当前位置: 仪器信息网 > 行业主题 > >

盖亚高分选仪

仪器信息网盖亚高分选仪专题为您提供2024年最新盖亚高分选仪价格报价、厂家品牌的相关信息, 包括盖亚高分选仪参数、型号等,不管是国产,还是进口品牌的盖亚高分选仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合盖亚高分选仪相关的耗材配件、试剂标物,还有盖亚高分选仪相关的最新资讯、资料,以及盖亚高分选仪相关的解决方案。

盖亚高分选仪相关的资讯

  • Cytek 发布全新台式高维细胞分选仪,助力超高分辨单细胞分析
    仪器信息网讯 6月7日,Cytek Biosciences宣布推出全新的台式高维细胞分选仪- Cytek Aurora CS。全新台式流式细胞分选仪发布,实现超高分辨细胞分析Cytek Aurora CS流式细胞分选系统据了解,该流式细胞分选仪采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。Cytek于2017年首次推出了其旗舰级产品-Aurora流式细胞分析系统,Aurora系统利用突破性的Cytek FSP™ 技术,采集来自多个激光器激发的荧光素全光谱信号,轻松分辩单细胞上的多种荧光标记,显著提高了高参数细胞分析的灵敏度,极好的解决了流式检测受技术局限的问题。Aurora CS基于同样的FSP™ 技术,保持了与Aurora一致的优秀特性和强大功能。独特的光学设计和解析方法能让使用者体会到更高的灵活性, 不仅可广泛选择大量新的荧光染料,且无需为每个应用重新设置仪器。先进的光学系统和低噪音电子系统,带来超强灵敏度和卓越分辨率的细胞分析体验,包括分析那些高自发荧光或关键生物标志物表达水平低的细胞。Cytek Aurora分析系统和Aurora CS分选系统,利用Cytek独有的FSP™ 技术,可以检测标记在每个细胞上的多种荧光探针的全光谱信号,在单管样本中,即可完成高度复杂方案(40色方案)的分析和分选,使科学家们能够更深入更完整的了解生物系统。结合FSP™ 技术和高端分选特性,Aurora CS为研究人员提供了一个可应用于多种生物学场景和分选条件的解决方案。搭配SpectroFlo CS软件,在更短的设置时间下,即可轻松实现6路分选、自定义分选、自动液滴延迟和分选液流监控等操作,满足各种科学研究与应用的需求。网络会议预告 点击报名参会
  • 卓立汉光展出GaiaSorter“盖亚”高光谱分选仪等产品——CFAS 2012食品、农产品检测新技术系列视频采访
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛以“为构建我国食品安全保障体系,进一步推动食品、农产品检测新技术的广泛应用,完善食品与农产品质检体系建设”为主题,特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告,并同期举行展览会,汇聚了70余家国内外科学仪器相关厂商,吸引了600余位来自各界的专家、代表参会。   展会期间,仪器信息网特别制作了“食品、农产品检测新技术系列视频采访”,与会的部分参展仪器厂商分别针对目前食品、农产品检测当中面临的技术、应用与市场需求,介绍了各自所能提供的解决方案。   北京卓立汉光仪器有限公司的研发工程师陈兴海博士,一直以来都专注于光谱的研发和制造。针对农产品的检测,今天他特别向网友介绍到:“高光谱这种测试手段是一种新型的测试手段,它是将光谱与影像结合起来的一种测试手段,可以实现对农产品的无损检测,与传统的液相色谱或质谱的测试方法的不同之处是光谱这种检测手段是一种无损检测,不需要制备样品。   GaiaSorter“盖亚”高光谱分选仪可以对农产品进行实时的无损的数据采集,在采样过程中,可以得到农产品每一点的光谱信息,而光谱信息是物质的一个指纹,通过光谱对影像进行一个快速的影像识别,就可以实现对农产品中的糖度、农药残留、病虫害以及成熟度等的检测。另外,我们还有其它的一些光谱成像便携设备,可以在田间地头进行实时的检测,从而实现对农产品的一些特殊信息的提取。   北京卓立汉光仪器有限公司   北京卓立汉光仪器有限公司是一家集光学、精密机械、电子、计算机技术于一体的高科技企业。卓立汉光自1999年起,通过十年的不断努力,成长为光电仪器知名厂商。目前公司的电控位移台、手动位移台、光学调整架等产品已经形成产品系列化,规格多元化,国内多家科研单位、激光加工设备厂商、光纤设备厂商在使用我们的产品。2000年推出国内第一套量产型三光栅光谱仪后,不断推出了多套荧光、拉曼、光电探测器光谱响应、太阳能电池检测等光谱测量系统,广泛应用在众多高校和科研院所的研究与试验,为国家科技创新贡献了一份力量,产品凭借优良的品质远销欧美、东南亚等海外市场。 2005年10月在同行业中率先通过ISO9001质量管理体系SGS国际认证。   卓立汉光主要生产经营:光谱仪、光谱测量系统、光量测仪器、电控精密位移台、手动精密位移台、光学调整架、光学平台、光学元件等系列产品。
  • Science:成像流式细胞分选技术取得新突破!
    近期,来自美国和欧洲的一项联合研究报道了流式细胞分选技术的一项创新,它将传统流式细胞分选和高速成像结合起来,实现了以极高速度对具有复杂表型的细胞进行单个分选。研究成果发表在《Science》期刊,标题为“High-speed fluorescence image–enabled cell sorting”。传统的流式细胞分选技术具有快速、高灵敏度和高通量的优点,但无法获得细胞亚结构信息以及追踪细胞动态活动。通过荧光显微镜技术,可以获取高分辨的细胞形态和蛋白定位,但无法快速分离特定表型的细胞。因此,对具有独特空间和形态特征的单细胞进行快速分选仍然是一项技术挑战。这项研究开发出全集成的成像细胞分选器(image-enabled cell sorter),融合了基于射频发射的高速荧光成像技术、传统石英杯液滴分选和独创的无延迟信号处理及电子系统,实现了高速捕捉基因组筛选中瞬时动态变化的细胞表型,并进行单个目标的分选。与传统的流式细胞仪方法相比,该技术可以分析1000多倍的数据量,并根据图像以每秒15000个的速度对细胞进行分选。这项新技术有望成为免疫学、细胞生物学和基因组学研究的新突破,并为开发基于细胞的新疗法提供条件。
  • 流式细胞分选技术取得新突破
    近期,来自美国和欧洲的一项联合研究报道了流式细胞分选技术的一项创新,它将传统流式细胞分选和高速成像结合起来,实现了以极高速度对具有复杂表型的细胞进行单个分选。研究成果发表在《Science》期刊,标题为“High-speed fluorescence image–enabled cell sorting”。  传统的流式细胞分选技术具有快速、高灵敏度和高通量的优点,但无法获得细胞亚结构信息以及追踪细胞动态活动。通过荧光显微镜技术,可以获取高分辨的细胞形态和蛋白定位,但无法快速分离特定表型的细胞。因此,对具有独特空间和形态特征的单细胞进行快速分选仍然是一项技术挑战。这项研究开发出全集成的成像细胞分选器(image-enabled cell sorter),融合了基于射频发射的高速荧光成像技术、传统石英杯液滴分选和独创的无延迟信号处理及电子系统,实现了高速捕捉基因组筛选中瞬时动态变化的细胞表型,并进行单个目标的分选。与传统的流式细胞仪方法相比,该技术可以分析1000多倍的数据量,并根据图像以每秒15000个的速度对细胞进行分选。  这项新技术有望成为免疫学、细胞生物学和基因组学研究的新突破,并为开发基于细胞的新疗法提供条件。   论文链接:  https://www.science.org/doi/10.1126/science.abj3013?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
  • 现场揭秘:优质水果是如何分选的?
    p   我国水果种植面积稳居世界前列,水果分选市场广阔,根据2018年国家统计年鉴的相关信息,以苹果、柑桔、梨和柚子四种水果为例,水果分选机的装备需求已达8000多台,市场规模可达60多亿元。 /p p   长期以来,国内水果分选处理水平不足,人工分选工作效率低,劳动强度大 传统机械式分选,水果外部品质易受损,内部品质无法监测分类,生产效率不高,难以实现精准和无损化。而且这类机械分选设备功能单一,只能按水果的大小或重量进行分选,缺乏水果内部品质分选技术。高品质水果分选设备多数依赖进口,价格高昂,并且分选模型也不完全适宜我国本土水果。 /p p   相较于国内,国外在水果分选仪器及应用方面已经走在了前端,特别是在日本、新西兰、澳大利亚等国家已经拥有了很多成功案例。其中,1989年,日本三井金属矿业株式会社EI推进事业部在冈山县一宫农协推出了世界上第一台桃果实糖度在线漫反射无损检测分选设备。之后,多家单位相继研制出类似设备,继而在日本大面积推广 2015年以来,NIRS在新西兰的猕猴桃包装线上进行了商业应用。新西兰猕猴桃出口商以最低DM作为口感标准(MTS),并应用NIRS分选设备挑选超过MTS标准的猕猴桃用于出口。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 225px " src=" https://img1.17img.cn/17img/images/202008/uepic/c9febbd7-d5b5-47d8-8ea1-8e37943359d1.jpg" title=" 新西兰.jpg" alt=" 新西兰.jpg" width=" 300" height=" 225" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 新西兰猕猴桃NIRS在线分选 /strong /p p   随着我国对水果品质要求的提升,传统的水果分选设备以及人工分选方式已经不能适合社会发展的需要,亟待发展高通量检测、快速无损的水果分选设备。鉴于此,华东交通大学光机电技术及应用研究所历经十年技术攻关,研制出了具有自主知识产权的水果动态在线分选装备,不但可实现水果的糖度、酸度、重量、内部缺陷等指标同时检测,还能够实现自动上下料、自动包装、分选级别可调节等功能,设备分选精度高达90%以上,其中糖度检测误差小于0.5° Brix,酸度误差低于0.15%,整体技术水平已达到国际先进水平。据团队首席专家刘燕德教授介绍,该团队已拥有四代水果动态在线分选装备及三代便携式水果检测技术,其中第四代分选装备新增了机械手臂,在提高上料速度的同时还能降低损果率,并通过在上料的果杯中安装质量传感器,提高分选效率和检测精度。 /p p   近红外光谱技术(NIRS)具有快速、无损检测等优点,是最佳的实用性水果品质检测技术。经近30年发展,NIRS逐步由实验室走向采后分选、现场抽检等应用,并逐步发展成水果采后提质的主流技术手段。从2002年开始,刘燕德教授课题组围绕水果的内部品质快速无损在线检测和水果的成熟度便携式仪器开展了一系列的研发工作:采用近红外漫透射在线检测技术,解决了业界困扰多年的水果内部成分分布不均匀、检测精度低等问题,可检测厚皮金柚,打破了国内水果分选只能依赖国外进口设备的僵局 针对水果大小、重量、糖酸度、内部缺陷的检测,该团队所建立的多指标同步检测通用模型已有百万级数据,可根据水果形状大小、果皮厚度、有无果核随时调整模型,调节光源透射性,可以对苹果、梨、脐橙、桃子、柚子等10余种水果进行科学检测分级 运用动态高速分选协同控制和动态校准技术,可实现水果在高速运动的同时进行检测,将光源稳定性误差控制在0.5%以内,水果分选速度达到5-8个/秒。 /p p   特别值得一提的是,该团队拥有完全自主知识产权的“水果内部品质快速无损检测与分选装备”现已在江西赣南脐橙、上饶马家柚、山东苹果、河北鸭梨、重庆柑桔、广东梅州金柚等水果主产区推广应用,示范面积达4万亩,培训技术人员100余人,培训果农1200余人,举办现场演示会5次,累计示范智能农机与光电分选装备20余套,拥有江西定南、吉安、万安等地建立果园智能化管理与装备示范基地,显著增强了区域特色农产品的产业化水平和市场竞争力。 /p p    strong 部分使用场景如下(图片会直接链接视频): /strong /p p strong   1.赣南脐橙分选设备 /strong /p script src=" https://p.bokecc.com/player?vid=61316FECF7F5A3C69C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p   脐橙新装备:针对脐橙果皮厚、透光性低等问题,研发了基于漫透射原理的脐橙糖度分选机 (10吨/小时)。速度5-8个/秒,检测精度90%,检测指标:糖度。 /p p   应用地点:江西赣州市定南县 /p p strong   2.河北鸭梨分选装备 /strong /p script src=" https://p.bokecc.com/player?vid=A16B0494495585129C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p   鸭梨分选装备:针对梨等易损失、黑心等问题,研发了基于漫透射原理的鸭梨糖度、内部缺陷分选机(10吨/小时)。速度5-8个/秒,检测精度90%,检测指标:糖度、重量、黑心。从重量达标的优质果中选择糖度12度以上的高档果。 /p p   应用地点:河北泊头 /p p strong   3.井冈蜜柚分选装备 /strong /p script src=" https://p.bokecc.com/player?vid=6C999C8A14670B929C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p   速度3个/秒,检测精度90%以上(16吨/小时),检测精度± 1° Brix。 /p p   应用地点:井冈山国家科技园 /p p strong   4. 苹果分选装备 /strong /p script src=" https://p.bokecc.com/player?vid=20FE0571EDFB06B49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p   针对苹果各向异性、阴阳面糖度差异大等问题,研发了基于漫透射原理的苹果糖度分选机(10吨/小时)。速度5-8个/秒,检测精度90%以上。 /p p   应用地点:山东盛全、绿景果业公司 /p p   strong  5.上饶马家柚分选装备 /strong /p script src=" https://p.bokecc.com/player?vid=7AEAF94AB8646A549C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p   速度3个/秒,检测精度90%以上(16吨/小时),检测精度± 1° Brix。 /p p   应用地点:江西省东篱柚业科技有限公司 /p
  • Cytek Biosciences发布光谱流式分选仪,流式分选将进入高维时代
    FREMONT, Calif., 2021年6月7日– Cytek Biosciences, Inc.,细胞分析领域技术领先的生命科技公司,宣布推出全新的台式高维细胞分选仪- Cytek Aurora CS。采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。Cytek于2017年首次推出了其旗舰级产品-Aurora流式细胞分析系统,Aurora系统利用突破性的Cytek FSP™ 技术,采集来自多个激光器激发的荧光素全光谱信号,轻松分辩单细胞上的多种荧光标记,显著提高了高参数细胞分析的灵敏度,极好的解决了流式检测受技术局限的问题。Aurora CS基于同样的FSP™ 技术,保持了与Aurora一致的优秀特性和强大功能。独特的光学设计和解析方法能让使用者体会到更高的灵活性, 不仅可广泛选择大量新的荧光染料,且无需为每个应用重新设置仪器。先进的光学系统和低噪音电子系统,带来超强灵敏度和卓越分辨率的细胞分析体验,包括分析那些高自发荧光或关键生物标志物表达水平低的细胞。在Cytek,我们致力于最大程度地提高用户的使用体验,使从生物学问题到答案的过程变得更容易。”Cytek Biosciences首席执行官蒋文斌博士表示:“在Aurora细胞分析仪上优化的方案,可在Aurora CS上很好的重现并进行细胞分选,使科学家们能够进一步开展下游相关应用与研究,获得更深入的见解,加快科学探索与发现的步伐。Aurora CS的主要特性与优势:最高可配备5个激光器、3个散射光通道和64个荧光检测通道可从高度复杂方案(如40色深度免疫分型方案)中精确分选出目标细胞群高度灵活性广泛的荧光素选择,无需为不同荧光素更换滤光片可使用任意能被机载激光器激发的荧光染料5 ml 和 15 ml 上样管上样预设的和可自定义的喷嘴和分选模式设置
  • 长春光机所在多色拉曼微流控稀有细胞分选研究获得进展
    近期,长春光机所吴一辉研究员团队在国际顶级期刊《Biosensors and Bioelectronics》以“Multistage microfluidic cell sorting method and chip based on size and stiffness”为题发表了研究论文,报道了他们在基于微流控芯片的肿瘤细胞无标记分选领域的重要研究进展。   这项研究建立了细胞在侧向位移芯片内的流体动力学模型,定量分析了基于细胞体积、杨氏模量等物理参数下的微流控芯片无标记高通量、无堵塞分选方法,优化了芯片阵列,研制出了一种多物理参数分级分选的微流控阵列分选芯片,解决了高通量与高准确性的矛盾;这项研究将细胞刚度有效地纳入分类依据,给出了一种控制流体流速使癌细胞与正常细胞间微小刚度差得以在微流动中体现和放大的细胞分离方法和理论依据,构建了从外周血细胞中捕获和分析肿瘤细胞的分选分析系统,并进行了实际临床血液样本测试,这是目前报道的全微流体无标记CTCs较为完整的分选分析系统,结合拉曼光谱分析系统,该系统有可能发展成一站式无标记高性能CTCs分类分析设备。这项工作为利用多种物理性质来分选CTCs提供了一个新的视角,这些物理性质的组合使用可以提高分离特异性并减少细胞异质性的影响。图1 多级侧向位移微流控分选及拉曼光谱无标分析系统研究人员使用液滴形微柱新开发了临界尺寸为8μm和13μm的两级阵列DLD芯片,该芯片结构简单,重复性好,对CTCs的分选纯度为98.25±2.48%,回收效率为96.30±2.10%,通量高达2mL/min,性能达到国际先进水平。该文研究的相关内容是在国家自然科学基金国家重大科研仪器研制项目《多色拉曼光谱微流控芯片高通量稀有细胞分选系统》的支持下,联合清华大学、吉林大学团队于今年3月完成。
