当前位置: 仪器信息网 > 行业主题 > >

色谱分类方法

仪器信息网色谱分类方法专题为您提供2024年最新色谱分类方法价格报价、厂家品牌的相关信息, 包括色谱分类方法参数、型号等,不管是国产,还是进口品牌的色谱分类方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分类方法相关的耗材配件、试剂标物,还有色谱分类方法相关的最新资讯、资料,以及色谱分类方法相关的解决方案。

色谱分类方法相关的资讯

  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf
  • 国家药监局对PCR、质谱、液相色谱等27类医疗器械涉及《医疗器械分类目录》内容进行调整
    今天,国家药监局发布了关于调整《医疗器械分类目录》部分内容的公告(2022年第30号),对27类医疗器械涉及《医疗器械分类目录》内容进行调整。此番调整涉及PCR仪、微生物质谱鉴定系统、质谱检测系统、液相色谱分析仪器等。(点击下方附件查看完整版本)国家药品监督管理局2022年第30号公告附件.docx.docx其中让医美届最为关注的是,自2024年4月1日起,射频治疗仪、射频皮肤治疗仪类产品未依法取得医疗器械注册证不得生产、进口和销售。为进一步深化医疗器械审评审批制度改革,依据医疗器械产业发展和监管工作实际,按照《医疗器械监督管理条例》《医疗器械分类目录动态调整工作程序》有关要求,国家药监局决定对《医疗器械分类目录》部分内容进行调整。现将有关事项公告如下:  一、调整内容  对27类医疗器械涉及《医疗器械分类目录》内容进行调整,具体调整内容见附件。  二、实施要求  (一)对于附件中调整涉及的09-07-02射频治疗(非消融)设备中射频治疗仪、射频皮肤治疗仪类产品,自本公告发布之日起,可按《医疗器械注册与备案管理办法》(国家市场监督管理总局令第47号)的规定申请注册。自2024年4月1日起,射频治疗仪、射频皮肤治疗仪类产品未依法取得医疗器械注册证不得生产、进口和销售。  射频治疗仪、射频皮肤治疗仪类产品相关注册人、生产企业应当切实履行产品质量安全主体责任,全面加强产品全生命周期质量管理,确保上市产品的安全有效。自本公告发布之日起,射频治疗仪、射频皮肤治疗仪类产品相关注册人、生产企业应当主动向所在地(进口产品为代理人所在地)省级药品监督管理部门报告产品按医疗器械研制注册计划、适用的安全性标准承诺、生产质量管理体系及运行情况、顾客投诉处置及不良事件制度和执行情况等。省级药品监督管理部门应当建立企业信用档案,加强对该类产品注册人、生产企业的检查,督促企业落实主体责任、加快完成产品注册,健全质量管理体系。自2024年4月1日起,未取得医疗器械生产、经营许可(备案)的企业,不得从事相关产品的生产和销售。  (二)对于调整内容的其他产品,自本公告发布之日起,药品监督管理部门依据《医疗器械注册与备案管理办法》《关于公布医疗器械注册申报资料要求和批准证明文件格式的公告》等,按照调整后的类别受理医疗器械注册申请。  对于已受理尚未完成注册审批(包括首次注册和延续注册)的医疗器械,药品监督管理部门继续按照原受理类别审评审批,准予注册的,核发医疗器械注册证,并在注册证备注栏注明调整后的产品管理类别。  对于已注册的医疗器械,其管理类别由第三类调整为第二类的,医疗器械注册证在有效期内继续有效。如需延续的,注册人应当在医疗器械注册证有效期届满6个月前,按照改变后的类别向相应药品监督管理部门申请延续注册,准予延续注册的,按照调整后的产品管理类别核发医疗器械注册证。  医疗器械注册证有效期内发生注册变更的,注册人应当向原注册部门申请变更注册。如原注册证为按照原《医疗器械分类目录》核发,本公告涉及产品的变更注册文件备注栏中应当注明公告实施后的产品管理类别。  (三)各级药品监督管理部门要加强《医疗器械分类目录》内容调整的宣贯培训,切实做好相关产品审评审批和上市后监管工作。国家药品监督管理局2022年第30号公告附件.docx.docx
  • 物理吸附检测方法分类大全
    p style=" text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201906/uepic/554eae64-8ff0-4d72-ab23-5ceee57b8ef8.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 180" height=" 198" style=" max-width: 100% max-height: 100% float: right width: 180px height: 198px " border=" 0" vspace=" 0" / 吸附,是在界面层中的组分的浓度与它们在体相中的浓度不同的界面现象;物理吸附,通常是指气体或蒸汽在固体界面的吸附。当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。吸附于固体表面的气体/蒸汽分子,不与固体产生化学反应,吸附热小 , span style=" text-indent: 2em " 吸附速度 /span span style=" text-indent: 2em " 快,在一定程度上是可逆的。 /span span style=" text-indent: 2em " 物理吸附分析方法有单组气体/蒸汽分吸附、多组分气体/蒸汽选择性竞争吸附、低压段吸附、高压气体吸附等(详细分类见下条)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 物理吸附分析方法常被应用于催化剂、吸附剂等固体材料的比表面积分析、孔容孔径分析、气体吸附能力评价、蒸汽吸附能力评价、多组分选择性竞争吸 /span img src=" https://img1.17img.cn/17img/images/201906/uepic/a3caaf5d-8f20-43af-b5fe-fc999b763b94.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 250" height=" 82" border=" 0" vspace=" 0" style=" text-align: justify text-indent: 32px max-width: 100% max-height: 100% width: 250px height: 82px float: left " / span style=" text-indent: 2em " 附评价等分析内容,具体领域如工业催化领域的催化剂性能检测、气体净化提纯的吸附剂评价、氢气甲烷的高压吸附存储等领域。 /span 物理吸附仪为采用物理吸附现象、原理来进行材料表面特性分析表征的仪器。物理吸附仪的原理和类型,根据不同的分析目的、材料、原理、压力范围、吸附质种类等而不同,下文对物理吸附分析方法的分类介绍,基本也适用于物理吸附仪的分类。 /p p style=" text-align: justify text-indent: 2em " 按照如下三种分类方法,对物理吸附进行分类,由该分类图表可清晰的对物理吸附分析方法有总体的框架性的了解,是物理吸附的入门级基础知识。 /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法一:根据吸附质类型分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 298px " src=" https://img1.17img.cn/17img/images/201906/uepic/88ae3670-c353-47a9-a4ce-d29bab432ab1.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 500" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法二:根据吸附质定量方式分类 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 340px " src=" https://img1.17img.cn/17img/images/201906/uepic/a2d24a38-06fc-45a6-a32d-9519649b7e53.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 500" height=" 340" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法三:根据测试内容或数据分析理论分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 352px " src=" https://img1.17img.cn/17img/images/201906/uepic/31898eb8-8b30-4539-9f56-87ebfa58a0e8.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 352" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 以上物理吸附的三种分类方式,基本涵盖了目前国际上物理吸附分析方法的全部内容,也是目前已经普及应用的物理吸附仪的功能涉及范围。了解清楚并掌握该三种分类方法中的各种物理吸附分析方法的原理、特征、优劣势与适用范围,是正确应用物理吸附这种分析方法进行材料表征的基础,是让物理吸附这种分析方法服务与科研和工业生产过程的关键。 /p p style=" text-align: right " strong 作者:柳剑锋 /strong /p p style=" text-align: right " strong 贝士德仪器科技(北京)有限公司总经理 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由贝士德供稿,不代表仪器信息网本网观点) /p
  • 中关村材料试验技术联盟 重磅!团体标准《质谱仪器分类与代码》正式发布!
    创新引领,有标可依2024年1月5日,团体标准《质谱仪器分类与代码》(T/CSTM 01082—2024 /T/CAIA/YQ 008—2023(IDT))中文版正式发布!该标准由中关村材料试验技术联盟和中国分析测试协会联合发布,将于2024年4月5日起正式实施。英文版标准于2024年3月5日发布,将于2024年6月5日起开始实施。 标准适用性该标准适用于质谱仪器的分类、编码、命名、统计、管理等;但不适用于氦质谱检漏仪、离子迁移谱。 标准意义质谱仪器是一类非常重要的科学仪器,其结构复杂,技术路线及技术组合多样,而规范的分类标准是数据有效统计和分析基础。《质谱仪器分类与代码》标准发布实施后,可规范质谱行业统计标准,实现行业经济、技术等信息互认与共享,做到数据可汇总、可比较、可分析;为政府、行业协会、社会组织等对质谱行业统计调查提供重要依据和支撑;同时为厂家的仪器名称命名提供规范参考。标准内容 l 质谱仪器分类原则:按照仪器结构和原理对质谱仪器进行分类,具体采用联用技术、离子化技术、质量分析器三个维度划分。l 分类方法:采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。l 具体分类如下:分面一:按照联用技术划分根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳6个类目;各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀3个类目。1) 直接离子化分析;2) 色谱联用划分为:a) 液相色谱包括:—液相色谱;—高效液相色谱;—超高效液相色谱;—多维液相色谱;b) 气相色谱包括:—气相色谱;—全二维气相色谱;c) 离子色谱;d) 超临界流体色谱;e) 薄层色谱;f) 毛细管电泳;3) 常见非色谱联用划分为:a) 热解吸;b) 流式细胞术;c) 激光烧蚀。4) 其他。分面二:按照离子化技术划分根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、光致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。1)轰击离子化包括:a) 电子轰击离子化;b) 快速原子轰击离子化;c) 二次离子化;2) 电喷雾离子化包括:a) 电喷雾离子化;b) 解吸附电喷雾离子化;c) 纳升电喷雾离子化;d) 脉冲直流电喷雾离子化;e) 电喷雾萃取离子化;f) 电喷雾辅助激光解吸离子化;g) 极性反转电喷雾离子化;3) 化学离子化包括:a) 化学离子化;b) 大气压化学离子化;c) 质子转移反应;4) 光致离子化包括:a) 基质辅助激光解吸离子化;b) 单光子离子化;c) 多光子离子化;d) 激光解吸离子化;5) 放电离子化包括:a) 介质阻挡放电离子化;b) 辉光放电离子化;c) 低温等离子体离子化;d) 电晕放电离子化;e) 解吸电晕束离子化;f) 火花放电离子化;g) 电感耦合等离子体离子化;6) 热离子化;7) 场致离子化包括:a) 场解吸离子化;b) 场离子化;8) 其他。分面三:按照质量分析器类型划分根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。1) 四极杆质量分析器;2) 飞行时间质量分析器包括:a) 直线飞行时间质量分析器;b) 单次反射飞行时间质量分析器;c) 多次反射飞行时间质量分析器;3) 离子阱质量分析器包括:a) 二维离子阱质量分析器;b) 三维离子阱质量分析器;4) 磁质量分析器包括:a) 单聚焦质量分析器;b) 双聚焦质量分析器;5) 傅里叶变换质量分析器包括:a) 静电阱质量分析器;b) 离子回旋共振质量分析器;6) 其他。l 质谱仪器代码:分为英文代码和数字代码两种方式;英文代码以质谱仪器主要结构的英文简称组合表示,数字代码以纯数字组合表示。起草单位标准由广东省麦思科学仪器创新研究院牵头编制,广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院共同参与完成。标准起草单位涵盖了国内外质谱厂商、高校和研究机构等22家单位,具有广泛代表性。
  • 北大与岛津共推《中药材高效液相色谱检定》方法集
    ----对应中华人民共和国药典(2010年版)收载品种---- 我国是天然药物之乡,对中草药的探索研究历经了几千年的历史,目前大约有12800多种药用植物,我国各地常用的中药已达5000种左右。近30年来,随着分析化学技术的不断发展,色谱、光谱等分析手段引入了中药材的质量标准研究中。 2010年版《中国药典》于2010年1月颁布,并于2010年10月1日起施行。2010年版《中国药典》中共收载药品品种4567种(药典一部收载2165种,二部收载2271种,三部收载131种)。药典一部中新增中药材65种,饮片439种,修订了359种中药材和饮片标准。2010年版《中国药典》中药新增率达到89%,中药和中药饮片在该版药典中被摆到了极为重要的位置,无论在数目还是具体指标上,都有了飞跃。新版药典中药品种的修订大量采用高效液相色谱方法来进行药品的鉴别、检察和含量鉴定,以提高分析灵敏度和专属性,解决常规分析方法无法解决的问题。高效液相色谱法是新版药典中应用最为广泛的含量测定技术。然而,《中国药典》中药品的液相色谱测定方法仅规定了色谱柱填料的类型、流动相的组成、检测波长、柱温和理论塔板数,未规定柱填料的分类、长度和粒度等条件,因此这使检验人员难于重现实验,在实践中仍然需要进行色谱条件的摸索与确定。 岛津公司长期以来致力于食品、环境、医药等各领域分析技术的应用方法开发,一直关注国内外药典法规政策,积极应对当今的新局面。北京大学药学院承担了《中国药典》2010年版中中药材的修订工作,在这个研究领域具有很高的学术地位。为了方便相关分析工作者能更好地理解和掌握2010年版药典中的高效液相色谱方法,两个作者单位强强联手,发挥各自专长,为本书的成功编写打下了坚实的基础。本书分两部分,第一部分针对《中国药典》(2010年版)中用高效液相色谱进行鉴别、检查和含量鉴定的中药材品种,对药典收载的高效液相色谱方法进行了充实、优化,详细介绍了药典收载情况、药材高效液相色谱行为、色谱条件的选用、仪器配置、对照品和样品的色谱图、定量标准曲线及重复性数据。第二部分介绍了针对上述中药材品种的快速液相色谱分析方法。本书方法实用、数据可靠,检测人员根据书中的方法完全可以重复实验,将会对分析工作提供莫大的便利。 本书中常规高效液相色谱分析部分的所有图谱和数据均由北京大学药学院陈世忠教授课题组提供;快速液相色谱分析部分的所有图谱和数据均由岛津(广州)检测技术有限公司提供。本书由曹磊、[日]端裕树主编,陈世忠、黄涛宏副主编,参加编写工作的还有岛津公司分析中心的姚劲挺、周璐颖、郝红元和冀峰等。本书可供研究机构及制药企业从事药物合成、药物分析、中草药研究的研究人员,全国各地药品检定所、检验检疫机构从事药品检验的技术人员以及药厂从事药品质量控制的技术人员参考,也可供从事相关液相色谱分析的企业或人员,以及高等院校药学、中药学、制药工程及相关专业的师生参考使用。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 30项粮油标准公开征求意见 半数涉液相色谱等检测方法
    12月1日,国家粮食局连发公告,对《进口大米粒型分类与检验方法》等22项粮油标准和《油茶籽》等8项行业标准公开征求意见,其中半数涉及液相色谱、液质联用与石墨炉原子吸收光谱法等检测方法。  标准名单如下:征求意见标准目录和相关信息.rar征求意见标准相关材料.rar征求意见反馈表.rar
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 生态环境部发布4项国家生态环境标准 涉气相色谱等方法
    为支撑相关生态环境质量标准和污染物排放标准实施,近日,生态环境部发布《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)、《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)、《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)和《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)等4项国家生态环境标准。  《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)为首次发布,适用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB 16297-1996)等13项污染物排放标准实施。采用直接进样测定的方法,无需前处理,所用仪器设备普及性高,方法易于掌握,具有较好的通用性和可操作性。  《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)适用于环境空气、无组织排放监控点空气和固定污染源废气中臭气的测定,支撑《恶臭污染物排放标准》(GB 14554-1993)等8项污染物排放标准实施。与《空气质量 恶臭的测定 三点比较式臭袋法》(GB/T 14675-1993)相比,增加材料和仪器设备、实验人员、溶液配制、质量保证和质量控制等要求,完善样品分类、分析步骤和结果计算等内容,可有效提升方法的准确性、一致性和可比性,具有设备简单、易推广的特点。  《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)适用于环境空气和无组织排放监控点空气中总悬浮颗粒物的手工测定,支撑《环境空气质量标准》(GB 3095-2012)实施。与《环境空气 总悬浮颗粒物的测定 重量法》(GB/T 15432-1995)相比,增加规范性引用文件、术语和定义、样品保存、质量保证与质量控制和注意事项等要求,细化样品、分析步骤、结果与计算等内容,加严天平精度要求,进一步提高环境空气总悬浮颗粒物监测数据的准确性,为颗粒物来源解析和空气质量预报提供必要依据。  《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)为首次发布,适用于陆地区域卫星遥感细颗粒物监测,作为地面监测手段的补充,用于掌握大范围细颗粒物空间分布规律及变化趋势,为大气污染防控工作提供有力的技术支撑。  上述4项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高生态环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • “食品检验能力分类方法研究”项目通过验收
    日前,由国家认监委实验室部承担的“食品检验能力分类方法研究”短平快项目顺利通过专家验收。该项目针对现行食品检验资质认定能力范围申报存在的问题开展研究,通过比较分析国内外食品分类方法,建立了以GB2760-2011标准为基础的食品检验能力分类方法,初步建立了食品检验标准数据库和食品检验能力编码及能力表述系统。   截至2012年底,我国共有食品检验资质认定机构2748家。食品检验能力分类表述系统的建立,将对规范表述食品检验机构资质认定能力起到积极作用,同时也为实现网上行政审批和提供检测资源查询服务等工作奠定基础。
  • 【飞诺美色谱】【方法建立】基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异
