当前位置: 仪器信息网 > 行业主题 > >

高稳定卤素灯

仪器信息网高稳定卤素灯专题为您提供2024年最新高稳定卤素灯价格报价、厂家品牌的相关信息, 包括高稳定卤素灯参数、型号等,不管是国产,还是进口品牌的高稳定卤素灯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高稳定卤素灯相关的耗材配件、试剂标物,还有高稳定卤素灯相关的最新资讯、资料,以及高稳定卤素灯相关的解决方案。

高稳定卤素灯相关的资讯

  • 梅特勒卤素水分仪测定锂离子电池浆料固含量方法
    我们知道,锂电池浆料分为正极浆料和负极浆料两种,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。 锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。合浆后的浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。表征浆料稳定性的主要参数有流动性、粘度、固含量、密度等。 浆料的固含量和浆料稳定性息息相关,同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。高固含量的浆料还可以减少涂层间厚度,降低电池内阻。 锂电池的生产包括极片制造工艺阶段的浆料制备、浆料涂覆工序是整个锂电池制造的核心内容,浆料的固含量等参数就关系着电池电化学性能的好坏,我们就来探讨一下主流的测量锂离子电池浆料固含量的方法。锂离子电池正负极浆料目前的标准的测试方法为GB/T18856.2-2008 水煤浆试验方法第2 部分 浓度测定。浆料试样的采取与制备按锂离子电池浆料采样方法进行。BINDER FD115 (固含量测定烘箱)1.1 取充分搅拌均匀的浆料试样(3.0±0.2g) 置于预先干燥并称量(称准至0.0002g)过的称量瓶中,迅速加盖,称量(称准至0.0002g),晃动摊平。1.2 打开瓶盖,将称量瓶和瓶盖放入预先鼓风并已经加热到120~125℃的干燥箱中,在鼓风条件下,干燥2h。1.3 从干燥箱中取出称量瓶,立即盖上盖在空气中冷却约3min后放入干燥器中,冷却至室温,MT电子分析天平称量。1.4 进行检查性干燥,每次30min,直到连续两次干燥的试样质量的减少不超过0.003g或质量增加后为止。在后一种情况下,应才有质量增加前一次的质量作为计算依据。由此我们看出此方法的局限性: 目前主流采用是梅特勒的经典型HC103及超越型HX204这两款卤素红外水分仪测量电池浆料的固含量,其测定方法是如何简化测试流程又能和烘箱法的结果保持一致呢? 一:HX204 超越型的卤素水分测定仪,主要的优势为:创新的悬挂式秤盘设计避免了加样腔的热量对秤盘的影响,通过消除对称量单元的负面热效应,改善测定结果。高性能 MonoBloc 称量单元可提供最大量程和最佳分辨率(200g,0.1mg),可满足要求最严苛的任务,可在最短的时间内获得非常可靠的结果。快速加热:先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。第二代卤素加热技术最大程度减少了热物质,通过缩短加热/冷却循环及精确的温度控制增强性能。采用冷仪器进行首次测量,与随后采用热仪器进行测量的精确程度相同。一键水分测定 :One Click™ Moisture 的图形化用户界面可快速、顺畅地执行操作,同时提供实时的干燥曲线和控制图表。了解测量,自动化控制图表可显示每个样品的固含量的含量变化趋势。具有测试方法开发功能。 具有终点判定方法选择功能 二:梅特勒-托利多全新经典HC103水份测定仪 使用 HC103 卤素水份测定仪轻松执行浆料固含量的测定。借助触摸屏操作和用户指导,HC103 使用起来十分方便。 2. 坚固耐用的设计均可确保今后数年内获得可靠的结果。 3. 图形化用户界面:让您倍感舒适自在,只需轻轻一击即可立即开始水份测定。4. SmartCal功能:确保可信水份结果的性能验证,应当在保养间隔期间定期测试卤素水份测定仪,以确保水份测量结果始终正确。通过 SmartCal,我们可提供一种在简单的 10 分钟测试中对您卤素水份测定仪的整体性能进行验证的独特测试物质。5.HC103 和HX204 的最小浆料的称量量为0.1g, 为了保证浆料固含量的准确性及重现性,建议称量量在0.5-3.5 g 左右。对于浆料而言,需要选用可重复使用的不锈钢样品盘及玻璃纤维盘进行测试。 根据正负极浆料水分残留及NMP残留物质的特性,一般可以进行120-155度左右的方法开发,通过测定方法开发功能,以烘箱法的结果进行比对修订及优化,最终形成固定的正负极浆料固含量的标准方法,保存在仪器界面的快捷键中,均匀放置好浆料样品好,一键开始测量,约2-10min自己显示结果。 结论梅特勒公司的HX204和HC103 卤素红外水分仪,非常适合于工厂车间和实验室进行原料,半成品和成品的水分或者固含量的测定。可以在几分钟内提供精确可靠的水分或固含量的信息,确保最佳的产品质量和至高的生产力,助力于锂电池正负极浆料固含量测定,有力保障锂离子电池的性能品质。
  • 热烈祝贺梅特勒超越系列HX/HS卤素水分测定仪全新上市
    梅特勒-托利多全新上市的新款超越系列卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命和实验室及生产现场的无中断操作。 超越系列HX/HS卤素水分测定仪 卓越的性能 悬挂式秤盘消除了温度对天平的负面影响,确保最佳的称量性能。 快速加热 先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。 30 秒即可清洁 样品腔表面是平整且密封的。清洁操作从未如此轻松快速。 一键水分测定 (One Click&trade Moisture) 直观的用户界面易于操作。实时干燥曲线或红/绿显示合格/不合格判定。 卓越的可操作性 生产食品、化学品和许多其他商品需要定期的进行样品检测,以保持全面的过程控制。 确保您始终高枕无忧 HX204 水分测定仪满足研究、质量控制和生产的严格需求。 详细信息,请访问东南科仪网站www.sinoinstrument.com或致电全国免费电话400-113-3003垂询!
  • 超越系列HX/HS卤素水分测定仪即将上市
    梅特勒托利多即将上市的新款超越系列卤素水分测定仪采用创新的悬挂式秤盘设计以及第二代卤素灯加热技术,提供了极佳的测量性能,可在很短的时间内获得非常可靠的结果。一键水分测定 (One Click&trade Moisture) 的图形化用户界面可快速、顺畅地执行操作,同时提供了实时的干燥曲线和控制图表。坚固的设计和简单清洁概念确保长久的使用寿命和实验室及生产现场的无中断操作。 详细信息,请访问梅特勒托利多网站: http://www.mt.com/hxhs
  • “高强度高稳定空心阴极灯的研究”2017年度进展报告会在京举办
    p    strong 仪器信息网讯 /strong 2017年7月21日,国家重点研发计划“高强度高稳定空心阴极灯的研究”项目2017年度进展报告会在北京举办,科技部高科技中心领导、重大科学仪器设备开发专项总体专家组专家、项目咨询专家组专家、项目(课题)负责人和课题主要骨干及仪器信息网编辑近20人参加了本次会议。此次会议的目的是加强项目组织管理,促进项目各参加单位的沟通交流,协调研发工作进度,严格经费管理,尽早发现并解决项目进展中存在的问题,切实推动项目总体工作进展。 /p p style=" text-align: center " img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/3f902819-8d81-49cb-b119-24ee2674d004.jpg" / /p p style=" text-align: center " strong 会议现场 /strong /p p   本次会议由国标(北京)检验认证有限公司副总经理马通达主持,有研总院科技开发部副主任朱宝宏致欢迎词,科技部高技术中心赵亮进行了重大科学仪器设备开发重点专项项目过程管理及中期检查要求的宣讲。 /p p style=" text-align: center " img title=" 02.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/cac5df33-dc9a-493b-b5f7-3523e10a630e.jpg" / /p p style=" text-align: center " strong 国标(北京)检验认证有限公司副总经理 马通达 /strong strong br/ /strong /p p style=" text-align: center " img title=" 03.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/b080e8ea-ecc7-4b71-8bf0-4f4d832602d2.jpg" / /p p style=" text-align: center " strong 有研总院科技开发部副主任 朱宝宏 /strong /p p style=" text-align: center " img title=" 04.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/7544e463-46c9-4dfe-9b91-a846e8571c2d.jpg" / /p p style=" text-align: center " strong 科技部高技术中心 赵亮 /strong /p p   项目负责人李继东介绍了项目年度进展情况及下一步工作安排,包括项目基本情况、年度任务与考核指标、项目进展情况及问题、经费使用情况、下一步计划等多个方面。 /p p style=" text-align: center " img title=" 05.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/1b3460f2-8e49-4bbf-8e2b-0322c3cdb7bd.jpg" / /p p style=" text-align: center " strong 项目负责人 李继东 /strong /p p   国家重点研发计划“高强度高稳定空心阴极灯的研究”(2016YFF0100100)项目所属专项为重大科学仪器设备开发专项,总经费1300万元,其中中央财政专项经费500万元,项目执行期从2016年7月至2019年6月。据介绍,截至目前,各课题分别完成了技术设计方案和设备改造方案,根据方案进行试验研究,装置调试、测试,软件编制等,并完成了2016年度技术进展报告。此外,为了更好的实施想任务,达成目标,设计生产出高强度高稳定空心阴极灯,课题承担单位之间也进行了多次技术交流活动,及时反馈测试结果。 /p p   该项目设有4个任务(课题):空心阴极灯制作工艺及阴极材料加工制备研究、空心阴极灯的产业化研究、原子荧光空心阴极灯检测装置的研发与应用、原子吸收空心阴极灯的性能测试技术研究和测试仪器开发,分别由北京有色金属研究总院,国标(北京)检验认证有限公司、北京吉天仪器有限公司、北京锐光仪器有限公司承担。会议过程中,4个课题负责人也分别介绍了各自负责课题的年度进展情况及下一步工作安排。 /p p style=" text-align: center " img title=" 06.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/15b0afbd-7f3f-4dba-942f-3efa77d9bc70.jpg" / /p p style=" text-align: center " strong 空心阴极灯生产线主任、课题1负责人 李中建 /strong /p p style=" text-align: center " img title=" 07.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/990ea6b2-9dc5-4ad5-8ecd-88d2cdaa697c.jpg" / /p p style=" text-align: center " strong 国标(北京)检验认证有限公司 /strong strong 、 /strong strong 课题2负责人 潘元海 /strong /p p style=" text-align: center " img title=" 08.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/cc0639a3-05cf-47c7-85e9-c0c8d9bfd83f.jpg" / /p p style=" text-align: center " strong 北京吉天仪器有限公司产品总监、课题3负责人 赵富荣 /strong /p p style=" text-align: center " img title=" 09.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/eb2b6b12-b575-495e-9b60-f6f1a22f50c4.jpg" / /p p style=" text-align: center " strong 北京锐光仪器有限公司总经理、课题4负责人 李毅 /strong /p p   据介绍,自2016年7月立项实施以来,各个课题已经取得了一系列的进展。课题1:完成了高强度高稳定性空心阴极灯结构设计方案、云母片与瓷件设计方案、管基装备工程设计等 课题2:在北京有色金属研究总院怀柔基地完成了高强度高稳定空心阴极灯厂房的选址与设计,初步拟定项目所需设备与装置的规划、预算及改造方案,经过调研与询价,确定了拟购置的重要设备等 课题3:对空心阴极灯的发光特性进行了研究,并形成研究报告。此外,还进行了需求分析,形成需求报告,并完成了初版样机加工及装调、样机试用及小批量试测等 课题4:完成了总体设计方案的制定,对单元模块功能、接口进行规划,明确了接口协议、要求,并进行了原理样机装配、走线、调试、测试等。 /p p   当然在介绍业绩的同时,各位负责人也介绍了项目进行过程中遇到的一些问题,如厂房建设速度不可控、生产设备需要设计定制,要求高、周期长、费用高等。下一步,各课题将按照计划,完善空心阴极灯的整体及产业化设计方案,并进行样机的进一步改进,进行指标测试,输出测试方案等,并针对前期遇到的问题给出针对性的解决方案,以保障项目研究工作按计划顺利进行和完成。 /p p   会议过程中,与会的领导专家肯定项目取得的阶段成果的同时,也就经费管理、技术细节以及各承担单位之间的合作等多方面的问题给出了切实可行的建议。 /p p style=" text-align: center " img width=" 500" height=" 333" title=" 10.jpg" style=" width: 500px height: 333px " src=" http://img1.17img.cn/17img/images/201708/insimg/20851dfd-b46b-423f-a386-4538ef3ed1aa.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 与会代表合影 /strong /p p & nbsp /p