  • 高质量数据新标准,Cytek谱写45色全光谱流式方案二重奏(分析+分选)
    亮点一览2020年Cytek发表的OMIP-069全光谱流式40色文章1让超多色实验的梦想照进现实,4年之后,文章的同一作者再次分享了一个高质量的45色方案,全景式描绘了人外周血单个核细胞的免疫图谱,同时深入挖掘了记忆T细胞的免疫表型。该45色方案采用Cytek® 全光谱流式分析平台进行优化,随后无缝衔接到Cytek® 全光谱流式分选平台--方案不仅在分析平台上呈现出高质量的数据表现,在分选平台也以高度一致的数据分辨率实现结果的平移,并成功完成稀有细胞的分选且保持了细胞功能性。这一方案续写经典,再创突破,有望被普及应用于肿瘤免疫、自身免疫、药物研发、感染性疾病、神经退行性疾病等诸多领域。研究方案方案设计起点基于OMIP-069的40色文章,保留了原方案37个指标,新加入8个指标。考虑部分试剂的可用性及数据表现的可优化性,对原方案的部分荧光试剂进行了替换。借助Cytek® Cloud工具设计并审阅方案,绿色框表示与原40色方案不同的指标或荧光素。45色方案横向评估了T、B、NK、NKT、单核、嗜碱性粒、先天淋巴样(ILCs)、树突状(DCs)等细胞,纵向剖析了T细胞活化、抑制、归巢、组织驻留、记忆和效应分化等指标,勾勒出人外周血免疫表型的精细图谱。45色全光谱流式方案信息表结果赏析45色全光谱流式方案门控策略在排除细胞黏连体和红细胞后,圈选活的CD45+细胞,基于FSC/SSC分成淋巴/DCs/NK和单核细胞群。单核细胞以CD14/CD16的表达区分出非经典、中间与经典亚群。淋巴/DCs/NK细胞圈走CD14+之后,CD3-TCRγδ-CD19+CD20+识别B细胞,借助IgD/CD27/CD20区分出Naï ve、浆母细胞与IgD-记忆B细胞。CD14-CD3-CD19-CD20-CD56-HLA-DR+表征为DCs,并细化了CD123+ pDCs和CD11c+ DCs的功能性表达。CD14-CD3-CD19-CD20-HLA-DR-定义为NK细胞,根据CD56/CD16的表达丰度可分为早期、成熟与终端NK细胞。CD14-CD3-CD19-CD20-HLA-DR-CD56-CD16-圈出CD123+的嗜碱性粒细胞与CD123-的ILCs。CD3+TCRγδ-CD56+表征为NKT样细胞。CD3+CD56-中区分CD4+、CD8+、CD4-CD8-三群,CD4+ T细胞进一步细分为Naï ve、TSCM、TCM、早期类TEM、早期TEM、中期TEM、晚期TEM、TEMRA各类亚群,并平行对比各自功能性指标的表达。45色方案分析人PBMCs手动圈门策略荧光试剂数据性能对比由于OMIP-069文章发表于2020年,在此之后,试剂厂家陆续研发出新型染料,为高维方案的优化和拓展带来了更丰富的选择。40色方案的部分荧光试剂存在货期问题,亦或是出现了数据表现更优的平替试剂。图中呈现的6种试剂,均与原方案的荧光素相似度较高,替换时无需对方案做出额外调整。其中cFluor® 系列试剂来源于Cytek公司,染色指数与原方案相当甚至更优。CD24 cFluor YG610优化了对于蓝激光激发的荧光素的spread,也改善了针对非B细胞的非特异性结合的问题(图1D)。CD57 cFluor B532替换FITC,染色指数显著提升,同时还可优化与BB515的spread(相似指数:BB515/FITC 0.98;BB515/cFluor B532 0.89)荧光试剂数据性能对比分析分选双平台实现方案一键式转移Cytek® Aurora&trade 分析系统和Aurora&trade CS分选系统搭载专利的全光谱分析技术(Full Spectrum Profiling&trade , FSP&trade ),实验方案可以在双平台间实现无缝衔接,高质量结果仅需“复制粘贴”,大大简化了分选实验的流程。文章使用5激光的Aurora&trade 和Aurora&trade CS平台,采用相同的增益条件、参考对照、数据采集与实验分析模版,同一样品在3台分析仪与1台分选仪上分别进行获取,从降维可视化结果来看,4台仪器呈现的结果高度重叠,这为实现多中心标准化打造了一体化的平台。全光谱流式分析和分选平台无缝衔接高维方案应用于Aurora&trade CS分选平台,能够高精度地分辨细胞亚群,尤其是聚焦低比例细胞,并且一管样本可以实现6路同时分选,节省了时间和资源。从CD45+CD3+CD19-CD56-CD14-CD4+CD8-细胞群中,同时分选以下6群细胞:A. TSCM: CCR7+CD45RA+CD27+CD28+CD127+CD95+B. TEM early effector: CCR7-CD45RA-CD27+CD28+KLRG1+TIGIT-CCR6-DNAM-1+C. TEM early effector: CCR7-CD45RA-CD27+CD28+KLRG1+TIGIT-CCR6+DNAM-1+D. TEM early effector: CCR7-CD45RA-CD27+CD28+KLRG1-TIGIT-CCR6+DNAM-1+E. TEM early effector: CCR7-CD45RA-CD27+CD28+KLRG1-TIGIT-CCR6-DNAM-1+F. TEMRA: CCR7 -CD45RA+CD27+CD28+CD127+CD95+随后,将分选收集到的细胞在37℃, 5% CO2培养箱中静置过夜,次日用PMA和离子霉素刺激,再用胞内标志物IFNγ、IL-2、TNF-α、IL-17进行染色,配色时选择分选的细胞上非共表达指标的荧光素。6种细胞呈现出截然不同的细胞因子表达趋势,阐明在免疫反应中各自可能扮演着不同的角色。6路分选细胞并进行功能性验证总结展望众所周知,OMIP-069是第一篇将40种荧光素合为一管的具有里程碑意义的文章。本文的45色方案不仅实现了“复刻经典”,并且进一步提升标准,开创性地在全光谱分析和分选流式双平台,平行展现了45色方案的高质量数据,也实现了6路分选高维方案中低比例细胞的技术突破。该方案基于健康人PBMCs优化,可以进一步拓展应用到病人血样或者组织样本,为免疫疗法、癌症监测、药物研发、靶标筛查等领域开拓更多元的思路。参考文献1Park, L. M., Lannigan, J. & Jaimes, M. C. OMIP-069: Forty-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Peripheral Blood. Cytometry. Part A : the journal of the International Society for Analytical Cytology 97, 1044-1051, doi:10.1002/cyto.a.24213 (2020).2Bonilla, D. L., Park, L., Low, Q., Lannigan, J. & Jaimes, M. J. b. 45-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of the Major Lineages Present in Human Peripheral Blood Mononuclear Cells with Emphasis on the T cell Memory Compartment. 2024.2004. 2027.591472 (2024).关于CytekAbout Cytek /Cytek Biosciences, Inc.(Nasdaq: CTKB)作为一家全球技术领先的生命科学技术公司,通过其受专利保护的全光谱分析(Full Spectrum Profiling&trade ,FSP&trade )技术,提供高分辨率、高参数和高灵敏度的新一代细胞分析工具。Cytek的创新技术通过检测荧光信号的完整光谱信息,以实现更高水平更高灵敏度的多参数检测。Cytek的FSP&trade 平台包括其核心仪器 ——Aurora和Northern Lights&trade 分析系统、Aurora CS分选系统,Amnis® 和Guava® 品牌下的流式细胞仪和成像产品,以及试剂、软件和服务,为客户提供全面和完整的解决方案。Cytek总部位于美国加利福尼亚州Fremont,在全球设有分部和分销渠道。更多的相关信息,请登录Cytek的官方网站:www.cytekbio.com和www.cytekbio.com.cn。注:Cytek® , Tonbo Biosciences, cFluor® , Full Spectrum Profiling&trade , FSP&trade 和Northern Lights&trade 是Cytek Biosciences, Inc. 的商标或注册商标。Cytek® 全光谱检测技术相关专利包括但不限于:US10739245B2,US11169076B2,US10788411B2。
  • 温和细胞分选,开启单细胞测序成功的第一步!
    随着单细胞测序技术的快速发展,科研工作者们可对每个独一无二的单细胞进行分析,认识到细胞间的异质性,深入了解如胚胎发育早期的分化特征、肿瘤微环境中的非均质性、罕见循环肿瘤细胞的转录组等等以往传统高通量测序方法难以攻克的领域。单细胞分析的应用已进入百花齐放的时代,涵括神经生物学、癌症、免疫学、微生物学、胚胎发育、临床诊断等多个领域。单细胞测序分析的第一步,即是单细胞样品的制备,同时确保其生物完整性不被破坏。高质量的样品制备影响着后续单细胞分析成功与否。高活性、无细胞碎片且均一的单细胞悬液可使测序结果在完整性、真实性、数据可重复性得到提升。最常见细胞分离的方法可用MACS磁珠或流式细胞仪进行目的细胞分选与富集。单细胞测序流程利用流式细胞分选法富集目的细胞群体缩小研究范围,对单细胞群体可进一步精细化解读。尤其在研究罕见细胞族群,单细胞测序前先以流式细胞分选富集稀有细胞,可大大增加实验数据真实性与可靠性。现今已有愈来愈多单细胞测序研究结合流式细胞分选,筛选目的细胞、过滤死细胞减少样本中無效细胞的比例,提高单细胞文库构建的成功率以及后续的数据质量,让单细胞测序更有深度与广度分析实验数据,推动进一步研究范畴。传统高压液滴分选仪分选单细胞传统液滴式流式细胞分选(Droplet cell sorter),将目的细胞利用适宜的荧光标记。经荧光染色或标记的单细胞悬液,被高压压入流动室内,在鞘液的包裹和推动下,细胞被排成单列,以一定速度从流动室喷口喷出。通过相应荧光检测及充电,获得目的细胞,实现单细胞分离。然而操作过程中,分选的细胞相继受到高压、充电带有电荷、减压的刺激,常导致分选的目的细胞在分类过程中的损伤和溶解,活细胞回收率不高;即使回收的活细胞也因分选过程受刺激影响细胞基因转录图谱表现,无法维持其生物完整性。传统高压液滴分选仪进行单细胞分选Adapted from Technologies for Single-Cell IsolationInt. J. Mol. Sci. 2015, 16美天旎MACSQuant® Tyto® 革命性的细胞分选仪专利的微芯片技术,精准地控制阀门开合以进行细胞分选,该仪器的特性在于整个分选过程在一次性使用的全封闭样本舱(cartridge) 中进行,且无需鞘液、避免了样本污染和残留风险。上样简单、自动进行分选设置,无需操作人员进行高强度与长时间的培训就能轻松操作。由于实际分选过程都在样本舱进行,不会损失珍贵的样本材料;阳性和阴性分选组份均可在无菌洁净操作台内轻松回收。细胞不会受到高压、电荷及减压刺激,不同于传统的液滴分选仪,这种温和的分选方法可最大保持细胞活性和功能,即使经过多次分选,细胞活性也不会受影响,充分表明这种阀门介导的分选机制具有温和性质。美天旎MACSQuant® Tyto® 细胞分选仪与样本舱功能示意图。A. 美天旎MACSQuant® Tyto® 细胞分选仪;B. 样本舱;C.独特微芯片技术的分选示意图。单细胞测序前,使用美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)进行目的细胞分选富集。分选过程不受到高压、电荷、减压与剪切力刺激,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率。位于美国加州大学(University of California, Irvine- UCI)的Dr. Kai kessenbrock研究团队致力于研究机体正常组织内环境稳态和乳腺癌中的细胞通讯。他们在单细胞水平上系统性分析研究乳腺干细胞微环境(stem cell niche)中细胞通讯的机制和乳腺上皮組織内的异质性,进一步加深对早期肿瘤发生过程中系统性变化的理解;最终目的是开发用于早期检测的生物标记物以及改善乳腺癌的治疗策略。Dr. Kai kessenbrock团队在FVB小鼠取出小鼠乳腺组织,分别以美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)与传统液滴式流式细胞分选(Droplet cell sorter)分离乳腺上皮细胞(CD49f+/EpCAM+)后,标记建库并进行单细胞测序;比较两种不同的流式细胞方法分选后,所获得的测序数据真实性与可靠性,也进行分选后的细胞培养,观察细胞存活与功能。小鼠乳腺上皮细胞分离与单细胞建库 (Data kindly provided by Quy Nguyen, UCI)1. MQ Tyto可有效分选出不同乳腺上皮细胞亞型(Luminal 1, Luminal 2, Basal-like subtypes),基因转录图谱完整呈现。聚类分析与差异基因热图展示2. 经由MQ Tyto分选,每个单细胞可捕获更多的mRNA数量(UMI),获得更多可分析的基因数(Genes);显示MQ Tyto保留了细胞的完整性。质控图3. 传统液滴式流式(Droplet cell sorter)细胞分选后细胞应激基因表现明显上调。这主要是来自于细胞分选操作过程中所受到的外力刺激,而非原始组织环境细胞的真实表现。应激基因表现量展示4. 细胞分选后,持续培养七天乳腺上皮细胞并形成乳腺球(mammosphere formation)进行计数。结果显示MQ Tyto组形成更多的乳腺球,表示其MQ Tyto分选后的上皮细胞维持其功能性与高存活率。综上,利用MQ Tyto对目的细胞进行分离与富集,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率,开启单细胞测序成功的第一步。
  • 率先将光谱流式细胞术与可分选成像相结合,BD 推出新品细胞分选仪
    2022 年 6 月 3 日 医疗技术公司 BD(Becton, Dickinson and Company)(纽约证券交易所代码:BDX)宣布发布新品BD FACSDiscover™ S8 细胞分选仪。据介绍,该款仪器旨在使研究人员能够以前所未有的速度查看和分类细胞,这为改变病毒学和肿瘤学等一系列领域的研究和基于细胞的治疗开发创造了潜力,如以及许多疾病状态。全新 BD FACSDiscover™ S8 细胞分选仪新的 BD FACSDiscover™ S8 细胞分选仪采用了突破性的 BD CellView™ 图像技术,该技术于今年早些时候登上了《科学》杂志的封面。它是第一款将先进的光谱流式细胞术与能够进行分选的图像分析相结合的细胞分选仪,这可能使研究人员能够产生更准确的数据并对以前无法识别的细胞进行分选。“细胞分选的这一进步填补了生物医学研究中长期存在的空白,使科学家能够进行高参数实验,同时快速查看和分选具有特定、可视化感兴趣特征的细胞,”Westmead 科学运营总监 Xin Maggie Wang 博士说医学研究所。“对于从事光谱流式细胞术的研究人员来说,实际看到与您相互作用的细胞会让您对结果更有信心,并使您能够以前所未有的方式观察细胞,并回答以前可能无法想象的问题。”通过光谱流式细胞仪进行细胞分选是一项尖端技术,它捕获样品制备发出的全光谱信号,而不是像传统流式细胞术那样捕获特定波段,让科学家使用更多参数对细胞进行分类,以更好地了解人类健康、疾病和治疗。BD FACSDiscover™ S8 细胞分选仪将先进的光谱流式细胞术与新颖的 BD CellView™ 图像技术相结合,该技术可捕获流经系统的单个细胞的图像,并根据每个细胞的详细显微图像分析以高速分选对它们进行分选。这种组合使科学家能够更准确地了解可以实时视觉确认的细胞群和特征,并在简化的实验工作流程中对以前无法识别的细胞进行询问和分类。BD FACSDiscover™ S8 细胞分选仪是第一款采用 BD CellView™ 图像技术的 BD 仪器。 BD Biosciences 全球总裁Puneet Sarin说:“通过将高参数光谱流式细胞仪的功能与前所未有的细胞图像及其内部运作相结合,我们正在定义细胞分选的新标准,并将细胞的功能掌握在研究人员手中。采用 BD CellView™ 图像技术的 BD FACSDiscover™ S8 细胞分选仪代表了 BD 流式细胞仪创新和领先地位的新篇章,再加上我们新的光谱优化的 BD Horizon RealYellow™ 和 RealBlue™ 试剂等补充工具,我们正在很高兴看到科学界将如何利用它在更短的时间内以更大的信心实现突破性发现,并发现有助于塑造健康未来的新应用。”有关 BD FACSDiscover™ S8 细胞分选仪的更多信息,请持续关注仪器信息网更多报道。
  • 预算超1.5亿元!复旦大学11月政采再度发布,涉及流式分选仪等
