辛基吡啶

仪器信息网辛基吡啶专题为您提供2024年最新辛基吡啶价格报价、厂家品牌的相关信息, 包括辛基吡啶参数、型号等,不管是国产,还是进口品牌的辛基吡啶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辛基吡啶相关的耗材配件、试剂标物,还有辛基吡啶相关的最新资讯、资料,以及辛基吡啶相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

辛基吡啶相关的资料

辛基吡啶相关的论坛

辛基吡啶相关的方案

  • LC-MS/MS检测土壤及沉积物中的全氟辛基磺酸和全氟辛基羧酸
    本文参照生态环境标准HJ 1334—2023《 土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》,建立了一种使用岛津液相色谱质谱联用仪内标法测定土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸含量的方法。样品经甲醇水溶液提取,固相萃取柱净化,浓缩、定容后上机测定。采用内标法定量,全氟辛基羧酸与全氟辛基磺酸在其相关线性范围内,相关系数均大于0.998;分别进行空白基质低、高浓度加标测试,每个浓度重复6次,验证方法的精密度,全氟辛基羧酸与全氟辛基磺酸其测定样品量的相对标准偏差(RSD)分别在7.6~9.2%和11.0~13.0%之间;低、高加标量的样品的回收率在90.7%-110.0%之间。该方法快速准确,可为土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸的含量测定提供参考。
  • 首次发布!水、土壤中全氟辛基磺酸和全氟辛酸及其盐类的测定 前处理解决方案
    据报道,周健副教授于2023年9月汾渭平原地区对露天农田和温室大棚土壤进行研究对比,结果发现温室大棚因频繁浇灌、温度较高,是的全氟化合物(PFASs)具有较高活性。目前大多数农作物种植都采用温室大棚,加上全氟化合物(PFASs)具有稳定性强和生物累积性,故对于土壤中全氟化合物(PFASs)含量检测尤为重要,是全民乃至检测行业需要重点关注的问题。 HJ 1334-2023《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》、HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定同位素稀释/液相色谱-三重四极杆质谱法》标准为首次发布,在今年7月份正式实施。标准填补了水、土壤和沉积物中相关分析方法标准的空白,支撑新污染物治理工作及《关于持久性有机污染物的斯德哥尔摩公约》履约监测。莱奥提供正压固相萃取仪、全自动氮吹浓缩仪、氮气发生器等全氟化合物解决方案,以满足客户在新污染物研究领域中各种应用场景需求。
  • 全自动快速溶剂萃取(APLE)技术结合固相萃取技术萃取环境样品中的壬基酚,辛基酚和双酚A等酚类物质
    烷基酚环氧乙烯醚(APEOs)是一种重要的非离子表面活性剂,主要运用于工业生产中,但是它的代谢产物,尤其是壬基酚(NP)和辛基酚(OP)近年来被证实具有明显的雌激素效应。另外一种内分泌干扰物——双酚A(BPA)也是一种重要的工业原料,广泛的用于与人们生活密切相关的日常用品中。壬基酚和辛基酚作为内分泌干扰物质,通过食物链进入人体,会在生物体内积累,对人体癌细胞的生长以及生殖能力会造成严重影响,被欧盟列为优先危害物质。奥斯陆-巴黎公约也已将壬基酚和辛基酚列入优先控制污染物名录。欧盟2003/53/EC指令规定纺织品等商品中壬基酚的含量不得高于0.1%。2008年,加拿大卫生部宣布双酚A为危害物质,禁止进口和销售含有双酚A的聚碳酸酯婴儿奶瓶。本文主要运用固相萃取、快速溶剂萃取技术,结合液相色谱-质谱/质谱(LC-MS/MS)等分析手段, 建立了有效的检测食品中(饮料和动物源食品)壬基酚、辛基酚和双酚A含量的方法。

辛基吡啶相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)