    基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异潘玲 ,施文婷 ,张兰兰 ,文珊 ,刘权震 ,黎桃敏 ,陈丹燕 ,刘燎原(广东一方制药有限公司,广东省中药配方颗粒企业重点实验室,广东佛山 528244)DOI:10.3969/j.issn.1008-6145.2023.02.002基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)摘 要: 基于高效液相色谱(HPLC)指纹图谱比较鱼腥草不同部位(茎、叶)化学成分的差异性,并综合评价鱼腥草不同部位的质量。建立鱼腥草不同部位的HPLC指纹图谱,通过相似度评价、化学模式识别及熵权TOPSIS法对其化学成分进行差异性研究,并对其质量标志物(槲皮苷)进行含量测定。建立的HPLC指纹图谱中鱼腥草药材及其茎叶均确定了8个共有峰,指认了其中6个成分;聚类分析(CA)和主成分分析(PCA)结果表明鱼腥草叶和茎的质量差异大,叶和药材的质量较接近;偏最小二乘法-判别分析(OPLS-DA)发现4种成分是造成不同批次样品差异性的主要标志物;熵权TOPSIS法分析显示同批次鱼腥草药材与其茎叶既有相关性也有差异性,且四川产地的鱼腥草药材质量较佳;含量测定结果显示,同批次鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎。鱼腥草不同部位HPLC指纹图谱存在显著差异。该方法可反映鱼腥草不同部位质量差异性,为鱼腥草药材的质量控制及资源开发利用提供参考。关键词: 鱼腥草; 不同部位; 化学模式识别; 熵权TOPSIS法; 槲皮苷中药特征图谱是中药整体性的化学表征,在中药质量评价方面应用广泛。化学模式识别分析包括聚类分析和主成分分析等,是用于揭示隐含于化学测量数据内部规律的一种多元分析技术,已被广泛应用于中药材及中药制剂的质量评价。逼近理想解排序法(TOPSIS)是一种多指标决策法,利用各方案与理想方案和负理想方案的欧式距离来度量方案优劣,使得属性与其效用之间呈线性变化关系,同时将多个评价指标进行合理赋权得到一个综合指标,把多维问题转化为一维问题,有效地排除主观因素的影响,明显提高多目标决策分析的科学性和准确性。笔者利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位指纹图谱进行质量评价,同时运用熵权TOPSIS法对鱼腥草不同部位的槲皮苷含量进行综合排序评价,旨在全面反映鱼腥草药材及其不同部位化学成分差异,为鱼腥草药材的合理应用和资源开发提供一定的数据支撑。本文摘选自《化学分析计量》202302期,有部分改动1 主要实验部分1.1 色谱条件色谱柱:Phenomenex Luna C18柱(250 mm × 4.6 mm,5 μm,美国Phenomenex公司);流动相:A相为乙腈,B相为0.1%磷酸水溶液;洗脱方式:梯度洗脱;洗脱程序:0~10 min时,A相体积分数由6%逐渐增加至8%,10~35 min时,A相体积分数由8%逐渐增加至27%,35~37 min时,A相体积分数由27%逐渐下降至6%,37~40 min时,A相体积分数为6%;流动相流量:1.0 mL/min;柱温:30 ℃;检测波长:0~25 min时为326 nm,25~40 min时为254 nm;进样体积:10 μL。1.2 溶液配制(1)混合对照品溶液。分别精密称取新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷对照品适量,置于同一只5 mL容量瓶中,加入90%甲醇溶液溶解并定容至标线,配制成新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷的质量浓度分别为7.492 6、7.443 4、7.198 5、9.185 0、8.817 1、7.960 3 μg/mL的混合对照品溶液。(2)鱼腥草药材样品溶液。取鱼腥草药材样品粉末(过4#筛)约0.5 g,精密称定,置于具塞锥形瓶中,精密加入90%甲醇溶液25 mL,称定质量,超声(功率300 W,频率40 kHz)处理30 min,取出,放冷,再称定质量,用90%甲醇溶液补足减失的质量,摇匀,滤过,即得。1.3 实验方法利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位各特征峰进行化学模式识别分析。2 主要结果与讨论2.1 HPLC指纹图谱的建立取18批鱼腥草药材、茎和叶样品,制备样品溶液,按色谱条件进样测定,记录色谱图。将采集到的HPLC色谱图导入中药色谱指纹图谱相似度评价系统(2012版)软件进行匹配,分别生成对照指纹图谱R1、R2和R3。2.2 化学模式识别分析2.2.1 聚类分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”(各共有峰峰面积占共有峰总面积的比例)作为变量进行聚类分析。2.2.2 主成分分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行主成分分析,分析结果与主成分因子载荷矩阵分别见下表,得分图如图所示。以特征值大于1为提取标准提取主成分,提取出前2个主成分,对总方差的累积贡献率达72.782%,表明提取的2个主成分能基本反映全部指标的信息。主成分1的特征值为4.043,方差贡献率为50.533%,载荷(绝对值)较高的峰有新绿原酸、绿原酸、隐绿原酸、金丝桃苷、槲皮苷,表明这5个成分主要反映主成分1的信息;主成分2的特征值为1.780,方差贡献率为22.249%,载荷(绝对值)较高的峰有峰4、芦丁、峰7,表明这3个成分主要反映主成分2的信息。由主成分得分图可以看出药材和叶基本聚为一类,茎单独聚为一类,与聚类分析结果一致。表 18批鱼腥草药材、茎、叶的主成分分析结果表 18批鱼腥草药材、茎、叶的主成分因子载荷矩阵注:“-”代表方向。图 18批鱼腥草药材、茎、叶的主成分得分图2.3.3 正交偏最小二乘法-判别分析正交偏最小二乘法判别分析(OPLS-DA)是一种与主成分有关的统计学方法,将数据降维后建立回归模型并对结果进行判别分析。模型通过Y轴累积解释率(R2Ycum)、模型累积预测率(Q2cum)建立模型参数,R2Ycum与Q2cum值差距越小且接近1,表示模型效果越好。采用SIMCA 14.1软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行OPLS-DA分析,结果如图所示。由模型参数可知,数据矩阵的模型解释率R2Ycum=0.82,模型预测参数Q2cum=0.57,均大于0.50,表明该数学模型稳定可靠。54批样品可分成2类,鱼腥草的茎单独聚为一类,药材和叶聚为一类。以VIP值大于1为提取标准,结果表明,槲皮苷、隐绿原酸、峰4和芦丁是影响分类的主要标志性成分。文献研究表明鱼腥草中黄酮类成分具有杀菌、祛痰、止咳等作用,因此选择槲皮苷作为鱼腥草的质量标志物,对18批鱼腥草药材、茎、叶样品进行含量测定。图 18批鱼腥草药材、茎、叶的OPLS-DA分析得分图图 OPLS-DA分析VIP值2.5 熵权TOPSIS法分析对18批鱼腥草药材不同部位HPLC指纹图谱中各共有峰的峰面积进行熵权TOPSIS法分析,依次建立各样品的初始决策矩阵、标准化决策矩阵,计算得到各项指标的熵值Ej=(1.522、1.822、1.892、2.022、2.012、1.912、1.883、1.856);权重wj=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123);根据加权决策矩阵得到最优方案Zj+=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123),最劣方案Zj-均为0。计算18批鱼腥草药材不同部位与最优方案的距离(D+)、与最劣方案的距离(D-)及最优解的欧氏贴近度(Ci)。D+越小、D-越大、Ci越大,则被评价样品越优。18批药材、茎、叶的Ci平均值分别为0.159、0.063、0.300,提示叶的质量最优,药材次之,茎最差。质量排序:鱼腥草药材前三位的分别是H4、H5、H1,茎前三位的分别是S4、S5、S6,叶前三位的分别是L4、L1、L5,不同产地鱼腥草样品存在较大差异,可为优良药材资源的进一步研究与开发提供参考。3 结论笔者通过建立鱼腥草不同部位HPLC特征图谱,结合化学识别模式和熵权TOPSIS法分析鱼腥草不同部位质量差异。采用HPLC法,从鱼腥草药材、茎和叶的指纹图谱中标识出8个共有峰,通过对照品指认出其中6个成分,分别为新绿原酸、隐绿原酸、绿原酸、芦丁、金丝桃苷、槲皮苷。相似度评价结果表明,18批鱼腥草药材、茎和叶的HPLC指纹图谱与其相应对照指纹图谱的相似度均大于0.85,表明不同批次鱼腥草同一部位的整体质量较为稳定;通过聚类分析、主成分分析、正交偏最小二乘法判别分析明确各化学成分的富集部位及影响分类的主要标志性成分,可用于评价鱼腥草药材的整体质量及茎、叶各部位的质量差异;含量测定结果表明同一批鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎;熵权TOPSIS法确定了鱼腥草中8个共有峰的权重,根据Ci值对不同部位的鱼腥草样品进行排序,可实现对鱼腥草整体质量控制以及优质种源筛选。建立的鱼腥草药材及其不同部位HPLC指纹图谱检测方法稳定可靠,通过化学模式识别和熵权TOPSIS法,对鱼腥草药材及其不同部位的HPLC指纹图谱进行分析评价,可全面、综合、系统地对样本进行质量评价和差异分析,从而比较不同部位的化学成分差异,明确化学成分的分布规律,为鱼腥草药材的质量控制和临床应用提供数据支持。引用本文: 潘玲,施文婷,张兰兰,等 . 基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异[J]. 化学分析计量,2023,32(2):6. (PAN Ling, SHI Wenting, ZHANG Lanlan, et al. Analysis of the differences of Houttuynia cordata with different parts based on chemical pattern recognition and entropy TOPSIS method[J]. Chemical Analysis and Meterage, 2023, 32(2): 6.)通讯作者:陈丹燕,本科,研究方向:中药配方颗粒制备工艺与质量标准研究基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)中图分类号: O657.7文章编号:1008-6145(2023)02-0006-07本文来源:“ 化学分析计量”微信公众号
  • 2018年第一批拟立项国标项目公示 色谱方法抢眼
    p & nbsp  近日,国标委发布2018年第一批国家标准制修订计划(请见附件),公示日期至2018年1月17日止。本次制修订计划共365项,涉及范围覆盖家具、建材、生物制品、化工燃料、水质、化学品等样品。值得注意的是,本次公布的制修订计划中涉及的分析仪器方法包括液相色谱、气相色谱、离子色谱等色谱方法,且其中一项方法为大连依利特分析仪器有限公司起草。 br/ /p p   仪器信息网不完全统计,本次公示的365项拟立项项目中共包括28项仪器相关分析方法,其中色谱方法或色谱仪器、耗材相关标准共12项,包括《气相色谱仪测试用标准色谱柱》、《实验室气相色谱仪》、《高效液相色谱仪》等,其中《高效液相色谱仪》的起草单位为大连依利特分析仪器有限公司。除色谱方法外,微波消解法、原子荧光法、ICP/MS法、气相色谱-质谱法、数字PCR仪法、流式细胞分析法也是本次公示项目中的分析方法。具体仪器分析方法如下: /p table width=" 600" cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td width=" 31%" valign=" middle" align=" center" p strong 方法名称 /strong /p /td td width=" 49%" valign=" middle" align=" center" p strong 涉及主要仪器方法 /strong /p /td td width=" 19%" valign=" middle" align=" center" p strong 制修订 /strong /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC8CA18DEE05397BE0A0A95A7" target=" _blank" 塑料材料中六价铬含量的测定 /a /p /td td width=" 49%" p 微波消解法、分光光度法和LC-ICP/MS法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC8C918DEE05397BE0A0A95A7" target=" _blank" 塑料材料中汞含量的测定 /a /p /td td width=" 49%" p 微波消解法、原子荧光法、ICP/MS法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p 塑料材料中铅含量的测定 /p /td td width=" 49%" p 灰化法、微波消解法、ICP/MS法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2F518DEE05397BE0A0A95A7" target=" _blank" 动植物中角鲨烯含量的测定 /a /p /td td width=" 49%" p 气相色谱仪 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2F618DEE05397BE0A0A95A7" target=" _blank" 植物中绿原酸类物质的测定 高效液相色谱法 /a /p /td td width=" 49%" p 高效液相色谱法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC38218DEE05397BE0A0A95A7" target=" _blank" 气相色谱仪测试用标准色谱柱 /a /p /td td width=" 49%" p 范围:适用于气相色谱仪测试用标准色谱柱。 主要技术内容:术语、分类、填充柱要求、空心柱要求、以及色谱柱的运输和贮存环境试验要求等。 & nbsp & nbsp 本标准代替GB/T 30430-2013 《气相色谱仪用标准色谱柱》,GB/T & nbsp & nbsp 30430-2013相比主要技术变化如下: ——增加填充材料要求; ——增加制备色谱柱程序等。 /p /td td width=" 19%" p 修订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC47A18DEE05397BE0A0A95A7" target=" _blank" 塑料材料中镉含量的测定 /a /p /td td width=" 49%" p 灰化法、微波消解法、ICP/MS法 /p /td td width=" 19%" p 制定 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC7C318DEE05397BE0A0A95A7" target=" _blank" 实验室气相色谱仪 /a /p /td td width=" 49%" p 本标准适用于实验室气相色谱仪。 本标准规定了实验室气相色谱仪的术语和定义、分类、要求、试验方法、检测规则、标志、包装、运输及贮存。 & nbsp & nbsp 相对于GB/T 30431-2013,本次修订增加了实验室气相色谱仪相关术语及定义、增加数字流量计及检测器等单元部件测试方法及指标。 /p /td td width=" 19%" p 修订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC6C018DEE05397BE0A0A95A7" target=" _blank" 微生物源抗生素类次生代谢产物抗细菌活性测定 抑菌圈法 /a /p /td td width=" 49%" p 抑菌圈 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC79018DEE05397BE0A0A95A7" target=" _blank" 细胞计数方法-流式细胞测定法 /a /p /td td width=" 49%" p 流式细胞仪 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC79118DEE05397BE0A0A95A7" target=" _blank" 细胞纯度测定方法-流式细胞测定法 /a /p /td td width=" 49%" p 流式细胞仪 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2B718DEE05397BE0A0A95A7" target=" _blank" 高效液相色谱仪 /a /p /td td width=" 49%" p 本标准适用于高效液相色谱仪。 本标准规定了高效液相色谱仪的术语和定义、组成和原理、性能参数、技术要求、试验方法、检测规则、标志、包装、运输及贮存。 & nbsp & nbsp 相对于GB/T26792-2011,本次修订增加了高效液相色谱仪相关术语及定义、更新恒流泵及检测器等单元部件测试方法及指标。 /p /td td width=" 19%" p 修订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC3D518DEE05397BE0A0A95A7" target=" _blank" 微生物恒量基因残留测定 微滴数字PCR法 /a /p /td td width=" 49%" p 数字PCR法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC37018DEE05397BE0A0A95A7" target=" _blank" 消费品中致敏性芳香剂的快速检测方法 /a /p /td td width=" 49%" p 气相色谱-质谱法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2EB18DEE05397BE0A0A95A7" target=" _blank" 微生物超低频突变测定 双重测序法 /a /p /td td width=" 49%" p DNA测序仪 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF2718DEE05397BE0A0A95A7" target=" _blank" 壳聚糖含量测定 高效液相色谱法 /a /p /td td width=" 49%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF2718DEE05397BE0A0A95A7" target=" _blank" 高效液相色谱法 /a /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBD7D18DEE05397BE0A0A95A7" target=" _blank" 动物源性I型胶原蛋白成分测定 聚丙烯酰胺凝胶电泳法 /a /p /td td width=" 49%" p 凝胶电泳法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBD7E18DEE05397BE0A0A95A7" target=" _blank" 虾青素旋光异构体含量的测定 液相色谱法 /a /p /td td width=" 49%" p 液相色谱法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBD7F18DEE05397BE0A0A95A7" target=" _blank" DHA、EPA含量测定 气相色谱法 /a /p /td td width=" 49%" p 气相色谱法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DABB618DEE05397BE0A0A95A7" target=" _blank" 再生水水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 /a /p /td td width=" 49%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DABB618DEE05397BE0A0A95A7" target=" _blank" 分光光度法 /a /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DB3D618DEE05397BE0A0A95A7" target=" _blank" 水溶性染料产品中氯化物的测定 /a /p /td td width=" 49%" p 离子色谱法 /p /td td width=" 19%" p 修订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DB5B218DEE05397BE0A0A95A7" target=" _blank" 药品稳定性试验箱能效测试方法 /a /p /td td width=" 49%" p 范围:单相额定电压不超过250V、三相额定电压不超过440V的药品稳定试验箱。 主要技术内容: 1)能效测试条件,包括温度、湿度、大气压力、水温等。 2)试验工况,规定箱内测温方法、温度值、试验时间等。 3)能效计算方法,规定能效指数的计算公式等。 