    继十几天之前,复旦大学2022年11月政府采购意向公开(预算超1亿元!复旦大学近期仪器采购意向汇总),25日复旦大学再度公开11月份总金额超过1.5亿元的政府采购意向公告,如下:为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将复旦大学2022年11月政府采购意向公开如下:采购单位采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期复旦大学小动物高场磁共振成像系统 A032010医用磁共振设备详见项目详情 1800.0000002022年11月复旦大学冷冻高分辨肖特基 场发射扫描电镜 A02100304光学测试仪器详见项目详情 650.0000002022年11月复旦大学二维X射线衍射仪 A02100405射线式分析仪器详见项目详情 350.0000002022年11月复旦大学激光共聚焦显微镜 A02100304光学测试仪器详见项目详情 300.0000002022年11月复旦大学应变型控制流变仪 A02100499其他分析仪器详见项目详情 240.0000002022年11月复旦大学高分辨荧光光谱 A02100404光学式分析仪器详见项目详情 200.0000002022年11月复旦大学十八角度激光光散射检测器 A02100408色谱仪详见项目详情 100.0000002022年11月复旦大学凝胶成像仪 A02100699其他试验仪器及装置详见项目详情 107.0000002022年11月复旦大学透射电镜 A02100305电子光学及离子光学仪器详见项目详情 500.0000002022年11月复旦大学场发射扫描电镜 A02100305电子光学及离子光学仪器详见项目详情 400.0000002022年11月复旦大学热重-红外联用 A02100403热学式分析仪器详见项目详情 120.0000002022年11月复旦大学仪器室配套实验台/操作台 A060203钢塑台、桌类详见项目详情 350.0000002022年11月复旦大学共享仪器用洁净间 A010299其他用房详见项目详情 700.0000002022年11月复旦大学电镜等仪器用防震台 A060203钢塑台、桌类详见项目详情 180.0000002022年11月复旦大学水相GPC及其光散射、粘度检测器 A02100408色谱仪详见项目详情 195.0000002022年11月复旦大学原子力显微镜及其导电附件 A02100499其他分析仪器详见项目详情 600.0000002022年11月复旦大学X射线光电子能谱 A02100405射线式分析仪器详见项目详情 350.0000002022年11月复旦大学流式细胞分选仪 A02100404光学式分析仪器详见项目详情 380.0000002022年11月复旦大学高温GPC光散射检测器及配套软硬件(高温GPC检测附件) A02100499其他分析仪器详见项目详情 120.0000002022年11月复旦大学双螺杆挤出机 A030325塑料专用机械详见项目详情 300.0000002022年11月复旦大学微型加工系统 A030325塑料专用机械详见项目详情 600.0000002022年11月复旦大学半导体综合分析测试系统 A02100402物理特性分析仪器及校准仪器详见项目详情 100.0000002022年11月复旦大学光谱位移亲和力检测系统 A02100499其他分析仪器详见项目详情 220.0000002022年11月复旦大学暗场显微光谱成像系统 A02100404光学式分析仪器详见项目详情 110.0000002022年11月复旦大学高性能发光器件制备与测试系统 A032103电子工业专用生产设备详见项目详情 100.0000002022年11月复旦大学动态单分子成像系统 A02100499其他分析仪器详见项目详情 600.0000002022年11月复旦大学激光片层扫描显微系统 A02100499其他分析仪器详见项目详情 600.0000002022年11月复旦大学高分辨三维X射线成像分析系统 A02100499其他分析仪器详见项目详情 750.0000002022年11月复旦大学表面等离子共振生物分子互作分析系统 A02100499其他分析仪器详见项目详情 320.0000002022年11月复旦大学热重-气相-质谱联用系统A02100407质谱仪详见项目详情 220.0000002022年11月复旦大学闪射法导热仪 A02100499其他分析仪器详见项目详情 100.0000002022年11月复旦大学场发射透射电镜 A02100305电子光学及离子光学仪器详见项目详情 1500.0000002022年11月复旦大学纳米计算机断层扫描仪 A02100405射线式分析仪器详见项目详情 1000.0000002022年11月复旦大学600MHz全数字化液体核磁共振谱仪 A02100406波谱仪详见项目详情 860.0000002022年11月复旦大学原子力-红外联用设备 A02100304光学测试仪器详见项目详情 700.0000002022年11月什么是“1.7万亿”?2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。什么是“2000亿”?2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7% (加上此前中央财政贴息2.5个百分点)。
  • 单细胞拉曼分选仪(RACS):探索微观世界的利器
    马波*,籍月彤,刘阳,徐健*  摘要:  单个细胞是地球上生命活动的基本单元,单细胞精度的科学研究能够揭示生命科学的本质问题,已经成为国际研究热点。拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术屏障。本文介绍了拉曼光谱在单细胞功能识别方面的研究进展,详述了基于拉曼光谱的单细胞分选技术和核心器件研制的产业化过程。同时,介绍了近期推出的第一代商品化的RACS仪器,并且讨论了这些国产仪器装备为医药、海洋、土壤/环境、工业生物技术领域提供的原创解决方案。这些拥有自主知识产权的国产高端仪器装备将广泛服务于工业过程在线实时监控、细胞工厂筛选、工业/土壤/海洋种质资源挖掘、临床精准用药及新能源开发等。  关键词:拉曼组,单细胞表型组,拉曼激活细胞分选,国产仪器装备,单细胞分选技术与核心器件  单个细胞是地球上生命活动的基本单元,因此单个细胞精度的生命系统研究能够揭示“细胞功能异质性机制”这一生命科学的本质问题1。传统的、基于细胞群体水平性状测量的信息并不能真实反映细胞内部的生物过程及机制2,3,这是因为,在细胞种群中,即使是基因组信息完全一致的不同单个细胞之间,其表型也具有极为显著的差异,而这些差异往往具有重要的生物学意义4,5。因此,单个细胞的研究能够带来生物技术在能源、环境、健康、农业、海洋等广泛应用领域的突破。2018年,利用单细胞测序技术完成的胚胎发育初期单细胞命运追踪被Science杂志评为2018年最重要的十大科学进展之首。近两年来,世界顶级学术期刊《科学》《自然》分别有43篇和38篇文章聚焦于单细胞分析。  (一)拉曼组技术是单细胞功能识别的创新工具和有力武器。  自上个世纪以来,研究人员主要通过荧光标记与流式细胞术的结合实现单细胞功能分选,即荧光激活细胞分选(Fluorescence-activated Cell Sorting,FACS)6。然而,FACS一般需要针对特定的生物标识物对细胞外加荧光标记,因此在单细胞分选方面存在如下瓶颈:(1)细胞适用性有限。不论在干细胞发育的机理研究、肿瘤细胞的诊断,还是微生物群落中功能组分的识别中,关键的细胞表型经常仅有粗放认识或完全未知(即“未知”的细胞表型),也没有其生物标记。因此,FACS通常难以分选那些生物标识物通常未知或难以外加活体荧光标记的细胞体系(如微生物群落等)。(2)难以开展“原位”研究。进入细胞的荧光标记经常会改变细胞的原位状态,有时甚至影响细胞活性,因此该方法通常仅限于能够进行外加荧光标记的细胞,而且难以进行真正意义上的“原位”研究。(3)难以获取全方位的代谢表型。FACS在单位时间只能获得与区分很有限的细胞信息数据,如形态、折光率、反射率或荧光强度等有限指标,难以表征单细胞全方位的“代谢表型组”,因此通常不易获得尚难培养微生物与其生态功能之间的原位联系。  拉曼光谱是一种非标记的散射光谱,每个单细胞拉曼光谱由分别对应于一类化学键的超过1500个拉曼谱峰组成,反映了特定细胞内化学物质的成分及含量的多维信息。因此,特定时空状态下一个细胞群体的单细胞拉曼光谱的集合称为“拉曼组”7。由于细胞内化合物的组成对于细胞生理状态和微环境的变化等因素敏感,因此单细胞拉曼图谱或拉曼组不仅潜在能区分不同物种的细胞,还可以静态或动态地表征该细胞的生理状态及所处微环境8。  业界研究表明,利用拉曼组可实现较为广泛的细胞类型及功能的表征8。例如,Forrester和Deng等分别利用拉曼光谱成功地对多株芽孢杆菌属细菌的生化特性进行了鉴定,发现根据拉曼光谱信息可实现菌株水平的鉴定,并分析了各菌株之间可能的遗传进化关系9,10。在细胞功能识别方面,Samek和Singh等分别通过检测拉曼图谱分析了不同微藻的油脂产量,并建立了通过分析特定峰位比值来估测脂类不饱和度的方法11,12。Heraud等通过检测细胞拉曼图谱,对微藻细胞所处的营养状态(缺氮与否)进行判别和预测13。在临床方面,2011年Dochow等通过微流控芯片结合拉曼光镊技术,成功对人体白细胞、红细胞、急性髓性白血病细胞以及两种乳腺癌细胞进行了鉴别14。利用癌细胞的生化表型与正常细胞的区别,Barman15, Surmacki16和Haka17分别独立地证实了单细胞拉曼可用于乳腺癌早期诊断。此外,中国科学院青岛生物能源与过程研究所单细胞中心等也证明,单细胞拉曼光谱可以区分或定量表征细菌细胞的种系发生18、药物应激反应与耐药性19,20、分解代谢(综合细胞代谢活性21、分解特定底物的活性22)、合成代谢(甘油三酯含量及油脂饱和度23,24、淀粉含量25)、不同物种之间的代谢互作26等。  (二)基于拉曼光谱的单细胞分选技术和核心器件是单细胞组学研究获得突破性进展的关键。  拉曼激活细胞分选(Raman-activated Cell Sorting,RACS)能够利用“单细胞拉曼图谱”这一细胞内在、免外源标记的“生化指纹”进行功能分选,建立单细胞功能表征和单细胞组学分析之间的桥梁,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术瓶颈27,28。随着微流控技术的进步,一系列基于拉曼光谱的单细胞分选技术和核心器件先后面世,其中包括在静止或者相对静止系统中进行的拉曼光镊分选21,29,30、单细胞拉曼弹射分选(RACE)18,31和拉曼激活光镊重力驱动微液滴分选技术(RAGE)32,以及在液相流动态细胞中进行的拉曼激活微流分选(RAMS)33、拉曼激活单细胞微液滴流式分选(RADS)34、介电迟滞拉曼激活单细胞微液滴流式分选(pDEP-RADS)。  RACE适用于静置或贴壁细胞的单细胞分选。该技术在风干的芯片上对细胞逐一测量拉曼信号后,用脉冲激光弹射出具有目标拉曼信号的细胞18。通过改进弹射基片材料,RACE可以在背向直接采集拉曼信号,降低了操作的繁琐性并大幅提升了全流程的速度和通量35 同时,“All-In-One”RACE芯片的面世,让测量、弹射、细胞裂解与核酸扩增都在同一与空气隔绝的封闭体系内进行,从而降低了环境DNA对目标单细胞核酸扩增的污染35。近期油相震荡乳化单细胞MDA方法的开发,使RACE分离的纯培养E. coli(每个MDA体系含5个细胞)基因组覆盖度由通常的青岛星赛生物科技有限公司依托于中国科学院青岛生物能源与过程研究所单细胞中心的原创技术与知识产权,自主研发了一系列基于拉曼组原理的原创单细胞拉曼分选仪器装备。  单细胞拉曼分选-测序耦合系统(Raman-Activated single-Cell Sorting RACS-Seq)克服了单个细胞拉曼分离可靠性低、核酸扩增容易污染、全基因组测序覆盖度不均等关键技术难点,具备样品预处理、显微拉曼成像、RAGE/RADS拉曼分选、单细胞微液滴细胞裂解和核酸扩增、拉曼组分析软件等功能,实现了单细胞功能检测、分选、测序与培养之完整流程的仪器化。RACS-Seq带有配套的RAGE、RADS、pDEP-RADS等芯片和相应试剂盒(环境样品中微生物单细胞提取与制备、稳定同位素饲喂细胞、单细胞核酸裂解与扩增等),能够满足不同实验目的所需的单细胞识别、分选和测序文库构建,并且适用于任何大于0.5 μm的细菌、古菌和真菌细胞(也适用于微藻、植物、动物及人体细胞)。  临床单细胞拉曼药敏快检仪(Clinical Antimicrobial Susceptibility Test Ramanometry CAST-R)是临床样品之病原鉴定、药敏性表型测量及耐药基因解析的一体化装备。它基于重水饲喂单细胞拉曼光谱技术,不需分离培养而直接鉴定病原种类,并测量基于代谢活性抑制的药敏性表型(及其在细胞之间的异质性),全流程可在3小时内完成,将目前检测时长缩短至1/10 20。进而通过单细胞微液滴光镊拉曼分选与核酸扩增技术,完成低偏好性、高覆盖度、与耐药表型关联的单细胞基因组测序。最新论文证明,该系统能从临床菌群中直接、精准地获取一个细菌细胞的药敏表型及其完整基因组(以往未有先例) 32。CAST-R在单个细菌细胞精度同时追踪“药敏表型-完整基因组”的独特能力,预期将为临床感染诊断和用药、耐药性传播监控、微生态监控等提供新一代解决方案。  单细胞拉曼表型监测系统(Raman-Activated Phenotyping System RAPS)是基于拉曼复合表型对细胞工厂进行单细胞水平高通量、低成本、非入侵式的快速表型监测装备。现有发酵过程的监控方案存在三大问题:1)时间精度,目前只能通过离线方式对各表型分别进行测定,由于样品处理和测量时间带来的滞后性,使得微生物发酵过程的控制比一般的工业生产难度更大 2)表型精度,由于缺乏综合表型表征手段,只能通过胞外产物尽量刻画细胞状态 3)测量精度,现有表型的测量均基于群体水平大量细胞的平均性状,在高压、高浓、高密度、且营养物质不均一的发酵过程中,细胞之间的差异被累积并级联放大,而群体水平的平均性状掩盖了这种差异的发生/发展和变化规律,无法反映细胞的真实状态。RAPS克服了现有方法的滞后性、可检测表型有限,以及无法反映细胞异质性等局限,为细胞工厂研究提供了一个高效、全景式的表型鉴定和过程监测方案。  模块式单细胞微液滴分离系统(EasySort)是一款拥有自主知识产权的小型台式仪器。它小巧灵活,操作简便,能够自由地与各种型号的显微镜搭配组装,轻松将明场/荧光/拉曼显微镜升级为“所见即所分”、保持原位状态与活性的细菌单细胞精准功能分选装置。在显微镜的视野下,具特定表型的直径大于0.5 μm的单细胞均能够被迅速包裹成单液滴,并通过独有的重力驱动专利技术迅速移动到孔板或者EP管中,对接下游实验。因其兼具超高的性价比、便携的外形、灵活的适配度、简易的用户界面以及优秀的细胞活性保持等众多优势,EasySort将广泛应用于各类单细胞的分离、分选、培养及测序实验。  高通量流式拉曼分选仪(High-throughput RACS:FlowRACS)搭载了具自主知识产权的pDEP-RADS技术,通过在高速液流中基于介电迟滞来精确捕获和采集单细胞拉曼信号,克服了单细胞拉曼分选的通量限制,以及微液滴对于拉曼表型鉴定的影响,巧妙地集成了单细胞拉曼信号采集与单细胞微液滴发生。同时它利用全光谱实时判别算法,实现了活体单细胞超高通量拉曼分选的高度自动化。  (四)原创国产单细胞拉曼分选装备将服务于医药、土壤/环境、海洋和工业生物技术等广阔领域。  上述介绍的这些拥有自主知识产权的原创仪器装备已经支撑着临床精准用药、生物资源挖掘、环境微生态机制、细胞工厂筛选、工业过程监控等广阔领域。  在医药领域,细菌耐药性蔓延是临床感染面临的严重危机。当前基于培养原理的病原鉴定和药敏仪器检测一般需要花费2-3天。而CAST-R不再需要培养,而是基于重水标记单细胞拉曼光谱,在3小时之内即可完成针对代谢活性抑制的药敏性实测,而且将具有耐药表型的目标耐药菌单细胞分离出来,直接耦合细菌单细胞基因组测序,实现了在单个细菌/真菌细胞的精度,挖掘耐药基因及突变、追踪病原传播和考察耐药微进化机制。利用CAST-R针对临床尿液样品的初步分析显示,基于单细胞拉曼的菌株鉴定准确率达到93%,药敏测试与培养法的一致性达到90%。同时,从临床尿液样本中直接识别和分选出耐受特定抗生素的临床E. coli,并进行了精确到一个细菌细胞的全基因组测序,覆盖度可达99.5%32,保证了基因组上所有耐药基因突变均得以全面、精确地揭示。  在海洋和土壤/环境领域,“99%的微生物难培养”、“异质性普遍存在”、“原位功能难以测量”等因素均对环境功能基因研究、种质资源挖掘、生态环境监测等提出了严峻的挑战。借助RACE技术,研究人员以中国黄海近海真光层的新鲜海水为模式,用13C-NaHCO3饲喂其微生物组,然后通过测量海水拉曼组中各个单细胞拉曼图谱上13C峰的动态特征,分辨出在海水中活跃固定与代谢无机碳的单细胞群。同时,分选这些原位固碳单细胞群(30个细胞混合)并测定其DNA序列,可重构出基因组草图35。后续研究表明,利用搭载RAGE-Seq芯片的RACS-Seq系统,可以分选获取海水中单个原位固定CO2的目标细菌细胞,并且对1个细胞的基因组即可获得超过95%的基因组覆盖度。对于土壤样品,则可以基于重水孵育、针对代谢活性进行菌群中功能细胞的识别、分选和测序,单个细胞的基因组覆盖度可达90%。  在工业生物技术领域,新兴的合成生物学需要对细胞工厂进行人工设计并构建具新功能的生物系统,从而建立药物、材料或能源替代品等的生物制造途径36。其中细胞表型的测试筛选工作是合成生物技术发展的“限速步骤”之一。代谢物是细胞中基因表达的最终产物,因此对细胞代谢物组或代谢状态的检测是细胞功能检测最直接有效的手段之一。利用RACS-Seq,可以快速、非侵入性、不须标记地以单个活体细胞中淀粉含量这一特定表型对莱茵衣藻和小球藻进行快速表型鉴定,为富含淀粉的种质资源选育提供了一种崭新手段25。在莱茵衣藻和微拟球藻中,利用RACS-Seq可针对单个细胞中淀粉、蛋白质、甘油三酯含量和脂质不饱和度等表型对目标细胞进行快速筛选24。利用RACS-Seq,还能够针对CO2利用速率这一特定表型对海水中难培养微生物进行分选和测序,从而完成功能基因及种质资源挖掘35。  此外,在酶活筛选方面,将未知功能的酶基因库转化入酵母底盘中,利用FlowRACS基于拉曼光谱、不需酵母培养和纯化而直接识别和定量其单细胞精度的目标代谢物,进而高通量流式拉曼分选目标单细胞,并利用下游测序快速识别其中表达的目标化合物合成酶。因此,FlowRACS大大节约了时间、耗材和人力的成本,可将酶的筛选效率提高100到1000倍。  总之,拉曼组和单细胞拉曼分选基于细胞本征性的生化指纹图谱来识别与分选特定“代谢表型组”的目标细胞,具有不需预知生物标识物、不需标记、非侵入性、可全景式识别细胞代谢表型等核心优势8。因此,包括RACS-Seq,CAST-R,RAPS,EasySort以及FlowRACS等在内的单细胞分析仪器系列(青岛星赛生物科技有限公司),将在精准医疗、大健康、生物资源挖掘、生态监测、生物安全、工业生物技术等领域得以广泛应用,同时为单细胞研究提供全新的科学思路、技术路线和仪器装备。  参考文献:  1 Schubert, C. Single-cell analysis: The deepest differences. Nature 480, 133-137, doi:10.1038/480133a (2011).  2 Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167-173, doi:10.1038/nature09326 (2010).  