  • 国家重点研发计划——“高强度高稳定空心阴极灯的研究”项目启动会在京召开
    仪器信息网讯:9月26日上午九点,作为“2016重大科学仪器设备开发专项”中“核心关键部件开发与应用”任务方向的子项目之一“高强度高稳定空心阴极灯的研究”项目启动会在北京远望楼宾馆第七会议室召开。 本次会议的参会人员有科技部高技术研究发展中心刘进长研究员,北京有色金属研究总院科技开发部副主任朱宝宏教授,项目专家组以及北京有色金属研究总院等项目承担单位的项目组关键人员等。启动会由北京有色金属研究总院分析测试技术研究所副所长刘英教授主持。会议现场(一) 朱宝宏教授和刘进长研究员首先分别代表项目主要承担单位和项目上级管理单位致辞。从有关领导的讲话中,笔者了解到此次“重大科学仪器设备专项”的实施方案具有如下三个特点:一、坚持企业牵头,鼓励企业结合国家和自身发展需要,联合科研院所和高等学校的优势力量参与项目研发工作,构建“仪器原理验证—关键技术研发—系统集成—应用示范—产业化”的链条;二、重视非技术因素对成果产业化的影响,组织专家对企业工程化和产业化措施和方案、企业的资质和能力,以及知识产权和利益分配等进行评审把关;三、结合科学仪器开发的特点,强化利益共享、风险分担机制,对企业牵头的项目,实施专项经费后端资助政策。 随后,项目负责人李继东教授向参会人员详细汇报了项目基本情况及启动准备情况。据李教授介绍,作为本项目的牵头单位——北京有色金属研究总院具有空心阴极灯光源研究生产的悠久历史,50余年来致力于原子吸收分析技术仪器和方法的研究,尤其空心阴极灯的研究,开发,生产和应用,已形成有一定实力的科研-生产-应用联合体。李继东教授在讲话中特别指出,北京有色金属研究总院曾经承担过多项国家项目,取得国内专利 14 项,国外专利2项,建立技术标准1项,拥有完整的生产线,可以生产元素周期表中大多数元素各种型号的空心阴极灯,年生产能力达数万只,占有国内90%以上高端市场份额。李教授表示,本次“重大科学仪器设备开发”重点专项将为空心阴极灯的研究和产业化提供新的契机。项目组将在以往技术积累的基础上,从优化空心阴极灯结构设计、研究新型阴极材料、改善生产工艺等方向着手,找到影响关键指标的因素及改善方法;开展工程化和产业化开发,形成工程化和产业化能力。项目组预期项目完成时,指标将达到或部分超过指南要求,获得高强度、高稳定空心阴极灯光源,为原子吸收和原子荧光光谱仪等仪器提供可靠的核心部件。 在谈到本项目在研究过程中将体现哪些优势时,李教授表示,首先本研究将充分利用北京有色金属研究总院人员、设备和技术等方面的优势,根据金属材料的不同特性研究采用相应方法进行阴极材料制备,这也是空心阴极灯的关键技术。其次,本研究将发挥北京有色金属研究总院在无机材料成分和组织结构分析方面的优势,对空心阴极灯阴极材料进行原子尺度的微结构分析,从研究材料微观组织结构和化学成分的方向入手分析阴极材料变化导致空心阴极灯寿命终结的原因,以及对发光稳定性、噪音的影响。 会议现场(二) 在会议的专家指导及交流环节,专家们表示,鉴于北京有色金属研究总院在空心阴极灯的研制方面历史悠久、基础雄厚、且目前的市场占有率高,拿下这个项目应当说是实至名归。同时,大家对于空心阴极灯的未来市场也持较为乐观的态度(据了解,目前国内空心阴极灯市场大概是9万只/年,而且绝大多数是国产产品)。以空心阴极灯的主要应用仪器之一原子吸收光谱仪为例,由于原子吸收光谱仪的一些独特优势,譬如所需耗材较之ICP仪器容易获得(这一点对于偏远地区尤为有利);对操作人员的要求低,特别适合于企业使用等。因此在可预见的未来,原子吸收光谱仪将会继续发展,而不会为其他仪器所取代。很自然,作为原子吸收光谱仪的重要部件之一——对于空心阴极灯的需求未来也将会继续增长。而开发出寿命更长,发光同心度更优的空心阴极灯反过来也会进一步促进原子吸收光谱仪的应用普及。
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 超高品质单晶生长!高温可达3000℃,可胜任高熔点、高挥发性材料制备的高性能激光浮区法单晶炉LFZ
    激光浮区技术(LFZ),在过去的几十年里,作为一种简单、快速、无需坩埚的生长高质量单晶材料的方法,在高熔点材料的单晶生长领域取得进展。 LFZ与常规光学浮区技术OFZ大的区别是用于加热和熔化的光辐照源不同。OFZ通常是使用椭球镜将卤素灯或者氙灯光源聚焦到生长棒来实现晶体生长。LFZ则是采用激光作为加热光源进行晶体生长,由于激光光束具有能量密度高的特点,因此可实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。 随着技术的不断迭代,2020年Quantum Design Japan公司和日本理化研究所Yoshio Kaneko教授密切合作,联合设计开发了新一代高性能激光浮区法单晶炉LFZ,该系统采用了5束激光光路的设计方案,保证了激光辐照强度均匀分布在原材料的环向外围,并提供高功率分别为1.5 kW和2 kW两种规格的系统。此外,在新一代高性能激光浮区炉LFZ的光路设计中,采用了Yoshio Kaneko教授的温度梯度优化设计,能有助于改善晶体生长过程中的剩余热应变弛豫;除此之外,该系统还采用了Yoshio Kaneko教授的温度反馈控制闭环设计方案,实现了温度的实时监控与自动调节。实例讲解:1. 磁性材料Bi2CuO4 传统的磁性记忆合金依赖于双磁态,如铁磁体的自旋向上、自旋向下两种状态。增加磁态数量,且采用无杂散场的反铁磁材料,有望实现更高容量存储。近一篇发表于Nature Communications期刊题为Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism的工作表明磁电共线反铁磁Bi2CuO4中不仅具有四个稳定的Néel矢量方向,还存在引人注目的反铁磁三色现象,即在可见光范围内的磁电效应使得吸收系数随光传播矢量和Néel矢量之间的角度变化而取三个离散值。利用这种反铁磁三色性,该工作可实现可视化的场驱动Néel矢量的旋转甚至反转[1],为电场调控和光学读取的高密度存储器设计提供可能性。 在该篇工作中看,磁性材料Bi2CuO4的制备使用了Quantum Design LFZ1A 激光浮区法单晶炉。该材料表面张力较低,熔融区难以控制,早期研究多采用较快的生长速度,但生长速度过快往往会导致微裂隙的存在而影响样品品质。在此,利用LFZ1A,通过精细调节生长条件,实现了高质量单晶的生长,从而实现了更精细的磁电性质测量。 在晶体生长的初几个小时,为稳定熔融区域,激光电流手动调节在26.9 - 27.4 A范围,随后,便可以切换到自动恒温模式下,生长速度控制在2.0 mmh-1,进料棒和籽晶棒反向旋转10 rpm,实现晶体的超过24 h的稳定生长,而不需要其他的手动操作。晶体生长在流动的纯氧气氛中进行。图1. Bi2CuO4的磁性测量。SQUID面内面外磁化率的测量都表明材料是TN=44K发生了反铁磁转变。单晶棒非常容易从Z平面解理开,插图显示解理面非常光亮,表明了样品的质量很高[1]。 2. 烧绿石Nd2Mo2O7 烧绿石Nd2Mo2O7中,Mo子晶格呈现出自旋倾斜、近乎共线铁磁排布,其标量自旋手性诱导出巨大的拓扑霍尔效应,可应用于霍尔效应传感器。Nd2Mo2O7是一种高挥发性材料,单晶合成需要被加热到1630℃,MoO2等成分高度挥发,并在生长石英管内壁沉积,导致光源辐照受阻,进而导致熔融区域温度降低,生长不稳定。得益于LFZ设备高精度和快速响应的温度控制系统,在熔融区域失稳前,迅速增加激光功率,激光光通量密度比卤素灯高几个量,因而可以迅速将温度提升到1100℃,促进沉积到石英管内壁上的MoO2的再挥发,当沉积与再挥发达到平衡时,激光加热功率稳定下来,终实现晶体的稳定生长。 近发表在Physical Review B期刊题为Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7的工作中,Max Hirschberger等人通过Ca2+取代Nd3+来调控化学势,实现了对Mo子晶格倾斜自旋铁磁稳定性的调控[2]。 他们先利用Quantum Design LFZ制备了一系列不同组分的厘米尺寸单晶(Nd1−xCax)2Mo2O7(x=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.22, 0.30和0.40)。在氩气氛下,生长温度控制在1630-1700℃,生长速度为1.8-2 mm/h。对不同组分单晶的磁性研究证明了在x≤0.15时倾斜铁磁态以及自旋倾角具有稳定性。而在x=0.22以上,Mo-Mo和Mo-Nd磁耦合变号,自旋玻璃金属态取代倾斜的铁磁态。图2, (Nd1−xCax)2Mo2O7不同组分磁化曲线和相图。左图:x=0.01, 0.22和0.40的三个组分单晶的场冷曲线,可以清晰的判断出倾斜铁磁态和自旋玻璃态的转变温度。右图:不同组分获得的转变温度总结的相图,包括有倾斜铁磁态、自旋玻璃态和顺磁态[2]。高品质数据的采集得益于高质量的单晶样品和的成分控制。 3. 高熔点材料SmB6 SmB6是早发现的重费米子材料之一,其研究已经有五十多年的历史。随着拓扑领域的发展,近几年人们发现SmB6是一种拓扑近藤缘体。它的电缘性来自于强关联的电子相互作用,不仅如此,它的缘态存在能带反转,具有拓扑非平庸属性,表面会出现无能隙拓扑表面态。由于体态完全缘,这个表面态可以用来做新型二维电子器件[3]。 对SmB6拓扑和低温性质的准确探索,离不开高质量的材料,但因为该材料的高熔点(2350℃),很难通过常规手段获得。而Yoshio Kaneko等人应用Quantum Design LFZ实现了高品质SmB6的生长。生长条件:1标准大气压的氩气氛,气体流速2000 cc/m,生长速率20 mm/h。图3. SmB6单晶形貌图和劳厄衍射图。SmB6单晶表面如镜面般光亮,晶体(111)面的劳厄斑体现了很好的三重对称性,佐证了样品的高品质,适用于拓扑性质的精细测量[4]。 总结 综上,Quantum Design新一代高性能激光浮区法单晶炉(LFZ)与传统浮区法单晶生长系统相比,特的激光光路可实现更高功率、更加均匀的能量分布和更加稳定的性能。LFZ将浮区法晶体生长技术推向一个全新的高度,可广泛应用于制备红宝石、SmB6等高熔点材料,Ba2Co2Fe12O22等不一致熔融材料,以及Nd2Mo2O7、SrRuO3等高挥发性材料,为凝聚态物理、化学、半导体、光学等多种学科领域提供了丰富的高品质单晶储备,使得更精细的单晶性质测量和表征成为可能。图4. 新一代高性能激光浮区法单晶炉LFZ外观图(左)和原型机中被五束激光加热的原料棒(右)。 参考文献: [1]. K. Kimura, Y. Otake, T. Kimura, Visualizing rotation and reversal of the Neel vector through antiferromagnetic trichroism. Nat Commun 13, 697 (2022).[2]. M. Hirschberger et al., Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7. Physical Review B 104, (2021).[3]. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 121, 2780-2815 (2021).[4]. Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power laser of 1 kW composed of five smart beams. Journal of Crystal Growth 533, 125435 (2020).
