱柱性能,柱效越高,分离度越好。在其他条件恒定的情况下,塔板数增加一倍,分离度仅提高40%。操作中,可通过下面两种方式增加塔板数进而提高分离度:其一,使用长柱或双柱串联,但也会使分离时间大大延长;其二,使用细粒径填料的色谱柱,但这需要耐更高压力的液相色谱系统。相比之下后者更为可取。α:选择性(selectivity)是指色谱柱-流动相体系分离两个化合物的能力。选择性主要与固定相、流动相组成以及柱温等因素有关,与保留值也密切相关,其中固定相和流动相组成影响较大。以最常见的反相模式为例,反相柱(包括C18、C8、PH等)是以分配作用对化合物进行保留的,不同化合物的分离是基于它们在键合相与流动相中分配系数的差异,如果两种化合物的水溶性、在烷烃-水体系的分配系数等方面存在明显差异,那么这些化合物通常是能够利用反相柱达到分离;PH柱对具有苯环的化合物具有特殊保留。正相模式下,硅胶柱、胺基柱、氰基柱与带有极性基团的化合物之间存在极性相互作用,对化合物的基团具有选择性,常常用于结构类似物、异构体化合物的分离。流动相方面,降低流动相的洗脱强度通常可以增大分离度;而有机溶剂类型也会影响分离,比如反相条件下,乙腈和甲醇的选择性就存在很大差异,这种差异需要在实践中摸索,但无论如何,多种溶剂类型带给我们更多的实现分离的可能。k:随着容量因子k的增大,分离度也随之增加,这种影响在k值较低时非常明显,当k值大于10时,k值增加对分离度的影响就不再显著,这就告诫无原则地提高k值以增大分离度是没有意义的。增加键合相密度能够提高k值;另外改变键合基团类型也能改变k值,比如在反相色谱中,随着键合相碳链长度的增加,k值逐渐增大。

  • 【分享】简述在气相色谱分析中柱长、柱内径、柱温、载气流速、固定相、进样等操作条件对分离的影响?

    操作条件对于色谱分离有很大影响。1、柱长,柱内径:一般讲,柱管增长,可改善分离能力,短则组分馏出的快些;柱内径小分离效果好,柱内径大处理量大,但柱内径过大,将导致担体不能均匀地分布在色谱柱中。分析用柱管一般内径为3-6毫米,柱长为1-4米。2、柱温:是一个重要的操作变数,直接影响分离效能和分析速度。选择柱温的根据是混合物的沸点范围,固定液的配比和鉴定器的灵敏度。提高柱温可缩短分析时间;降低柱温可使色谱柱选择性增大,有利于组分的分离和色谱柱稳定性提高,柱寿命延长。一般采用等于或高于数十度于样品的平均沸点的柱温为较合适,对易挥发样用低柱温,不易挥发的样品采用高柱温。3、载气流速:载气流速是决定色谱分离的重要原因之一。一般讲流速高色谱峰狭,反之则宽些,但流速过高或过低对分离都有不利的影响。流速要求要平稳,常用的流速范围每分钟在10-100亳升之间。4、固定相:固定相是由固体吸附剂或涂有固定液的担体构成。(1)固体吸附剂或担体粗细:一般采用40-60目、60-80目、80-100目。当用同等长度的柱子,颗粒细的分离效率就要比粗的好些。(2)固定液含量:固定液含量对分离效率的影响很大,它与担体的重量比一般用15%-25%。比例过大有损于分离,比例过小会使色谱峰拖尾。5、进样:一般讲进样快,进样量小,进样温度高其分离效果好。对进液体样,速度要快,汽化温度要高于样品中高沸点组分的沸点值,一次汽化,保证色谱峰形不致展宽、使柱效高。当进样量在一定限度时,色谱峰的半峰宽是不变的。若进样量过多就会造成色谱柱超载。一般讲柱长增加四倍,样品的许可量增加一倍。对于常规分析,液体进样量为1-20微升;气体进样量为0、1-5毫升。