3 Spiller, D. G., Wood, C. D., Rand, D. A. & White, M. R. Measurement of single-cell dynamics. Nature 465, 736-745, doi:10.1038/nature09232 (2010).  4 Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183-1186, doi:10.1126/science.1070919 (2002).  5 Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714-717, doi:10.1126/science.1203163 (2011).  6 Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev Sci Instrum 43, 404-409, doi:10.1063/1.1685647 (1972).  7 Xu, J. et al. Emerging trends for microbiome analysis: from single-cell functional imaging to microbiome big data. Engineering 3, 66-70 (2017).  8 He, Y., Wang, X., Ma, B. & Xu, J. Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 37, 107388, doi:10.1016/j.biotechadv.2019.04.010 (2019).  9 Forrester, J. B., Valentine, N. B., Su, Y. F. & Johnson, T. J. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level. Anal Chim Acta 651, 24-30, doi:10.1016/j.aca.2009.08.005 (2009).  10 Deng, A. H., Sun, Z. P., Zhang, G. Q., Wu, J. & Wen, T. Y. Rapid discrimination of newly isolatedBacillaleswith industrial applications using Raman spectroscopy. Laser Phys Lett 9, 636-642, doi:10.7452/lapl.201210052 (2012).  11 Samek, O. et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors (Basel) 10, 8635-8651, doi:10.3390/s100908635 (2010).  12 Wu, H. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108, 3809-3814, doi:10.1073/pnas.1009043108 (2011).单细胞中心合影  中国科学院青岛生物能源与过程研究所单细胞中心(徐健、马波、籍月彤、刘阳 所在单位)简介:中国科学院青岛生物能源与过程研究所是由中国科学院、山东省人民政府、青岛市人民政府于2006年7月启动筹建,2009年11月30日通过共建三方验收并纳入中国科学院“知识创新工程”管理序列的国立科研机构。单细胞中心的核心使命是以基因组工程、工具酶开发、先进成像、微流控器件、大数据等为主要方法学支撑,围绕细胞工厂构建、微生物组快检及机制等领域的关键科学和技术瓶颈,开发单细胞分析、分选、测序与培养技术,研制与产业化单细胞分析仪器系列,从国产装备的角度支撑单细胞大数据网络和微生物组天网等原创大数据系统,服务于工业生物技术、大健康、海洋资源挖掘、环境保护与修复、生物安全等应用领域。  青岛星赛生物科技有限公司(籍月彤所在单位):青岛星赛生物科技是一家专注于单细胞分析科研设备及临床诊断仪器研发与产业化的创新型高新科技企业。竭诚为科学研究人员、工业生物技术人员、以及临床工作者提供高效、可靠、一体化全方位的单细胞水平解决方案,着力打造国产高端生命科学仪器品牌。产品应用于工业过程监控、工业及海洋种质资源挖掘、临床精准用药、微生物组研究、生物安全及新能源开发等领域。
  • 性价比谁与争锋?大连华微新推单细胞分选仪仅售36.8万
    性价比谁与争锋?大连华微新推单细胞分选仪仅售36.8万——“HW-cyclone旋风系列2023”单细胞液滴制备与分选系统,破茧而出!大连华微生命科技,推出“HW-cyclone旋风系列”单细胞液滴制备与分选系统(2023款),单激光(基础版)售价36.8万!此消息一出,业内哗然!单细胞分选设备平均百万的售价,被大连华微靠自研专利技术,砍掉三分之二!这——还没完!单细胞液滴制备与分选相应耗材:华微生命的微流控芯片,更是达到惊人的低价:RMB200-600元/片,仅为进口单价的1/10—1/5;一次性管线耗材,低至人民币10元+/次……单细胞领域,注定又是一场腥风血雨!西方人说:技术,不能让中国人掌握!似曾相识,像中国高铁一样,只要研发起步不落后于西方,中国民族企业就能靠自己的智慧,以“铁杵磨针”的韧性不辍耕作,就能捅破高科技那层“窗户纸”,而核心技术一旦被中国企业掌握,就能创造物美价廉的高性价比产品,让全球客户都买得起、用得上!而性价比——是中国制造在高科技领域:靓丽的标签!图1 大连华微生命科技推出的“HW-cyclone旋风系列”单细胞液滴制备与分选系统这么低的售价,能和国外百万以上的产品pk么?性能如何?功能是否拉跨?和流式技术对比,细胞活性怎么样?带着这些疑问,让我们走近这个被预言为“2023年性价比新高度”的“HW-cyclone旋风系列”单细胞液滴制备与分选系统。一、结构 (1)基于用户显微镜的开放式研发体系,包括:“HW-cyclone旋风系列”单细胞液滴制备与分选系统、显微镜、进样驱动装置(注射泵或压力泵)、微流控芯片等部分组成,不仅大幅降低采购成本,更方便改造、升级甚至用户自行设计(变更)各流程环节,个性化科研,才能让灵感迅速转化为科技成果。此外,系统的1+N积木式结构,以及客户常用的注射泵、压力泵等传统进样方式,与客户科研习惯具有良好的兼容性。从源头(细胞进样悬液),至最终分选成果收集,全流程低成本管线通路(含微流控芯片),可一次性或多轮使用,“一次抛”方式杜绝了污染与交叉影响;“多次抛”常见于相同试剂重复实验或高效教学环节,并可大幅降低成本。图2 大连华微生命科技推出的“蓝晶系列”单细胞液滴包裹与分选类微流控芯片二、功能针对单个细胞、细菌、病毒、线虫、细胞团等1-100um粒径范围的生物颗粒,进行液滴包裹、检测、按阈值分选等操作。 (1)单细胞微滴包裹(微滴批量制备)(2)细胞检测: 荧光标记 无标记技术(高级版)(3)细胞分选(以下方式任选其一): 电场力分选 磁场力分选 流体驱动柔性分选(4)特色技术(均高端机型/版) 单细胞液滴包裹时空滴删除功能 液滴切分功能 液滴再注液功能 连环分选(分选后再分选) 一分三路分选 分选后捕获(培养、扩增) 多种类单核1+1分选(5)升级扩展 升级至多激光/多通道, 扩展至影像传感、拉曼检测等检测方式; 增配单细胞自动植板系统(96/384孔板,单孔入单滴); 升级至疾风、暴风、飓风、龙卷风等大连华微高端系列; 根据客户想法,升级为其它个性化微流控方式三、价格(直销)(1)单激光分选系统(单通道基础版):36.8万元RMB;(2)微流控芯片(通用款或批量型):200-800元RMB;(3)管线通路耗材:10-30元/实验;(4)生物显微镜、泵、试剂、PC电脑等均可客户自备。 (提醒用户:长期实验使用,请重点考量耗材成本)四、系统原理(1)单细胞液滴包裹原理 针对细胞、细菌等1-100um粒径的生物颗粒,基于两相不相溶液体,在“十”、“T”、“Y”等形式液路中的通道交叉口,利用剪切力,生成均一的液滴,实现微观下细胞个体之间的分离。 (2)分选原理有别于流式分选技术对细胞极大伤害性的高压鞘液,本产品采用低液压驱动,肿瘤细胞等敏感生物颗粒几乎不会收到液压方面的伤害。基于电磁场、介电力、流体驱动等方式,针对单个细胞在分叉通道处,根据实时检测参数,施力向不同的分支驱动液滴,实现分选,其中电场力、介电力驱动效率高达:1000个细胞/分钟;五、功能及参数 (1)单细胞液滴包裹:1,000—50,000 drop/min (2)电场力/磁场力/介电力分选:1,000 drop/min (3)无标记分选:100 drop/min上述分选通量,无法与流式细胞仪(每秒数万个)相提并论,原因之一:降低的速度,极弱的液压推动,就是为了——细胞活性!如果流式分选针对某种细胞分选的活率为30%,华微采用的弱压驱动分选原理,使细胞分选活率达到流式的2至3倍(60%-90%),其分选成果符合单细胞基因测序的活率要求。尤其针对肿瘤细胞等脆弱样本,细胞保活的优势明显。原因之二:匹配单细胞植板流程。从另一个角度,如果下一环节是单细胞孔板滴注,那么,针对秒级的板孔间喷嘴移动,超过5Hz的分选速度,对整个系统的单细胞植板效率影响不大。六、活性因采用柔性低压力驱动方案(1-30PSI可调,压强可低至流式1/70),以及从头至尾的液滴全流程包裹策略,且细胞无需沾染电荷,故活性远优于流式分选技术,分选后细胞活率60-99%表1 常见流式分选设备喷嘴与压力配置表七、耗材微 流控芯片(液滴制备、液滴分选、特定功能定制芯片);管 线耗材(管路、夹具、连接件等),价格低廉,成本可忽略。大连华微生命科技,产品源于元器件级别的自主研发,客户众多,质量经过中科院、中国农科院、三甲医院、中国海洋大学、华东理工大学、江南大学等985/211高校,及其它众多客户应用及检验,性能稳定,价格低廉,拥有更亲民的性价比。公司创始研发团队包括:五位北京大学校友、两位原中科院资深工程师、多位国内985/211高校毕业生,并与中科院大连化物所、大连理工大学、大连交通大学、大连医科大学等合作单位的多位教授、博士或其它科研人员,进行长期合作。大连华微生命科技,是中国单细胞液滴分选领域的“清晨耕耘者”,(国内未发现比华微更早的商业化产品研发&制造商),用“十年磨一剑”描述毫不为过——在2013年,创始人就申请了多项发明专利,攻克多项西方对我国的“卡脖子”技术,并历经无数次改进优化,并实现了国产化。2021年,大连华微生命科技携手大连医大附属医院(三甲)、大连交通大学,以源于企业创始人专利技术的“单细胞柔性分选技术”,入选“2021年大连市重点科技计划项目”,并喜报频传,两年来不断获取新成果(预计2024年实现商业化,敬请期待)。大连华微的每一次技术革新,或能提高性能,或大幅降低成本,都承载着华微人潜心研发、敢于挑战未来科技的创业精神,我们将一如既往,不辍耕作,在单细胞细分领域不断探索,致力于全球业内的前沿科技研发,为中国民族工业添砖加瓦。企业简介:大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微),科技型企业,是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商,依靠自有专利技术,立足独立研发民族品牌,致力于微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。
  • 980万!清华大学多参数流式细胞分选仪购置项目
    项目编号:BIECC-22ZB1176/清设招第20221396号项目名称:清华大学多参数流式细胞分选仪购置项目预算金额:980.0000000 万元(人民币)最高限价(如有):980.0000000 万元(人民币)采购需求:用于免疫学、干细胞,遗传学等研究。对细胞表面、内部分子包括抗原、核酸等进行检测与分析,并能够高速、高纯度分选混合样品中的指定细胞亚型,支持如96孔等多孔板分选。具体要求详见第四章。包号名 称数量01多参数流式细胞分选仪1套合同履行期限:合同签订后90日内交货。本项目( 不接受 )联合体投标。
  • 流式大咖说|流式分选应用中喷嘴的选择——上海科技大学高级工程师任晓越
    仪器信息网特别策划话题:#3i流式大咖说# (点击查看),邀请高校、科研院所、临床、生物技术企业等流式技术研发、应用专家分享技术心得和经验,方便生命科学领域研究人员了解相关技术应用进展、学习仪器使用方法。本期,上海科技大学生命科学与技术学院高级工程师任晓越老师带我们学习流式分选应用中喷嘴的选择。流式分选应用中喷嘴的选择上海科技大学生命科学与技术学院 高级工程师 任晓越流式细胞术(Flow Cytometry,简称FCM)是一种可以快速、准确、客观,并且能够同时检测快速直线流动状态中单个细胞的多项物理及生物学特性,加以分析定量的技术。流式细胞分选是在流式细胞术的基础上,对包含有目的细胞的液滴充以电荷,在电场作用下发生偏转进入收集管中,从而达到对特定群体分选的目的。在进行分选实验时,通常我们都希望能够以最快的分选速度,获得最佳的分选结果。最佳的分选结果,就是细胞活性、目的细胞的纯度、细胞功能性都能获得满足,同时能获得到最多的细胞数量。那么为了获得最佳的分选结果,我们就要考虑影响细胞分选的因素有哪些?首先,样本制备过程当然非常重要,做好样品制备对后续上机分选影响很大。当然,液滴形成,流式检测,圈门,分选模式选择,样本如何收集都会影响分选结果。在这里就不一一展开来讲,那么对液滴形成其关键作用的喷嘴,又是如何影响分选实验。目前,流式分选仪配套的喷嘴规格有70、85、100、130。从表1中,我们可以看出,不同规格的喷嘴对应着不同的鞘液压力和振动频率。喷嘴尺寸越大,相应的鞘液压力就越小,相应的对细胞压力也会减小,细胞活性就会提高。振荡频率Frequency决定了每秒能形成的液滴数,frequency数值越高,每秒形成的液滴数越多,按照每4个液滴分配一个细胞,上样的浓度就能增加,可以提供分选效率,但是液滴数越多,液滴就会越小,对于较大的细胞就会有包裹不好的情况。Nozzle diameterSheath pressureFrequencyFlow rate70μm70 PSI80-90 KHz~20000 Events/s85μm45 PSI40-50 KHz~10000 Events/s100μm20 PSI30-40 KHz~8000 Events/s130μm10 PSI12-16 KHz~3000 Events/s表1 BD AiraIII不同规格喷嘴的分选条件综上,我们可以得出这样结论,对于分选得到的细胞活性方面,70μm,在分选速度方面70μm85μm100μm130μm。通常情况下,进行分选实验时,选择喷嘴的标准为:细胞直径小于喷嘴直径的1/5。那么这一标准是否固定不变?从众多的使用案例中,我挑选了三个代表性的实验来和大家分享。70μm喷嘴分选小鼠骨髓造血干细胞 造血干细胞(Hematopoietic stem cells, HSCs)是一种主要存在于骨髓中的多能干细胞,具有长期自我更新的能力和分化成各类成熟血细胞的潜能。造血干细胞是研究历史最长最为深入的一类成体干细胞,对研究各类干细胞具有重要指导意义。HSCs是多功能的,它们可以分化为所有类型的血细胞,还能不断繁殖以维持自身在骨髓中的数量。它可以分化为多能祖细胞,进一步分化成淋巴祖细胞,分化为NK细胞、B细胞、T细胞;也能分化为髓系祖细胞,进而分化为粒细胞/巨噬祖细胞,以及巨核系-红系祖细胞,这些祖细胞会继续分化形成巨噬细胞、单核细胞、粒细胞、红细胞和巨核细胞。我们为什么使用70μm喷嘴分选造血干细胞,首先造血干细胞是比较小的,大约仅有8μm,其次,在小鼠骨髓中,HSCs在有核细胞中的比例仅有0.01%。即使年龄、性别、小鼠品系及纯化方法的存在差别,1只小鼠也只能分离到大约几千到1万个左右HSCs。使用70喷嘴可以极大的提供分选效率,缩短分选时间。图1 小鼠骨髓造血干细胞的流式分选100μm喷嘴分选小鼠原代肝实质细胞 这个实验是将Cas13d系统和靶向Pten基因的guide RNA作为载体,通过高压尾静脉注射方法,导入到小鼠肝脏中表达。这段载体中包含GFP基因,所以将GFP+肝细胞通过流式细胞仪分选出来。再进行后续试验,才能确定是否在肝脏细胞中沉默Pten基因。图2 小鼠原代肝实质细胞的流式分选因为肝实质细胞比较大,所以文献中也常会用130μm的喷嘴分选。但是肝脏中大概有1010方个hepatocytes,数量庞大,而且高压尾静脉注射这种方法递送效率比较低,GFP+肝实质细胞比例偏低。如果,我们也使用130喷嘴分选,分选时间会太长。所以,我们分别用100、130喷嘴来测试,发现虽然100喷嘴分选到细胞活性可能会收到影响,但是后续试验都要把分选到的细胞直接裂解掉,所以对细胞活性要求不高。而使用100的喷嘴可以显著缩短分选时间,提高效率。最终确定用100喷嘴分选肝实质细胞,在分选过程中,由于肝细胞在液滴中偏大,测液流周围会有很多卫星液滴,这对后续实验没有影响。130μm喷嘴分选成年小鼠的神经元 实验目的是去除鞘髓碎片和无荧光细胞,分选到有荧光的细胞后续用于单细胞测序,所以对神经元活性要求高,而神经元又是非常脆弱的。为了尽可能的保证神经元的活性, 用人工脑脊液替代鞘液,使用130μm喷嘴分选成年小鼠的神经元。清洗鞘液桶,用人工脑脊液润洗桶壁,加入鞘液桶1/2体积以上人工脑脊液,进行液流启动,替代管路中的鞘液;set configuration,将鞘液压力调整为10PSI,(根据所使用鞘液粘稠度,调节鞘液压力)。图3 成年小鼠神经元的流式分选从图3中看到,在加电分选中,看到侧液流很集中,说明液滴包裹的比较好。总结一下,我们该如何选择一个合适的喷嘴?首先,细胞的大小当然是很关键关键;其次,我们也可以考量下游实验对于细胞活性和细胞量的要求。比如体外培养、体内移植、单细胞测序对细胞活性要求较高,就可以尽量选择较大的喷嘴;而测量蛋白和mRNA表达水平,对细胞活性要求就较低,可以选小一些的喷嘴,提高分选效率。【作者简介】上海科技大学生命科学与技术学院 高级工程师 任晓越任晓越,上海科技大学生命科学与技术学院,高级工程师。2013年毕业于天津大学化工学院制药工程专业,工学硕士。在平台负责流式细胞仪、大颗粒分选装置、超速离心机等大型设备的管理工作,熟悉和掌握多种流式细胞仪的操作使用,为用户提供仪器辅助、操作培训、多色配色、数据分析等仪器相关服务。(本文编辑:刘立东) 相关推荐:流式大咖说|全光谱流式十问十答——中科蓝华生物医药谢简明、亢中奎流式大咖说|量化成像分析流式在水生生物研究中应用——中国科学院水生生物研究所高级工程师 汪艳流式大咖说|FSC与SSC在流式细胞术中的应用——西南医院马清华副研究员流式大咖说|流式检测中最易忽视的时间参数——首都医科大学中心实验室副主任技师 徐晓雪 流式大咖说|技术干货|如何去黏连?流式新手绕不开的数据处理难题 流式大咖说|流式细胞技术平台发展与使用心得分享中科院分子细胞卓越中心 俞珺璟博士流式大咖说|流式、免疫组化、免疫荧光的抗体区别流式大咖说|流式荧光技术检测与化学发光技术检测那些事儿【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)