  • 欧盟全面停止销售白炽灯
    自2012年12月31日起,欧盟全面停止销售白炽灯。这项已经着手运作了5年多的绿色能源方案,终于最终落实。   发明于19世纪末的白炽灯泡,一直是照明市场的主角。但这种灯泡浪费能源、二氧化碳排放量相对较大。据研究,白炽灯能效低,只有不足15%用来照明,其余都变成了热能。欧盟委员会早在2007年3月就制订出具体时间表,逐步淘汰这种产品。据欧盟一家研究机构的最近调查显示,2007年白炽灯泡占法国照明市场份额曾达45%,2012年已降至10%,卤素灯占46%,紧凑型荧光灯占36%,LED节能灯占8%。LED节能灯消耗能源少,使用寿命长,具有光明的前途。根据麦肯锡公司的一项调查,2011年,全球LED节能灯市场份额为12%,预计将在2016年提高到40%,2020年达到63%,届时其销售额将达1000亿欧元。将来,照明市场将是紧凑型荧光灯、卤素灯和LED节能灯的天下。   但节能灯也有短处,导致一些消费者不愿放弃传统灯泡。如在使用上,节能灯刚打开时灯光比较暗,几分钟之后才逐渐亮起来,灯光颜色等与传统白炽灯不同,需要有一个适应过程 其次,节能灯虽然寿命相对较长,但价格偏高 另外,因为节能灯里含有具有毒性的水银,所以废旧节能灯不能随便丢弃,必须专门回收处理。   目前除了欧盟区内外,日本、澳大利亚等国也宣布了同样的政策。
  • 钙钛矿量子点超晶格中的稳定蓝光腔增强超荧光研究取得进展
    近期,中国科学院上海光学精密机械研究所红外光学材料研究中心董红星研究员和张龙研究员团队在溴氯掺杂量子点自组装超晶格结构中实现稳定蓝光腔增强超荧光,并解析了量子点超晶格结构通过降低电声耦合进而抑制光致相偏析的机制。相关研究成果以“Stable and ultrafast blue cavity-enhanced superflourescence in mixed halide perovskites”为题发表于Advanced Science。   高质量蓝光光源受限于低的量子效率,相比于红、绿光源仍处于落后的阶段。而钙钛矿量子点体系中的腔增强超荧光是由量子耦合效应和腔光场放大的双重调制产生的超快相干光爆发,可为实现高质量蓝光相干光源提供新思路,解决传统蓝光光源效率低下的局限性。卤素掺杂是在钙钛矿量子点体系中实现蓝光发射最直接的策略。然而,由于光致卤化物相偏析引起的光谱不稳定以及量子点与光腔之间的低耦合效率,使得在这种掺杂卤化物的量子点系统中实现稳定的蓝光腔增强超荧光具有挑战性。   针对上述问题,研究人员通过可控自组装制备得到形貌规则、长程有序、密集排列的CsPbBr2Cl量子点超晶格微腔。在量子点超晶格中,激子离域效应可以有效地减少激子声子耦合,从而缓解光致卤化物相偏析。同时,量子点自组装超晶格微腔具有高的堆积密度、光滑表面和规则几何结构,既可以作为增益介质,也可以作为高光反馈的回音壁腔,可提高量子点与光腔之间的耦合效率。因此,这两个核心问题将在量子点自组装超晶格结构中得到解决。基于这样的卤素掺杂量子点超晶格,研究人员最终实现了具有优异光学性能的稳定蓝光腔增强超荧光。   该工作得到国家自然科学基金,上海市青年拔尖人才计划等项目的支持。图1(a)量子点超晶格通过减弱激子-声子耦合来缓解光致相偏析的示意图;(b)CsPbBr2Cl量子点自组装超晶格微腔在激光泵浦在产生腔增强超荧光(CESF)的示意图;(c)77K下超晶格中随功率变化的蓝光腔增强超荧光发射图,左上角为1.8Pth激发功率下的蓝光腔增强超荧光的条纹相机图像。
  • 仪方成为TE总有机卤素分析仪中国区总代理
    新加坡仪方亚洲有限公司成功成为TE总有机卤素分析仪中国区总代理 新加坡仪方亚洲有限公司(INTERMASS FISCHER-ASIA PTE LTD),是一家总部设在新加坡的专业科学仪器公司。作为多家世界先进的分析仪器设备制造商在中国地区的总代理,仪方公司的产品主要被应用于石油炼制、精细化工、生物制药、环保监测、电子元件等众多行业及领域。经过TE (Trace Elemental Instruments)多方考察,仪方公司凭借成熟稳定的销售团队和优秀的售后服务团队以及长期以来在实验分析设备领域积累的优秀口碑,赢得了TE公司的认可。仪方公司将作为TE总有机卤素分析仪在中国市场的独家总代理负责产品的市场销售和售后服务工作。 如果您对产品有任何疑问或兴趣,欢迎随时垂询我公司或登陆公司网站查询。 联系方式: 北京办公室:010-5867 8333 上海办公室:021-6439 9787 Email:ifac@intermasschina.com Website:www.intermasschina.com TE XPLORER AOX analyzer 总有机卤素分析仪 适用于现代环保检测实验室检测各种有机卤素的快速准确分析 TE结合70多年来在燃烧法及库仑滴定检测的经验,推出了新型的XPLORER全自动总有机卤素分析仪,可以快速、精确地检测各种类型的有机卤素。并且通过模块化设计提供自定义解决方案, 从而满足未来的升级需要。 技术参数: 检测原理:高温燃烧法/库仑滴定法 燃烧温度:最高可至1150° C 样品前处理方式:柱吸附法和振荡吸附法 进样量:5-1000mg 检测范围:0.8 µ g/L ~1000 µ g/L 平均分析时间:3-10min(不包含样品预处理过程) 气体:氧气99.6%,氩气99.998% 20位全自动进样器,可扩展至60位 TEIS在线控制及数据处理软件 外形尺寸(W xH xD):40 x28 x70cm 重量:29kg 产品特点: 紧凑外观设计, 同类产品体积最小 快速启动时间 15 min 快速和准确的分析固体和液体样品 高效的20-60位全自动进样器 低电压高温炉,有效保证使用寿命 专利的可控温滴定池设计,可以24/7全天候工作 高度自动化设计,自动控制最佳实验条件,减少维护费用延长仪器寿命 模块化设计,便于在各种分析模块间切换 易于使用和直观的用户界面 符合CEN,DIN,EPA,ISO, NEN及GB/T国家标准 应用领域: 饮用水,地表水,地下水,污水,流出水,废水,自来水,盐水,处理水,纸浆排出水,土壤,沉积物,淤泥和废油
  • “高稳定度光源的研制与开发”十一五国家科技支撑计划课题已验收
    2010年10月26日,由国家地质实验测试中心承担的 “十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中的“高稳定度光源的研制与开发”(课题编号:2006BAK03A01)课题,通过了由国家质量监督检验检疫总局科技司组织的专家验收。   该课题组织了产、学、研一体的研发队伍,参加单位有:北京地质仪器厂、中国地质大学(武汉)、北京有色金属研究总院、涿州迅利达科技创新公司、复旦大学、中国广州分析测试中心、长春新产业光电技术公司、北京吉天仪器有限公司、上海光谱仪器有限公司等九个单位。课题组经过三年努力,采用新技术、新材料、新工艺完成了分析仪器用光源——全固态ICP光源、光谱仪器用高性能元素灯、光谱仪器用长寿命氘灯、光谱仪器用短弧氙灯、光谱仪器激光光源、低温等离子体原子化器、高性能石墨炉原子化器七类产品的研发。   课题在国内率先研发完成的具有自主知识产权的40.68MHz和27.12 MHz两种全固态ICP光源,稳定地实现了正常的ICP功率输出,为我国高端电感耦合等离子体光/质谱仪的研发和维护打下了坚实的基础。   完成的光谱仪器用短弧氙灯和长寿命氘灯以及高性能元素灯,解决了主要部件规格化以及能量提高和稳定性问题,其中绝大部分关键设备具有自主知识产权,产品质量和使用寿命达到国外同类产品先进水平。研发的光谱仪器激光光源,采用具有自主知识产权的激光器谐振腔偏心调整机械技术和半导体激光泵浦全固态低噪声内腔倍频激光谐振腔技术,通过模块化设计、封装和系统集成,提高了产品稳定性和生产效率,成功研制了266nm、355nm、532nm全固态激光器和405nm、445nm、635nm三种半导体激光器系统。   课题组首先在国内成功研制了两类高效原子化器,其中研制的低温等离子体原子化器,采用基于介质阻挡放电的技术,具有原创性,操作温度接近室温,功耗50W,同时解决了批量生产中的工艺技术问题,为实现原子荧光仪器小型化、便携化打下了基础;研制的另一类高性能石墨炉原子化器,在国内首创了具有低电压、大电流直流开关型石墨炉电源系统,其重量轻、体积小,可同时适用于高阻与低阻石墨管,该电源能自动补偿和校正石墨管电阻变化,延长了石墨管使用寿命,保证了瞬变电流的快速响应和运行可靠性,产品已应用在相关高端原子吸收仪产品中。上述研发成果都进行了产业化建设,新建和扩建了相应的生产线,形成了批量生产能力。   课题申报了国内专利25项,其中实用新型专利19项(已授权11项),发明专利6项(已授权1项),软件著作权1项。完成论文6篇(其中2篇被SCI收录)。
  • 快速退火工艺在欧姆接触中的应用RTP