  • SH-AC-3型阴离子色谱柱分离效果总结分析

    SH-AC-3型阴离子色谱柱分离效果总结分析

    SH-AC-3型阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱分离效果总结分析[align=center]十月[/align]SH-AC-3型阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱[color=black]是由青岛盛瀚色谱技术有限公司开发生产的一款烷基季胺基质、有机溶剂兼容性100%、[/color]pH耐受范围为pH0~14、[color=black]碳酸盐分离体系的亲水型阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱。其产品说明书介绍主要用于分析F[/color][sup][color=black]-[/color][/sup][color=black]、Cl[/color][sup][color=black]-[/color][/sup][color=black]、NO[/color][sub][color=black]2[/color][/sub][sup][color=black]-[/color][/sup][color=black]、Br[/color][sup][color=black]-[/color][/sup][color=black]、NO[/color][sub][color=black]3[/color][/sub][sup][color=black]-[/color][/sup][color=black]、H[/color][sub][color=black]2[/color][/sub][color=black]PO[/color][sub][color=black]4[/color][/sub][sup][color=black]-[/color][/sup][color=black]、SO[/color][sub][color=black]4[/color][/sub][sup][color=black]2-[/color][/sup][color=black]等常见阴离子,BrO[/color][sub][color=black]3[/color][/sub][sup][color=black]-[/color][/sup][color=black]、ClO[/color][sub][color=black]3[/color][/sub][sup][color=black]-[/color][/sup][color=black]、ClO[/color][sub][color=black]2[/color][/sub][sup][color=black]-[/color][/sup][color=black]、二氯乙酸、三氯乙酸等消毒副产物及甲酸、乙酸、酒石酸、草酸等有机酸。现将该款色谱柱在不同洗脱条件下对常见阴离子的分离效果总结分析如下:[/color]F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、BA、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]等8种组分的分离[color=black]淋洗液:[/color]5.0 mmol/LNa[sub]2[/sub]CO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]1.0mL/min,等度洗脱。在此条件下F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、BA(巴比妥酸)等6种组分能完全分离,但H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]不能完全分离,若需将H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]二者完全分离,则需以Na[sub]2[/sub]CO[sub]3[/sub]/NaHCO[sub]3[/sub]溶液为淋洗液,这与SH-AP-2型柱一致,8种组分在16min内全部出峰(分离效果图见图1),可用于F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、BA等6组分的定量分同时测定。[align=center]图1 F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、BA、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]分离效果图[/align][align=center][img=,455,341]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211313567257_9666_1871217_3.png!w455x341.jpg[/img][/align]F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]、草酸/SCN[sup]-[/sup]等组分的分离[color=black]淋洗液:[/color]6.0 mmol/LNa[sub]2[/sub]CO[sub]3[/sub]-2.0 mmol/LNaHCO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]1.0mL/min,等度洗脱。在此条件下一是F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和SCN[sup]-[/sup]等8种阴离子能完全分离并在26min内全部出峰(分离效果图见图2),二是F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和草酸等8种组分能完全分离并在19min内全部出峰(分离效果图见图3),且各组分的峰分离度R在1.5以上,各组分的峰面积与其质量浓度在一定范围内呈良好线性关系,可用于上述组分的定量分析。从图2图3可见,草酸的出峰顺序为于SO[sub]4[/sub][sup]2-[/sup]和SCN[sup]-[/sup]之间,并与二者完全分离,说明该洗脱体系可用于F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]、草酸和SCN[sup]-[/sup]等9种组分的分离与同时测定。[align=center]图2 F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和SCN[sup]-[/sup]等8种阴离子分离效果图[/align][align=center][img=,397,265]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211323404607_5396_1871217_3.jpg!w397x265.jpg[/img][/align][align=center][font='Times New Roman',serif][/font][/align][align=center]图3 F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和草酸[sup]-[/sup]等8种组分的分离效果图[/align] [img=,376,347]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211324236597_1660_1871217_3.png!w376x347.jpg[/img]F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、对氨基苯磺酸、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]-2[/sup]等8种组分的分离[color=black]淋洗液:[/color]5.0 mmol/LNa[sub]2[/sub]CO[sub]3[/sub]-1.5 mmol/LNaHCO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]1.0mL/min,等度洗脱。