辛基吡啶相关的仪器

  • 中文名称 氯铬酸吡啶英文名称 Pyridinium chlorochromate中文别名 PCC 氯铬酸吡啶酯 氯鉻酸吡啶 氯铬酸吡啶盐 氯铬酸吡啶嗡盐 氯铬酸吡啶鎓盐CAS RN 26299-14-9EINECS号 247-595-5分 子 式 C5H6ClCrNO3分 子 量 215.5551用途:高效氧化剂。 可应用于大规模的氧化反应过程,特别是它在室温、中性的条件下可将羟基氧化为醛基,反应条件温和,是一种值得推广应用的氧化剂.我们在合成内酯类天然产物的过程中,需将内酯醇氧化为内酯醛,但内酯环在强烈条件下易被破坏,因而选用PCC在适宜条件下进行此类氧化反应。氧化剂,选择性的氧化酒精。在D-葡萄糖合成非饱和内酯的格鲁布斯催化闭环分解中,用于氧化烯丙基亚甲基基团我公司关于订购说明:1、质优价廉,量大从优,欢迎您的订购;2、物流信息:快递、汽车物流等;3、其他服务:如您对产品服务及技术指标有特殊要求,请及时通知我方;欢迎新老客户前来洽谈!订购流程:电话询单议价→签订合同→打款订货→安排发货→物流跟踪→货物送达→客户验收(7天产品质量异议期,15天产品数量异议期)→货物验收确认服务宗旨:竭诚提供 产品,售后服务客户满意 。我公司产品出厂前均由质检部检验合格方可出货,质量有保证特别说明:1,产品价格会受到季节性波动影响,具体价格请客户来电核实2,产品都是完整包装,需拆分少量时价格会稍微提高3,大货急需的客户还请提前来电,我公司提前给您备货4,收货后请仔细确认完整性无损再签收,按该产品执行标准验收,如有产品不符,我们包退包换
    留言咨询
  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm181苯胺C6H5NH21.25-60182吡啶C5H5N0.2-35183N,N- 二甲基甲酰胺HCON(CH3)20.8-90184N,N- 二甲基乙酰胺CH3CON(CH3)21.5-240185肼N2H40.05-2.0
    留言咨询
  • 专业供应武汉管式离心机,山东管式分离机,福建高速管式离心机就来辽阳鑫阳光液体分离设备有限公司管式离心机有GF、GQ两大系列,典型的如GQ系列澄清型管式离心机、GF系列液、液分离型管式离心机。 GF—分离型:主要用于分离各种难分离的乳浊液,特别适用于二相密度差甚微的液、液分离(比重差大于0.1%),以及含有少量杂质的液、液、固三相分离。油品类的分离,变压器油 ,食用油脱水及脱蜡,透平油,生物柴油,润滑油,船舶燃料油,淬火油;各种糖浆剂的分离;全血分离--从全血中分离血浆、血球;生物制品的分离;油水分离,污水处理等。 GQ—澄清型管式离心机,主要用于分离各种难于分离的悬浮液,特别是适合于浓度低、粘度大、固相颗粒细 、固液比重度差较小的固液分离。 辽阳鑫阳光液体分离设备有限公司是一家以生产离心分离设备和制药机械设备为主导产品的专业化骨干企业。由原辽阳离心机研究所(省级所)所长及总工率领科技人员创建的集科研设计、产品开发、生产经营于一体的科技先导型经济实体。管式离心机是高速、平稳、密闭和高效的半自动控制设备,其原理即管式离心机内鼓高速旋转产生离心力场,依据物料比重不同在离心力的作用下,使具有不同比重的液体与固体,液体与液体的实现分离。管式分离机是从底部进料,上部出料,固体物质残留于设备转鼓之内,需停机人工清除。当您选择设备时需要提供以下参数:物料名称?是否固液分离/液液分离/液液固分离?每小时处理量?物料含固量?物料比重多少?物料在重力下多长时间可以自然沉淀?固相物颗粒大小?澄清液想达到的状态?含固量%多少以下合格?离心机下一步是如何处理?PH值、温度? 是否需要防爆?1、转鼓内径:142 mm2、转数:15000r/min3、进料口压力:>0.05MPa4、生产能力(水通过能力):2000 L/h5、电动机:3.0 KW6、机器重量:520 Kg7、外形尺寸(长宽高):1000×800×1700m
    留言咨询