    作为新一代半导体的代表材料,氮化镓(GaN)具有大禁带宽度、高临界场强、高热导率、高载流子饱和速率等特性,是制造高功率、高频电子器件中重要的半导体材料。其中,GaN材料与金属电极的欧姆接触对器件性能有着重要的影响,器件利用金属电极与GaN间接触形成的欧姆接触来输入或输出电流。当欧姆接触电阻过高时会产生较多的焦耳热,缩短器件寿命,而良好的欧姆接触可使器件通态电阻低,电流输出大,具有更好的稳定性。退火温度影响欧姆接触质量氮化镓欧姆接触的制备通常需要进行退火处理,退火的目的是通过热处理改变材料的结构和性质,使金属电极与氮化镓之间形成低电阻接触。而金属与GaN之间形成欧姆接触的质量受退火条件的影响,良好的欧姆接触图形边缘应保持平整,电极之间不应存在导致短路的金属粘合,退火完成后不会出现金属的侧流。(a) 退火前欧姆接触形态 (b)退火后欧姆接触形态(图源网络)退火温度作为影响欧姆接触性能的重要参数,温度过高或过低都会导致电阻率的增加和电流的减小。一般来说,退火温度越高,金属电极与氮化镓之间的比接触电阻率则越低。比接触电阻率与退火温度的函数关系(图源:知网)然而,当退火温度过高则可能导致氮化镓材料的损伤或金属电极的熔化,不利于形成好的欧姆接触;当温度过低时会导致金属与半导体之间形成较高的势垒,阻碍载流子的传输。因此在对GaN欧姆接触进行退火处理时,对于退火温度的条件选择尤为重要。快速退火炉(RTP)原理:快速退火炉(RTP)是一种用于半导体器件制造和材料研究的设备,其工作原理是通过快速升温和降温来处理材料,以改变其性质或结构。RTP结构示意图(图源网络)晟鼎快速退火炉(RTP)优势RTP快速退火炉具有温度控制精确、升温速度快等优点,可以满足欧姆接触对温度敏感的材料和结构的需求。晟鼎快速退火炉制程范围覆盖200-1250℃,具有强大的温场管理系统,此外,还能灵活、快速地转换和调节工艺气体,使得其在同一个热处理过程中可以完成多段处理工艺。晟鼎快速退火炉RTP温度控制—1000℃制程半自动快速退火炉RTP-SA-12为半自动立式快速退火炉,工艺时间短,控温精度高,相对于传统扩散炉退火系统和其他RTP系统,其独特的腔体设计、先进的温度控制技术和独有的 RL900软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷◎大气与真空处理方式均可选择,进气前气体净化处理◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性全自动双腔退火炉RTP-DTS-8相对于传统扩散炉退火系统和其他 RTP 系统,其独特的腔体设计、先进的温度控制技术和独有的RL900 软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷 ◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性 ◎大气与真空处理方式均可选择,进气前气体净化处理 ◎标配两组工艺气体,最多可扩展至 6 组工艺气体桌面型快速退火炉RTP-Table-6 为桌面式 6 英寸晶圆快速退火炉,使用上下两层红外卤素灯管作为热源加热,内部石英腔体保温隔热,腔体外壳为水冷铝合金,使得制品加热 均匀,且表面温度低。 RTP-Table-6 采用 PID 控制,系统能快速调节红外卤素灯管的输出功率,控温更加精准。产品优势◎双层红外卤素灯管加热,氮气快速降温◎自主研发灯管分组排布,使温度均匀性更好 ◎采用PID 算法控制,实时调节灯管功率输出 ◎软件主界面能实时显示气体、温度、真空度等参数◎自动识别错误信息,出现异常时设备自动保护
  • 广州明慧|选购荧光显微镜光源需要考虑的关键因素
    荧光显微镜是现代生物学和医学研究中的重要工具,能够通过荧光染料来照亮和观察样本,荧光染料被激发并发出荧光,从而使样本更加清晰可见。而荧光光源是荧光显微镜中的关键部件。正确的荧光光源可以提供高分辨率、高对比度的成像效果,而错误的选择则会使成像质量受到影响。因此,选择适合的荧光光源至关重要,因此介绍在选购显微镜荧光光源时需要考虑的关键因素。①波长:荧光染料只能在特定的波长下被激发。因此,选择荧光光源时需要确保其波长与所使用的荧光染料相匹配。荧光光源的光谱有连续的和非连续的,在不同波段能量不同。光源的波长需根据荧光物质来确定,常用的波长为365nm,470nm等。常用的荧光波段为UV紫外,B蓝,G绿,根据自己具体应用来选择某个具体波段,也可以根据需要定制波段。有单色荧光、双色荧光及多色荧光等多种配置方案可选,能够满足大部分的显微镜荧光实验需求。②亮度:荧光光源的亮度越高,样本就越容易被观察到。因此,选择亮度高的荧光光源可以提高观察效果。③稳定性:荧光光源的稳定性直接影响到观察的可靠性。因此,选择稳定性高的荧光光源可以减少实验误差。④寿命:荧光光源的寿命也是一个重要的考虑因素。选择寿命长的荧光光源可以减少更换光源的频率,LED荧光光源具有非常大的吸引力,提供高品质、稳定性的荧光照明,寿命更长,安全性更高,使用更加轻便以及节省实验成本等优点。综上所述,选择适合自己实验需求的荧光光源非常重要。需要考虑到波长、亮度、稳定性和寿命等因素,并且选择高品质的荧光光源可以提高实验的效率和准确性。这里要介绍的是荧光显微镜光源的最佳选择——LED光源,新型LED作为光源,提供高品质、稳定性的荧光照明,远优于传统的汞灯照明。相较其他光源具有明显的性能优势和成本优势,将逐步的替代超高压汞灯、氙灯、金属卤素灯,成为荧光显微镜主流的荧光光源,可满足科研、分析、检验不同用户的需求。此外,多波段LED光源可选,并可控制每一个LED的亮度,实现多波长的选择激发,便捷高效。广州明慧公司自主研发的显微镜LED荧光光源适用于目前市面上大部分正置显微镜、倒置显微镜和体视显微镜,通用型荧光光源,安装简便易操作,体积小不占空间,可定制,非常适合实验室需要将普通显微镜升级为荧光显微镜的应用需求,性价比高,方便高效。如果您对我们的显微镜LED荧光光源感兴趣,可与我们技术交流。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 看GDS如何助力“灯厂”奥迪独领风骚?【GDS微课堂-6】
    汽车圈中只有两种灯,一种是奥迪的灯,另一种是其他车的灯。奥迪灯厂的称号在整个汽车圈中几乎无人不知,不得不称赞奥迪在车灯的设计上的的确用心,在其他车还在用卤素灯,氙气灯的时候,奥迪已经推出了“矩阵式LED大灯”,来感受一下它的炫酷效果。它不仅可以做成各种形状,还可以有各种颜色。图片来源:Pixabay因为与其他光源相比,LED寿命长、能耗低,并且环保无污染。随着全球性能源短缺问题的日益严重,寻找未来世界能源成为头等大事,而LED将是取代白炽灯、钨丝灯和荧光灯的潜力光源。LED是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,发射出光。这块发光芯片就像LED的心脏,负责控制LED,比如芯片的材料直接就决定了发光的颜色。对于厂家来说,技术升级的关键就在于如何开发出更高效、更稳定的 LED 芯片。它是个多镀层的结构,如下图所示,P-GaN下有InGaN和GaN构成的交替镀层,这个交替镀层就是LED芯片的活性结构,它的好坏直接关系到LED芯片的性能及质量,进而影响到LED发光。在GDS技术未普及前,人们常用SIMS(二次离子质谱)完成对LED芯片质量的分析研究。但GDS技术的出现,成功取代了SIMS,成为LED芯片分析的神兵利器。价格SIMS有两个致命缺点,一是价格偏贵,实际上只有少数“土豪”可以负担这样的费用,多数单位只能乖乖地将样品送至第三方检测,很不方便。而GDS的价格仅是SIMS的一半,大大降低了研发成本。图片来源:Pixabay分析速度另一个就是SIMS的测试速度特别慢,通常一个样品需要测试几个小时,一天也测试不了几个样品,效率低。而GDS的检测速度非常快,比如我们利用GDS测定LED芯片镀层中各个元素随深度的分布,只需要20s就能获得结果,和SIMS相比,简直就是从牛车换成了飞机。LED质量控制GDS能够快速测定LED芯片镀层中各个元素随深度的分布,进而根据LED芯片镀层的结构,判断产品质量是否合格。如上图,红色曲线为In元素,我们可以看到在:活性镀层处,In元素随时间变化,它的上升与下降非常清晰明显,说明这个产品的质量完全合格的。另外,GDS还能帮助厂家监控批次产品质量是否一致,直接反馈不同批次间产品的差异,怎么做呢?首先利用GDS快速获取不同批次芯片镀层的元素分布结果,然后进行对比。如上图,这是10个批次LED芯片的测试结果对比,大家要记住:只有曲线完全重合才能说明产品一致。这里的结果就不言而喻了。所以在生产线上,我们只需要将待检样品的测试结果直接与合格产品进行比对,重合即为合格产品,不重合即为不合格。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。您可点击阅读原文进行浏览,还可分享至朋友圈让更多科研工作者看到。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 稳定同位素标记化合物产业化基地建设进展-阿尔塔
    阿尔塔科技有限公司参加由中国计量科学研究院牵头的十三五“食品安全关键技术研发”重点专项,并承担了“食品检测稳定性同位素标记RM研制及产业化”任务,旨在利用阿尔塔标准品和稳定同位素标记物研发平台的优势,开发多系列食品安全检测用有机稳定同位素标记物的制备共性关键技术,研制农兽药及禁限用食品添加剂等有害物的稳定同位素标记物,建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。在食品与环境安全问题中,农药和兽药等有害化学品的污染引起了世界各国的广泛关注。WHO/FAO—CAC(世界卫生组织食品法典委员会)、GB2761、GB2762、GB2763、GB31650等国际和国家标准中对食品中有害物质最高残留限量(MRL) 作了相应的规定。有些发达国家利用食品中有害物质残留限量标准及其检测技术作为对我国食品国际贸易的技术壁垒,极大地削弱了我国农产品在国际市场上的竞争力。面对当前的国际国内形势,消除此项壁垒并开发出适应新要求的食品安全检测技术变得更加迫在眉睫。近几年发布的食品检验农药残留和兽药残留方面的国家标准及行业标准中越来越多的采用了稳定同位素内标法作为规范的检测方法。在质谱的检测方法中,使用稳定性同位素标记物作为内标可以提高目标化合物的回收率和方法稳定性,有效避免基质效应、前处理和质谱检测器等因素对分析方法测定结果的影响,保证了检出结果的准确性。但是,由于我国稳定同位素标记产品短缺,在以往的国标、行标中普遍使用进口的稳定性同位素标记物,遭遇“买到什么用什么”的困境,严重影响和制约了我国食品安全分析方法开发和痕量危害物检测的发展。因此,发展具有自主知识产权的稳定同位素制备共性关键技术和产品研究,建立独立自主的产业化基地,为我国的科技创新和食品环境安全检测提供大量、可靠、经济、新型的稳定同位素内标物,摆脱“买到什么用什么”的困境,实现“想用什么买什么”,既是科研创新发展必不可少的组成部分,也符合国家发展战略的根本要求。阿尔塔科技致力于高质量标准品和稳定同位素标记化合物的开发和全套解决方案的提供,公司的标准品开发平台基于公司创始人张磊博士及分析检测和标准品领域内多名专家的广泛深入合作。此次承担“国家食品安全重大专项-食品检测稳定性同位素标记标准物质研制及产业化”项目,阿尔塔科技依托公司研发平台的优势,从现行标准中常检出农兽药及禁限用添加剂入手,开发稳定同位素标记物的制备共性关键技术,制备具有自主知识产权的稳定性同位素标记物系列产品,建成世界一流的稳定同位素标记物生产技术示范应用产业化基地,以实现对进口产品的全面替代和超越。