在此条件下F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、对氨基苯磺酸、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]-2[/sup]等8种组分能完全分离并在26min内全部出峰(分离效果图见图4),且各组分的峰分离度R在1.5以上,且各组分的峰面积与其质量浓度在一定范围内呈良好线性关系,可用于对氨基苯磺酸等8种组分的定量分析。[align=center]图4 F[sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、对氨基苯磺酸、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]分离效果图[/align][align=center][img=,349,252]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211326250631_3765_1871217_3.jpg!w349x252.jpg[/img][/align]草酸和SCN[sup]-[/sup]与Cl[sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]-2[/sup]等阴离子的分离 [color=black]淋洗液:[/color]10.0 mmol/LNa[sub]2[/sub]CO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]1.0mL/min,等度洗脱。在此条件下Cl[sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]-2[/sup](二者合并为一个峰)、草酸和SCN[sup]-[/sup]等5种组分能完全分离并在22min内全部出峰(分离效果图见图5),且各组分的峰分离度R在1.5以上,该洗脱体系可用于尿液中草酸和SCN[sup]-[/sup]的定量分析。[align=center]图5 Cl[sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]-2[/sup]、草酸和SCN[sup]-[/sup] 分离效果图[/align][img=,349,252]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211326398024_6668_1871217_3.jpg!w349x252.jpg[/img]F[sup]-[/sup]、ClO[sub]2[/sub][sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、ClO[sub]3[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]和SO[sub]4[/sub][sup]2-[/sup]等9种阴离子的分离[color=black]淋洗液:[/color]4.0 mmol/LNa[sub]2[/sub]CO[sub]3[/sub]-4.5 mmol/LNaHCO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]0.8mL/min,等度洗脱。在此条件下F[sup]-[/sup]、ClO[sub]2[/sub][sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、ClO[sub]3[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]和SO[sub]4[/sub][sup]2-[/sup]等9种阴离子能完全分离并在24min内全部出峰(分离效果图见图6),且各组分的峰分离度R在1.5以上,且各组分的峰面积与其质量浓度在一定范围内呈良好线性关系,可用于上述9种阴离子的定量分析。[align=center]图6 F[sup]-[/sup]、ClO[sub]2[/sub][sup]-[/sup]、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、ClO[sub]3[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]和SO[sub]4[/sub][sup]2-[/sup]等9种阴离子分离效果图[/align][img=图6,455,341]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211316363914_4988_1871217_3.png!w455x341.jpg[/img]F[sup]-[/sup]、AC[sup]-[/sup]、AA、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、苯甲酸、H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和草酸等组分的分离[color=black]淋洗液:[/color]12.0 mmol/LNaHCO[sub]3[/sub]溶液[color=black]。淋洗液流量:[/color]1.0mL/min,等度洗脱。在此条件下F[sup]-[/sup]、AC[sup]-[/sup](乙酸根)不能完全分离,AA(抗坏血酸)、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]、苯甲酸(二者合并为一个峰)等能完全分离并在22min内全部出峰(分离效果图见图7),但H[sub]2[/sub]PO[sub]4[/sub][sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]和草酸等组分的保留时间长达55min、110min和152min多钟,但若要将F[sup]-[/sup]、AC[sup]-[/sup]完全分离,则需将NaHCO[sub]3[/sub]溶液浓度降低至10.0 mmol/L以下,该洗脱体系可用于AA等组分的定量分析。[align=center]图7 F[sup]-[/sup]、Ac[sup]-[/sup]、AA、Cl[sup]-[/sup]、NO[sub]2[/sub][sup]-[/sup]、Br[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]苯甲酸等8种组分分离效果图[/align][align=center][img=图7,455,341]https://ng1.17img.cn/bbsfiles/images/2024/05/202405211316592945_2687_1871217_3.png!w455x341.jpg[/img][/align]