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DA96C18DEE05397BE0A0A95A7" target=" _blank" 木家具中挥发性有机物 现场快速检测方法 /a /p /td td width=" 49%" p VOC快速分析仪 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DA96D18DEE05397BE0A0A95A7" target=" _blank" 染料产品中多氯联苯的限量及测定 /a /p /td td width=" 49%" p 气相色谱-质谱法和气相色谱法-电子捕获检测器 /p /td td width=" 19%" p 修订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DAB9718DEE05397BE0A0A95A7" target=" _blank" 再生水水质 苯系物的测定 气相色谱法 /a /p /td td width=" 49%" p 气相色谱法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DA19518DEE05397BE0A0A95A7" target=" _blank" 胶乳制品表面残余矿物粉末的快速鉴别 X-射线衍射法 /a /p /td td width=" 49%" p X-射线衍射法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9D9EA418DEE05397BE0A0A95A7" target=" _blank" 胶辊表观硬度的测定 橡胶国际硬度计法 /a /p /td td width=" 49%" p 硬度计法 /p /td td width=" 19%" p 制订 /p /td /tr tr td width=" 31%" h4 span style=" font-family: 宋体, SimSun " 纸、纸板和纸制品 烷基苯酚聚氧乙烯醚类的测定(高效液相色谱质谱法) /span /h4 /td td width=" 49%" p 高效液相色谱质谱仪 /p /td td width=" 19%" p 制订 /p /td /tr /tbody /table p   除上述仪器分析方法之外,生物产品方法标准也值得关注,仪器信息网不完全统计,本次公示的方法中涉及生命科学领域的标准为23项,且均为新制定项目,涵盖琼脂糖、植物激素等样品。具体项目如下: /p p br/ /p table width=" 600" cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td width=" 77%" p style=" text-align:center " strong 方法名称 /strong /p /td td width=" 22%" p style=" text-align:center " strong 制修订 /strong /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC7B818DEE05397BE0A0A95A7" target=" _blank" 植物激素类次生代谢产物的生物活性测定 细胞学评价法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC4C018DEE05397BE0A0A95A7" target=" _blank" 植物转基因成分测定 目标序列测序法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC58818DEE05397BE0A0A95A7" target=" _blank" 工业微生物菌株生长表型测定 微液滴浊度法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2F018DEE05397BE0A0A95A7" target=" _blank" 实验动物 小鼠、大鼠品系命名规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC21918DEE05397BE0A0A95A7" target=" _blank" 微生物源抗生素类次生代谢产物杀线虫活性测定 浸虫法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC25918DEE05397BE0A0A95A7" target=" _blank" 基因表达测定 蛋白印迹法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC6C018DEE05397BE0A0A95A7" target=" _blank" 微生物源抗生素类次生代谢产物抗细菌活性测定 抑菌圈法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC79118DEE05397BE0A0A95A7" target=" _blank" 细胞纯度测定方法-流式细胞测定法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC79018DEE05397BE0A0A95A7" target=" _blank" 细胞计数方法-流式细胞测定法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBE2318DEE05397BE0A0A95A7" target=" _blank" 生物产品中光合细菌测定 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBDB118DEE05397BE0A0A95A7" target=" _blank" 琼脂糖分离介质 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBDB318DEE05397BE0A0A95A7" target=" _blank" 生物产品降解杂环类农药功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC3D518DEE05397BE0A0A95A7" target=" _blank" 微生物恒量基因残留测定 微滴数字PCR法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DC2EB18DEE05397BE0A0A95A7" target=" _blank" 微生物超低频突变测定 双重测序法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF0418DEE05397BE0A0A95A7" target=" _blank" 生物产品去除重金属功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF1C18DEE05397BE0A0A95A7" target=" _blank" 蛋白质致敏性细胞学评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF2718DEE05397BE0A0A95A7" target=" _blank" 壳聚糖含量测定 高效液相色谱法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBED618DEE05397BE0A0A95A7" target=" _blank" 生物产品降解有机磷类农药功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBED818DEE05397BE0A0A95A7" target=" _blank" 生物产品降解芳香胺类污染物功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBED918DEE05397BE0A0A95A7" target=" _blank" 生物产品降解植物纤维素功效 评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBD7618DEE05397BE0A0A95A7" target=" _blank" 生物产品清洗去污功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBD7D18DEE05397BE0A0A95A7" target=" _blank" 动物源性I型胶原蛋白成分测定 聚丙烯酰胺凝胶电泳法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DB4CE18DEE05397BE0A0A95A7" target=" _blank" 色素中生物毒素检测 胶体金快速定量法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBEFF18DEE05397BE0A0A95A7" target=" _blank" 生物产品降解表面活性剂功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DBF0018DEE05397BE0A0A95A7" target=" _blank" 生物产品降解酚类污染物功效评价技术规范 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr tr td width=" 77%" valign=" top" p a href=" http://www.std.gov.cn/gb/search/gbDetailed?id=5DDA8B9DA87518DEE05397BE0A0A95A7" target=" _blank" 微生物源抗生素类次生代谢产物抗真菌活性测定 菌丝生长速率法 /a /p /td td width=" 22%" valign=" top" p 制订 /p /td /tr /tbody /table p & nbsp & nbsp 附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/61a66f3b-351b-4416-aa46-e7b82b2133f8.docx" 365项拟立项国家标准项目.docx /a /p p br/ /p
  • 日本拟颁布新的矿泉水分类方法
    日本拟颁布新的矿泉水分类方法   2013年10月9日,日本厚生劳动省发布G/SPS/N/JPN/323号通报,拟将原来的矿泉水分为两种类型,一种是非无菌或非过滤无菌型矿泉水,另一种是无菌或过滤无菌型矿泉水。并将于近期确定每种类型矿泉水源水所含的各种成份参数。该通报的评议截止期为2013年12月8日,截止期后将尽快批准发布,并于一定宽限期后生效。   修订详细内容见:http://members.wto.org/crnattachments/2013/sps/JPN/13_4028_00_e.pdf
  • 锂离子电池电化学测量方法分类介绍
    p    strong 1 稳态测量 /strong /p p   1.1 稳态过程与稳态系统的特征 /p p   一个电化学系统,如果在某一时间段内,描述电化学系统的参量,如电极电势、电流密度、界面层中的粒子浓度及界面状态等不发生变化或者变化非常微小,则称这种状态为电化学稳态。 /p p   稳态不等同于平衡态,平衡态是稳态的一个特例。同时,绝对的稳态是不存在的,稳态和暂态也是相对的。稳态和暂态的分界线在于某一时间段内电化学系统中各参量的变化是否显著。 /p p   1.2 稳态极化曲线的测量方法 /p p   稳态极化曲线的测量按照控制的自变量可分为控制电流法和控制电势法。 /p p   控制电流法亦称之为恒电流法,恒定施加电流测量相应电势。控制电势法亦称之为恒电位法,控制研究电极的电势测量响应电流。 /p p   本质上恒电流法和恒电势法在极化曲线的测量方面具有相同的功能,如果电化学体系中存在电流极大值时选择恒电势法,存在电势极大值时选择恒电流法。 /p p   1.3 稳态测量方法的应用 /p p   稳态极化曲线是研究电极过程动力学最基本的方法,在电化学基础研究方面有着广泛的应用。可根据极化曲线判断反应的机理和控制步骤 可以测量体系可能发生的电极反应的最大反应速率 可以测量电化学过程中的动力学参数,如交换电流密度、传递系数、标准速率常数和扩散系数等 可以测定Tafel 斜率,推算反应级数,进而获取反应进程信息 此外,还可以利用极化曲线研究多步骤的复杂反应,研究吸附和表面覆盖等过程。 /p p    strong 2 暂态测量 /strong /p p   2.1 暂态过程与暂态系统的特征 /p p   暂态是相对稳态而言的,随着电极极化条件的改变,电极会从一个稳态向另一个稳态转变,在此期间所经历的不稳定的、电化学参量显著变化的过程称之为暂态过程。 /p p   暂态过程具有如下基本特征:①存在暂态电流——该电流由双电层充电电流和电化学反应电流组成,前者又称之为非法拉第电流或电容电流,后者常常称之为法拉第电流 ②界面处存在反应物与产物粒子的浓度梯度——即电极/溶液界面处反应物与产物的粒子浓度,如前所述,不仅是空间位置的函数,同时也是时间的函数。 /p p   2.2 暂态过程中的等效电路分析及其简化 /p p   由于暂态过程中的各参量是随时间变化的,与稳态过程比较,更为复杂。为便于分析和讨论,将各电极过程以电路元件组成的等效电路的形式来描述电极过程,等效电路施加电流后的电压响应,应与电极过程的电流电压响应一致。典型的两电极测量体系等效电路如图 5 所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a705964b-ec79-49be-86a2-0967442f14c9.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 5 两电极体系电解池的等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.5 Equivalent circuit of two electrode system /span /p p   图 5 中,A 和 B 分别代表研究电极和辅助电极(两电极体系),R A 和 R B 分别表示研究电极和辅助电极的欧姆电阻,C AB 表示两电极之间的电容,R u表示两电极之间的溶液电阻,C d 和 C d & #39 分别表示研究电极和辅助电极的界面双电层电容,Z r 和 Z r & #39 分别表示研究电极和辅助电极的法拉第阻抗。 /p p   若 A、B 均为金属电极,则 R A 和 R B 很小,可忽略 由于两电极之间的距离远大于界面双电层的厚度,故 C AB 比双电层电容 C d 和 C d & #39 小得多,当溶液电阻 R u 不是很大时,由 C AB 带来的容抗远大于 R u ,故C AB 支路相当于断路,可忽略 此外,若辅助电极面积远大于研究电极面积,则 C d & #39 远大于 C d ,此时,C d & #39 容抗很小,相当于短路,故等效电路(图 5)最终可简化为如图 6 所示。这相当于在电池中一个电极的电阻很小时的情况,如采用金属锂负极的两电极电池。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/29358b29-15c6-41d9-a13a-a6df8af6f153.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 6 两电极体系电解池的简化电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.6 Simplified circuit of two electrode system /span /p p   由于电极过程的多步骤和复杂性,不同速率控制步骤下,电极体系的等效电路不尽相同,有时可以进一步简化,常见的有如下三种情形。 /p p   (1)传荷过程控制下的等效电路 /p p   暂态过程中由于暂态电流的作用使得电极溶液界面处存在双电层充电电流,该双电层类似于平行板电容器,可用 C d 表示,相应的充电电流的大小用i c 来表示。此外,界面处还存在着电荷的传递过程,电荷的传递过程可用法拉第电流来描述,由于电荷传递过程的迟缓性,导致法拉第电流引起了电化学极化过电势,该电流-电势的关系类似于纯电阻上的电流-电势关系,因而电荷传递过程可以等效为一个纯电阻响应,用 R ct 表示。由于传荷电阻两端的电压是通过双电层荷电状态的改变而建立起来的,因而,一般认为 R ct 与 C d 在电路中应属于并联关系,传荷过程控制下的简化等效电路如图 7 所示。需要指出的是,这一简化模型基于传统电化学体系,锂离子电池中,电极在多数状态下。大量电荷存储在电极内,造成电容效应,可以称之为化学电容 C chem ,与C dl 应该是串联关系。在实验上与 R ct 并联显示在阻抗谱半圆上的到底应该是电双层电容还是化学电容还是两种电容之和取决于哪一个电容值更低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4da71da6-e74d-48c7-baa1-c8b81d1d0072.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 7 传荷过程控制下的界面等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.7 Equivalent circuit of interface under the conditionof charge transfer /span /p p   (2)浓差极化不可忽略时的等效电路 /p p   暂态过程中,对于惰性电极,由于电极/溶液界面处存在暂态电流,因此开始有电化学反应的发生,界面处不断发生反应物消耗和产物积累,开始出现反应物产物浓度差。随着反应的进行,浓度差不断增大,扩散传质过程进入对流区,电极进入稳态扩散过程,建立起稳定的浓差极化过电势,由于浓差极化过电势滞后于电流,因此电流-电势之间的关系类似于一个电容响应。可以用一个纯电阻 R w 串联电容 C w 表示。该串联电路可用半无限扩散模型来模拟,如图 8 所示。这种情况在电池中也会经常出现。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/963f9efd-7c04-4fb1-853d-a76ccf60a7c3.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 8 半无限扩散阻抗等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.8 Impedance equivalent circuit of semi-infinitidiffusion /span /p p   上述 R w 和 C w 的串联结构可用一个复数阻抗 Z w来表示,Z w 可理解为半无限扩散阻抗。由于扩散传质过程和电荷传递过程同时进行,因而两者具有相同的电化学速率,在电路中应属于串联关系。一般在阻抗谱上表现为 45 o 的斜线。在锂离子电池中,取决于电极材料颗粒尺寸的大小和孔隙率的大小,锂离子在电极材料内部的扩散或者在电极层颗粒之间的孔隙或者含孔颗粒内电解质相的扩散成为控制步骤。由于存在边界条件约束,往往显示出有限边界条件下的扩散。在浓差极化不可忽略的情形下,可以如图 9 所示。有限边界条件下扩散的等效电路元件只是将 Z w 换为相应的等效电路扩散元件。 /p p   (3)溶液电阻不可忽略时的界面等效电路 /p p   当溶液电阻不可忽略时,由于极化电流同时流经界面和溶液,因而溶液电阻与界面电阻应属于串联关系,典型的浓差极化不可忽略、溶液电阻不可忽略时的等效电路如图 10 所示。在锂离子电池中,由于是多孔粉末电极,有时电极的欧姆电阻也不可忽略,与电解质电阻是串联关系,一般合并在一项中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0ae51846-5fa6-44f0-a26d-d5dd6b3603ba.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 9 浓差极化不可忽略时的界面等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.9 Equivalent circuit of interface under the conditionof concentration polarization /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/ac8e06da-7dd5-42e8-a1de-5cbca2510e05.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span br/ /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图 10 包含 4 个电极基本过程的等效电路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   Fig.10 Equivalent circuit including four basic electrodeprocess /span /p p   2.3 暂态测量方法的分类及其特点 /p p   暂态过程测量方法按照自变量的控制方式可分为控制电流法和控制电势法 按照自变量的给定方式可分为阶跃法、方波法、线性扫描法和交流阻抗法。用暂态测量能比稳态测量给出更多的电化学参量信息。一般来说,暂态测量法具有如下特点:①暂态法可以同时测量双电层电容 C d 和溶液电阻 R u ②暂态法能够测量电荷传递电阻 R ct 。因此,能够间接测量电化学过程中标准速率常数和交换电流的大小 ③暂态法可研究快速电化学反应,通过缩短极化时间,如以旋转圆盘电极代替普通电极,并加快旋转速度,可以降低浓差极化的影响,当测量时间小于 10 ?5 s 时,暂态电流密度可高达 10 A/cm 2 ④暂态法可用于研究表面快速变化的体系,而在稳态过程中,由于反应产物会不断积累,电极表面在反应时不断受到破坏,因而类似于电沉积和阳极溶解过程,很难用稳态法进行测量 ⑤暂态法有利于研究电极表面的吸脱附结构和电极的界面结构,由于暂态测量的时间非常短,液相中的杂质粒子来不及扩散到电极表面,因而暂态法可用于研究电极反应的中间产物和复杂的电极过程。 /p p   以上两小节介绍的内容主要适用于传统的电化学体系,氧化还原反应发生在电极表面,电极为惰性电极,电解质为稀浓度电解质,更详细准确的描述参见电化学的教科书。锂电池与传统电化学测量体系显著不同之处是氧化还原反应发生在电极内部而非电极表面,离子的扩散、电荷转移,相变可以发生在电极内部。锂电池的电极一般是非均相多孔粉末电极,孔隙之中存在着电解液,电解液中离子的浓度达到 1 mol/L 甚至更高, 这些不同导致获得可靠的锂离子电池电极过程动力学参数非常困难。而锂空气电池的研究涉及到多种中间产物的分析,圆盘电极和环盘电极等暂态测量被广泛应用。 /p p span style=" color: rgb(127, 127, 127) " i   文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类
    肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高光谱图像数据立方体,可以构建区分新鲜肉类和非新鲜肉类的预测模型,这可以成为肉类储存状态常规分析的快速、非侵入性方法。安装在暗室中的高光谱数据采集系统的配置示意图基于此,来自首尔大学的研究人员使用Resonon Pika L 高光谱成像仪,在近红外光谱的400-1000 nm波段内获取高光谱图像数据立方体,进行了相关研究。在本研究中,图像采集系统安装在暗室中,以确保完全消除外部光并能够采集高光谱图像。将九个样本同时放置在哑光黑色板上,通过移动相机获取高光谱图像数据立方体。所有样品均经过光学稳定处理,在采集高光谱数据之前将它们置于实验环境中 20 分钟,消除由肌红蛋白/氧肌红蛋白含量差异引起的巧合差异。随后,通过分离红色肉部分,从高光谱数据立方体中提取了(ROI)的光谱,确保了只有红色部分肉的光谱被提取用于分析。这个过程产生了高质量的数据集,适用于后续的分析和解释。使用四种预处理技术(MSC、SNV转换、一阶Savitzky–Golay滤波和最小-最大归一化)对提取的光谱进行模型开发。本研究获取的高光谱数据立方体中的光谱图像。(a–c) 分别为“新鲜”、“受损”和“冷冻”样品的 630–650 nm 平均图像;(d-f)分别为“新鲜”、“受损”和“冷冻”样品的 540-560 nm 平均图像。用于构建肉样本分类模型的高光谱数据立方体中的光谱。(a) 实验数据的完整光谱;(b) 每个实验组的平均光谱(实线)以及加减标准差后的光谱(虚线)。研究结论这篇文章研究了使用NIR高光谱成像仪,对牛肉进行分类,区分其“新鲜”、“受损”和“冷冻”状态。通过将韩国产牛肉样品划分为新鲜冷藏、长期冷藏和解冻状态,共获得了九个高光谱图像数据立方体,并通过滴水损失测试定量分析了牛肉样品的状况。本研究共收集了4950个光谱图像,将其80%用作训练集,20%用作测试集。在构建机器学习模型时,使用了四种预处理方法,包括MSC和SNV用于校正,Savitzky-Golay 1st滤波器用于平滑,Min-Max用于归一化,以及原始数据,共准备了五个数据集。采用PLS-DA和SVM技术构建模型,其中SVM模型使用了四个核函数。评估模型性能时,准确性是主要指标,同时对“新鲜”类别的F1分数进行了估计,以独立验证生鲜肉分类的性能。测试集的准确率在几乎所有模型中都超过90%,主要错误是由于未能正确区分“受损”和“冻结”类别。具有散点校正和RBF核函数的SVM模型表现最佳,其准确度达到96.57%,“新鲜”类别的F1分数为100%。研究结果表明,通过纯化高光谱图像数据立方体筛选的光谱可以构建一个预测模型,用于区分新鲜肉和非新鲜肉。这些模型在未来的实际肉类采购场所中具有可行性。
  • 国标《实验室仪器及设备分类方法》将于11月1日起正式实施 仪器信息网为主要起草人之一
    仪器信息网讯 2021年4月30日,由全国实验室仪器及设备标准化委员会归口上报及执行的国家标准《实验室仪器及设备分类方法》(标准号:GB/T40024-2021)已发布,将于2021年11月1日起正式实施,该标准的主管部门为中国机械工业联合会。此外,该标准为首次发布。  实验室仪器和设备分类涉及交叉学科和诸多应用领域,该标准确认的实验室仪器和设备分类方法基于对象、属性、特征、概念和概念系统理论,以及实验室工作和管理的实践和思考。  考虑标准化工作指导性原理的趋势,该标准旨在通过实验室设备核心要素的标准化,以期提供通用的思维方法,以及如何利用这种思维为从事实验室工作和管理的组织或个人提供帮助。此外,该标准适用于预期应用为实验室分析、测试、计量、检定、观测、检查、诊断、操作和控制等的仪器和设备(实验室仪器和设备,适用时简称设备)及其专属零部件,不包括常规的器具和实物量具,如实验室家具、玻璃器皿、消耗品、量具或标准物质。  仪器信息网(北京信立方科技发展股份有限公司)作为主要起草单位之一,参与并起草了该标准。  标准将于公开发布后20个工作日内公开。后续请关注仪器信息网进行资料下载。
  • 美国出口管制科学仪器技术分类研究
    美国出口管制科学仪器技术分类研究 陈 芳1 王学昭**,1,2 刘细文1,2 王燕鹏1 吴 鸣***,1,2 (1.中国科学院文献情报中心,北京100190;2.中国科学院大学经济与管理学院图书情报与档案管理系,北京100190) 摘 要:在中美贸易冲突的背景下,美国为首的发达国家以立法形式限制关键核心技术向我国出口,美国出台的《商业管制清单》等文件包含了大量对技术、设备和产品的出口限制,涉及重要的科学仪器及其相关的零部件。本文以美国“两用”物品的商业管制清单(The Commercen Control List,CCL )为分析对象,以中国科学仪器分类为标准,将 CCL中的内容与国内科学仪器的分类进行对 比。通过对 CCL的计量分析,揭示发现中国科学仪器领域相关技术受美国管制的形势非常严峻, 有 42.08%的清单条款涉及对科学仪器的管制。在十二个科学仪器的分类中,分析仪器、工艺实验设备、电子测量仪器等是受管制范围较广的领域,激光器、核仪器是传统受到管制的领域,医学诊断仪器、大气探测仪器等受管制范围较小。在分析的基础上为我国科学仪器的发展提出了分类应对、 坚定走自主研发道路等建议。 关键词:出口管制;商业管制清单;科学仪器;文本挖掘;自然语言处理 科学仪器是指科学技术上用于检查、测量、控 制、分析、计算和显示被测对象的物理量、化学量、 工程量和生物量等性质的器具或装置[1]。科学仪器是认识世界的工具,是提高人类自身和改造世界能力的基础与前提。据不完全统计,诺贝尔 自然科学奖项中,68.4%的物理学奖、74.6%的化 学奖和 90%的生物医学奖的研究成果,是借助各 种先进的科学仪器完成的,或直接与新仪器方法或功能发展相关的[2]。科学仪器产业属于高端制造业,其发展离不开光学、机械、真空、电子、精 加工、材料科学、化学以及软件等众多行业的支撑。科学仪器的应用领域涉及国民经济各个环节,几乎无所不在。科学仪器作为采集信息的源 头,对其他产业的发展具有巨大的“指导”和“带 动”作用。因此,科学仪器的创新及制造和应用水平反映了一个国家的科学技术和工业发展的实力。尽管我国仪器仪表行业发展迅速,但是在高性能、高精度、高灵敏、高稳定、高可靠的科学仪器研发与生产领域,与国际先进水平还存在较大差 距,尤其是受到来自美国等国家的限制[3,4]。中美贸易争端以来,更加剧了这一过程。有报道指出截至2018年,中国约有 1800台核磁共振波谱仪,其中1400多台是一家国外供应商的产品,国内的仅有50台[5]。 美国将科学仪器产业定位为高端制造业、高保密行业和战略性产业,对华科学仪器整机、原料、元器件等出口执行严格的审批制度甚至禁止出口,对我国科学仪器的购置与发展产生了不少负面影响。近年来,美国一方面在“军民两用”的 技术清单———美国商业管制清单(The Commercen Control List,CCL )中更新、添加相关的仪器 设 备[6],另一方面通过添加中国实体机构到实体清 单[7],加大了针对中国“终端用户”禁售的力度。 美国CCL是针对“军民两用”的货物和技术清单,也是针对“高新技术”进行限制的主要工具。目前国内已有一些针对清单的研究,但多数从政策的角度开展,较少深入到具体的领域。在研究方法方面也较少采用计量和聚类等方法。其中,葛晓峰[8]对美国两用物项出口管制法律制度的结构和内容进行了定性介绍。陈峰[9]解析了国外实施技术出口管制的竞争情报含义,从宏观角度分析了应对国外对华技术出口限制的竞争情 报需求和现实意义。南京大学陆天驰等[10]采用 计量方法研究了人工智能技术领域的美国 CCL, 解析了 CCL条目共 2966条,并为我国人工智能领域的发展提出了一些建议。李广建等[11]通过实体识别的技术研究了CCL清单、管制实体清单 (Entities List,EL)等对象,以光刻机为实证研究进行了方法评估,但没有对全部 CCL清单进行解析和物项识别。目前国内的研究中,一方面,针对 CCL量化的研究方法不成体系,在清单的结构化、语义化、本体化的分析方面,还需要进一步的深度挖掘;另一方面,科学仪器是清单包含的非常重要的模块,国内没有专门针对科学仪器管制的专门研究。本文以美国CCL为分析对象,以中国国内的科学仪器分类体系为标准,将 CCL中的内容与国内科学仪器的分类进行对比。采用文本挖掘和自然语言处理方法,对出口管制清单的技术进行了聚类分析,分析了每个科学仪器技术类型中,美国管制的核心技术或技术指标的情况,提供中美技术差距的对比点。对比了美国在科学仪器出口管制的管制力度分布,揭示不同技术类型的科学仪器可能面对的不同的管制现状,为我国科学仪器的自主研发、突破“卡脖子技术”提供参考。1 国内科学仪器技术分类体系 由于科学仪器有属性的多样性,有着不同的分类体系,相互之间存在差异和侧重点[14-17]。例如,根据仪器测试对象的物理性质,可以划分出计量仪器、力学仪器、光学仪器、成份分析仪器、电磁量测仪表、时间和频率测量仪等;根据不同学科或专业用途,可以划分出天文仪器、地球科学仪器、生物科学仪器、农林科学仪器、工业自动化仪器、材料试验机和试验仪器等;根据物理量的测量方法分,可以划分出长度计量仪器、角度计量仪器、面积计量仪器等等。 本文主要参考的技术分类体系主要包括:1) 国家标准 CB/T32847-2016《科技平台大型科学仪器设备分类与代码》(后称国家标准分类体系)[14],2)科技部大型科学仪器设备的技术分类标准(后称科技部分类体系)[16]。 1)国家标准分类体系将科学仪器分为了A 类-通用大型科学仪器设备和B类-专用大型科学仪器设备。A类通用科学仪器设备中又包括了质谱仪、色谱仪、激光器等至少18类科学仪器。B类专用科学仪器中主要以空间与天文科学仪器、大气探测科学仪器、地球科学仪器等13个学科领域为对象的科学仪器。 2)科技部自 2008年起,在全国科研院所和高校开展了大型科学仪器设备的资源调查研究,并 在2013年发布了调研报告。其中,在大型科学仪器设备开放共享目录中对50万元及以上的科学仪器进行了分类,共分为了十四大类,包括:分析仪器、物理性能测试仪器、计量仪器、电子测量仪器、海洋仪器、地球探测仪器、大气探测仪器、天文仪器、医学诊断仪器、核仪器、特种检测仪器、工艺实验设备、激光器、其他仪器。本文将该目录中的仪器名称提取后,形成科学仪器的文本词典,该词典用于对管制清单的文本加工。 上述的分类体系与 CCL中的十大类型(行业类)、五个小类型(商品类)分类的标准都有所不 同。在分析对比中对该分类体系进行了细微的调整。调整的内容如下:一方面科技部分类体系中特种检测仪器数量较少,并且其光电检测仪器、超声检测仪器、电磁检测仪器等在其他类别中已经出现,因此取消了特种检测仪器类别,将里面涉及的种类划分到其他类中;另一方面,将国家标准分类体系中的空间类仪器,合并到天文仪器大类中,这类仪器管制清单中有较多涉及。最终,本文主要涉及的科学仪器的技术类型包括:分析仪器、物理性能测试仪器、计量仪器、电子测量仪器、海洋仪器、地球探测仪器、大气探测仪器、空间与天文仪器、医学诊断仪器、核仪器、工艺实验设备、激光器等12个种类,并作为本文对比分析和映射的分类体系。 2 美国CCL结构 美国的技术管制清单主要由三个部分组成: 1)CCL;2)军用品清单 (United States Munitions List, USML);3)核管理委员会管制目录(Nuclear Regulatory Commission Controls,NRCC)。 其中,CCL是针对“军民两用”的货物和技术进行管制的清单。相对而言,CCL具有最大的体量,涉及军用和民用的各个行业领域,也是针对 “高新技术”进行限制形成技术壁垒的阵地。科学仪器属于民用产品,因此针对科学仪器的出口 管制主要存在于 CCL清单中。 2.1 行业分类(大类) 该清 单 总 共 分 为10个 行 业 类 型 (0~9 Category),每个行业类下面分为5个商品类型 (A~E)。10个行业分类见表 1。 表 1 行业分类及中文翻译2.2 商品分类(小类) 根据商品的类型,分为五个种类 A~E,每个 行业分类原则上分别包含这五个方面的商品,见表2。2 商品分类及中文翻译 2.3ECCN代码体系 ECCN代码是 CCL用来组织和管理清单的一 整套编码体系,例如“3A001”,其主体是五位数字和字母的组合。具体每一位的含义如下。第一位:数字,代表十个行业类,分别从 0~ 9,见表 1; 第二位:为字母,代表五个商品类,分别为 A~E,见表 2; 第三位:数字,代表控制理由,0为国家安全, 1为导弹技术,2为核不扩散,3为生化武器,5为商务部确定的需要国家安全或者外交政策控制的项目,6为“600系列”特殊管制物品,9为反恐、犯罪控制、地区安全、短缺、联合国制裁等。 第四位与第五位:序号编码。2.4科学仪器的条款计量 通过python语言进行数据的分析和处理,共抓取和识别最新版CCL(2020年12月份),全部条款4510条;筛选出科学仪器相关的条款 1898条,占总数的 42.08%。 用清单的十个行业大类和五个商品小类交叉分析,以观察在不同的子区域中科学仪器条款的分布情况(图 2)。条款分布最多的是6A区域,该区域主要是传感器和激光器的“最终产品、设备或零部件”;其次是 2B区域,该区域是材料加工中的“试验、检验和生产设备”;第 3位的区域是3B区域,该区域是电子产品的“试验、检验和生产设备”。总体而言,商品 A类的分布遍及所有的十个行业,主要涉及科学仪器相关的部件、元器件等;商品B类的分布也较为广泛,其中较多的是检测、检验和生产的设备。 图1 科学仪器清单的交叉分布情况3 管制科学仪器的技术分布 将管制的科学仪器清单的条款文本进行聚类分析,选取其中出现频次最高的 Top 200的代表性科学仪器设备绘制成复杂网络图,以观察其分布效果(图 3)。该聚类结果与CCL本身的十大类型有所不同,其结果更为客观地展示了科学仪器本身科学特征的分布。该聚类结果共聚出了十一个类,其对应关系与上文筛选的科学仪器技术分类体系具有较好的对应关系。注:#I类都为检测类分析仪器,虽然算法将其分为了两类,经过人工判读将其合并;#Ⅶ类大气探测仪器,有少量遥测相关的设备,但无入选 Top 200的设备种类;#Ⅸ类医学诊断仪器,清单中未见专门用于该领域的仪器。 图 3 管制科学仪器的聚类分布 从图中可以看出,分布最多的三个类分别是代表分析仪器的Ⅰ类,代表工艺实验设备的Ⅺ 类,和代表电子测量仪器的Ⅳ类。从关联性来 ,这三类都与整个科学仪器的中心区域有高度的关联性。此外,代表激光器的Ⅺ类,虽然节点种类不多,但其节点的数量较大,而且也处于整个科学仪器的中心位置,与其他的科学仪器有较 密切的关联。代表物理性能测试仪器的II类,也 处于这个网络靠近中心的位置。计量仪器的Ⅲ 类、海洋仪器的Ⅴ类、地球勘探仪器的Ⅵ类、空间 与天文仪器Ⅷ类、核仪器Ⅹ类,数量较少,处于网络的边缘。另外,大气勘探仪器由于太少,没有入选 Top 200的仪器种类;医学诊断仪器基本没有明显受管制的种类。 表3展示了国内科学仪器分类和管制仪器聚类结果的对应结果,其中的类别为12类科学仪器分类(见前文),后面列举了各种类的典型仪器和在管制中的对应关系。其中,Ⅰ类分析仪器又分为两个模块,Ⅰ-a为生物类检测仪器、Ⅰ-b为其 他检测仪器。Ⅱ类为物理性能测试仪器,包括声振动试验设备、惯性测量设备等;Ⅲ类为计量仪器,包括典型的磁强计、重力计、尺寸计量系统 等;Ⅳ类为电子测量仪器,包括电子传感器、电 路、网络、通讯等的检测分析仪器;Ⅴ类为海洋仪器,数量和种类都较少,典型的如水下声纳等;Ⅵ 类为地球探测仪器,典型的如勘探设备、地震仪器等;Ⅶ类为大气探测仪器,只有少量的遥测设备受管制,没有入选Top 200;Ⅷ类为空间与天文仪器,这是较大的一类,包括较多与空间技术相关的设备,如陀螺仪、天文罗盘、火箭发动机检测设备等;Ⅸ类为医学诊断仪器,清单中未见明确的、整机呈现的该类型仪器,如果不涉及零部件的话,该类型仪器是不受管制的;Ⅹ类为核仪器,民用的核仪器较少,是一个小类,更多的条款存在于核管制清单中;Ⅺ类为工艺实验设备,是一 个大类,典型的包括各种机床、光刻机、气相沉积、离子注入等设备;Ⅻ类为激光器,聚集效果明显,节点少但技术指标多的一个类型。表 3 管制科学仪器的聚类解析 3.1 分析仪器 根据本文所述分类体系,主要包括生化分离分析仪器、质谱仪、光谱仪、色谱仪、显微镜、图像分析仪、X射线仪、热分析仪、电化学仪、样品前处理和制备仪以及其他设备。在美国出口管制清单中,分析仪器也是种类最多的一类仪器,与国内的分类体系相吻合。在 CCL中,每个大类中都包括了五个小类别,其中一个类别(B类)就是检测设备,多数的分析仪器处于该类型中。最典型的包括微生物检测仪器、化学分析仪器、质谱仪、 图像分析仪、X射线仪等等。然而,显微镜、热分析仪、电化学仪等未见管制的情况。该类型仪器中主要来自国外进口,其中较多来自美国,美国具有明显的技术优势;但其中的质谱仪、化学分析仪器等国产仪器已经开始占据中低端市场,具有较好的发展势头。 3.2 物理性能测试仪器 在本文所述分类体系中,主要包括力学性能测试仪器、光电测量仪器、颗粒度测量仪器、声学振动仪器、大地测量仪器、探伤仪器等。在美国 CCL中,这类仪器设备都受到管制。 3.3 计量仪器 在本文所述分类体系中,主要包括长度计量仪器、电磁学计量仪器、力学计量仪器、热血计量仪器、光学计量仪器、声学计量仪器、电离辐射计量仪器、时间频率计量仪器。在管制清单中并没有明确标记为用于“计量”的仪器或设备。但是也有较多关于“测量”或者用于物理量测量的仪器。如:尺寸检查或测量系统、重力仪、磁强计、水洞、声纳等。 3.4电子测量仪器 在本文所述分类体系中,主要包括通用电子 测量仪器、射频和微波测试仪器、网络分析仪器、 通讯测量仪器、大规模集成电路测量仪器。在美国的管制清单中,电子测量仪器是重要的一大块。其中通用电子测量仪器、集成电路测量仪器主要分布在 3B区域中。由于大规模集成电路和芯片制造是美国出口管制中的重要内容,该区域的检测设备的管制条款也较为详细,其对应于相应的集成电路产品的技术指标。 3.5 海洋仪器 在本文所述分类体系中,主要包括海洋水文测量仪器、海洋生物调查仪器、海洋采用设备、水文气象测量系统、海洋遥感/遥测仪器、海水物理测量仪器。在管制清单中,海洋探测属于第 8大 类,该类的管制条款数量较少。其中的海洋仪器主要针对的是水面军舰、潜水艇、水下无人机等, 对于一般的科学研究,限制较少。除了水文测量中受管制的水洞外,其他海洋生物调查仪器、海洋采样设备、水文气象测量系统、海水物理测量仪器都未见管制。 3.6 地球探测仪器 在本文所述分类体系中,主要包括电磁法仪器、地震仪器、重力仪器、地球物理测井仪器、岩石矿物测试仪器。在管制清单中,地球探测类仪器不是受管制的重点区域,整体涉及的条款较少。其中,地震探测设备、重力仪器、油气勘探设备、测井仪器是明确被管制的仪器。此外,电磁法仪器、岩石矿物测试仪器未见受到管制。 3.7大气探测仪器 在本文所述分类体系中,主要包括特殊大气探测仪器、气象台站观测仪器、主动大气遥感仪器、被动大气遥感仪器、对地观测仪器、高层大气/电离层探测器、高空气象探测仪器。在管制清单中,地球探测类仪器不是受管制的重点区域,没有专门针对“大气”的相关仪器和设备。在遥感部分,用于遥感的单光谱成像传感器和多光 谱成像传感器受到管制(6A002.b.);在气象观测用的“激光雷达”受到管制(6A998.b.)。3.8 空间与天文仪器 在本文所述分类体系中,主要包括地面天文望远镜、天体测量仪;而在国标 GB/T32847-2016 中天文仪器还包括空间飞行器、空间分析器测试/实验设备、卫星与地面运营仪器等空间探索的仪器。在管制清单中,空间飞行器、空间分析器测试/实验设备、卫星与地面运营仪器等空间探索的仪器是重点管制的领域;地面用于科学研究的天文望远镜、天体测量仪不受管制。 3.9 医学诊断仪器 在本文所述分类体系中,主要包括影像诊断仪器、电子诊察仪器、临床检验分析仪器等。在管制清单中,医学诊断类仪器基本不受到管制。 通过分析认为这个领域由于国内差距过大,没有威胁到美国的地位,暂时没有必要进行管制。但随着未来中国整体实力的提升,特别是2020年新 冠疫情之后,关于生化检测、病毒疫苗等领域的仪器设备有可能成为新增管制的领域。 3.10 核仪器 在本文所述分类体系中,主要包括核辐射探测仪器、离子束分析仪器、核效应分析仪器、中子散射及衍射仪器等。核管制是美国出口管制的重要内容,除了在 CCL中管制外,还有专门的 NRCC。两个清单的主要区别在于,NRCC主要负责核制造、生产、使用等直接的技术、产品、材料和设备等,关于核相关的一般性检测则由 CCL 负责。 3.11 工艺实验设备 在本文所述分类体系中,主要包括电子工艺实验设备、加工工艺实验设备、化工制药工艺实验设备、汽车工艺实验设备、食品工艺实验设备、纺织工艺实验设备等。在美国 CCL中,工艺实验设备是非常大量的一类管制对象,分布在多个类别中。