当前位置: 仪器信息网 > 行业主题 > >

分析衬底晶体

仪器信息网分析衬底晶体专题为您提供2024年最新分析衬底晶体价格报价、厂家品牌的相关信息, 包括分析衬底晶体参数、型号等,不管是国产,还是进口品牌的分析衬底晶体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分析衬底晶体相关的耗材配件、试剂标物,还有分析衬底晶体相关的最新资讯、资料,以及分析衬底晶体相关的解决方案。

分析衬底晶体相关的论坛

  • 【求助】再求晶体硅片的相关分析标准!!!

    再次苦求以下硅的测量方法,拜托了!多谢!!!  GB/T 1557-1989 硅晶体中间隙氧含量的红外吸收测量方法  GB/T 1558-1997 硅中代位碳原子含量红外吸收测量方法  GB/T 4058-1995 硅抛光片氧化诱生缺陷的检验方法  GB/T 4059-1983 硅多晶气氛区熔磷检验方法  GB/T 4060-1983 硅多晶真空区熔基硼检验方法  GB/T 4061-1983 硅多晶断面夹层化学腐蚀检验方法  GB/T 4298-1984 半导体硅材料中杂质元素的活化分析方法  GB/T 4326-1984 非本征半导体单晶霍尔迁移率和霍尔系数测量方法  GB/T 6616-1995 半导体硅片电阻率及硅薄膜薄层电阻测定非接触涡流法  GB/T 6617-1995 硅片电阻率测定扩展电阻探针法  GB/T 6618-1995 硅片厚度和总厚度变化测试方法  GB/T 6619-1995 硅片弯曲度测试方法  GB/T 6620-1995 硅片翘曲度非接触式测试方法  GB/T 6621-1995 硅抛光片表面平整度测试方法  GB/T 6624-1995 硅抛光片表面质量目测检验方法  GB/T 11073-1989 硅片径向电阻率变化的测量方法  GB/T 13388-1992 硅片参考面结晶学取向x射线测量方法  GB/T 14140.1-1993 硅片直径测量方法 光学投影法  GB/T 14140.2-1993 硅片直径测量方法 千分尺法  GB/T 1414l-1993 硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法  GB/T 14142-1993 硅外延层晶体完整性检验方法腐蚀法  GB/T 14143-1993 300~900μm硅片间隙氧含量红外吸收测量方法  GB/T 14144-1993 硅晶体中间隙氧含量径向变化测量方法  GB/T 14145-1993 硅外延层堆垛层错密度测定干涉相衬显微镜法  GB/T 14146-1993 硅外延层载流子浓度测定汞探针电容一电压法  GB/T 14847-1993 重掺杂衬底上轻掺杂硅外延层厚度的红外反射测量方法  GB/T 14849.1-1993 工业硅化学分析方法 1,10-二氮杂菲分光光度法测定铁量  GB/T 14849.2-1993 工业硅化学分析方法 铬天青-S分光光度法测定铝量  GB/T 14849.3-1993 工业硅化学分析方法 钙量的测定  GB/T 15615-1995 硅片抗弯强度测试方法

  • 【求助】衬底??????

    哪位高手 告诉我 如何 将一大块 硅晶片 切割成 小块的衬底????还有 ,云母衬底 哪里有卖的 ,都分为 那些 种类啊 ???谢谢了!!!!!!!!!!!!!!!1

  • 柔性衬底非晶硅薄膜太阳电池的研究 求助论文

    [align=center][b]柔性衬底非晶硅薄膜太阳电池的研究陈宇华中科技大学[/b][/align]摘要:[color=#666666]随着能源问题的日益突出,近年来太阳电池光伏发电技术发展迅猛。聚合物衬底柔性薄膜太阳电池凭借其耗材少、成本低、可卷曲(柔性)、重量比功率高、轻便等特点成为当前太阳电池研究领域的热点。 聚酰亚胺(PI)膜具有耐高温等优点,被本研究选作了柔性衬底材料。针对聚合物材料光透过率普遍偏低的情况,本研究设计了“柔性衬底/Al底电极/N/I/P/TCO(透明导电薄膜)”的倒结构柔性太阳电池,并制定了相应的工艺制备方案。 PI膜在高温200℃以上存在气体释放现象,本研究提出了PI膜的预烘(prebake)工艺,以解决PI膜高温释放气体问题,并通过实验确定了最佳的预烘工艺条件。在此基础上,为了保证沉积在PI膜上的Al底电极不掉膜不脱落,本研究探索了制备高电导、良好附着性的Al底电极的工艺。 本研究通过在PECVD沉积非晶硅薄膜的过程中通入CH4来制备宽带隙a-SiC:H薄膜作为电池窗口层以提高电池的性能,研究优化了其制备工艺条件。同时研究了获得高光暗电导比(δph/δd>105)的本征非晶硅层的制备工艺以及获得高暗电导的N型非晶硅膜... [/color]更多[url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2010&filename=2009228005.nh]柔性衬底非晶硅薄膜太阳电池的研究 - 中国知网 (cnki.net)[/url]