  • 气相色谱仪分离分析

    CP Wax57 acidic 色谱柱分离糠醛和乙酸,同样的采集方法换了新的色谱柱之后就完全分不开了,大家都是用什么程序升温条件分开的啊

  • 色谱分离问题

    各位有色谱方法开发经验的前辈:现有两个问题需请教1.对于高浓度主峰,峰宽很宽,有6分钟样子,在紧随其后有1杂质峰,与主峰分离度只有0.8,色谱条件除了色谱柱可以更换外,其他条件均不能改变,那么用何种色谱柱可以提高两者的分离度为1.5以上;2.哪类色谱柱更适合于分析高浓度化合物;谢谢各位赐教,不胜感激!

  • 【求助】急! 求GB/T 21059-2007 和能快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法

    急求1、GB/T 21059-2007 塑料 液态或乳液态或分散体系聚合物/树脂 用旋转黏度计在规定剪切速率下黏度的测定 …… 全文2、快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法其中异丙醇浓大约为50%、丙烯腈和苯乙烯约为5%以下请大虾们指教色谱柱型号、色谱条件、溶剂、内外标物质等等?需要自己装柱的也行,烦请告知固定相、担体、柱长、直径等。万分感谢!

  • 磷脂分离分析方法

    [align=center][font='times new roman'][size=16px]磷脂分离分析[/size][/font][font='times new roman'][size=16px]方法[/size][/font][/align] 2003年,Han等正式提出了脂质组学的概念,即对生物样品中脂质进行全面的系统分析,并以此为依据推测其他与脂质作用的生物分子的变化,进而阐明脂质在各种生命现象中的作用机制。脂质尤其是磷脂,是细胞膜的关键组分,磷脂代谢的改变对细胞膜结构有深远的影响,尤其是癌细胞需要更多的膜来实现快速增殖。因此,膜磷脂的含量、磷脂代谢物水平和磷脂谱的变化[font='times new roman'][sup][size=16px][99][/size][/sup][/font]通常被确定为癌症发展进程的标志,此外,磷脂代谢的改变也与糖尿病、人体衰老与肥胖有关。基于磷脂重要的生理与病理功能,需要快速、准确的分离分析手段实现对其的定性与定量分析,进而阐明其组分变化对机体的影响,为临床诊断和治疗提供重要依据。 磷脂分子是由亲水性头基和亲脂性/疏水性尾基组成,根据亲水性头基的取代基团的不同又可分为PC、PE、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)和磷脂酰甘油(PG)等。目前,磷脂分离分析面临的主要挑战包括两方面,一方面是磷脂本身复杂和多样的结构信息,包括类别、脂肪酰基种类、脂肪酰基sn-位置和脂肪酰基中的C=C位置/几何形状(即顺式/反式)等,导致其识别与鉴定的难度很大。另一方面是分离分析工具与技术的限制。最初用于脂质组学的分析方法是基于质谱的鸟枪法,即直接将样品注入到质谱仪中,尽管该方法具有简便高效的优点,但是会导致样品中的杂质包括盐、极性代谢物和蛋白质等对脂质的电离造成影响,影响信号的稳定,最终会影响质谱的检测结果。此外,这些杂质也会污染质谱仪。近年来,高灵敏度和特异性的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱(HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])法成功弥补了鸟枪法的缺陷。由于在质谱分析之前增加了色谱分离过程,一方面可以有效减少样品中杂质的影响,另一方面基于其分离能力,可以将磷脂按照类别与种类进行初步的分离,减少了后续质谱分析的基质效应和离子抑制效应,大大改善了磷脂的分离分析效果。 色谱固定相作为HPLC的核心组成,发挥着至关重要作用。开发新型色谱固定相是脂质组学的重要研究方向之一。例如,Liang等以半胱氨酸为衍生化试剂,合成了苯乙烯马来酸共聚物色谱固定相Sil-SMA-amino acid,填充Sil-SMA-amino acid色谱柱对于亲疏水性的小分子具有良好的分离性能,同时该色谱柱具有RPLC/HILIC/IEC的混合模式保留机制,成功实现了部分PC和PE标准品的种类分离,并成功应用于胃癌细胞脂质提取物的分离分析,表现出了一定的应用潜力。Liu等以三辛基膦和烯丙基溴为原料合成了膦基离子液体三辛基(烯丙基)溴化膦([P[font='times new roman'][sub][size=16px]888Allyl[/size][/sub][/font]]Br)。以[P[font='times new roman'][sub][size=16px]888Allyl[/size][/sub][/font]]Br为聚合单体,通过点击化学反应合成了聚膦离子液体功能化二氧化硅球(PIL@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font])。PIL@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]填充色谱柱表现出RPLC/HILIC混合模式分离特点,可在较短的时间内实现核酸碱基与核苷类、磺胺类、酰胺类和苯胺类物质的快速分离,具有良好的分离选择性。其对于磷脂标准品的分离效果优于商业化的氨基柱,并可用于磷脂类别与种类的同时分离分析。此外,也实现了大豆卵磷脂的快速分离分析。