其中,电子工艺实验设备是分布在第 3大 类中,以光刻机、掩模制作系统、芯片封装设备等为代表的仪器与设备被严格管制,有大量和详细的技术指标对光刻机的各种性能进行限定,也是近年来中美冲突中的热点领域。典型的如:光源 波长小于 193nm或能够产生“最小可分辨特征尺 寸”小于等于 45nm的图案;电磁光谱波长大于 5nm小 于 124nm 极 端 紫 外 线 (Extreme Ultra-violet,EUV)的光刻设备等。由于在 EUV光刻领 域,中国的技术差距明显,是被“卡脖子”的方向。 汽车工艺实验设备、纺织工艺实验设备方面一般的家用设备不在管制范围,食品工艺实验设备不在管制范围。 3.12激光器 在本文所述分类体系中,有较多来自美国的进口产品,也有不少国产产品。由于激光在军事上用途广泛,如除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入使用,在美国出口管制中是重要的一大模块, 也是很早就受到管制的领域。管制清单对于固体激光器、气体激光器、液体激光器、自由电子激光器等激光器的种类进行了全面的限定,并对激 器的波长和输出功率进行了详细的限定。该领域的管制是非常严厉的,但是中国自主研发的能力也比较强,属于比较容易突围的领域。 4 讨论与建议 美国出口管制政策对我国科学仪器的影响深远,不仅影响着我国科学仪器的贸易、采购、运 行、研发和使用,还进而制约着我国在科学研究、 工业制造、军事发展等方面的深度和水平。2018年,美国出台了《出口管制改革法案》,试图将“新兴和基础技术 (Emerging and Foundational Technologies)”列入出口管制中[6],进一步加剧该影响。面对严峻的国际形势和实际情况,本文提 出分类应对,制定短期、中期、长期规划,坚定走自主研发的道路。 针对不同的科学仪器类型分类应对,制定短期、中期、长期规划,坚定走自主道路[18]。1)针对长期以来管制比较严的“军民”两用类科学仪器, 比如激光器、核仪器、航天器、雷达等领域,长期以来就受到比较严格的管制[19],虽然在某些核心技术指标方面还有差距,但我国已经建立了一定的研发基础,尤其是在军事应用方面,已经走出了独立自主的道路,在这个方向,应该继续坚持自主研发战略,紧追国际上最新的技术指标,逐渐缩短技术差距。2)贸易冲突以来逐渐加强管制的领域,比如光刻机、晶圆检测设备、芯片检测设备等是贸易冲突前较为宽松,而冲突以来重点加强管制的领域,需要制定短期应对的策略,寻找国际上的多边合作和突破的可能,制定贸易进口的可替代方案,例如从俄罗斯、法国、德国等国家寻求突破点,同时要制定中长期规划,摒弃“拿 来主义”“买来技术”的幻想,走自主研发的道路。 3)针对暂时管制较轻的领域,例如医学诊断仪器、新一代基因测序仪、大气探测仪器、地球探测、化学分析仪器等理论研究相关的科学仪器, 虽然当前管制并不严格,但并不代表着我国在技术上没有差距,相反正因为差距太大,对美国暂时不构成威胁,美国才没有严格管制,随着我国 的逐渐进步,很有可能这些领域会成为新的管制对象。针对该方向的科学仪器要从长远着眼,未雨绸缪,定制“备胎”计划,由国家主导,国立科研机构和大型科研型企业主力承担,形成足够的科 学仪器技术储备,逐步提高科学仪器的水平[20]。参考文献 [1]高欣,周晓萍,朱琳娜,等.科研事业单位科学仪器设备资产管理关键环节的探索与实践[J].分 析仪器,2019(6):1-3. [2]凌辉.美国出口管制对我国科学仪器发展的影响与对策分析[J].国际贸易,2014(1):21-24,29.[3]年夫顺.现代测量技术发展及面临的挑战[J]. 测控技术,2019,38(2):3-7. [4]杨文海.我国科学仪器设备产业发展现状和策略[J].电子测试,2013(20):186-187. [5]联合早报.面对国际巨头垄断中国科研仪器怎么办[EB/OL].[20190305].http://www.zaobao. com/wencui/politic/story20190305937181. [6]魏简康凯,宿铮.美国出口管制改革的竞争情报分析[J].情报杂志,2019,38(4):4-8 [7]杨宇田,陈摇峰.列入美国技术出口管制部门受限名单的企事业单位分析[J].情报杂志,2018, 37(10):94-100. [8]葛晓峰.美国两用物项出口管制法律制度分析 [J].国际经济合作,2018(1).46-50. [9]陈峰.应对国外对华技术出口限制的竞争情报问题分析[J].情报杂志,2018,37(1):9-13,33. [10]陆天驰,闵超,高伊林,等.竞争情报视角下的中美人工智能技术领域差距分析———以美国商品管制清单为例 [J].情报杂志,2019,38 (11):25-33. [11]李广建,王锴,张庆芝.基于多源数据的美国出 口管制分析框架及其实证研究[J].数据分析 与知识发现,2020(9):2640 [12]MIKOLOV T,CHEN K,CORRADO G,etal. EfficientEstimationofWordRepresentationsin VectorSpace[J].Computerscience,2013,arXiv: 1301.378v3. [13]徐红姣,曾文,张运良.基于 Word2vec的论文和专利主题关联演化分析方法研究[J].情报 杂志,2018,37(12):36-42. [14]GB/T328472016,科技平台大型科学仪器设 备分类与代码[S].北京:国家质量监督检验检 疫总局,2016 [15]NY/T19592010,农业科学仪器设备分类与代 码[S].北京:中国农业部,2010 [16]佚名.国家大型科学仪器中心平台科技资源开 放共享目录[EB/OL].中华人民共和国科学技 术部.[20140703]http://www.most.gov.cn/ ztzl/kjzykfgx/kjzygjjctjpt/kjzyptml/201407/ t20140716_114276.htm. [17]白国应.关于仪器、仪表文献分类的研究[J]. 江西图书馆学刊,2004(3):2-6. [18]杨勇,张丽.促进大型仪器资源共享的机制与对策研究[J].创新科技,2013(2):43-45. [19]陈峰,杨宇田.应对美国对华技术出口限制的产业竞争情报需求与服务研究———以半导体产业为例[J].情报杂志,2019,38(9):36-41, 19. [20]范红,王磊,韩世鹏,等.浅谈我国生命科学仪器研发和产业化 [J].中国科技资源导刊, 2019,51(4):12-15,23.
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p   4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。 /p p   其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。 /p p   仪器信息网摘录如下: br/ /p table width=" 567" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 469" align=" center" valign=" middle" p style=" text-align: center " strong 标准名称 /strong /p /td td width=" 55" p style=" text-align: center " strong 性质 /strong /p /td td width=" 43" p style=" text-align: center " strong 状态 /strong /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫酸二甲酯和硫酸二乙酯的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种萘二酚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中二氯苯甲醇和氯苯甘醚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中38种限用着色剂的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种4-羟基苯甲酸酯的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中5种限用防腐剂的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中8-羟喹啉和硝羟喹啉的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中10种二元醇醚及其酯类化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫柳汞和苯基汞的测定 & nbsp & nbsp 高效液相色谱-电感耦合等离子质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中荧光增白剂367和荧光增白剂393的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 唇用化妆品中对位红的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中11种生物碱的检测 & nbsp & nbsp 液相色谱质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第21部分:砷量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第22部分:锑量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 锑矿石化学物相分析方法 & nbsp & nbsp 锑华 辉锑矿和锑酸盐的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 镍(钴)矿石化学物相分析方法 & nbsp & nbsp 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁矿石 & nbsp & nbsp 多种微量元素含量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁合金产品粒度的取样和检测方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料比表面积的测定 & nbsp & nbsp 亚甲基蓝吸附法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料电导率测试方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料表面含氧官能团含量的测定 & nbsp & nbsp 化学滴定法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 数字印刷版材中残留溶剂的检测 & nbsp & nbsp 顶空-气相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 & nbsp & nbsp 红外光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 光学遥感器在轨成像辐射性能评价方法 & nbsp & nbsp 可见光-短波红外 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 甲基乙烯基硅橡胶 & nbsp & nbsp 乙烯基含量的测定 & nbsp & nbsp 近红外法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中致敏染料的限量和测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中4-氨基偶氮苯的限量及测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中苯胺类化合物的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中甲醛的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 氦质谱真空检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 四极质谱检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铸钢铸铁件射线照相检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 铸件的工业计算机层析成像(CT)检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 耐火材料导热系数试验方法(铂电阻温度计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 隔热耐火材料导热系数试验方法(量热计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr /tbody /table p br/ /p
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。   许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。 中国科学院大连化学物理研究所 许国旺研究员   近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。   基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。   随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 1090项国标获批发布 色谱、质谱等多项仪器分析方法在列
    p   近日,国标委发布2017年第32号公告,批准发布《养老机构服务质量基本规范》等1090项国家标准、4项国家标准修改单和51项国家标准外文版。在获批的1090项国标中涵盖多项化学分析方法,其中包括《胶乳制品中有机锡含量的测定 气相色谱-质谱法》、《化妆品中硫酸二甲酯和硫酸二乙酯的测定 气相色谱-质谱法》等仪器分析方法。 br/ /p p   本次批准发布的标准涵盖面广,涉及化工、电子、环境、纺织品、农林等领域,具体标准文件请见附件。仪器信息网整理了部分仪器方法标准如下表。 /p table width=" 315" cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 序号 /strong strong /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 标准编号 /strong strong /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 标准名称 /strong strong /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 76 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35418-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 纳米技术 碳纳米管中杂质元素的测定 电感耦合等离子体质谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 84 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35410-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 液相色谱-串联四极质谱仪性能的测定方法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 94 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35400-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 燃油加油机计量检定移动实验室通用技术规范 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 93 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35401-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 地下水检测移动实验室通用技术规范 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 98 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35396-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 职业病危害因素检测移动实验室通用技术规范 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 99 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35395-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 农产品质量安全检测移动实验室通用技术规范 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 194 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35309-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 用区熔法和光谱分析法评价颗粒状多晶硅的规程 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 197 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35306-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 351 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35158-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 俄歇电子能谱仪检定方法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 371 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35138-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 封闭管道中流体流量的测量 渡越时间法液体超声流量计 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 404 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35104-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 肥料中邻苯二甲酸酯类增塑剂含量的测定 气相色谱-质谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 477 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35772-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 聚氯乙烯制品中邻苯二甲酸酯的快速检测方法 红外光谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 478 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35771-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 化妆品中硫酸二甲酯和硫酸二乙酯的测定 气相色谱-质谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 587 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35665-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 大气降水中甲酸根和乙酸根离子的测定 离子色谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 588 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35664-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 大气降水中铵离子的测定 离子色谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 598 