  • 陶瓷衬底和UVLED不得不说的故事

    UV LED,一直以来以其长寿命、冷光源、无辐射、高能量、低能耗、高效率等特点备受青睐。而同时,生产技术含量高、竞争门槛高、易于差异化,也让UV LED成为LED大厂争相布局的利好市场。据国际知名预测公司Yole预测,UV LED业务有望增长到2019年的至少5.2亿美元,年复合增长率高达44.3%。  大型厂商很早便将UV LED作为重点开拓的领域。2015年上半年,相继推出了高光效陶瓷衬底UV?LED产品。据UV?LED相关报道称,目前陶瓷衬底UVLED产品在工业固化领域已经走在市场前列。  UVA LED产品主要应用于包含食物封装、油墨固化、胶材固化、医疗固化及其他新兴工业光固化市场。在技术上,应用于工业固化的UV LED要满足两大要求:一方面,固化需求高能量,需要大电流驱动overdrive,比如,普通照明一般只要350mA的驱动电流,而UV LED工作时需要700-1000mA,这就对UVLED芯片的电流扩散和散热提出更高的要求;另一方面,由于UV LED波长较短,其光的穿透能力相对较弱,但要获得好的固化效果,UVA LED光束必须穿透至固化胶的里层,这就要求光束集中且指向性好。  “陶瓷衬底UVA LED恰恰能够很好地满足工业固化的两个要求。”斯利通工程师说道,“陶瓷衬底UVA LED采用了具有自主知识产权的陶瓷衬底LED外延技术,芯片是垂直电极结构,这种结构利于overdrive,散热性能更好,同时由于只有一个面发光,所以其光束集中,方向性好,容易二次光学。同时,目前市场上的金属衬底LED芯片要做成垂直结构,必须采用激光剥离技术,存在伤及芯片本身的风险,产品的可靠性存在隐患;而陶瓷衬底天然的材料特性,使得LED能够轻易得到垂直电极结构,较激光剥离更具有可靠性。”  光束指向均匀集中、方向性好,散热性能优良,UV LED所需要的,正是陶瓷衬底技术所擅长的,陶瓷衬底+UV LED可谓天生一对。

  • 【原创大赛】从蓝宝石衬底开始提高LED出光效率

    【原创大赛】从蓝宝石衬底开始提高LED出光效率

    从蓝宝石衬底开始提高LED出光效率引言 对于LED的出光效率一直是业界追求的,提高LED出光效率的手段有很多,比如:图形化衬底技术、表面粗化、改变芯片结构(垂直芯片、倒装技术)、多量子阱、分布布拉格反射层等等。现在就讲讲图形化衬底。图形化衬底技术(Pattemed Sapphire Substrate),简称“PSS”,它是通过在蓝宝石LED衬底表面制作具有细微结构的图形,然后再在图形化衬底表面进行LED材料外延。蓝宝石LED衬底经过PPS加工后,会改善蓝宝石LED衬底的缺陷,生长质量良好的外延层,不仅最终能有效提高光提取效率,而且能够有效的改善芯片的电性参数,提高芯片质量。研究内容 在pss衬底上生长GaN外延层,最主要的是第一层生长质量,这一层对芯片质量起决定行的作用,实验的关注点及第一层的生长质量。 首先,来看看为生长之前的pss衬底(此图片为网上转载,余下图片为本人亲自拍摄)。http://ng1.17img.cn/bbsfiles/images/2013/08/201308091039_456966_2675311_3.jpg 此图观察方式为top-view,从图中可以看到一个一个的小山丘,这个就是我们所说的衬底图形。下面是生长第一层之后的图片,可以看到原先小山丘之间的空隙都被填上了。http://ng1.17img.cn/bbsfiles/images/2013/08/201308091047_456968_2675311_3.png 继续放大http://ng1.17img.cn/bbsfiles/images/2013/08/201308091051_456969_2675311_3.png 效果出来了,这就是我们想要的,每个图形都被包裹着,排列有序,没有呈现出表面被覆盖无序的状态。 选择单个图形进行观察http://ng1.17img.cn/bbsfiles/images/2013/08/201308091056_456970_2675311_3.png 漂亮的图形,表面形貌也很nice,尺寸也能满足要求。结论 图形化衬底可以提高LED的出光效率,但这是基于良好的磊晶质量上的,成功的pss外延生长不但可以提高芯片亮度,而且可以改善电压,漏电等电性参数。现在对于LED的研究范围相当之广,也可谓硕果累累,相信不久,会取代白炽灯成为绿色光源。