  • 磷脂分离分析方法及难点

    磷脂分离分析方法及难点

    [align=left][font='times new roman'][size=16px]磷脂分离分析方法[/size][/font][font='times new roman'][size=16px]及难点[/size][/font][/align]磷脂的极端复杂性和低丰度问题使其可靠的分离带来了一定的困难,进一步深入研究其生物学功能,磷脂仍然是一个重要研究目标。早期的磷脂分析方法常采用络合光度法和比色法对磷脂总量进行检测和质量分析,该方法不能实现单一组分的分析检测。近年来,薄层色谱法(TLC)、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(HPLC)和质谱法(MS)等新型分离分析技术用于磷脂的分离分析研究。TLC是最早应用于磷脂分离分析的一种方法,由于具有操作简便和样品处理量大等优势特点一直使用至今。TLC的主要缺点是其仅对同一类别的磷脂具有分离效果,无法对单一类别磷脂中分子种属进行分离分析。在TLC分析过程中,磷脂分子完全暴露在空气中,会导致部分不饱和脂肪酸氧化,使结果产生偏差。HPLC是近年来广泛采用的磷脂分离分析技术,这种分离分析技术能够实现对不同类别和种属关系磷脂的分离,进而对复杂磷脂具有很好的分离效果。在HPLC分离磷脂时,对于不同类的磷脂多采用正相色谱(NPLC);对于同一类不同种属关系的磷脂往往采用反相色谱(RPLC)进行分离。随着HPLC技术的不断发展,二维高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]在磷脂的分离分析中的优势越来越明显,可以通过色谱柱的选择对磷脂的分子类别和种属实现双重分离。例如,Zhang等建立了一种离线二维混合模式结合反相高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法分析复杂样品中脂质的方法。在第一维色谱中,按照中性脂类到极性脂类的洗脱顺序,22种不同的脂类可成功被硅胶色谱柱分离;在第二维色谱中,根据脂酰基链的长度和不饱和程度,采用反相C30色谱柱分离,从而进一步提高了分离效率。HPLC虽然是目前最常采用的磷脂分离技术,但对于磷脂的定性鉴别还存在较大的困难。HPLC与MS联用技术是目前磷脂鉴定最常用的技术,电喷雾电离技术(ESI)是磷脂质谱分析中最常用的离子源。HPLC-ESI-MS技术联用可以有效降低复杂样品中基质的干扰,提高磷脂的定性鉴别能力。例如,Kim等利用二醇基正相色谱柱建立了NPLC-ESI-MS定量和定性分析新方法,可从大鼠心脏和骨骼肌线粒体中检测到7类磷脂,包括PE、PC、PA、PI、PS、心磷脂(CL)和单溶血心磷脂(MLCL),并对除PS以外的所有磷脂进行定量分析,显示出良好的重现性和准确性。[align=left][font='times new roman'][size=16px]1.1.[/size][/font][font='times new roman'][size=16px]4 [/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]磷脂分离分析的难点[/size][/font][/align]首先,磷脂在细胞功能中发挥着细胞屏障、信号传递和能量库等多种功能,细胞脂质非常复杂,有着数以百计的分子物种。细胞脂质在生命活动中也是高度动态的,细胞膜将细胞彼此分离,包围细胞器,并将细胞器细分成更小的隔间。以这种方式,细胞膜在细胞内产生了许多不同的环境,这些环境中发生着不同的生化反应,因此细胞脂质随着细胞所处的环境不断发生着变化。最后,磷脂分子具有多种多样的异构体,这进一步增加了磷脂分离鉴定的挑战性。如图所示,以PC([color=#000000]36:1[/color])为例介绍磷脂可能存在的异构体。PC存在的主要异构体形式包括sn位置同分异构体、双键位置异构体、双键顺反同分异构体和R/S手性对映体。此外,生物样品中磷脂成分复杂、种类多样且含量极低以及磷脂结构中很少存在易电离基团等特性使得磷脂的定量分析存在困难。利用衍生化技术对磷脂进行后修饰,可提高磷脂的离子化效率,使得定量分析效率提高。[align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162152007402_7183_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px] [/size][size=13px]脂质分子异构体形式[/size][/align][align=center][/align]

  • 7月25日网络会议:全新UPLC色谱柱技术最大限度地提高分离度和分析通量——CORTECS色谱柱

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647202_2507958_3.gif全新UPLC色谱柱技术最大限度地提高分离度和分析通量——CORTECS色谱柱主讲人:丁娟娟 waters公司 技术支持 活动时间:2013年7月25日 下午 14:30http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647202_2507958_3.gif【简介】 沃特世公司于HPLC 2013大会隆重推出最新的1.6 μm实心颗粒超高效液相(UltraPerformance LC®)色谱柱系列——CORTECS™色谱柱,为业内的LC色谱柱性能树立了新的标杆。CORTECS色谱柱拥有更高的分离度,可以提高实验室中单次色谱分离的速度,从而获取更多数据信息。CORTECS系列预示着一个前所未有的高柱效和高灵敏度水平的UPLC色谱柱。它基于1.6μm的硅胶实心颗粒技术,继承UPLC色谱柱的超低扩散硬件,使其具备更高的峰容量从而实现更高的分离度和分析通量。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2013年7月25日4、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动: *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答*每次会议从提问的用户中随机抽取出一名幸运之星,奖励一个价值150元的耳机。6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、提问时间:现在就可以在此帖提问啦,截至2013年7月24日8、会议进入:2013年7月25日14:00点就可以进入会议室9、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制