  • 近红外引领果蔬分选技术实现飞跃
    为了多方位展现我国在近红外光谱领域的最新成果,仪器信息网和近红外光谱分会计划合作制作《近红外光谱新技术/应用进展》网络专题,同时也以此献礼近红外分会成立10周年,并寄语2021年国际近红外大会。我是受益于近红外分会和仪器信息网的人,感恩无限。愿借此机会,把自己多年来对近红外在果蔬品质无损检测方面的认识和认知与大家共享。中国农业大学 韩东海教授  1. 前言  以前我不论是指导学生科研还是学会报告话题都比较大,宏观且泛泛。论述宏观有利于扩宽人们的视野,开阔思路,但不能解决具体问题。今天着重讲些细节,有些属于经验之谈,直击要点,但略显有点理论支撑不足。我认为两者均不可或缺,只是每个人的发展阶段不同从而导致的需求不同而已。  本文对于研究果蔬品质无损检测的专家学者也许能有些帮助,而对于其他研究方向的如能有所参考就是万幸了。  近红外是个多学科交叉的结晶,不同专业背景、不同经历会有不同体会,有不妥之处,望多多指正。  2. 果蔬分选简介  先简单介绍一下果蔬分选。果蔬分选包括两大独立要素。一个是大中小的级别分选,一个是优良中差的等级分选。大果中有优良中差,优果中有大中小。近红外在果蔬分选上的应用始于二十世纪80年代末。之前的果蔬分选主要是级别分选,部分用机器视觉或依靠人工按照外观颜色进行等级分选。外观颜色与内部品质有一定的相关性,但难以达到生产要求。一是误判率较高,二是有些果蔬无法实施,例如猕猴桃等。而且那时的设备大小宽窄尺寸基本是固定的,不能轻易更改。  近红外在果蔬内部品质检测上的应用使得分选设备发生了革命性的变化。首先,实现了内部品质等级无损检测,大大地提升了分选设备功能,从这个意义上讲,近红外引领果蔬分选技术实现了飞跃式发展;二是设备结构大为简化,大小宽窄可自由组合,就像积木一样。  3. 近红外与果蔬检测可谓绝配  近红外与众多物料有着非常完美的结合。例如烟草、饲料、石油化工、医药。果蔬也是其中一例,不过内涵却与其它不同。  首先是波长范围。果蔬水分约为80-90%,水果糖度在10-20°Brix之间。其他成分虽然很多,但含量很少。1100nm以下的短波近红外适用于果蔬类高水分物料。  其次是光谱采集方式。果蔬内部质量无损检测除了糖度以外,还要检测内部褐变、糖心等,必须采用透射方式采集光谱。短波近红外穿透力强,加之,1100nm以下属于硅检测器范围,仪器造价比铟镓砷要便宜很多,这又为大量普及应用创造了有利条件,为量大利薄的农产品销售提供了强有力的支撑,因此是最佳选择。  最后是光源功率。果蔬品质无损检测手持和便携以及台式专用仪器的电源功率,LED最小,卤素灯小则1-2W,大则12W。而用于在线检测时,1秒钟要检测5-6个果蔬,西瓜每秒3-4个,扫描时间短,需要配置高达200-300W大功率光源,检测西瓜时甚至达到2000W。  4. 近红外首先在水果在线检测上发力  1989年,日本三井金属矿业株式会社EI推进事业部在冈山县一宫农协推出了世界上第一台桃果实糖度在线漫反射无损检测分选设备,1992年又相继推出了苹果、梨的检测系统。之后,杂贺技术研究所、MAKI制作所、NIRECO也研制出类似设备,继而在日本大面积推广。  基于漫反射原理的检测主要用于薄皮水果诸如苹果、梨、桃等,而用于柑橘检测则效果不佳,于是又研发出基于透射原理的检测,一直延续至今。随着检测项目的增加,由单一的糖酸度向内部褐变、糖心、水浸、局部失水、空洞等多指标同时检测延伸,落叶果及西瓜甜瓜类果实则主要采用漫透射方式。特殊情况时,苹果和葱头需要在两个位置同时采集光谱。  现在日本SHIBUYA精机株式会社成为果蔬分选设备厂家中的一支独大,从核心部件光谱仪等内外品质评价系统到输送装箱码垛以及控制系统全部独自生产,近江度量衡株式会社部分自主,部分外协。三井、杂贺、NIRECO则只生产内外品质评价系统。  果蔬内部品质近红外在线检测技术因能直接解决农业生产问题,并带来经济效益和社会效益,在先进国家政府的资助下得到大面积推广应用,仅日本至少有4000个大型果蔬分选设施正在运行。  5. 近红外光谱采集方案多种多样  果蔬物料尺寸有大有小,果肉有薄有厚,糖酸度有高有低,且分布不均。由此产生若干检测个性化方案。例如光谱采集方案就有如下之多,图1- 6。  图1和图2光源和检测器布置相同,但物料放置及输送环节有别。图1托盘不但能平稳地输送西瓜,避免磕碰,而且还可遮挡杂散光进入检测器。依据西瓜、甜瓜类的生理结构,花萼处果皮最薄,花萼冲下放置,有利于获取更多的内部信息。由于菠萝果心粗大,横置更妥,且输送更平稳。  图3和图4的光源与检测器设置一样,但样品放置和光谱采集细节有所不同。西红柿的果柄影响信息接收,如图3所示,故倒置。由于物料内部组织构造差异很大,苹果肉质均匀密实,而西红柿则有外果皮、中果皮、果浆、胎座,少许空腔,各组织之间光特性差异大,造成散射不均。为此,苹果光源布置向赤道下方照射,靠苹果赤道直径大来遮挡杂散光(图4)。而西红柿则照射上半球,以利获得更多有效信息。  图5和图6的光源和检测器设置相同。图5为常规布置,而图6采用了特殊透镜,缩小了光斑大小,因为柑橘比葱头体积小,这样可有效避免杂散光进入检测器。这只是一个公司的方案,加上其他公司的独具匠心的思考,采集方案层出不穷。  6. 检测对象、检测项目和检测精度  表1列出了来自三井金属计测公司的透射模式部分检测对象和检测项目,这些检测对象检测项目早已成熟,转为常规。其他公司,如SHIBUYA精机、近江度量衡、NIRECO、杂贺技研均能实现,包括一些没有列入的检测对象和检测项目。即使如此,有些项目也不是百分之百正确检出,例如局部褐变误判率较高。但是小果实,例如樱桃、草莓,个别水果,如葡萄,诸如此类的近红外在线分选技术暂不多见。表1 透射模式检测对象及检测项目1)  由于在线检测所用光源功率较大,能确保获得足够强的有效信息,故检测精度一般高于便携和手持仪。以SHIBUYA精机株式会社在线内部检测装置为例,各种水果的糖度检测精度如表2所示。表2 糖度检测精度2)对象苹果梨蜜桔桃西瓜西红柿柿子甜瓜SEP0.280.330.340.370.420.500.610.74  由表2可知,苹果检测精度最高,甜瓜最低。这个趋势与其他厂家基本一致。也就是说,苹果是最好检测的,而果肉厚内心甜的甜瓜最难检测。一般消费者对于糖度相差0.5Brix以内难以察觉,故水果检测精度SEP如能达到0.5就能满足生产要求。  日本的水果品质普遍较高,好吃已经不是问题。为了适应新的国际形势,加大水果竞争力度,日本政府正在组织产学研攻破果蔬功能成分在栽培、管理、在线无损检测方面的难题。苹果重点提高花青素含量,西红柿是番茄红素,柑橘是β-隐黄素,胡萝卜是番茄红素和β-胡萝卜素。由于这些成分含量比较少,近红外检测存在一定难度。番茄红素已经实用化,其他几个成分仍在努力中。  7. 水果手持、便携、台式专用仪器发展势头强劲  2000年,FANTEC开始销售世界上第一台水果专用便携仪FRUIT TESTER-20,时间不长又推出FQA NIR GUN手持仪(图7)。便携仪和手持仪主要用于科学研究,同时也为那些生产量小的个体果农带来福音,因为花几十万或百万日元就能达到几个亿的设备功能,只是生产效率无法相比。  同年,KUBOTA公司首先推出了台式仪,其后又推出便携仪,从2019年7月始,对原有机型进行升级换代,如图8和图9。这两款仪器社会保有量估计在1000台左右,也是本人认为最好用的仪器。  这台仪器的日本水果模型拿到中国无需修正,可直接使用,预测值准确稳定,该仪器像素点只有254个,糖度模型采用的是4-5个波长的MLR。本人实验室在北京奥运前购买了一台,十几年过去了,现在还在使用中,中途只更换过电源开关。我曾问过这台仪器的研发部长石桥先生,他说,因为内置波长横纵坐标自动校正功能,所以仪器预测值才稳定。横坐标校正方法已经成熟,但纵坐标措施不多,也许谁掌握了纵坐标校正技术,谁就能占领市场。  N1(图10)从2009年开始销售,由于产品精制,价格便宜,至2017年8年间共销售648台。最为特殊的是该仪器采用了不受杂散光影响的TFDRS法(TFDRS:Three-Fiber-based Diffuse Reflectance Spectroscopy),1点照射,2点接收。通过2个漫反射强度比计算相对反射率,进而获得相对吸光度比。该吸光度比不受漫反射光路的变化影响,且与水果糖度呈直线相关。该检测模型建立在标准样品基础上进行模拟,推导出方程,然后用水果进行验证,故在实际应用中,不需进行参比测量,不需进行模型维护,是这一种全新思维,不同于传统方法。  PAL光传感器是最新系列水果手持糖度仪(图11),采用LED光源进行糖度无损检测。目前应用对象分别为苹果、梨、桃、葡萄、迷你西红柿。从2017年开始销售以来,不到一年就售出400台,该公司的销售目标是1万台。  还有几种正在出售的台式仪和手持仪。  QSCOPE-DT功能最强大,不但可以预测糖酸度,也可检测内部品质。Amaica-Pro 与KUBOTA台式仪一样,检测糖酸度的同时也可称重,把级别和等级分选元素集于一体,是小型果蔬分选仪典型代表。CD-H100采用滤光片技术,物美价廉,缺点是仪器台间差较大,建模任务艰巨。  我认为,在台式、便携、手机水果专用仪器中,SACMI的台式仪适应性最广,如图12。因为这台仪器采用了8个20W的卤素灯,功率强大。内部采用不锈钢锥形挡板,将光源与检测器分隔在圆锥挡板内外。光源在锥形板外向上照射,结构上保证了杂散光不能进入检测器。检测器在圆锥挡板内,当水果放置在锥形挡板顶端时,橡胶圈的密封阻挡了反射杂散光的进入。这种漫透射设计加上大功率,不论是内部成分还是内部病变的检测均能胜任,是个科研好帮手,就是价格偏贵。  8.样品真值测量  真值测量往往被轻视,特别是像水果类的样品,不论是品种间、还是种类间差异都比较大,没有深入了解细致筹划,将影响建模效果。因为建模预测精度永远不可能超过实测精度。以如下两个案例进行说明。  甜瓜光谱采集位置是花萼处,故在花萼处取ф40mm(因为环形光源直径是ф38mm)果肉打碎后取果汁测量糖度,如图13所示。  图14是柑橘糖度实测值图解。充分考虑样品生化特性,整体榨汁,再经过滤实测值更准确。  9. 展望未来  近红外在果蔬品质检测方面的应用已经30年了,技术细节在不断完善进步,但整体思维模式有待突破。  上面介绍的都是近红外光谱在果蔬品质无损检测上的应用,近年来,近红外图像也取得了长足进步。近红外激光正在发挥着特殊作用。随着LED光源,特别是近红外区域LED连续光源的研制成功、光谱仪小型化、微型化、量子光谱仪的问世、无线通讯、  5G数据快速传输、人工智能等方方面面的突飞猛进,局部照射,多点测量,攻破尚存顽症指日可待。  10.总结与寄语  编辑审阅初稿后提出“日本的果品筛选技术对中国近红外技术在果品检测方面有什么经验借鉴?这方面的内容可否给大家稍微总结一下?”我觉得编辑的建议很好,也很重要,关键是我的能力有限,担心难以胜任。  首先,中国的近红外仪器必须走专用化发展之路,这一点大家已经取得共识,不再赘述。  其次,近红外专用仪器必须走共同合作研发之路,这一点大家也不会有异议。  最后,各个环节必须精益求精,方能广为应用。以水果为例归纳如下:  1)仪器不但要提高信噪比,还应在水果主要成分糖酸吸收波段800-950nm间提高灵敏度,以期获得更多有效信息。  2)不论是254个像素还是1024个,波段区间应有所侧重。考虑到水果颜色或者说叶绿素(670mm)有时也是检测指标之一,650nm-970nm区间更适合水果。  3)漫透射、透射因扩展性好已成为光谱采集的主流。同时,消除大小影响的配套措施不可或缺。  4)透射能量谱一旦低于10%,检测器有可能在检测限以下,此时,吸光度与样品浓度不符合朗伯比尔定律。要么加大光源功率,要么提高仪器灵敏度、要么延长积分时间等加以调整。  5)日本几大果蔬内部品质近红外无损检测系统均为各自专利产品,这是核心,也是关键。  国内从事近红外研究生产应用的专家学者工程师高达数千人,经过二十几年的实践和积累,近红外技术在中国的大范围推广应用、厚积薄发之日已经迎面扑来。  参考文献  1. https://www.mitsui-kinzoku.co.jp  2. SHIBUYA精机株式会社宣传资料  3. http://www.sacmi.com/  4. KUBOTA KBA100使用说明书(中国农业大学 韩东海)
  • 科学家研发肿瘤浸润淋巴细胞高通量分选新方法
    肿瘤浸润淋巴细胞(Tumour-infiltrating lymphocytes, TIL)具有天然的肿瘤特异性和抗原多样性,因此具有良好的实体肿瘤杀伤能力,其疗效依赖于分选得到的TIL细胞的高效恢复和扩增能力。然而,肿瘤中TIL细胞稀少、有效分离困难,限制了TIL疗法的进一步优化。  近期,来自西北大学和多伦多大学的研究团队基于微流控技术和免疫磁珠技术研发了新型高通量细胞分选方法,实现TIL的高效识别与分选。研究成果发表于《Nature Biomedical Engineering》,标题为:Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting。研究人员设计了MATIC (magnetic affinity targeting of infiltrating cells)的细胞分选方式,将微流控设备夹在永磁体中间,通过平衡磁力和流体拖拽力,对标记了磁性纳米颗粒的TIL细胞进行分选,实现了每小时处理32亿细胞的高通量,以及90%的捕获效率和95%的分选纯度。与常规细胞分选方法相比,该免疫磁性细胞分选方法可恢复多达30倍数量的TIL细胞,高数量和多活性的TIL细胞加速了TIL细胞扩增,增强了抗肿瘤效果。该分选方法还可识别和分选细胞亚群,在小鼠结肠癌细胞(MC-38)模型中,研究人员基于膜外三磷酸腺苷二磷酸水解酶-1(CD39)表达程度,对TIL细胞进行了进一步的分选,研究证明TIL细胞中CD39中等表达亚群具有最佳的肿瘤治疗效果。  研究为增强TIL疗法的治疗效果提供了新的方法和思路,但是否普遍存在TIL细胞中CD39中等表达亚群具有更高抗肿瘤效果的现象,还需在更多模型和样本中深入验证。   注:此研究成果摘自《Nature Biomedical Engineering》杂志,文章内容不代表本网站观点和立场,仅供参考。  原文链接:https://doi.org/10.1038/s41551-021-00820-y
  • 全球首台活体单细胞拉曼分选仪问世
    近日,中科院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&mdash &mdash &ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 通过了评审验收,这标志着全球首台活体单细胞拉曼分选仪在中国研制成功。   该研究是在青岛能源所研究员徐健和兼职研究员、英国谢菲尔德大学黄巍主持下,通过所企联合攻关完成的。项目组此次研发的是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。该分选仪可实现单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1~100毫秒 还可完成基于拉曼图谱的细胞种类及生长状态快速鉴别等多项任务。   该仪器的核心优势在于,对细胞生化信息及其变化敏感,无须预知生物标识物,无须标记细胞,可进行原位和非侵害性的活体检测等。此项技术将对单细胞生物技术和单细胞基因组的研究产生积极的贡献。   项目组利用该仪器,已经在光合产油微藻生理状态识别、多环芳烃降解微生物分离等研究中取得初步成果,并建立起应用示范技术参照方法和数据分析流程。   据了解,目前该仪器已服务于国内外多个科研团队,在海洋资源挖掘、生物燃料和生物材料、生物能源种质筛选、食品微生物检测、药物研究、肿瘤监测与分选、环境微生物监控、农业生态研究等领域发挥重要作用。 青岛能源所首台&ldquo 活体单细胞拉曼分选仪&rdquo 样机通过验收   背景新闻:   日前,受科技部条财司委托,中国21世纪议程管理中心在北京组织专家对中国科学院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 项目进行验收,标志着研究所基于自主技术开发的首台&ldquo 活体单细胞拉曼分选仪&rdquo 通过科技部验收。   验收专家听取了项目组的工作总结汇报、审查了验收材料,认为项目组基于自主开发的&ldquo 活体单细胞拉曼分选仪&rdquo 开展的各项工作完全符合任务书下达的全部考核指标,一致同意项目通过验收。   在项目实施过程中,项目组成功研制开发了&ldquo 活体单细胞拉曼分选仪&rdquo (&ldquo Raman-Activated Cell Sorter&rdquo ,简称RACS),并在中科院青岛能源所成功搭建了首台样机。该样机(编号RACS-1)由激光器、拉曼光谱仪、落射荧光显微镜、细胞分选系统以及自动控制系统组成,是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。目前,RACS-1已可实现的功能包括:单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1-100ms 基于拉曼图谱的细胞种类及生长状态快速鉴别 拉曼-落射荧光不可培养功能微生物鉴定 拉曼光钳单细胞操纵 基于拉曼信号的单细胞计数 单细胞拉曼数据库系统 拉曼激活单细胞分选等。   与现有的基于细胞荧光信号的荧光流式细胞分选仪(&ldquo Fluorescence-Activated Cell Sorter&rdquo ,简称 FACS)原理和方法均不同,RACS是基于对单个细胞的拉曼化学指纹图谱(细胞生化信息)的获取并与参照细胞拉曼数据库比对,从而原位、不依赖于培养、高通量地分选具有特定(或指定)生化状态的单细胞。与FACS相比,RACS的核心优势在于:对细胞生化信息及其变化敏感、不需预知生物标识物、不需标记细胞、原位和非侵害性的活体检测等。因此,RACS可有效克服&ldquo 细胞功能异质性&rdquo 、&ldquo 尚不可培养微生物&rdquo 、&ldquo 探测未知的细胞表型&rdquo 等三个共性科学与技术瓶颈。   此外,项目组利用RACS-1在光合产油微藻生理状态识别、多环芳烃降解微生物分离等方面研究取得了初步示范成果,并建立起应用示范技术参照方法和数据分析流程,为未来对细胞表型鉴定及功能微生物筛选奠定了基础。