  • 【讨论】TEM衬底耗材经验心得分享

    各位大虾能够出来分享下TEM衬底耗材的使用心得和经验吗?分享格式如下:1、衬底名称、型号2、衬底材质、规格3、使用效果4、遇到的问题5、个人看法谢谢大家的热心分享,我是新鸟,我学会加分的时候,给参与者加分。另外有机会获得惊喜奖励!

  • 【求助】SEM 薄膜与衬底界面处的问题

    【求助】SEM 薄膜与衬底界面处的问题

    [img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007290913_233009_1945980_3.jpg[/img] 最底下 那条黑线。。。。是衬底与薄膜的界面。。。为什么是黑的呢,还那么粗? 大概是100-200nm, 是所有的界面处在SEM下都会有这样的现象,还是有其他相得生成呢? 我的薄膜是非晶硅,衬底是单晶硅。。没有特意的长一层SIO2,

  • 非晶体物象分析

    X射线衍射仪能检测出非晶体的物象吗,和检测晶体物象的流程有什么区别,如果能测试出图谱分析检测后的图谱与晶体检测后的图谱分析有何区别?三轴欧拉样品台360°旋转能任意旋转角度吗?

  • 【史料】晶体结构分析及其发展(范海福)

    物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • 【分享】晶体结构分析及其发展

    范海福 中国科学院,物理研究所,北京,100080物质的各种宏观性质源出于本身的微观结构。探索物质结构与性质之间的关系,是凝聚态物理、结构化学、材料科学、分子生物等许多学科的一个重要研究内容。晶体结构分析,是在原子的层次上测定固态物质微观结构的主要手段,它与上述众多学科有着密切的联系。就其本身而言,晶体结构分析是物理学中的一个小分支。这主要研究如何利用晶态物质对X-射线、电子、以及中子的衍射效应来测定物质的微观结构。晶体结构分析服务于许多不同的学科,因而许多学科的发展都对晶体结构分析产生深刻的影响。另一方面,晶体结构分析有自己独立的体系,它本身的发展又对所服务的学科起着促进作用。 晶体结构分析是伦琴发现X-射线以后创站的最重要学科之一。它奠基于物理学的几项重要进展。其中包括1895年W. C. Roentgen发现X-射线,1912年M. von Laue发现晶体对X-射线的衍射,1927年C. J. Davisson和G. P. Thomson发现晶体对电子的衍射,以及1931年E. Ruska建造第一台电子显微镜。上述几项重大的物理学进展使人类掌握了在原子层次上研究物质内部结构的手段,它们分别获得1901、1914、1937和1986年的诺贝尔物理学奖。其中,1901年伦琴获得的诺贝尔奖还是历史上第一个诺贝尔物理奖。通过研究物质内部结构与性质的关系,晶体结构分析有力地促进了各相关学科的发展。晶体结构分析的发展,是一个不断完善自身和不断扩大应用的过程。诺贝尔将的年谱记录了晶体结构分析历史上的重大事件并展示了它与其他学科相互作用所产生的丰硕成果。 晶体结构分析的方法主要有两大类。这就是以X-射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电了显微成像也可以认为是两上相继的电子衍射过程。因此,可以说衍射分析是晶体结构分析的核心。用衍射分析方法测定晶体结构的理论依据,在于晶体结构同它的衍射效应之间存在着互为Fourier变换的关系。这里说的衍射效应,是指从晶体向各个方向发出的衍射的振幅和相位。从衍射实验可以记录下各个方向上衍射波的振幅。但是在目前以及可见的将来,还不容易找到有普遍意义的实用方法来记录由晶体发出的衍射波的相位。因此要想从衍射效应的Fourier变换解出晶体结构,必须先设法找回"丢失了的"相位。这就是晶体学中的"相位问题",它一直是研究晶体结构分析方法的关键问题。 紧接着Laue发现X-射线衍射,Bragg父子 (W. H. Bragg和W. L. Bragg) 就迅速建立了用X-射线衍射方法测定晶体结构的实验手段和理论基础。这使人类得以定量地观测原子在晶体中的位置。为此他们两人同获1915年的诺贝尔物理学奖。晶体结构分析最初用于一些简单的无机化合物。对碱金属卤化物结构的研究导至W. L. Bragg提出原子半径的概念。不久Bragg又将晶体结构分析应用于研究硅酸盐以及金属和合金。硅酸盐晶体结构分析的工作为硅酸盐结构化学提供了最早的实验基础,而有关金属和合金的工作则作物理冶金、金属物理、以及相平衡图的研究推上了一个新的台阶,使有关工作深入到原子的层次。 晶体结构分析在研究无机化合物上取得成功,引起人们对有机物尤其是生命物质内部结构的兴趣。英国从二十年代中期就开始研究有机物晶体结构。但是过了十年多仍未见有重大的突破。原因是当时的分析技术和方法还很原始。于是迎来了三、四十年代晶体结构分析方法和技术大发展的时期。如前所述,晶体结构分析中所谓"相位问题"。早期的晶体结构分析用以解决相位问题的方法是所谓尝试法。其要点是:先根据已尼掌握的线索猜想出一个结构模型,再从这个模型计算出相应的一组理论衍射强度,然后同实验所犁衍射强度作比较并据此对模型进行修改。。