经过阿尔塔技术专家两年来的攻坚克难,已经成功开发了有机磷类、磺胺类、喹诺酮类、瘦肉精类、塑化剂类等多系列内标物的关键共性技术,实现了上百种稳定同位素标记的量产和持续供应能力,并将在未来5年内完成五百余种稳定同位素标记标内标物的研发和稳定供应,基本扭转食品检测用稳定同位素标记物严重依赖进口的局面,初步达到让检测人员“想用什么买什么”、“需要什么能做什么”。目前,阿尔塔科技自主品牌的稳定同位素标记化合物超过1500种,已成为国内稳定同位素标记化合物品种最多的自主研发和持续供应企业。另外,阿尔塔科技设立了博士后科研工作站和院士创新工作站,通过引进和培养更多高端专业人才完成更多标准品和稳定同位素标记物的研制、新方法开发和标准制定,为我国食品安全检测行业由“跟随”到“引领”的转变提供强有力的产品及技术支持。*阿尔塔申请专利:CN 109574868A,一种四环素类及其差向异构体氘代内标物的制备方法CN 110746445A,一种头孢哌酮氘代内标物的制备方法CN 112358446A,一种稳定同位素标记的盐酸曲托喹酚的制备方法CN 112409257A,一种氘标记的去甲乌药碱稳定性同位素化合物的制备方法CN 113061096A,一种新的稳定同位素标记的克伦丙罗的制备方法CN 113149851A,一种新的稳定同位素标记氯丙那林的制备方法CN 113061094A,一种新型盐酸莱克多巴胺-D6的制备方法CN 113061070A,一种氘标记的美替诺龙稳定性同位素标记化合物 *阿尔塔发表文章:秦爽等. 稳定同位素标记化合物盐酸曲托喹酚-D9的合成与表征. 审稿中刘晓佳等. 稳定同位素氘标记的盐酸莱克多巴胺的合成与表征. 审稿中曹炜东等. 稳定同位素氘标记克伦丙罗-D7新的合成方法研究与结构表征. 审稿中韩世磊等. 稳定同位素氘标记去甲乌药碱的合成与表征. 同位素, 2021, 34(4), 317-324.韩世磊等. 稳定同位素标记化合物二氢吡啶-13C4的合成与表征. 食品安全质量检测学报, 2020, 11(18), 6372-6377.
  • 快速退火炉在化合物半导体上的应用(RTP SYSTEM)
    前言碳化硅(SiC)是制作半导体器件及材料的理想材料之一,但其在工艺过程中,会不可避免的产生晶格缺陷等问题,而快速退火可以实现金属合金、杂质激活、晶格修复等目的。在近些年飞速发展的化合物半导体、光电子、先进集成电路等细分领域,快速退火发挥着无法取代的作用。01快速退火在化合物半导体上的应用碳化硅(SiC)是由碳元素和硅元素组成的一种化合物半导体材料,具有硬度高、热导率高、热稳定性好等优点,在半导体领域具有广泛的应用前景。由于碳化硅器件的部分工艺需要在高温下完成,这给器件的制造和封测带来了较大的难度。例如,在掺杂步骤中,传统硅基材料可以用扩散的方式完成掺杂,但由于碳化硅扩散温度远高于硅,所以需要采用高温离子注入的方式。而高能量的离子注入会破坏碳化硅材料原本的晶格结构,因此需要采用快速退火工艺修复离子注入带来的晶格损伤,消除或减轻晶体应力和缺陷,提高结晶质量。*退火工艺处理前后对比(图源:网络)02什么是快速退火炉(RTP SYSTEM)快速退火炉是利用卤素红外灯作为热源,通过极快的升温速率,将材料在极短的时间内从室温加热到300℃-1250℃,从而消除材料内部的一些缺陷,改善产品性能。*图源:网络03快速退火炉产品介绍 全自动双腔快速退火炉 RTP-DTS-8是一款全自动双腔快速退火设备,可兼容6-8英寸晶圆Wafer。产品优势✅ 全自动双腔设计,有效提升产能✅ 温度可达1250℃,具有超高温场均匀性✅ 具备稳定的温度重现性✅ 能够满足SIC量产化制程需求半自动快速退火炉RTP-SA-12是在保护气氛下的半自动立式快速退火系统,可兼容4-12英寸晶圆Wafer。产品优势✅ 采用红外卤素灯管加热,冷却采用风冷;✅ 快速PID温控,可控制温度升温,保证良好的重现性和温度均匀性;✅ 采用平行气路进气方式,气体进出口设置在晶圆表面,避免退火过程中冷点产生,保证良好的温度均匀性;✅ 大气与真空处理方式均可选择,实现进气前气体净化处理;✅ 标配两组工艺气体,可扩展至6组工艺气体。桌面型快速退火炉RTP-TABLE-6是一款桌面型快速退火设备,标配三组工艺气体,可兼容6英寸晶圆Wafer。产品优势✅ 红外卤素灯管加热,冷却采用风冷;✅ 采用快速PID温控,可控制温度升温,保证良好的重现性和温度均匀性;✅ 采用平行气路进气方式,气体进出口设置在晶圆表面,避免退火过程中冷点产生,保证良好的温度均匀性;✅ 大气与真空处理方式均可选择,实现进气前气体净化处理。
  • NCC:天然卤素在气候变化中缓冲对流层臭氧
    本篇论文解读由方雪坤研究团队的杜千娜同学撰写。杜千娜同学:浙江大学环境与资源学院2022级硕士研究生,主要研究方向温室气体HFCs排放反演与清单。第一作者:Fernando Iglesias-Suarez通讯作者:Alfonso Saiz-Lopez通讯单位:1Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain. 文章链接:https://doi.org/10.1038/s41558-019-0675-6论文发表时间:2020年1月研究亮点1.全球综合的、由卤素驱动的对流层O3柱损失在整个21世纪是恒定的(~13%)。2.卤素造成的对流层臭氧损失在目前和本世纪末都显示出明显的半球不对称性。3.预计卤素介导的臭氧损失最大(高达70%)发生在北半球污染地区(美国东部、欧洲和东亚)的地表附近。(注:以上为这位同学的论文解读,非论文原作者意思)研究不足(或未来研究)1.未来经济发展情况预测仍然有多种,目前对未来臭氧损失的估计仍旧依赖于未来经济预测,可能与事实有所偏离。2.未来天然卤素通量和分布的变化将由气候敏感性、未来人为排放和大气化学等因素综合决定。3.未来研究仍需对卤素化学加深了解。(注:以上为这位同学的论文解读,非论文原作者意思)全文概要反应性大气卤素破坏对流层臭氧(O3)。天然卤素的主要来源是海洋浮游植物和藻类的排放,以及海洋和对流层化学的非生物来源,但其通量在气候变暖下将如何变化,以及由此对O3产生的影响目前尚不清楚。本研究使用一个地球系统模型(共同体地球系统模型(CESM))估计发现在当今气候中,天然卤素消耗了大约13%的对流层O3。尽管21世纪天然卤素的含量有所增加,但由于对流层O3损失的半球、区域和垂直异质性的补偿,这一比例保持稳定。这种卤素驱动的O3缓冲预计在污染和人口稠密的地区最大,对空气质量有重要影响。背景介绍对流层臭氧(O3)丰度受原位光化学、平流层内流和地表干沉积之间的平衡控制。O3的光化学破坏发生在整个对流层,主要是通过其光解和随后与水蒸气的反应以及与自由基的反应直接损失。对流层O3也会通过催化循环与活性卤素(Cl, Br, I)发生反应而被破坏,只有将对流层卤素化学考虑在内才能更准确地了解其变化。目前,卤素被估计将使全球对流层臭氧减少约10-20%,对地表臭氧有很大影响。生物源性短寿命卤代烃(VSL),包括CHBr3、CH2Br2、CH3I和CH2ICl,是通过海洋生物如浮游植物、微藻和大型藻类的代谢自然排放出来的。这些卤素化合物的寿命不到6个月,是对流层中活性氯、溴和碘的重要来源。此外由于O3沉积到海洋中,随后海水碘化物氧化为次碘酸(HOI)和分子碘(I2),并释放到大气中,海洋也是无机碘的非生物来源。在对流层中,活性溴和氯实际上是由VSL卤化碳的光氧化产生的。气候变化和社会经济发展已经改变了VSL卤化碳的自然通量(1979-2013增加约7%)和无机碘(1950-2010增加两倍),并可能在21世纪持续。然而,天然卤素变化将如何影响臭氧和对流层化学以及气候仍然未知。结果讨论21世纪的天然卤素排放:在考虑的每种情况下,与目前相比VSL卤代烃排放量在21世纪末都要更大;全球海洋无机碘排放量在RCP 8.5之后增加了约20%,而在RCP 6.0和RCP 2.6期间分别减少了约10%和20%;到2100年,活性卤素浓度将增加约4-10%,在RCP 6.0下,溴驱动了这些变化,但由于碘碳(增加)和无机碘(减少)通量之间的相互作用,碘没有出现显著变化,溴和碘对RCP 8.5反应性卤素负荷变化的贡献相同。在RCP 2.6情景下,活性卤素浓度降低(~5%)。2000-2100年全球天然卤素的年度变化。a)短寿命卤代烃通量,b)无机碘排放,c)对流层天然反应性卤素浓度天然卤素对21世纪对流层臭氧的影响:图2显示了2000-2100年间全球对流层臭氧柱浓度的变化,上面和中间的图分别显示了对流层臭氧柱的绝对变化及其与活性卤素相关的损失。与目前相比,到本世纪中叶,卤素驱动的对流层O3柱损失增加,与RCP 6.0和RCP 8.5期间VSL卤碳排放量不断增加相一致。到2100年,在RCP 8.5条件下,活性卤素对对流层O3的影响保持相对不变,而在RCP 6.0条件下,预计会有较小的消耗。无论排放情景如何(下面的图),预计全球卤素驱动的对流层O3柱损失在整个世纪几乎保持不变(~12.8±0.8%)。2000-2100年全球年度对流层臭氧柱时间序列与卤素化学有关的纬向平均对流层O3损失如图3a、b所示。O3质量的纬向平均损失约为~0.3DU(全球综合为3.9DU),其中溴和碘分别贡献了约16%和80%。卤素介导的臭氧损失显示出明显的半球不对称性(目前在南半球更大)。在南半球温带地区,通过非均相激活进一步增强了平流层O3的消耗。O3相对损失呈现显著梯度,从对流层上层到下层,从北向南增加。RCP 6.0和RCP 8.5由天然卤素驱动的纬向平均对流层O3损失趋势如图3c,d所示。其模式是不均匀的,具有明显的半球和垂直梯度,尽管两种排放情景一致(仅强度不同)。反应性卤素造成的纬向平均对流层O3损失在本世纪,由反应性卤素驱动的臭氧相对损失在对流层中高层减弱(在250hPa时为10-20% 图4a),这一特征在本世纪上半叶和下半叶的南半球高纬度地区被放大。此外,在300至850 hPa之间的热带自由对流层,到本世纪末,卤素造成的未来臭氧损失将减少,这表明该地区臭氧的命运将主要由其他驱动因素控制,包括光解作用以及与水蒸气和羟基自由基的反应(图3c、d和4b)。此外,臭氧损失呈现明显的半球不对称,与“更清洁”的南半球相比,污染更严重的北半球臭氧损失趋势更大。