  • 水稻种子活力无损检测分选设备顺利通过验收
    2022年12月3日,湖南省农学会组织以中国工程院院士、华南农业大学教授罗锡文为组长的专家组,对中国科学院长春光学精密机械与物理研究所和湖南省农业科学院联合研制的“水稻种子活力光学无损检测分选技术与设备研究”成果进行了现场评议,工程院院士、湖南省农业科学院党委书记柏连阳到会致辞。   种子活力是种质质量的核心指标,提高种子活力,提升农业用种质量,是保障国家粮食安全的重要途径。为实现个体种子活力精确检测,助力水稻种子活力分级加工,自2018年起,湖南省农业科学院联合我所组建了交叉学科研究团队,探索利用光学与信息科学手段解决水稻个体种子活力识别与分选这一种业瓶颈问题。   该成果首次采用超连续激光光源,获取种子透射光谱,关联“光谱数据集”与“种子活力表型数据集”,建立水稻个体种子活力光学无损检测的模型,率先研制出水稻种子活力无损检测分选样机,成功实现不同活力水稻种子自动分选,样机分选后的种子发芽率较分选前提高15%以上。   专家组评价认为:该成果填补了光学无损检测与分选水稻种子活力研究的空白,居国际较高水平。建议进一步提高水稻种子活力无损检测的精度及速度,尽早批量生产。   2018年,湖南省农业科学院余应弘课题组联合长春光机所梁静秋课题组开展了水稻种子活力无损检测研究,历经检测方法探索、检测平台搭建、设备迭代等多环节。此次验收的水稻种子活力无损检测分选样机由光学系统先进制造重点实验室刘钰副研究员负责研制。种子活力无损检测研究与设备研发得到了长春光机所领导的高度重视与支持。贾平所长多次亲临现场指导,勉励大家再接再厉,为种业科技创新、保障国家粮食安全贡献长春光机所力量。副所长王建立、所务委员黎大兵、所务委员孙守红,光学系统先进制造重点实验室、基础科研处以及知识产权与成果转化处领导等亲临实验室提出了意见与建议。   长春光机所与湖南省农科院将进一步通力合作,为提升农业用种质量、保障国家粮食安全做出更大的贡献。
  • 青岛能源所开发智能化、自动化的微生物单细胞分选仪
    单细胞分析已成为生命科学的有力工具,原位样品在单个细胞精度的识别、分选、测序/鉴定对于深入解析微生物组的结构和功能具有重要作用。青岛能源所单细胞中心与青岛星赛生物合作,成功开发微生物单细胞自动分选系统EasySort AUTO,可将常规显微镜升级为微生物单细胞的智能化、自动化分选装置,并利用酵母和大肠杆菌细胞示范了单细胞分选—测序/培养的全流程,为微生物资源的探测和挖掘提供了有力手段,该研究成果近日发表于《微生物》mLife杂志。 EasySort AUTO的“慧眼”和“巧手”服务微生物组资源挖掘   微生物组(亦称菌群)在自然界及人体中无所不在,它们蕴含着精准健康、碳减排、环境保护、清洁能源等当今人类社会重大挑战的解决方案。然而,微生物细胞尺寸小,操控难度大,单个细胞的识别与分选极具挑战性;同时,菌群中的庞大的细胞数量让原位、单细胞层面的菌群研究对于自动化、高通量的需求尤为迫切。   针对上述问题,单细胞中心刁志钿博士、阚凌雁工程师、赵怡龙工程师带领的研究小组,基于青岛星赛生物的单细胞微液滴分选系统EasySort Lego,开发了新一代人工智能辅助的微生物单细胞自动化分选系统EasySort AUTO。经测试,系统搭载的AI辅助图像识别算法可以智能化、自动化地识别目标细胞,准确率达80%;系统嵌入的光镊技术可以捕捉并精准操控目标细胞;最后,基于界面接触的微量液体分离专利技术,目标细胞能够以单管单细胞(One-Cell-One-Tube)的形式自动收集于PCR管中,通量为~120细胞/小时,单细胞率高于93%。该系统分选的目标单细胞可以直接开展单细胞测序、培养等工作,单细胞测序成功率高于84.2%,酵母细胞和大肠杆菌单细胞培养的成功率分别为~85%和~80%。   此外,EasySort AUTO的设计还具备三个显著特点:1)广谱适用性,由于光镊可以操控不同尺寸的细胞,该系统广泛适用于各类单细胞的分离、分选、培养及测序实验;2)灵活性,该系统采用模块化的设计,可通过安装“巧手”—光镊模块和自动收集模块,将生物实验室常见的正置显微镜升级为单细胞分选装置;3)高活性保持,分选后的目标细胞具备较高的活性和DNA/RNA质量。   单细胞中心长期致力于微生物单细胞技术开发、装备研制和产业化,前期和青岛星赛生物合作已陆续推出高通量流式拉曼分选仪(FlowRACS)、临床单细胞拉曼药敏快检仪(CAST-R)、单细胞拉曼光镊分选仪(RACS-Seq)、单细胞微液滴分选系统(EasySort)等产品,并已进入市场。作为EasySort仪器系列的新成员,EasySort AUTO的设计聚焦在为显微镜的“慧眼”提供一双自动的“巧手”,使得显微镜可以智能化发现目标单细胞,并自动化分离获取。基于上述创新,EasySort AUTO系统将以便捷的操作、灵活的组装、自动化的细胞收集、目标细胞的高活性保持等优势为微生物单细胞的分选工作提供特色解决方案。   该工作由单细胞中心马波研究员和李远东工程师主持,与青岛星赛生物合作完成,得到了国家重点研发计划的资助。
  • 600万!中南大学计划采购分选型流式细胞仪
    一、项目基本情况项目编号:HZ20220206-0136项目名称:中南大学高等研究中心分选型流式细胞仪采购项目预算金额:600.0000000 万元(人民币)最高限价(如有):600.0000000 万元(人民币)采购需求:一、项目基本情况1、项目编号:HZ20220206-01362、采购代理编号:TJGJCS2022-2123、项目名称:中南大学高等研究中心分选型流式细胞仪采购项目(第二次)4、预算金额:600万元包号包名称是否核心产品分项项目名称(标的名称)技术要求 是否接受进口产品数量单位交货要求代理服务费收费标准时间地点1中南大学高等研究中心医学高端大型仪器设备公共平台分选型流式细胞仪(2台)采购是高端分选型流式细胞仪分选型流式细胞仪主机详见招标文件是1台合同生效后,从合同签订之日起 4个月以内,或延迟到甲方指定时间。中南大学湘雅医院教学科研楼甲方指定地点具体收费标准详见本项目“投标须知前附表”否数据处理系统及工作站是1套否彩色打印机否1台否主分析软件是1套否DNA分析软件是1套否数据采集软件(含液滴延迟校准系统及质控程序)是1套否喷嘴(包括70微米、85微米、100微米,130微米)是1套否随机耗材进样管是1000支否装机/培训试剂(含鞘液、清洗液、关机液、质控微球等)是1套否稳压电源(3kV,3小时以上)否1台是中端(智能型)分选型流式细胞仪分选型流式细胞仪主机是1台否数据处理系统及工作站是1套否激光打印机否1台否多功能主软件是1套否DNA分析软件是1套否随机耗材流式管是1000支否装机/培训试剂(含鞘液、清洗液、关机液、质控微球等)是1套否稳压电源(3kV,3小时以上)否1台5、采购需求:具体详见第五章采购需求6、采购项目需要落实的政府采购政策:①强制采购:采购需求中23英寸液晶显示器、34英寸液晶显示器、激光打印机属于《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)中标注★的节能产品,实行强制采购。投标人应在投标文件中提供投标产品取得国家确定的认证机构出具的、处于有效期之内的节能产品认证证书复印件,否则其投标无效。②优先采购:采购需求中属于《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)中未标注★的节能产品,以及《财政部生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)中的环境标志产品,实行优先采购。③价格评审优惠:政府采购促进中小企业发展(包括政府采购支持监狱企业发展、政府采购促进残疾人就业)。7、本采购项目接受进口产品投标。8、采购方式:公开招标。9、合同履行期限:具体内容详见招标文件第五章“采购需求”。二、投标人的资格要求1、投标人的基本资格条件:投标人必须是在中华人民共和国境内注册登记的法人、其他组织或者自然人,且应当符合《政府采购法》第二十二条第一款的规定,即:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。2、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。3、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加此项目的其他招标采购活动。4、列入失信被执行人、重大税收违法案件当事人名单,列入政府采购严重违法失信行为记录名单的,拒绝其参与政府采购活动。5、联合体投标。本次招标不接受联合体投标。6、本项目的特定资格要求:无。三、获取招标文件的时间、期限、地点、方式及招标文件售价1、时间:2022年9月15日至2022年9月22日,每天上午8:30至12:00,下午14:00至17:00(北京时间,双休及法定节假日除外)。2、地点:天鉴国际工程管理有限公司(地址:长沙市雨花区金海路128号天鉴大厦4楼401室)。3、方式:持法定代表人身份证明原件或授权委托书原件(附法定代表人身份证明原件)、个人身份证原件、投标人营业执照副本复印件购买招标文件。4、售价:招标文件每份人民币400元,售后不退。四、投标截止时间、开标时间及地点1、提交投标文件的截止时间:2022年10月9日09时30分(北京时间)2、投标地点:天鉴国际工程管理有限公司开标室(长沙市雨花区金海路128号天鉴大厦6楼606室)。3、开标时间:2022年10月9日09时30分(北京时间)4、开标地点:天鉴国际工程管理有限公司开标室(长沙市雨花区金海路128号天鉴大厦6楼606室)。5、其他要求:逾期送达的或者未送达指定地点的投标文件将拒绝接收。届时请投标人的法定代表人或其委托代理人出席开标仪式,未购买招标文件的单位不得参加投标。五、公告期限1、本次招标公告同时在中国政府采购网(http://www.ccgp.gov.cn/)、中南大学校园网(http://tz.its.csu.edu.cn/)、中南大学采购与招标管理中心网(http://czzx.csu.edu.cn/)发布。公告期限从本招标公告发布之日起5个工作日。2、在其他媒体发布的招标公告,公告内容以本招标公告指定媒体发布的公告为准;公告期限自本招标公告指定媒体最先发布公告之日起算。六、疑问及质疑1、投标人对政府采购活动事项如有疑问的,可以向采购人、采购代理机构提出询问。采购人、采购代理机构将在3个工作日内作出答复。2、潜在投标人认为招标文件或招标公告使自己的合法权益受到损害的,可以在收到招标文件之日或招标公告期限届满之日起7个工作日内,按《湖南省财政厅关于印发<政府采购质疑答复和投诉处理操作规程>的通知》(湘财购〔2019〕20号)规定,以书面形式一次性向采购人、采购代理机构提出质疑。七、其他补充事宜1、采购代理机构银行财务信息(2)购招标文件款、招标代理服务费开户名称:天鉴国际工程管理有限公司开户行:招商银行长沙韶山路支行银行账号:731903134510866财务部联系人、电话财务部联系人:/财务电话:/2、疫情注意事项:
  • 成果速览|基于微滤-单细胞弹射分选技术的肿瘤早筛研究入选IEEE MEMS 2023国际顶级会议
    第36届IEEE International MicroElectro Mechanical Systems Conference (IEEE MEMS 2023)将于1月15-19日在德国慕尼黑召开。IEEE MEMS是微纳系统领域最具影响的国际会议,从1987年以来至今已举办36届,长期以来以创新性高、中选率低著称,是微机电系统(MEMS)领域的顶尖会议。近日,由中科院长春光机所李备研究员团队与北京大学王玮教授团队合作,在MEMS上发表了题为"PICKING SINGLE CELLS FROM 10 ML SAMPLE BASED ON A MICROFILTRATION- LIFT COMBINATION PLATFORM"的文章,文章旨在基于微滤-LIFT组合平台从 10 mL 样品中分离单细胞。循环肿瘤细胞(CTC)是外周血中丰度极低的稀有细胞,并且显示出广泛的分子异质性。迄今为止,已经提出了许多CTC分离方法,如梯度离心法,过滤,微流控技术和标记免疫亲和技术,它们已实现了细胞捕获。然而,由于非特异性捕获的白细胞(WBC)引入的污染,CTC相关研究在CTC的定量表征阶段相对停滞。众所周知,仅仅计数CTC并不能反映肿瘤生物学的异质性。为了揭示CTC的异质性,迫切需要开发一种单个CTC分离方法,以更好地了解单个CTC在分子生物学水平中的作用。目前,单CTC拾取的工作原理包括手动显微操作,激光捕获显微切割(LCM),机械细胞选择器和激光诱导前向转移(LIFT)。不幸的是,广泛使用的手动显微拾取细胞的效率很低,这极大地影响了其实际应用。据报道,由于切割面积大,LCM和机械单元拾取器倾向于每次拾取收集多个细胞。相比之下,激光诱导前向转移(LIFT)技术可以在高分辨率下自动拾取单个细胞。因此,LIFT是从预处理样品中挑选单CTC的一种很有前途的方法。图1:微滤-激光诱导前向转移(微滤-LIFT)组合平台的示意图(a-d):(a)双层微孔阵列器件封装,(b-c)基于尺寸的细胞分离和富集,(d)单细胞的识别和拾取。L1 至 L4,镜片 HP,半波片 PBS,偏振分束器 M1到 M3,镜子 DM,二向色镜 EF,发射滤光片 MO1至MO2,显微镜物镜。上部(e-f)和下部(g-h)滤膜的照片和SEM图像在这项研究中,我们开发了一种新型的微滤-激光诱导前向转移(微滤-LIFT)组合平台,该平台允许从大体积样品(超过 10 mL)中高通量分离和自动拾取单个 CTC。微滤-LIFT平台将双层微孔阵列滤膜与荧光识别LIFT系统耦合。除了计数之外,该平台的初步性能表明,在重力下,微孔阵列过滤器可以快速分离和浓缩目标细胞,并使用LIFT技术在几秒钟内以单细胞分辨率精确拾取。微滤-LIFT平台为高效的单CTC拾取提供了独特的途径,为CTC的生物学特性分析奠定了基础。该研究中应用长光辰英核心产品—PRECI SCS单细胞分选仪PRECI SCS单细胞分选仪成果与讨论通过 COMSOL 仿真分析,以评估单细胞拾取过程中对细胞的损伤(图2a)。激光作用金属膜温度约为2700°C(图2b),而距离金属层0.6μm的液体在100 ns内低于27°C(图2b)。脉冲激光器的传输时间(6 ns)远小于100 ns。整个流体域的温度变化如图2c所示,表明LIFT操作对目标细胞是安全的。图 2:细胞分选过程的有限元分析。分拣过程中的温度场模型(a)和分拣过程中不同位置的温度场随时间变化(b)。激光烧蚀金属膜的最高温度小于2700°C,而距离金属层0.6 μm的液体在100 ns内保持在27°C以下。(c)整个流体域在不同时间的温度变化。超过0.6um的激光烧蚀金属膜的液体域温度低于27°C。下图显示了微滤-LIFT平台用于单细胞拾取的整个过程。过滤后,将接触的双层微孔阵列过滤器连接到LIFT系统的透明载玻片上(见图3(a)和(j))。通过荧光染色法鉴定靶细胞,如图3(b-c)、(f-g)和(k-l)所示。然后目标单细胞瞬间以350 nJ从微滤装置转移(参见图3(m))。图3(n)显示成功拾取目标细胞,并在载玻片正下方的细胞接收器上找到细胞(见图3(o-p))。接触的双层微孔阵列过滤器能够在30 s内使用LIFT系统拾取单个细胞,而单层微孔阵列过滤器只能在6分钟内移动细胞。图 3:用于单细胞拾取的微孔 LIFT平台的动态过程。(a-i)基于单层微孔阵列过滤器的单细胞拾取:目标细胞拾取失败,细胞在开始时没有移动(a-e),而细胞在一段时间后产生小位移(f-i),由于液层随着时间的推移而减少。(j-p)基于接触双层微孔阵列过滤器的单细胞拾取:由于上部微孔阵列可以切割捕获细胞的液体层,因此实现了目标细胞拾取。拾取的单个细胞由细胞接收器(o-p)接收。细胞用细胞追踪器绿色和Hoechst预染。
  • 一图流:亚米级高分9号卫星最新控温材料的那些事