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35655-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 化学分析方法验证确认和内部质量控制实施指南 色谱分析 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 749 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35492-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 胶乳制品中有机锡含量的测定 气相色谱-质谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 761 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 24131.2-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 生橡胶 挥发分含量的测定 第2部分:带红外线干燥单元的自动分析仪加热失重法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 869 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 17830-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 聚乙氧基化非离子表面活性剂中聚乙二醇含量的测定 高效液相色谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 966 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 11060.4-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 天然气 含硫化合物的测定 第4部分:用氧化微库仑法测定总硫含量 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 515 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35734-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 便携式管激发X射线荧光分析仪 分类、安全要求及其试验 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 670 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35570-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 海水中氚的测定 低本底液体闪烁能谱法 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 796 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 21254-2017 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 呼出气体酒精含量检测仪 /a /strong /p /td /tr tr td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong 244 /strong /p /td td valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong GB/T 35259-2017 /strong /p /td td style=" word-break: break-all " valign=" bottom" nowrap=" nowrap" p style=" text-align: left " strong a href=" javascript: " 纺织品 色牢度试验 试样颜色随照明体变化的仪器评定方法(CMCCON02) /a /strong /p /td /tr /tbody /table p & nbsp & nbsp 附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/45499c3e-78a3-4944-a6d5-717338b82718.docx" 1090项国家标准、4项国家标准修改单和51项国家标准外文版.docx /a /p p br/ /p
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 873项标准废止 含大量色谱、光谱等仪器方法标准
    p   12月15日,国标委、国家质检总局联合发布“关于废止《发文稿纸格式》等873项推荐性国家标准的公告”。通知显示,被废止的标准涉及钢铁、船舶、电子电器、通讯、化工、饲料、烟草、汽车等行业。 br/ /p p   统计发现,本批废止的标准中约有200项仪器方法,主要为色谱、光谱、气质联用分析方法,且以汽车行业车间空气检测为主。汇总如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:center " strong 国家标准编号 /strong /p /td td width=" 512" p style=" text-align:center " strong 国家标准名称 /strong /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.16-1991 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 变色酸光度法测定钛量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.48-1985 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 半二甲酚橙光度法测定铋量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 223.55-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 碲含量的测定 示波极谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 223.57-1987 /p /td td width=" 512" p style=" text-align:left " 钢铁及合金化学分析方法 萃取分离-吸附催化极谱法测定镉量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 257-1964 /p /td td width=" 512" p style=" text-align:left " 发动机燃料饱和蒸气压测定法 (雷德法) /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 2900.82-2008 /p /td td width=" 512" p style=" text-align:left " 电工术语 核仪器 仪器、系统、设备和探测器 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 4298-1984 /p /td td width=" 512" p style=" text-align:left " 半导体硅材料中杂质元素的活化分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6098.2-1985 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6155-2008 /p /td td width=" 512" p style=" text-align:left " 炭素材料真密度和真气孔率测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6014-1999 /p /td td width=" 512" p style=" text-align:left " 工业用丁二烯中不挥发残留物质的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.1-2008 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第1部分:碳酸氢铵含量 酸碱滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.2-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第2部分:氯化物含量 电位滴定法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.3-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第3部分:硫化物含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.4-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第4部分:硫酸盐含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.5-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第5部分:灰分含量 重量法 /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.6-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第6部分:铁含量 邻菲啰啉分光光度法 /span /p /td /tr tr td width=" 151" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 6276.7-2010 /span /p /td td width=" 512" class=" selectTdClass" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用碳酸氢铵的测定方法 第7部分:砷含量 二乙基二硫代氨基甲酸银分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.8-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第8部分:砷含量 砷斑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 6276.9-2010 /p /td td width=" 512" p style=" text-align:left " 工业用碳酸氢铵的测定方法 第9部分:重金属含量 目视比浊法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.10-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝中硫量的测定 X 射线荧光光谱分析法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.1-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 重量法测定湿存水量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.2-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 电量法测定水分含量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.3-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 蒸馏-硝酸钍容量法测定氟量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.4-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 EDTA容量法测定铝量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8156.5-1987 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 工业用氟化铝化学分析方法 火焰发射光度法测定钠量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.6-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定硅量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.7-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 邻二氮杂菲光度法测定铁量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.8-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 硫酸钡重量法测定硫酸根量 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8156.9-1987 /p /td td width=" 512" p style=" text-align:left " 工业用氟化铝化学分析方法 钼蓝光度法测定磷量 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中黄曲霉毒素B1的测定 & nbsp & nbsp 半定量薄层色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8381.5-2005 /p /td td width=" 512" p style=" text-align:left " 饲料中北里霉素的测定 /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 8381.8-2005 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 饲料中多氯联苯的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 8432-1987 /p /td td width=" 512" p style=" text-align:left " 耐光色牢度试验仪用湿度控制标样 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 10470-2008 /p /td td width=" 512" p style=" text-align:left " 速冻水果和蔬菜 矿物杂质测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11113-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体中杂质的分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 11114-1989 /p /td td width=" 512" p style=" text-align:left " 人造石英晶体位错的X 射线形貌检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12688.6-1990 /p /td td width=" 512" p style=" text-align:left " 工业用苯乙烯中微量硫的测定 氧化微库仑法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 12700-1990 /p /td td width=" 512" p style=" text-align:left " 石油产品和烃类化合物 硫含量的测定 Wickbold燃烧法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13080.2-2005 /p /td td width=" 512" p style=" text-align:left " 饲料添加剂 蛋氨酸铁(铜、锰、锌)螯合率的测定 凝胶过滤色谱法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13595-2004 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 拟除虫菊酯杀虫剂、有机磷杀虫剂、含氮农药残留量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 13596-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草和烟草制品 有机氯农药残留量的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13780-1992 /p /td td width=" 512" p style=" text-align:left " 棉纤维长度试验方法 自动光电长度仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 13784-2008 /p /td td width=" 512" p style=" text-align:left " 棉花颜色试验方法 测色仪法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 14454.15-2008 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 黄樟油 黄樟素和异黄樟素含量的测定 填充柱气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 14634.4-2002 /p /td td width=" 512" p style=" text-align:left " 灯用稀土三基色荧光粉试验方法 电传感法粒度分布测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15000.5-1994 /p /td td width=" 512" p style=" text-align:left " 标准样品工作导则(5) & nbsp & nbsp 化学成分标准样品技术通则 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15245-2002 /p /td td width=" 512" p style=" text-align:left " 稀土氧化物的电子探针定量分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.2-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 铜、锌、铅、镉的测定 原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.6-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 总铬的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 15555.9-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 固体废物 镍的测定 直接吸入火焰原子吸收分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.1-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钐、钴量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.2-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 铁量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.3-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 钙量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 15679.4-1995 /p /td td width=" 512" p style=" text-align:left " 钐钴永磁合金粉化学分析方法 