与目前相比,未来卤素介导的O3损失预计将增加10-35%(图4),其中边界层内损失最大。从现在(1990-2009年)到本世纪末(2080-2099年),由活性卤素引起的部分O3柱损失的垂直分辨变化图5显示了从现在到21世纪末近地表臭氧损失变化。在全球范围内,在RCP 6.0情景下,天然卤素引起的2000 - 2100年近地表O3损失变化(15.0±1.1%)大于RCP 8.5情景(3.1±0.7%),但两者共同显示了臭氧损失的增加主要局限于温带地区,在中纬度地区(30°-60°N和30°-60°S)达到峰值(图5b、d)。现在(1990-2009年)到本世纪末(2080-2099年)卤素驱动的近地表臭氧损失变化预计到本世纪末,最大的臭氧损失将发生在受污染的大陆地区,而不是在遥远的海洋环境中,并具有明显的半球不对称性。特别是,在美国东部、欧洲和东亚地区,预计卤素驱动的O3损失大,分别为71.5±12.9%、30.8±4.2%和6.9±10.1%,RCP 6.0和RCP 8.5分别为48.2±12.6%、18.3±3.2%和23.2±10.9%。2000-2100年卤素驱动的近地表O3损失时间序列ReferenceIglesias-Suarez, F. et al. Natural halogens buffer tropospheric ozone in a changing climate. Nature Climate Change 10, 147-154 (2020).
  • 深圳先进院等实现柔性电子器件“乐高式”高效稳定组装
    近年来,柔性电子器件在人体健康检测与分析以及可穿戴设备等生物医学工程领域展现出广阔的应用前景。然而,在柔性电子器件的组装中,用于连接不同模块的商用导电胶易变形、断裂,使得接口不稳定性成为该领域内长期存在的难题,阻碍了整个器件的拉伸性和信号质量。   中国科学院深圳先进技术研究院、新加坡南洋理工大学、美国斯坦福大学的科学家另辟蹊径,绕开利用“商业胶水”组装柔性电子器件的思路,开发了基于双连续纳米分散网络的BIND界面(biphasic, nano-dispersed interface,BIND)。这种新型界面能够作为柔性电子器件通常所包含的柔性模块、刚性模块以及封装模块的通用接口,只需要按压10秒钟,便可以实现“乐高式”的高效稳定组装。2月15日,相关研究成果发表在《自然》(Nature)上。   人机接口是人与电子设备之间进行的数字虚拟世界和现实物理世界的信息交换,而柔性电子器件则是人机接口技术的关键核心和先导基础。柔性电子器件在生物医学工程领域的研究备受关注,大致可分为植入式和体表式两种,主要功能就是采集应力信号、温度信号、生理电信号、超声信号、生物化学信号等生理数据以监测人体健康状态。然而,商用导电胶的瓶颈却破坏了柔性电子器件的整体稳定性。无论单个模块的拉伸性多好,只要模块接口处的拉伸性很弱,那么整个器件的拉伸性就会受到制约。   联合团队发现,在特定的制备条件下,基于SEBS嵌段聚合物和黄金纳米颗粒的柔性界面即BIND界面,面对面贴合时有“魔术贴”式的电气与机械双重黏合特性,能够将不同功能的柔性传感器稳定地黏合在一起,从而实现柔性模块与柔性模块之间的高效连接。通过热蒸发金(Au)或银(Ag)纳米颗粒制备BIND界面,在自粘苯乙烯-乙烯-丁烯-苯乙烯(SEBS)热塑性弹性体内部形成互穿纳米结构,SEBS是广泛应用于可拉伸电子产品的软基板。SEBS基质表面附近的纳米颗粒形成了一个双相层(约90纳米深),其中一些纳米颗粒完全浸入其中,而另一些纳米颗粒部分暴露在外。这种界面结构在表面产生了暴露的SEBS和Au,在基体内部产生了互穿的Au纳米颗粒,这为坚固的BIND连接提供了连续的机械和电气途径。总之,这种即插即用的接口可以简化和加速皮肤上和可植入的可拉伸设备的开发。实验表明,采用新型接口的柔性医疗器件可高精度、高保真、抗干扰地监测体内外不同器官,包括表皮、脑皮层、坐骨神经、腓骨肌肉、膀胱等,比起商用导电胶组装的系统信号质量有大幅提升。   采用BIND界面的柔性模块接口,其导电拉伸率可达180%,机械拉伸率可达600%,高于采用商用导电胶连接的普通接口(分别为45%、60%);对于硬质模块接口,其导电拉伸率达200%,并能适用于聚酰亚胺(PI)、玻璃、金属等多种硬质材料;对于封装模块接口,BIND界面能提供0.24 N/mm的粘附力,是传统柔性封装的60倍。   该研究为智能柔性电子器件的模块化组装提供了可拉伸、稳定高效的通用接口,不仅简化了柔性医疗器件的使用,而且加速了多模态、多功能的柔性医疗器件的研发。通过该接口组装的智能柔性传感器件可用于多个医疗领域,例如植入式人机接口、体表健康监测、智能柔性传感、软体机器人等。   研究工作得到国家自然科学基金国家重大科研仪器研制项目、国家重点研发计划、神经工程研究中心、中科院人机智能协同系统重点实验室、中科院健康信息学重点实验室的支持。可拉伸混合设备的BIND连接研究团队开发的“魔术贴”式柔性组装方法与在肌电监测中的应用实例
  • 理加联合参加“第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班”
    2014年5月19日-22日,第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班在北京顺利召开,会议由清华大学地球科学研究中心主办,中国生态学学会联办,会议邀请了国内外本领域的著名专家做主题特邀报告,来自全国各地近200位学者参加了学术研讨会,另有120位学者参加了技术研修班。北京理加联合科技有限公司(以下简称:理加联合)应主办方邀请,携众多生态仪器设备参加了此次盛会。 5月19日-20日,中国 北京 清华园宾馆 稳定同位素生态学学术研讨会 5月19日,研讨会开始,清华大学地球系统科学研究中心暨全球变化研究院林光辉教授主持会议。 5月20日,理加联合市场总监朱湘宁先生在大会上为专家学者介绍了LGR激光稳定性同位素分析仪的新应用,并回答了与会学者提出的一系列问题。 报告结束后,与会学者表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量痕量物质,对于生态学研究而言,尤其是稳定同位素生态学研究,有着很高的契合性。 5月21-22日,中国 北京 清华大学 稳定同位素技术研修班 为了确保每位学者都可以亲自动手操作专业仪器,并与我们的工程师沟通,技术研修班分四组进行。 首先,中国科学院地理科学与资源研究所生态系统网络观测与模拟实验室温学发副研究员讲解“基于稳定同位素红外光谱技术连续测定温室气体同位素比值和通量”。 讲解结束,在理加联合工程师的指导下,学员亲自动手操作仪器,了解仪器的内部构造和操作技巧;更值得一提的是,由美国LGR公司推出的温室气体分析仪,以其强大的功能、小巧的身材、可背负式的设计赢得与会学者的一致青睐。 关于理加联合主要代理产品:美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪瑞典OPSIS公司凯氏定氮仪和自动消解仪美国CSI公司闭路涡度相关和大气廓线测量系统美国Resonon公司高光谱成像光谱仪意大利AMS集团全自动化学分析仪和流动分析仪 理加联合作为专业的生态与环境仪器的供应商和服务商,一直以“为客户提供最先进的产品和最优质的服务”为目标,在不断引进国外新产品和新技术的同时,努力提升自身的技术支持、售后服务和研发能力,为用户提供更高品质的产品和服务。欲了解更多信息,请浏览公司网站:www.li-ca.com
  • 广东省环境科学学会发布《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》等两项团体标准征求意见稿
    各分支机构、会员及有关单位:由广东省生态环境监测中心、中国科学院广州地球化学研究所等单位共同提出并主持编制的《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年5月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.广东省环境科学学会标准征求意见反馈表2.《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿)3.《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿)编制说明4.《土壤和沉积物 铊稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿)5.《土壤和沉积物 铊稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿)编制说明 广东省环境科学学会2024年4月19日附件1:广东省环境科学学会标准征求意见反馈表.doc附件2:《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿).pdf附件3:《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》 (征求意见稿)编制说明 .pdf附件4:《土壤和沉积物 铊稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿).pdf关于征求《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》等两项团体标准意见的函.pdf附件5:《土壤和沉积物 铊稳定同位素的测定 多接收电感耦合等离子体质谱法》(征求意见稿)编制说明.pdf
  • 阿尔塔科技稳定同位素标记技术产业化基地建设成果系列报道之七:稳定同位素标记孔雀石绿与结晶紫