    p style=" line-height: 1.5em " & nbsp & nbsp span style=" font-family: 宋体, SimSun " 环路热管作为高效的相变传热装置,是卫星和航天飞行器在恒定温度下稳定长寿运行的关键部件,而毛细泵主芯是环路热管中最核心的部件之一。近日,我国首次在高分9号卫星上成功应用多孔陶瓷毛细泵主芯,这是多孔陶瓷作为我国自主研发的最新一代毛细泵主芯材料国际上首次应用于环路热管,其控温精度在国际上处于领先地位。 /span /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "    strong 高分卫星成像质量提升的关键——使用多孔陶瓷材料 /strong /span strong style=" font-family: 宋体, SimSun line-height: 1.5em " 提高卫星控温精度 /strong /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "   高分九号卫星是国家高分辨率对地观测系统中一颗光学遥感卫星,地面像元分辨率最高可达亚米级,已经于近日成功发射。据报道由上海硅酸盐所研制的多孔陶瓷毛细主芯毛细孔径在0.1-10微米可调,最大毛细抽吸力达70KPa,渗透力强,与传统的金属毛细芯相比,多孔陶瓷毛细芯具有密度小、强度高、耐腐蚀、毛细力大以及热导率低等优点,可显著提高环路热管的稳定性和可靠性。安装陶瓷毛细泵主芯的环路热管与传统金属管相比,热源控温精度由(± 3℃)提高到(± 1℃),甚至更优,从而改善了空间相机的热平衡,将我国空间遥感器控温精度提升到新的高度,大幅度提高了相机的成像质量——亚米级,达到国际先进水平。 /span /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "    /span strong style=" font-family: 宋体, SimSun line-height: 1.5em " 揭秘多孔陶瓷的“前世今身” /strong /p p style=" line-height: 1.5em " span style=" font-family: 宋体, SimSun "   研制出这样一种高气孔率、高强度、高效率的多孔陶瓷毛细泵主芯产品,需要在材料的制备技术和性能表征方面突破哪些关键技术呢?其中又涉及到哪些仪器设备呢?下图由仪器信息网小编精心整理绘制而成,为您揭秘应用于高分9号卫星核心部件的最新控温材料——多孔陶瓷。 /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/insimg/2a18fb0e-06b0-4faf-a49b-db3c47a4601d.jpg" title=" 多孔陶瓷1.jpg" style=" width: 500px height: 333px " border=" 0" height=" 333" hspace=" 0" vspace=" 0" width=" 500" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/insimg/b70fba64-5e1e-407f-aa3f-88b15ddeee69.jpg" title=" 多孔陶瓷2.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /p p style=" text-align: left margin-bottom: 10px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/157.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 电子天平 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/477.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 高温炉 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/160.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 烘箱 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/168.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 水浴加热器 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/167.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 电动搅拌器 /span /a 等。 /span /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " img src=" http://img1.17img.cn/17img/images/201512/insimg/53739cdc-c4d3-4877-b905-6f700034bb8f.jpg" title=" 多孔陶瓷3.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /span /p p style=" text-align: center line-height: normal margin-top: 5px text-indent: 0em " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/53.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 扫描电子显微镜 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 投射电子显微镜 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/191.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 物理吸附仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/538.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压汞仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " a href=" http://www.instrument.com.cn/zc/43.html" target=" _self" title=" " style=" text-decoration: underline color: rgb(89, 89, 89) " 核磁共振 /a 、 /span a href=" http://www.instrument.com.cn/zc/73.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " X射线衍射仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 、 /span a href=" http://www.instrument.com.cn/zc/469.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 差示扫描热仪 /span /a span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 等 。 /span /span /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " img src=" http://img1.17img.cn/17img/images/201512/insimg/387ce3f8-a8bc-46af-b6e7-3445766100cd.jpg" title=" 多孔陶瓷4.jpg" style=" width: 500px height: 105px " border=" 0" height=" 105" hspace=" 0" vspace=" 0" width=" 500" / /span /p p style=" text-align: center line-height: normal margin-top: 5px margin-bottom: 5px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 相关仪器: a href=" http://www.instrument.com.cn/zc/416.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压力计 /span /a 、 a href=" http://www.instrument.com.cn/zc/841.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 流量计 /span /a 、 a href=" http://www.instrument.com.cn/zc/373.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 万能材料试验机 /span /a 、 a href=" http://www.instrument.com.cn/zc/375.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 压力试验机 /span /a 、 a href=" http://www.instrument.com.cn/zc/530.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 导热仪 /span /a 、 a href=" http://www.instrument.com.cn/zc/377.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) text-decoration: underline font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " 弯曲试验机 /span /a 、 /span span style=" text-align: center color: rgb(89, 89, 89) font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " span style=" text-decoration: underline " a href=" http://www.instrument.com.cn/zc/66.html" target=" _self" title=" " style=" color: rgb(89, 89, 89) " 热膨胀仪 /a /span /span span style=" text-align: center color: rgb(89, 89, 89) " span style=" font-family: 微软雅黑, & #39 Microsoft YaHei& #39 font-size: 14px " & nbsp 等。& nbsp & nbsp & nbsp /span span style=" font-family: 微软雅黑, & #39 Microsoft YaHei& #39 " & nbsp /span /span /p p span style=" color:#595959 font-family:微软雅黑, Microsoft YaHei" /span /p p style=" line-height: 1.5em text-align: center " span style=" font-family: 宋体, SimSun " & nbsp & nbsp /span /p p style=" line-height: 1.5em " span style=" line-height: 1.5em font-family: 宋体, SimSun " & nbsp & nbsp 随着对多孔材料性能要求越来越高,多孔陶瓷应用范围越来越广,现有的测试表征手段将不能满足要求,发展新的制备技术、表征方法和测试手段势在必行。今后多孔陶瓷材料的发展可表现在如下几方面: /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (1)新能源多孔陶瓷材料的制备,如燃料电池的多孔电极、储氢材料等 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (2)多孔陶瓷机械性能和可靠性的提高 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp (3)环境净化的选择吸收材料 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (4)耐高温高压, 特别是耐高压无机多孔材料的开发 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (5)高孔隙度微孔陶瓷,特别是纳米级和埃级无机非金属多孔材料的开发 /span /p p style=" line-height: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp (6)降低生产成木以及产业化生产等。 /span /p
  • 1048万!北京大学离子淌度飞行时间高分辨质谱仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311401项目名称:北京大学化学与分子工程学院离子淌度飞行时间高分辨质谱仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1离子淌度飞行时间高分辨质谱仪1套用于生物、医学研究中所涉及的蛋白组学研究,用于蛋白质的高灵敏、高通量、高分辨、高准确性的检测。是700万元注:1)投标人须对整个包中全部内容进行投标,不得转包、分包。评标、授标以整个包为单位。具体技术要求详见招标公告所附附件(即,本招标文件第六章)。合同履行期限:合同签订后180日内交货并安装完毕。本项目( 不接受 )联合体投标。2.项目编号:OITC-G230311399项目名称:北京大学生命科学学院微流控流式分选仪采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1微流控流式分选仪1套本中心无法满足校内外细胞分选实验大量需要,亟需采购一台无需专职操作者、便于开放使用,可以方便快捷的进行各种细胞分选且无样本间交叉残留的微流控全自动流式细胞分选仪,满足即将开展的大量分选需求。是250万元注:1)投标人须对整个包中全部内容进行投标,不得转包、分包。评标、授标以整个包为单位。具体技术要求详见招标公告所附附件(即,本招标文件第六章)。合同履行期限:合同签订后90日内交货并安装完毕。本项目( 不接受 )联合体投标。3.项目编号:OITC-G230311400项目名称:北京大学生命科学学院流式细胞分析仪采购项目预算金额:98.0000000 万元(人民币)最高限价(如有):98.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1流式细胞分析仪1套流式细胞仪可同时对多个细胞标志物进行检测,光谱型设备无需调节补偿;对于样品细胞或生物颗粒进行多参数、快速的定量分析。对全北大教学科研单位开放共享使用。是98万元注:1)投标人须对整个包中全部内容进行投标,不得转包、分包。评标、授标以整个包为单位。具体技术要求详见招标公告所附附件(即,本招标文件第六章)。合同履行期限:合同签订后90日内交货并安装完毕。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年08月23日 至 2023年08月30日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录东方招标平台http://www.oitccas.com/注册并购买。方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区颐和园路5号         联系方式:吴老师 010-62758587      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯; 010-68290508、010-68290530            3.项目联系方式项目联系人:吴老师电 话:  010-62758587
  • 新型单细胞分选与测序对接技术问世 仪器微型化更进一步
    为了满足考察自然界中细胞“原位功能”这一共性科学需求,“现场”、“实时”的单细胞分选与测序已成为生命科学装备研制领域的一个重要发展趋势。尽管第三代测序技术已实现仪器微型化,但与测序对接的单细胞精准分选装备却仍然相当笨重和昂贵,难以支撑各种科学考察中针对微生物组功能的现场分析。最近,中国科学院青岛生物能源与过程研究所单细胞研究中心研究员马波带领的微流控系统团队,通过设计简易高效的单细胞分选与测序对接装置,实现了每个试管有且只有一个细胞(One-Cell-One-Tube),有望服务于“现场”、“实时”乃至“便携式”的单细胞分选与测序。  与人体和高等动植物细胞相比,微生物细胞通常更小(0.1-10 微米),更加难于精准操纵,因此分离获取目标单细胞、并且实现测序反应要求的“One-Cell-One-Tube”是一个关键难点。目前的自动单细胞分离方法大多依赖于昂贵且体积庞大的荧光流式细胞分选仪(FACS),而现有的手动单细胞分离和测序方案在依赖于操作人员熟练程度的同时,同样需要显微单细胞移液平台、激光光镊等同样难以随身携带的大中型仪器。此外,单细胞分选及核酸制备过程极易受到环境中飘浮微生物及其DNA的污染,而且这种污染通常难以在测序数据处理环节完全去除。因此,尽管目前MinION等第三代测序仪已经实现了便携化,微生物单细胞分选和测序仍然操作繁琐、污染干扰严重,难以满足要求。  针对上述挑战,青岛能源所单细胞中心张强和王婷婷等发明了一种名为“FOCOT”(Facile One-Cell-One-Tube的缩写)的方法,能够精确、高速、低成本地分离、获取与分装单个微生物细胞,从而与单细胞测序直接对接。该方法具体为:首先,通过微流控技术,将细胞分散包裹在数十微米直径的油包水微液滴中 其次,基于液滴显微光学成像识别技术,分选出单细胞包裹液滴 第三,将单细胞包裹液滴顺序分布于系列试管中,从而快速实现单个细胞的分离,以及每个试管有且只有一个细胞,以实现与单细胞全基因组扩增与测序的直接对接。  FOCOT平台主要有三个特色。第一,在简易方便方面,FOCOT平台除自行设计的芯片之外,仅需要电磁阀、平板电脑和普通光学显微镜,不需外接任何高成本商品化仪器平台,具有易获取、易替换、低成本等优势。同时,模块化、小型化、操作简便的设计使得该装置适合在自然环境实地采样条件下的携带、装配和使用,也几乎不需要额外的人员培训和技术维护,因此尤其适用于面向各种极端自然环境的科学考察,也有利于在普通实验室的推广应用。第二,在分选高效方面,FOCOT平台通过显微镜下对包裹有单个细胞的液滴的准确识别和分选,能有效避免假阳性 而且其20秒/个的分选速度,与显微单细胞移液、激光光镊等现有的商品化分选装备相比具有明显优势。同时,单细胞获取率高于90%,培养成功比例至少80%,证明该方法能有效避免芯片表面吸附所导致的输运过程中细胞流失,而且对细胞活性没有或较小损伤。第三,在污染控制方面,FOCOT平台涉及部件少,体积小型化,相对封闭,因此在实验过程中能够方便地实现超洁净环境空间控制、芯片消毒等操作,严格控制环境DNA的污染。对分离获取的单个酵母细胞进行全基因组扩增与测序后结果显示,99%的有效序列可以与参考基因组匹配,表明该方法能有效避免环境中微生物带来的DNA污染,平均基因组覆盖率达到43.3%,与在昂贵的超净空间设施中采用FACS等大型仪器系统分离获取单细胞所获得的测序结果相当。  目前,通过耦合FOCOT与中心前期开发的单细胞拉曼成像、拉曼流式细胞分选等技术,单细胞中心正在构建一个服务于岸基、船基乃至手基等不同需求的非标记式单细胞分析装备体系,以服务于能源、环境、健康、海洋、土壤等诸多微生物组应用领域。  相关研究论文发表在《科学报告》上。研究工作由单细胞中心马波和徐健共同主持完成,获得了国家基金委科学仪器基础研究专项、面上项目和中科院生物高通量分析技术服务网络(STS)等项目的支持。  论文信息:Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep, 7:41192, DOI: 10.1038/srep41192。FOCOT方法示意图