氧量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16008-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的石墨炉原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16009-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16010-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16011-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫化铅的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16012-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的冷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16013-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中汞的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16014-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的双硫腙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16015-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化锌的火焰原子吸收光谱测定方法 /span /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16016-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化镉的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16017-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的磷酸-高碘酸钾分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16018-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锰及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16019-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬、铬酸盐、重铬酸盐的二苯碳酰二肼分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16020-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化铬的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16021-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中镍及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16022-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钴及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16023-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中铍的桑色素荧光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16024-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中臭氧的丁子香酚-盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16025-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氧化硫的盐酸副玫瑰苯胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16026-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫酸及三氧化硫的氯化钡比浊测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16027-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中硫化氢的硝酸银比色测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16028-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硫化碳的二乙胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16029-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯的甲基橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16030-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氟化氢及氟化物的离子选择电极测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16031-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氨的纳氏试剂分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16032-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氧化氮的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16033-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氰化氢及氢氰酸盐的异菸酸钠-巴比妥酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16034-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷及五氧化二砷的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16035-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中砷化氢的二乙氨基二硫代甲酸银分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16036-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二磷的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16037-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中磷化氢的钼酸铵分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16038-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16039-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溶剂汽油的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16040-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16041-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16042-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16043-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16044-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16045-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16046-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16047-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16048-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16049-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16050-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16051-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲苯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16052-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16053-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16054-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯乙烯的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16055-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中联苯-苯醚的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16056-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中萘的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16057-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醛的酚试剂(MBTH)分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16058-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16059-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16060-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁酮的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16062-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16063-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲醇的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16064-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16065-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16066-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16067-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16068-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16069-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16070-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16071-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醚的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16072-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的4-氨基安替比林分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16073-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中酚的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16074-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16075-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧乙烷的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16076-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环氧氯丙烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16077-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中光气的紫外分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16078-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16079-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16080-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16081-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯甲烷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16082-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16083-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氯化碳的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16084-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中溴甲烷的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16085-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法(Apiezon L) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16086-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二氯乙烷的直接进样气相色谱测定方法 (PEG 20M) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16087-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16088-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的直接进样气相色谱测定方法 (PEG 6000) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16089-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯乙烯的热解吸气相色谱测定方法 (DNP) /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16090-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16091-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯丁二烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16092-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中滴滴涕的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16093-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中六六六的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16094-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中四氟乙烯的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16095-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16096-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16097-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16098-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的直接进样气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16099-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯腈的热解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16100-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苯胺的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16101-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化苦的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16102-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16103-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼及其化合物的硫氰酸盐分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16104-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钨或碳化钨的硫氰酸钾-三氯化钛分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16105-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中五氧化二钒的N-肉桂酰-邻-甲苯羟胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16106-1995 /p /td td width=" 512" p style=" text-align:left " 