上述步骤须经多次反复,直至理论和实验的衍射强度得以吻合。用这样的"方法"来测定晶体结构,说明科学试验却更像艺术创作。它显然适应不了测定复杂的晶体结构的需要。早在二十年代后期,英国的W. L. Bragg和J. M. Cork为解决相位问题分别提出了所谓重原子法和同晶型置换法。重原子法的大意是:假定晶体中含有少数原子序较大的原子,即所谓重原子,而且它们的位置是已知的,这时就可以计算出重原子对相位的贡献并以此代替由全体原子贡献的相位。用这样的相位配以由实验测得的衍射振幅就可以近似地计算出一幅代表晶体结构的电子密度图。同晶型置找法的要点则是如果能够制备出待测晶体的重原子衍生物,而且衍生物的晶体与母体晶体是"同晶型"这时如果已知重原子的位置,就可以根据母体和衍生物两者在衍射强度上的差异来推算相应的衍射相位。这两种方法后来在一系列有机物以及蛋白质的晶体结构分析中作出了关键性的贡献。但是它们的诞生后相当长的一段时间里并未发挥很大的作用。原因是它们都依赖于已知的重原子位置而当时还没有便确定重原子位置的方法。1934年,美国的A. L. Patterson提出用衍射振幅的平方为系数以计算Fourier级数,从而绕开相位问题。Patterson指出,这样一个级数是晶体中电子密度分布函数的自卷积,在一定的条件下可以从中提取出有关晶体中原子位置,首先是重原子位置的信息。这个用衍射振幅平方计算的Fourier级数后来被称作Patterson函数,相应的分析方法称作Patterson法。经过几年发展之后,Patterson法和以它为基础的重原子法、同晶型置换法等就成了X-射线单晶体结构分析中用以处理相位问题最有效的手段。再加上实验技术和结构精修技术的改进,晶体结构分析达到了一个机关报的不平并终于打开了有机物和生命物质的大宝藏。 美国L. Pauling领导的小组花了十几年的时间,测定了一系列的氨基酸和肽的晶体结构,从中总结出形成多肽链构型的基本原则并在1951年推断多肽链将形成a-螺旋构型或折叠层构型。这是通过总结小分子结构规律预言生物大分子结构特征的非常成功的范例。为此Pauling获得1954年的诺贝尔化学奖。英国D. Hodgkin领导小组测定了一系列重要的生物化学物质的晶体结构,其中包括青酶素和维生素 。她因此获得1964年的诺贝尔化学奖。美国W. N. Lipscomb研究硼烷结构化学的工作获得1975年的诺贝尔化学奖。所有这些获奖工作都是以晶体结构分析为研究手段。可以说,没有晶体结构分析本身在理论和技术上的长期积累,就不会有上面几个诺贝尔奖。 英国的J. D. Bernal早在三十年代中期就开始用X-射线衍射研究蛋白质的结构。但是真正取得进展是在W. L. Bragg主持Cavendish实验室之后。这里还有一段插曲。原来在E. Rutherford主持下,英国剑桥大学的Cavendish实验室是国际上原子物理学的研究中心。随着学科的发展、国力的变化、加之剑桥大学本身的局限,及至1938年W. L. Bragg接任时Cavendish的地位已开始下降。Bragg上任后果断地顺应了形势,主动放弃了"原子物理国际中心"的地位,改而抓住当时物理学上的两项新应用:X-射线衍射分析用于生物以及雷达技术用于天文学。这一举措使英国得以在创建分子生物和射电天文学上"领导世界新潮流"。 分子生物学发展史上具有划时代意义的发现中,有两项出自Cavendish实验室。第一项是1953年J. D. Watson和F. H. C. Crick根据X-射线衍射实验建立了脱氧核糖核酸 (DNA) 的双螺旋结构。它把遗传学的研究推进到分子的水平。这项工作获得了1962年的诺贝尔生理学和医学奖。另一项是用X-射线衍射分析方法测定肌红蛋白和血红蛋白晶体结构的工作。它始于三十年代,前后延续了二十多年并牵涉到为数众多的科学家。这两个蛋白质的晶体结构终于在1960年被测定出来。这项工作不仅首次揭示了生物大分子内部的立体结构,还为测定生物大分子晶体结构提供了一种沿用至今的有效方法--多对同晶型置换法。它以原有的同晶型置换法为基础,但是在实验技术和分析理论上都加入了崭新的内容。作为这项工作的代表人物,J. C. Kendrew和M. F. Perutz获得1962年的诺贝尔化学奖。看到成就的辉煌,不由得也想起探索的艰辛:1947年,战后的英国,科研经费拮据。为了给正在从事蛋白质晶体结构分析的J. C. Kendrew和M. F. Perutz寻求资助,W. L. Bragg找到英国医学研究委员分 (MRC)。他告诉MRC的主管:"…如果能获得资助,我们的研究结果会有助于在分子层次上了解生命的运作。不过,即便如此,要想在医学上产生任何一点效益,大概还得有一段很长的时间"。MRC当时的主管承担了这一风险,建立了一个只包含Kendrew和Perutz两个人的MRC研究小组。这一慷慨的支持,过了十五年之后才开始得到回报。顺便说一句:那个MRC小组现在已经变成拥有上百名学者的、世界著名MRC分子生物学实验室。在Kendrew和Perutz两人之后由于测定蛋白质晶体结构而获诺贝尔奖的还有美国的J. Deisenhofer和德国的R. Huber和H. Michel。他们因测定了光合作用中心的三维结构而获得1988年诺贝尔化学奖。