    为提高渔业产品质量,兽药被广泛应用于渔业养殖中寄生虫和微生物疾病的防治,不当使用会导致水产品中抗生素残留,最终影响人类食品安全和健康。图片来源:千图网孔雀石绿和结晶紫是有毒的三苯甲烷类化合物,易在水产品体内长期残留,农业部已将其列为水产禁药。然而,因其对鱼体的水霉病、寄生虫病等有特效,使得许多水产养殖户仍有违规使用,其在水产品中残留超标时有发生。因此,孔雀石绿和结晶紫为水产品检测的重点项目。孔雀石绿和结晶紫对人体健康有什么危害?图片来源:千图网孔雀石绿和结晶紫的人体暴露途径主要是食用含有孔雀石绿和结晶紫的鱼、虾等水产品。它们具有高毒性,可能会引起致癌、致畸、致突变,其代谢产物隐性孔雀石绿和隐性结晶紫的毒性强于母体化合物,对人体的健康危害非常大。孔雀石绿和结晶紫的限制法规图片来源:千图网2011年卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第1-5批汇总)》,以及2014年国家卫计委发布的《食品中可能违法添加的非食用物质名单》(国卫办食品函〔2014〕843号) 都指出不得违法添加及使用孔雀石绿和结晶紫。阿尔塔助力守护“舌尖上的安全”GB/T 19857-2005 《水产品中孔雀石绿和结晶紫残留量的测定 液相色谱-串联质谱和高效液相色谱的测定方法》适用于鲜活水产品及其制品中孔雀石绿、结晶紫及其代谢物残留量的检验。为保证检测的有效实施,阿尔塔科技成功研发出系列稳定同位素标记孔雀石绿和结晶紫及其代谢物标准物质,并且考虑到其具有高毒性的特点,推出系列经准确定值的标准溶液和混合标准溶液,为检测用户减少配制标液的风险,保护检测人员身体健康。部分孔雀石绿与结晶紫产品:了解更多产品或需要定制服务,请联系我们阿尔塔科技稳定同位素标记物产业化基地阿尔塔科技致力于建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。阿尔塔科技开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。我们期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。
  • 350万!清华大学高稳定超高分辨显微成像系统采购项目
    项目编号:清设招第2022118号项目名称:清华大学高稳定超高分辨显微成像系统采购项目预算金额:350.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高稳定超高分辨显微成像系统1套是设备用途介绍:观察固定/活细胞或组织内部超微结构和形态变化(包括但不限于各种细胞的亚细胞器、分泌囊泡、突触、染色体以及包括蛋白质在内的大分子等)的超高分辨率水平(≤50nm)图像;研究亚细胞和分子水平定性,定量和定位分布检测;并在细胞及分子生物学,神经科学,组织及病理学、病毒及微生物学,免疫及肿瘤学等领域具有广泛用途。简要技术指标:1)高稳定超高分辨显微成像模块,生物分子可实现XY方向分辨率≤50nm;2)点扫描激光共聚焦显微成像模块,生物分子可实现XY方向分辨率≤200nm;3)科研级全电动倒置荧光显微镜,超高分辨专用100X油镜,数值孔径NA≥1.45。合同履行期限:合同签订后90日内交货本项目( 不接受 )联合体投标。
  • 大昌华嘉成功举办IsoPrime稳定同位素质谱仪应用研讨会
    大昌华嘉商业(中国)有限公司携手Elementar上海技术中心的工程师于10月26日在上海海洋大学海洋科学学院成功举办的 IsoPrime稳定同位素质谱仪应用研讨会。 当前在中国,稳定同位素质谱仪的应用正在蓬勃发展,各方面的需求正在释放出来,尤其在食物的来源和污染源的示踪方面受到非常大的关注。上海海洋大学已经开始了鱼群食物链的研究,也有着更深的应用要求。本次应用研讨会提供了稳定同位素质谱仪的基础知识和Isoprime同位素质谱仪的介绍,旨在提高Isoprime稳定同位素质谱仪的操作和应用水平。 上海海洋大学海洋科学学院陈新军院长致辞 Elementar 上海技术中心叶昌强经理、邓好工程师和何斌工程师和牟志峰工程师就Isoprime稳定同位素质谱仪的仪器原理、构造、维护以及相关应用给予详细地介绍,共同交流技术,开展合作项目。大昌华嘉蒋海工程师掌握了大量的第一手的市场需求和信息,就稳定同位素市场的发展现状和应用前景展开报告。 Elementar技术中心工程师讲解稳定同位素质谱的理论和仪器应用 关于大昌华嘉 大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司 视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司 比表面/孔隙度分析仪&mdash 日本拜尔BEL公司 密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司 全自动氨基酸分析仪-英国Biochrom公司 元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司 薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司 近红外分析仪-德国优泰科(ZEUTEC)公司 水份活度仪-瑞士novasina公司 凯氏定氮仪-德国贝尔(behr)公司 高压反应釜-瑞士premex公司 全自动反应量热仪-瑞士Systag公司 LB膜分析系统&mdash 芬兰Kibron公司 颗粒图像分析系统&mdash 挪威AnaTec公司 粉末流动性分析仪&mdash 英国康普利COPLEY公司
  • 科研人员制备稳定钙钛矿纳米晶体,可使LED灯成本更低/寿命更长
    据外媒报道,发光二极管(LED)是照明行业的无名英雄。它们运行效率高,散发的热量少,持续时间长。现在,科学家们正在研究一种新材料以使LED在消费电子、医药和安全领域的应用变得更有效且寿命更长。来自美国能源部(DOE)阿贡国家实验室、布鲁克海文国家实验室、洛斯阿拉莫斯国家实验室和SLAC国家加速器实验室的研究人员报告称,他们已经为此类LED制备了稳定的钙钛矿纳米晶体。来自中国台湾地区的研究院也在这项研究中做出了贡献。钙钛矿是一类具有特殊晶体结构的材料,具有吸光和发光的特性,在一系列节能应用中非常有用,包括太阳能电池和各种探测器。虽然钙钛矿纳米晶体是一种新型LED材料的主要候选材料,但在测试中证明其不稳定。研究小组将纳米晶体稳定在多孔结构中,这种多孔结构被称为金属有机框架,简称MOF。基于地球上丰富的材料并在室温下制造,这些LED有朝一日可能会使成本更低的电视和消费电子产品以及更好的伽马射线成像设备,甚至是用于医学、安全扫描和科学研究的自供电X射线探测器。“我们通过将钙钛矿材料封装在MOF结构中来解决其稳定性问题,”DOE用户设施办公室Argonne的奈米材料中心(CNM)的科学家Xuedan Ma说道,“我们的研究表明,这种方法使我们能大幅提高发光纳米晶体的亮度和稳定性。”美国洛斯阿拉莫斯大学前J. R. Oppenheimer博士后Hsinhan Tsai补充称:“在MOF中结合钙钛矿纳米晶体的有趣概念已经以粉末形式被证明,但这是我们首次成功地将其集成为LED的发射层。”之前试图制造纳米晶体LED的尝试被纳米晶体降解回不需要的体积相所阻碍,这使其失去了纳米晶体的优势并削弱了它们作为实用LED的潜力。大块物质由数十亿个原子组成。像钙钛矿这样的材料在纳米阶段是由几个到几千个原子组成的,因此表现不同。在他们的新方法中,研究小组通过在MOF的矩阵中制造纳米晶体来稳定纳米晶体,就像网球被铁丝网夹住一样。他们使用框架中的铅节点作为金属前体,卤化物盐作为有机材料。卤化物盐的溶液中含有甲基溴化铵,它跟框架中的铅反应并在基体中的铅核周围组装纳米晶体。由于基质会使纳米晶体保持分离,所以它们不会相互作用和降解。这种方法是基于一种解决方案涂层的方法,比目前广泛使用的用于制造无机LED的真空处理要便宜得多。MOF稳定的LED可以制造出明亮的红色、蓝色和绿色光以及每种光的不同色调。洛斯阿拉莫斯国家实验室综合纳米技术中心的科学家Wanyi Nie说道:“在这项工作中,我们首次证明了在MOF中稳定的钙钛矿纳米晶体将创造出各种颜色的明亮、稳定的LED。我们可以创造不同的颜色、提高颜色纯度并提高光致发光量子产量,这是一种衡量材料发光能力的指标。”该研究小组使用先进光子源(APS)--DOE位于阿贡的科学用户设施办公室--进行时间分辨X射线吸收光谱分析,这项技术使他们能发现钙钛矿材料随时间的变化。研究人员能跟踪电荷在材料中移动的过程并了解光发射时发生的重要信息。“我们只能通过APS强大的单个X射线脉冲和独特的时间结构来实现这一点,”阿贡X射线科学部的小组负责人Xiaoyi Zhang说道,“我们可以追踪带电粒子在微小钙钛矿晶体中的位置。”在耐久性测试中,该材料在紫外线辐射、热和电场下表现良好且不会降解并失去其光探测和发光效率,这是电视和辐射探测器等实际应用的关键条件。
  • TE XPLORER AOX analyzer 总有机卤素分析仪
    TE XPLORER AOX analyzer 总有机卤素分析仪 适用于现代环保检测实验室检测各种有机卤素的快速准确分析 TE结合70多年来在燃烧法及库仑滴定检测的经验,推出了新型的XPLORER全自动总有机卤素分析仪,可以快速、精确地检测各种类型的有机卤素。并且通过模块化设计提供自定义解决方案, 从而满足未来的升级需要。 技术参数: 检测原理:高温燃烧法/库仑滴定法 燃烧温度:最高可至1150° C 样品前处理方式:柱吸附法和振荡吸附法 进样量:5-1000mg 检测范围:0.8 µ g/L ~1000 µ g/L 平均分析时间:3-10min(不包含样品预处理过程) 气体:氧气99.6%,氩气99.998% 20位全自动进样器,可扩展至60位 TEIS在线控制及数据处理软件 外形尺寸(W xH xD):40 x28 x70cm 重量:29kg 产品特点: 紧凑外观设计, 同类产品体积最小 快速启动时间 15 min 快速和准确的分析固体和液体样品 高效的20-60位全自动进样器 低电压高温炉,有效保证使用寿命 专利的可控温滴定池设计,可以24/7全天候工作 高度自动化设计,自动控制最佳实验条件,减少维护费用延长仪器寿命 模块化设计,便于在各种分析模块间切换 易于使用和直观的用户界面 符合CEN,DIN,EPA,ISO, NEN及GB/T国家标准 应用领域: 饮用水,地表水,地下水,污水,流出水,废水,自来水,盐水,处理水,纸浆排出水,土壤,沉积物,淤泥和废油 如果您对产品有任何疑问或兴趣,欢迎随时垂询我公司或登陆公司网站查询。 联系方式: 北京办公室:010-5867 8333 上海办公室:021-6439 9787 Email:ifac@intermasschina.com Website:www.intermasschina.com