车间空气中氢氧化钠的酸碱滴定测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16107-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氢氧化钠的火焰光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16108-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锆及其化合物的二甲酚橙分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16109-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中氯化氢及盐酸的硫氰酸汞分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16110-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中黄磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16111-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二甲基甲酰胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16112-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16113-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基甲苯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16114-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中一硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16115-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二硝基氯苯的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16116-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中吡啶的巴比妥酸分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16117-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲基对硫磷的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16118-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16119-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乐果的盐酸萘乙二胺分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16120-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中敌敌畏的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16121-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硫磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16122-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲拌磷的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16123-1995 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中碘甲烷的1,2-萘醌-4-磺酸钠分光光度测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 16480.3-1996 /p /td td width=" 512" p style=" text-align:left " 金属钇及氧化钇化学分析方法 氟量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 16481-1996 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 稀土元素微波等离子体炬发射光谱(MPT-AES)标准谱表 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17062-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锡及其无机化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17063-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中锑及其化合物的火焰原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17064-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲硫醇的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17065-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中偏二甲基肼的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17066-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中二乙胺的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17067-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氧化二砷原子吸收光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17068-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中甲酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17069-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙酸的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17070-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17071-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中苄基氰的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17072-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中对硝基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17073-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中环己酮的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17074-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙醛的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17075-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17076-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中异丁醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17077-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中硫酸二甲酯的溶剂解吸液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17078-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三硝基苯酚的高效液相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17079-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸甲酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17080-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17081-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17082-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸丁酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17083-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中乙酸戊酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17084-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-甲氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17086-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中2-丁氧基乙醇的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17087-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中钼的等离子体发射光谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17088-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N-甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17089-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中N,N-二甲基苯胺的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17090-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中三氯乙烯的气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 17092-1997 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 车间空气中丙烯酸乙酯的溶剂解吸气相色谱测定方法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 19611-2004 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 抑芽丹残留量的测定 紫外分光光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.6-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第6部分:没食子酸-示波极谱法测定锗含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 20127.7-2006 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 钢铁及合金 痕量元素的测定 第7部分:示波极谱法测定铅含量 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 20288-2006 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中有害物质检测样品拆分通用要求 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20396-2006 /p /td td width=" 512" p style=" text-align:left " 三系杂交水稻及亲本 真实性和品种纯度鉴定 DNA分析方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 20899.11-2007 /p /td td width=" 512" p style=" text-align:left " 金矿石化学分析方法 第11部分:砷量和铋量的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21131-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 环境烟草烟气 可吸入悬浮颗粒物的估测 用紫外吸收法和荧光法测定粒相物 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21132-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 二硫代氨基甲酸酯农药残留量的测定 分子吸收光度法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21133-2007 /p /td td width=" 512" p style=" text-align:left " 环境烟草烟气 可吸入悬浮颗粒物的估测 茄呢醇法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21134-2007 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 不溶于盐酸的硅酸盐残留物的测定 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 21135-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 烟草及烟草制品 空气中气相烟碱的测定 气相色谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 21198.2-2007 /p /td td width=" 512" p style=" text-align:left " 贵金属合金首饰中贵金属含量的测定 ICP光谱法 第2部分:铂合金首饰 铂含量的测定 采用所有微量元素与铂强度比值法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21274-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质铅、汞、镉检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21275-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质六价铬检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/Z 21276-2007 /p /td td width=" 512" p style=" text-align:left " 电子电气产品中限用物质多溴联苯(PBBs)、多溴二苯醚(PBDEs)检测方法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/Z 21277-2007 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 电子电气产品中限用物质铅、汞、铬、镉和溴的快速筛选 X射线荧光光谱法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23203.2-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中水分的测定 第2部分:卡尔.费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23225-2008 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23226-2008 /p /td td width=" 512" p style=" text-align:left " 卷烟 总粒相物中总植物碱的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23241-2009 /p /td td width=" 512" p style=" text-align:left " 灌溉用塑料管材和管件基本参数及技术条件 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23354-2009 /p /td td width=" 512" p style=" text-align:left " 卷烟 滤嘴总植物碱截留量的测定 光度法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 23357-2009 /p /td td width=" 512" p style=" text-align:left " 烟草及烟草制品 水分的测定 卡尔费休法 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 23358-2009 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气总粒相物中主要芳香胺的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 27410-2010 /p /td td width=" 512" p style=" text-align:left " 消费类产品中有毒有害物质检测实验室技术规范 /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27523-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中挥发性有机化合物(1,3-丁二烯、异戊二烯、丙烯腈、苯、甲苯)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27524-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 27525-2011 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中苯并[a]芘的测定 & nbsp & nbsp 气相色谱-质谱联用法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " GB/T 28971-2012 /span /p /td td width=" 512" p style=" text-align:left " span style=" color: rgb(255, 0, 0) " 卷烟 侧流烟气中烟草特有N-亚硝胺的测定 气相色谱-热能分析仪法 /span /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29566-2013 /p /td td width=" 512" p style=" text-align:left " 蚊类对杀虫剂抗药性的生物学测定方法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29567-2013 /p /td td width=" 512" p style=" text-align:left " 蝇类对杀虫剂抗药性的生物学测定方法 微量点滴法 /p /td /tr tr td width=" 151" p style=" text-align:left " GB/T 29592-2013 /p /td td width=" 512" p style=" text-align:left " 建筑胶粘剂挥发性有机化合物(VOC)及醛类化合物释放量的测定方法 /p /td /tr /tbody /table p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制