  • 又一我国自主研发仪器!全球首发商品化单细胞精准分选仪
    p style=" text-indent: 2em text-align: justify margin-top: 10px " 2019年4月29日,在吉林长春国家光电国际创新园,一个小型会议正在召开,对媒体公布了一个好消息:2019年2月,中科院长春光机所李备团队研发的单细胞精准分选仪研制成功,这台分选仪也是目前世界上公开发布的第一款基于激光精准分选技术的商业化单细胞分离产品。该设备可实现对复杂生物样本中单细胞的精准分离,可实现高效、自动化单细胞分选,突破了我国单细胞研究与产业化应用瓶颈。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 与传统的流式细胞分选技术相比,该技术不对细胞进行任何“修饰”,即可实现精准分选,可最大程度保持细胞本来的状态;同时,对不同类型、尺寸的细胞具有良好的普适性,可应对各种性状的复杂生物样本,特别适用于微生物单细胞分选。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 自主研发,突破瓶颈,一跃进入世界先进行列& nbsp /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 单细胞精准分选仪是目前世界上公开发布的第一款基于激光精准分选技术的商业化单细胞分离产品。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 该设备可实现对复杂生物样本中单细胞的精准分离,具有无标记、非接触、准确率高、广泛适用等特点。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 其原理为:这项技术的原理为激光与特殊介质的相互作用,这个过程就好比让细胞安置在飞机的弹射座椅上,当锁定目标细胞后,就操作弹射座椅,将此细胞从群体中分离出来。 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 利用这台仪器,与单细胞图像智能识别软件、自动化分选与收集装置相结合,可实现高效、自动化单细胞分选,突破了我国单细胞研究与产业化应用瓶颈。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 百步穿杨、隔空取物,看单细胞精准分选仪有何神功& nbsp /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 与当前应用最为广泛的流式细胞分选技术相比,单细胞精准分选技术有两项独门绝技:百步穿杨和隔空取物。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 百步穿杨:对于由成千上万个细胞组成的生物样本,流式细胞分选更擅长将其中尺寸较大(10微米以上)、类型相同的细胞分选出来,但对于尺寸几微米甚至更小的微生物细胞、或某个特定的目标细胞分选,流式细胞仪就显得有些力不从心了。而单细胞精准分选仪通过与显微成像系统配合,可对复杂生物样本中任一目标细胞进行分选,真正实现“精准分选”。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 隔空取物:流式细胞分选分选过程中,高流速容易对细胞造成损伤;而单细胞激光弹射技术在分选时,激光只作用于分选芯片的特殊材料上,目标细胞随材料一起被弹出,这种隔空取物的方式几乎对细胞没有损伤。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 凭着这两项绝技,单细胞精准分选仪可以实现对复杂环境样品中具有特殊功能的细胞进行分选、研究和培养,可能促进医疗、健康、制药、环境等领域产生重大突破。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 不仅如此,单细胞精准分选仪在成本价格上较流式细胞分选仪也有明显优势,更为重要的是它打破了国外厂商在细胞分选技术上的垄断,将使单细胞分选技术真正成为生命、医疗、环境等各领域科学家手中的利器。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 从3人到30余人 2年时间实现“第一” /strong & nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 中科院长春光机所于2017年4月引进牛津大学李备博士,开始单细胞精准分选仪产业化研究,并于2018年初投资成立了长春长光辰英生物科学仪器有限公司。到现在,团队由最初3人到现在30余人,申请核心技术专利2项,成功研发出三代单细胞精准分选仪,为我国在成熟的单细胞分选技术以及商品化单细胞分选设备方面开创了新途径,为单细胞研究打下良好基础。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 随着单细胞研究已成国际科研热点,单细胞的产业化应用必将是未来精准医疗、生物制药、全民健康、环境资源等众多行业的发展方向。长春长光辰英生物科学仪器有限公司单细胞精准分选仪的研制成功,突破了我国单细胞研究与产业化应用最大瓶颈,为探索单细胞生命科学提供一个有效方法,为解密生命密码提供一个有力工具。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong “单细胞精准分选仪”会带来什么改变? /strong & nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 这台单细胞精准分选仪也是目前全球首款公开发布的、基于激光精准分选技术的商业化单细胞分离产品,它具有适用性广、智能化高、分选精准、应用性强等特点,可广泛用于医疗、健康、制药、生物科技,环境等领域,并助力这些研究领域产生新的重大突破。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在微生物技术领域,利用此项技术,可以在复杂的微生物样本中,解析、筛选具有特殊生物功能的微生物细胞,从而在农业固氮,海洋固碳,分解污染物等方向有望产生重大突破。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在医疗领域,单细胞精准分选仪可快速定位并分离临床样本中的病原微生物,从而及时指导用药,为重症感染患者争取黄金治疗期,防止抗生素滥用。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 在生物制药领域,通过对具有特殊生理功能或代谢产物的微生物的快速、定向分选,大幅缩短制药菌制备周期、加速新药研发进程。& nbsp /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 未来,单细胞激光精准分选技术将为微生物资源利用、疾病诊断、制药工程、健康管理等领域提供可靠的单细胞分选解决方案,推动单细胞研究领域快速发展,为生命科学打开一个全新世界。& nbsp & nbsp /p
  • 3i流式头条|SONY全光谱智能化流式细胞分选仪发布
    会议日程&点击报名:https://www.instrument.com.cn/webinar/meetings/icfcm2023/仪器信息网讯 10月9日,专注于全光谱分析技术和全自动分选技术的Sony生命科学全球重磅发布新一代旗舰级超高参数的全光谱智能化流式细胞分选仪Sony FP7000,完美融合了全光谱多色优势和智能化分选设置,实现强大的分析分选性能。这是继2020年发布ID7000超高参数全光谱流式细胞分析仪之后Sony生命科学的又一力作!不断为生命科学、医学等领域提供更高层次、更广泛的技术支撑,进一步扩展流式技术所能达到的边界,助力深入、前沿的科学探索。分析能力:搭配最多6根激光器、182个荧光检测通道,轻松实现44色以上超高参数应用,专利的光谱解析算法,无需复杂补偿调节。VSSC信号将小颗粒检测能力提升至100nm。兼容多种类型样本,染料全覆盖,多色实现更容易。分选设置和能力:专利的CoreFinder™算法自动化光路、液路校准和各参数设置,结果更客观、准确。1-6路管式分选和6-384孔板/PCR板分选,支持单克隆分选和Index sorting功能。让复杂实验变得更高效、更轻松。分选功能:70/100/130um3种不同尺寸的喷嘴类型,满足不同细胞类型和高活性分选需求。可解析多个自发荧光,减低干扰,提高弱信号分辨率,分选目标识别更准确。高达100kHz振荡频率,进样仓和分选仓内置温控,保障长时间高活性细胞分选效果。高质量完成高纯度、高得率和高活性分选任务。其他特色功能:极其灵活的上样和收集方式:支持0.5-15ml样本管上样;1.5-50ml不同类型样本管,6-384孔板和PCR板各种类型孔板作为分选收集装置。极高的荧光灵敏度:PE≤6 MESF、APC≤10 MESF。实验设置和模板与Sony ID7000超高参数全光谱流式细胞分析仪无缝衔接,用户可在ID7000分析仪和FP7000分选仪上灵活共用实验方案。全光谱分析技术和全自动分选技术在Sony FP7000上的完美融合,提供前所未有的使用体验,极大地拓展了流式应用领域,单管44C以上的同时检测,多种自发荧光的解析,可以对样本更深入更精准地分析。智能化的分选设置,灵活高速的分选功能,能够对靶细胞进行高效高精度筛选。Sony FP7000实现了简单操作(无需补偿,自动校准)和超高性能(44C以上分析能力,6路和各种规格孔板分选)的完美结合。*参数配置并非最终产品形态,敬请关注索尼生命科学官网和公众号后续内容。*RUO产品,不用于临床诊断或治疗等目的。
  • 流式大咖说|流式分选样本制备——中科院苏州纳米所高级工程师原丽华博士
    仪器信息网特别策划话题:#3i流式大咖说# (点击查看),邀请高校、科研院所、临床、生物技术企业等流式技术研发、应用专家分享技术心得和经验,方便生命科学领域研究人员了解相关技术应用进展、学习仪器使用方法。本期,中国科学院苏州纳米技术与纳米仿生研究所纳米生化平台高级工程师原丽华博士为流式人3iFlower分享流式分选样本制备经验之谈。 流式分选样本制备作者:原丽华 博士单位:中国科学院苏州纳米技术与纳米仿生研究所纳米生化平台纳米生化平台目前有光学配置不同的两台BD FACS AriaII流式分选设备,都配置了单细胞分选装置。可以将任意数量的细胞分选到6、24、48、96、384孔板的每个孔中;或者1.5 mL、15 mL离心管、12 × 75 mm流式管。不同的是,当把细胞分选到6、24、48、96或384孔板时,只能进行单群体分选;而分到1.5 mL离心管,12 × 75 mm流式管,或15 mL离心管则可以同时进行4路分选,就是同时把4个细胞亚群收集到不同的试管中。完成流式分选,首先需要制备合格,可以用于分选的样本。 ——1—— 细胞密度 下表是根据细胞类型和喷嘴大小整理出的细胞重悬密度。实际分选过程中细胞密度常规控制在1-20×106/mL之间;单细胞分选的细胞密度一般在1-3×106/mL;这样可以兼顾细胞分选得率和细胞分选效率。上样重悬体积不要小于100μL。如果细胞样本个数不超过10000个,也可以进行分选,但上样体积控制在100μL。 ——2—— 单细胞悬液 样本推荐使用1×PBS w/ 0.1% BSA or 0.5% FCS进行重悬后上机;分选前细胞样本一定要经过45μm或者70μm滤网过滤,滤网孔径要小于喷嘴的大小,确保细胞是单细胞状态。对于容易结团的细胞样本,推荐以下样本缓冲液使用:— 用不含钙和镁的PBS;— 加入EDTA (2-5mM);— 如果细胞活性不佳,加25μg/ml DNAse I+5mM MgCL2 (no EDTA)用于消化死亡细胞释放的DNA;— 加1% Accutase 在上样缓冲液中;不要使用含血清的细胞培养基当作上样缓冲液。 ——3—— 细胞收集容器 FACS Aria II可以将细胞分选到1ml/1.5ml/12×75mm/15ml锥形离心管;或者6/24/48/96/384孔板中。— 分选超过10%的细胞群体到样本管中,建议使用15ml离心管进行收集,离心管中提前加入5ml的分选缓冲液;— 分选的细胞群小于原样本群体的10%,那么15ml的收集管加入10ml的分选缓冲液或采用12×75mm的流式管,装有1-2ml的缓冲液。— 分选到96孔细胞培养板,分选前应在每个孔中放置100-200μl(建议200 μl)的缓冲液。— 如果分选到96孔尖底的PCR管中,那需要提前加入4.5μL专门的裂解液样本收集管排布:— 1.5 ml 离心管 (两路或四路分选) ;— 12×75mm流式管(两路或四路分选或3支12×75mm流式管加1支15ml离心管) ;— 15ml离心管(两路分选或3个12×75mm加1个15ml离心管); ——4—— 细胞染色 分选样本的染色方法和流式分析样本基本一致,都建议加入死活染料对细胞活力进行鉴别,这在分选样本制备上尤其要求如此。 ——5—— 对照设置 阴性对照;阳性对照;Mock转染对照;处理对照;未处理对照;如果是多色样本,那么还需要FMO对照。________________________________________【参考文献】1、Sample Preparation Guidelines for Cell Sorting. UWCCC Flow Cytometry Laboratory https://cancer.wisc.edu/research/resources/flow/ 2、Staining for sorting. https://medicine.yale.edu/immuno/flowcore/protocols/sorting/ 3、Sample Preparation for cell sorting. https://medicine.uiowa.edu/flowcytometry/protocolssample-prep/sample-preparation-sorting———————————————【作者简介】中国科学院苏州纳米技术与纳米仿生研究所纳米生化平台高级工程师 原丽华 博士2010年博士毕业于上海交通大学生物医学工程专业,2011年在中国科学院苏州纳米所从事博士后研究,2013年进入纳米生化平台,负责搭建流式平台服务体系,代领团队完成细胞流式对外服务工作,建立了标准化流式服务体系,可以提供从药物研发和细胞治疗质量控制中流式的整体解决方案。(本文编辑:刘立东KOL)相关推荐:流式大咖说|流式分选应用中喷嘴的选择——上海科技大学高级工程师任晓越流式大咖说|全光谱流式十问十答——中科蓝华生物医药谢简明、亢中奎流式大咖说|量化成像分析流式在水生生物研究中应用——中国科学院水生生物研究所高级工程师 汪艳流式大咖说|FSC与SSC在流式细胞术中的应用——西南医院马清华副研究员流式大咖说|流式检测中最易忽视的时间参数——首都医科大学中心实验室副主任技师 徐晓雪 流式大咖说|技术干货|如何去黏连?流式新手绕不开的数据处理难题 流式大咖说|流式细胞技术平台发展与使用心得分享中科院分子细胞卓越中心 俞珺璟博士流式大咖说|流式、免疫组化、免疫荧光的抗体区别流式大咖说|流式荧光技术检测与化学发光技术检测那些事儿【行业首发征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)即日本网特别开设专栏【流式极客谈】,面向国内外各流式细胞仪厂商技术、研发、市场等资深专家入驻投稿,将为投稿者个人或单位成立KOL主页。欢迎踊跃投稿,分享流式细胞仪技术干货文章!
  • 3i流式头条|苏州医工所突破30色流式分析高通量分选"卡脖子"技术,指标达国际先进水平——SortCyte流式分选仪
    突破关键核心流式“卡脖子”技术,指标达国际先进水平近日,根据苏州医工所公众号消息,苏州医工所王策团队在前期三激光十色流式细胞分析仪的基础上,突破了三十色流式分析和高通量分选的关键核心“卡脖子”技术。已实现32重门下8万个细胞/秒的细胞实时判定速度。自主研发的流体池可实现样品聚焦流位置度5μm及高速液滴生成,配套喷嘴最小孔径70μm。研制出具有自主知识产权的高端流式细胞分选仪,打破了相关的技术垄断,指标达国际先进水平。仪器已通过电磁兼容、安规、环境适应性检测,技术就绪度达8级。相关成果授权发明专利20余项。揭榜挂帅项目“高性能流式细胞分选仪”支持该仪器已在中国科学院生物物理研究所流式平台和中国科学院长春应用化学研究所开展了应用示范,并得到好评,为我国生命科学研究提供国产利器。该项工作获得了国家重点研发计划揭榜挂帅项目“高性能流式细胞分选仪”的支持,项目负责人为马玉婷研究员(中国科学院青促会会员)。SortCyte流式分选仪分选前后的CD4+ T淋巴细胞(C、G)、CD8+ T淋巴细胞(D、H)、CD19+ B细胞(E、I) 与CD(16+56)+ NK细胞(F、J)
  • 汉赞迪与NanoCellect战略合作,助力微流控细胞分选技术
    近期,Biohandler(汉赞迪)与Nanocellect公司正式达成战略合作伙伴关系。Biohandler将负责 NanoCellect 中 WOLF细胞分选仪、WOLF G2 细胞分选仪,N1单细胞分液器、消耗品等在中国市场的销售,并取得了WOLF细胞分选仪的模块化和自动化整合的授权,将更好的为中国的医药研究行业的发展做出更多的贡献。NanoCellect 的WOLF®细胞分选仪是对细胞分选的再定义,相较于传统流式具有革命性的创新,可抛弃式无菌微流控芯片完全保证实验全程无菌,无气溶胶生成保证生物安全;轻柔分选,细胞活性高达98以上;单细胞获取快、准、稳,设备无内部管路,无需管路清洗,无需定期维护等。适合单细胞测序、细胞系开发、抗体开发、基因编辑、CRISPR 编辑、T 细胞单克隆、B 细胞单克隆、hiPS细胞单克隆等应用。关于NanoCellect公司NanoCellect公司成立于2009年,总部位于加利福尼亚州圣地亚哥,旨在利用微流控技术为细胞分选提供创新性解决方案。NanoCellect的WOLF细胞分选仪和N1单细胞分液器采用温和的分选方式以维持细胞活性,在越来越多的领域中得以应用,包括抗体开发、细胞系构建、基因组学样品制备、CRISPR 基因编辑和植物/动物基因组学等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制