  • 第6届Elementar稳定同位素比质谱仪技术研讨会
    为期5天的Isoprime 100“稳定同位素比研讨会”已于2017年11月24日顺利落下帷幕,期间,来自全国各地多个单位的老师参加了此次研讨会。会议邀请来自浙江农业科学院农产品质量标准研究所副所长袁玉伟研究员、上海交通大学分析测试中心生命科学室副研究员张莉博士及英国总部的产品经理 Mike Seed到中国科学院上海生命科学研究院营养科学研究所培训稳定同位素比质谱仪及IRMS性能优化的一些提示和技巧/数据处理/维护处理,并由中国技术专家邓桂凤女士现场翻译交流。 中国科学院上海生命科学研究院营养科学研究所开放了实验室现场展示仪器,期间包含了客户互动环节,很好的让客户参观实验室仪器及环节的互动,客户积极与我司英国总部产品经理及我司资深工程师共同探讨使用时的问题和心得,并在交流过程中提出宝贵建议。Elementar UK是德国Elementar的全资子公司,Elementar专注有机元素分析一百多年,一直以帮助客户建立生活中的信赖与质量为己任,持续创新、促进和发展元素分析技术是当仁不让的责任
  • 赛默飞成功举办第七届稳定同位素比质谱仪用户交流会
    2014年6月18日,上海——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在成都峨眉山世纪阳光大酒店成功举办第七届稳定同位素比质谱仪用户交流会。翠色山峦下,花溪迎曲巷,风景如画的峨眉山迎来了本次会议的参会人员共计100余人,环境、地质、海洋、生态、食品安全等多个行业的稳定同位素比质谱仪资深用户,出席了本次会议。 赛默飞无机质谱销售经理为大会做了开幕致辞,60多年以来,赛默飞始终是稳定同位素分析仪器的领先的供应商,其中,稳定同位素比质谱仪作为无机质谱产品线上最重要的组成部分,提供了久经考验的全球经销、支持和服务网络,在同位素分析领域已获得无数客户的满意和信赖,目前越来越广泛地应用于各行各业。赛默飞无机质谱销售经理 赛默飞无机质谱产品专员为大家介绍了近期发布的稳定同位素分析仪器三款新产品,分别为Delta Ray、MAT253 Ultra和新一代GC – IRMS。1. 小巧便携的Delta Ray稳定同位素比红外光谱仪,采用了DFG中红外激光差频发生器,引用了基于ConFlo IV – IRMS技术的URI万用参考气接口,第一次将气体稳定同位素比的测定从实验室移到了野外,实现了大气CO2同位素比的原位连续观测,获得了CO2的δ13C和δ18O及其浓度的高测定精度和准确度,Delta Ray在碳储量和碳封存、温室气体监测、植物生态学和火山监测等研究方向具有广阔的应用空间。2. MAT253 Ultra 高分辨率稳定同位素比质谱仪,采用了双聚焦磁分析器等新设计,大大提高了质量分辨率,足以区分实际质量非常接近的同位素体,同时,增加了二次电子倍增器,大大降低了检测器的噪音信号,有效地检出了丰度极低的同位素体,针对当前的热门研究——利用耦合同位素 (Clumped isotope)确定矿物形成温度,MAT253 Ultra在测定耦合同位素方面越来越不受到仪器技术的限制。3. 新一代GC – IRMS,采用了最新的前端处理装置,即TriPlus RSH自动进样器、TRACE 1310 GC专用气相色谱仪和GC IsoLink II燃烧和转化单元,色谱分离更彻底,模块化程度更高,连接更简便,而且还能与Thermo ScientificTM的GC-MS系列产品中的任何一款台式质谱仪(例如ISQ单四极杆质谱仪)相结合,组成GC – MS – IRMS联用系统,只需一次注射,即可同时获得复杂混合体系中的每一个目标化合物的结构特性和同位素比信息。Delta Ray、MAT253 Ultra和新一代GC – IRMS三款新产品可作为现有的稳定同位素仪器技术的扩展和补充,为目前开展的更高端、更前沿、更专业的稳定同位素示踪技术与热点应用提供了新的契机。 赛默飞无机质谱产品专员 赛默飞亦有幸邀请到了中科院南京土壤研究所、同济大学、中科院地质与地球物理研究所、中国食品发酵工业研究院、国家地质实验测试中心、广东石油化工学院、核工业北京地质研究院、中科院微生物研究所、河北农科院遗传所、中科院地质古生物研究所等16位特邀专家出席了本次会议,并为本次会议奉献了精彩的报告。 稳定同位素比质谱仪用户交流会的精彩瞬间 赛默飞2014稳定同位素比质谱仪用户交流会合影留念 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • “碳、氢、氧、氮稳定同位素技术学术交流会”第二轮通知
    【会议简介】 稳定同位素技术是研究陆地生态系统生物地球化学循环的重要手段。碳、氢、氧、氮作为自然界最常见的组成元素,其在水圈、土壤圈、生物圈、大气圈间的交换、吸收、运移、分配、转化构成了自然生态系统的主要生态过程。研究碳、氢、氧、氮稳定同位素的组成及分馏效应,可用于识别植物可利用水分来源、判别地下水起源与补给来源、区分植物蒸腾和土壤蒸发过程、评价大气氮沉降对生态系统的影响、估算植被净初级生产力和总初级生产力、揭示生态系统碳、氮、水循环过程与耦合机制等领域。此外,也有学者将碳、氮、水稳定同位素技术用于反演或重建古环境气候,评估环境污染程度等研究。 传统的同位素质谱技术,通常将土壤、植物、水或大气样品采回实验室,可进行精确分析。近年来,激光稳定同位素测量技术的兴起,使得获取高时间分辨率的连续在线同位素测量数据成为可能。 为了了解最新的碳、氢、氧、氮同位素测量技术,促进不同学科领域学者间的交流,北京地球系统与环境科学大型仪器区域中心特举办此次“碳、氢、氧、氮稳定同位素技术学术交流会”。会议邀请了中科院及各大高校和科研单位的专家莅临指导,欢迎广大科研人员和学生光临。【会议详情】主办方:北京地球系统与环境科学大型仪器区域中心承办方:中国科学院地质与地球物理研究所所级公共技术服务中心 中国科学院生态环境研究中心所级公共技术服务中心协办方:美国LGR公司(Los Gatos Research) 北京理加联合科技有限公司会议时间:2016年5月24日 09:00-17:30会议地点:中国科学院地质与地球物理研究所地3楼二层报告厅(北京市朝阳区北土城西路19号)联系人:主办方:汪健 (010-82998047,wangjian@mail.iggcas.ac.cn)承办方:周益奇(010-62849178,yqzhou@rcees.ac.cn)协办方:徐飞 (13910499750,xufei@li-ca.com)【报名方式】请填写附件参会回执,或将您的姓名、单位、电话及邮箱发送至:wangxiaonan@li-ca.com备注:此次会议不收取任何费用,会议当天提供工作餐并赠送精美礼品
  • 样品测试 | 氢氧稳定同位素样品采集及预处理方法
    氢(δD)、氧(δ18O)稳定同位素是广泛存在于自然水体中的环境同位素。在测量氢氧稳定同位素之前,样品采集和预处理是主要的任务, 样品运输应当保证样品性质稳定,避免污染和同位素分馏。如您不清楚样品采集和预处理的具体方法、不确定样品储存的适宜条件和运输注意事项,请看本文介绍。水样品1、野外采集样品封口膜密封,低温保存:取样后(取样量根据老师研究需要自行决定)立即在瓶口处用封口膜密封并且低温保存(如样品暂时不测情况下,可以冰冻储存(如需冰冻储藏则建议用塑料瓶盛装样品,玻璃瓶会被冻裂),以防止蒸发。2、送样前分装封口膜密封,阿拉伯数字编号:用1ml的一次性注射器来取水样品(取一次即可),经过一次性0.45μm滤器(滤器分水系和有机系,根据样品不同来选择)过滤至2ml样品瓶里,盖好瓶盖并用封口膜密封,样品用阿拉伯数字编号,(不是数字编号的话需要您提供电子版样品清单)。3、低温储存OR运输冰箱冷藏储存,顺丰冷链寄送:密封好的样品可放置在冰箱冷藏储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,以防止样品蒸发分馏,来保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息土壤/植物样品1、野外采集样品封口膜密封,低温保存:采集的土壤/植物样品需要装在12ml的样品瓶(规格:19mm*65mm或18mm*66mm)里,样品量可根据样品具体情况适当增减,原则为保证能抽提的水量不少于1ml,如果样品含水量特别低,需要准备两瓶或者多瓶样品,样品装好后,瓶口处用脱脂棉塞紧,然后拧紧瓶盖,样品瓶盖外需用封口膜密封以保证密封性良好来防止分馏。样品用数字编号(不是数字编号的话需要您提供电子版样品清单)2、低温储存OR运输冷链寄送,冷冻储存:密封好的样品可放置在冰箱冷冻储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,防止样品蒸发分馏,以保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息提示一、对于植物样品和土壤样品来说,建议直接用12ml样品瓶采样和储存样品,能有效减少分馏情况发生,不建议用密封袋采集和储存样品,因为:1、如样品在密封袋中储存,抽提前就需要将样品从密封袋中腾装进样品瓶,这个过程会增加样品与空气接触时间,增加蒸发分馏的可能;2、植物样品冰冻储存过程中会冻出水分,水分会附着在密封袋上,腾装样品的这个过程不可能把粘在袋子上的水汽完全收集到进样瓶中,这种情况下将直接影响数据准确性。二、关于植物样品采样部位:根据不同的研究目的,植物样品的采集部位会有差异,为了研究植物水分来源,乔木和灌木应采集植物非绿色的枝条,而草本则应尽可能采集根茎结合处的非绿色部分。因为这些植物器官没有气孔,不会因蒸腾作用而导致目标同位素的分馏。附:相关耗材和测试过程照片:1.即将进行抽提的植物样品2.抽提工作正在进行3.抽提结束冷凝水收集4.收集完毕并密封好的待测样品5.氢氧同位素测试中以上内容仅供参考,如您有任何建议,欢迎与我们联系,非常荣幸能和您讨论学习。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制