辛基吡啶相关的耗材

  • Discovery DSC-8 单点键合,辛基 (9%C) 货号:52713-U
    Discovery DSC-8 单点键合,辛基 (9%C) 用于洗脱强烈地保留在DSC-18或DSC-18LT上很大的憎水分子,使用这个较弱保留的固定相,用较少体积较弱的有机溶剂可快速洗脱憎水化合物 52703-U Discovery DSC-8 单点键合,辛基 (9%C),封端 50mg/1ml,108支/盒 52707-U Discovery DSC-8 单点键合,辛基 (9%C),封端 100mg/1ml,108支/盒 52713-U Discovery DSC-8 单点键合,辛基 (9%C),封端 500mg/3ml ,54支/盒 52714-U Discovery DSC-8 单点键合,辛基 (9%C),封端 500mg/6ml ,30支/盒 52716-U Discovery DSC-8 单点键合,辛基 (9%C),封端 1g/6ml,30支/盒 52717-U Discovery DSC-8 单点键合,辛基 (9%C),封端 2g/12ml,20支/盒 52718-U Discovery DSC-8 单点键合,辛基 (9%C),封端 5g/20ml,20支/盒 52722-U Discovery DSC-8 单点键合,辛基 (9%C),封端 10g/60ml,16支/盒
  • Agilent AccuBOND C8-辛基固相萃取小柱
    Aglent AccuBONDII C8 产品基于键合的反相(辛基硅烷)、不规则硅胶(硅胶基)颗粒。建议将这种非极性的未封端的吸附剂用作非极性分析物的通用SPE 固定相。其保留稍低于AccuBONDIIC18产品。对于碱性分析物,辛基吸附剂通常可以提高萃取效率及其纯度。 产品货号 产品名称 规格型号 188-0310 Agilent AccuBOND C8辛基固相萃取小柱 100mg/1ml ,100/盒 188-0320 Agilent AccuBOND C8辛基固相萃取小柱 200mg/3ml ,50/盒 188-0350 Agilent AccuBOND C8辛基固相萃取小柱 500mg/3ml ,50/盒 188-0356 Agilent AccuBOND C8辛基固相萃取小柱 500mg/6ml ,30/盒 188-0360 Agilent AccuBOND C8辛基固相萃取小柱 1000mg/6ml ,30/盒
  • Cleanert C8 辛基 固相萃取小柱 (货号:082003)
    产品详细: 在吸附性上与C18键合相类似,主要靠非极性碳键相互作用。但由于C8碳键较C18短,所以对非极性化合物保留弱于C18,有助于对非极性吸附过强的样品的洗脱。C8小柱可以从血浆中同时萃取脂溶性和水溶性维生素。也常用于生物水分子样品脱盐。 货号 产品名称 产地 型号规格 价格 081001 Cleanert C8 辛基 固相萃取小柱 中国 100mg/1ml 1180 082003 Cleanert C8 辛基 固相萃取小柱 中国 200mg/3ml 690 085003 Cleanert C8 辛基 固相萃取小柱 中国 500mg/3ml 850 085006 Cleanert C8 辛基 固相萃取小柱 中国 500mg/6mL 590 080006 Cleanert C8 辛基 固相萃取小柱 中国 1000mg/6mL 790 SI1001 Cleanert Silica 中国 100mg/1ml 1180 SI2003 Cleanert Silica 中国 200mg/3ml 590 SI5003 Cleanert Silica 中国 500mg/3ml 690 SI5006 Cleanert Silica 中国 500mg/6mL 590 SI0006 Cleanert Silica 中国 1g/6mL 690 PA1001 Cleanert PSA 中国 100mg/1ml 1180 PA2003 Cleanert PSA 中国 200mg/3ml 890 PA5003 Cleanert PSA 中国 500mg/3ml 1390 PA5006 Cleanert PSA 中国 500mg/6mL 890 PA0006 Cleanert PSA 中国 1g/6mL 1780 SC1001 Cleanert SCX 中国 100mg/1ml 1180 SC2003 Cleanert SCX 中国 200mg/3ml 890 SC5003 Cleanert SCX 中国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制