  • 未知晶体结构分析-TEM衍射分析

    未知晶体结构分析-TEM衍射分析

    各位,化学系合成了新晶体,并对晶体作了xrd分析。请我组作了电镜对照分析。分析衍射图得到,只是小女初学电镜,对手中的衍射图有困惑,诚请各位多多赐教!现将衍射图贴出。合成晶体是Eu,Mn,Cd,Sb由四种元素构成的合金。XRD的分析数据:猜测是Orthorombic: a= 4.79Å, b= 12.92Å, c= 45.58Å衍射分析我们按照XRD的Orthorombic作分析,计算的晶格常数和xrd结果少有出入。a= 8.06Å b= 15.98 Å c= 18.74Å2张衍射图:第一张图D1,我们推测是,《001》《100》两个轴向衍射图重叠后的结果,那么由此重叠的衍射图推测晶体存在长周期结构。或者order的固溶体结构?此结论有待各位赐教。http://ng1.17img.cn/bbsfiles/images/2012/06/201206200617_373504_1495726_3.jpg另,请看图D2:得到另外一张存有superlattice的衍射。但卫星点和衍射主点不在同一条直线上。具体原因我无法解释。也请各位赐教!不胜感谢。说明:此次衍射不多,提供的信息有限。但对已有的这几张衍射,我有以上疑惑,提交出来。希望和大家讨论,诚请各位多多赐教!http://ng1.17img.cn/bbsfiles/images/2012/06/201206200618_373505_1495726_3.jpg

  • 关于分析晶体的疑问

    我知道不同分析晶体的2d值不一样,但是为什么要用不同的材料呢?是不同的特征X射线在不同的材料上产生的衍射不一样吗?谢谢!!

  • 【分享】晶体分析软件-PDFgetX2

    晶体分析软件-PDFgetX2PDFgetX2 is a GUI driven user friendly program to obtain the [url=http://www.totalscattering.org/][u][color=#800080]atomic pair distribution function (PDF)[/color][/u][/url] from X-ray powder diffraction data。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制