当前位置: 仪器信息网 > 行业主题 > >

分析衬底晶体

仪器信息网分析衬底晶体专题为您提供2024年最新分析衬底晶体价格报价、厂家品牌的相关信息, 包括分析衬底晶体参数、型号等,不管是国产,还是进口品牌的分析衬底晶体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分析衬底晶体相关的耗材配件、试剂标物,还有分析衬底晶体相关的最新资讯、资料,以及分析衬底晶体相关的解决方案。

分析衬底晶体相关的资讯

  • 新美光“衬底加热体组件及化学气相沉积设备”专利公布
    天眼查显示,新美光(苏州)半导体科技有限公司“衬底加热体组件及化学气相沉积设备”专利公布,申请公布日为2024年7月23日,申请公布号为CN118374794A。背景技术以常见的碳化硅部件-等离子刻蚀环为例,目前较为普遍的等离子刻蚀环生长、加工工艺为:将环状石墨衬底以多片层叠方式安装在化学气相沉积炉内,采用石墨电极进行电阻加热将炉内加热至碳化硅材料生长温度,持续向炉内通入前驱体和载气,前驱体在高温下热解反应出碳/硅原子并在石墨衬底上反应沉积得到碳化硅材料,最终通过微纳加工获得满足使用要求的等离子体刻蚀环。整个工艺过程中,因衬底表面为直接发生碳/硅原子反应沉积的位置,最终决定材料的均一性和碳化硅晶体品质,衬底沉积表面流场均匀性及温度均匀性比较关键。但在上述工艺中存在以下客观缺点:1、石墨衬底置于碳化硅生长炉内加热时,因衬底径向外侧在空间上更加接近石墨加热器,故客观的会接收更多的热辐射而导致衬底径向外侧的温度高于内侧;同样的,石墨衬底的外侧因离进气口比较近,前驱体热解出的碳/硅原子基团会持续优先在衬底外侧的表面沉积,最终会影响碳化硅材料在石墨衬底径向上生长的均匀性;石墨衬底的外侧表面因为较内侧有更高的温度和更高浓度的碳/硅原子基团,石墨衬底的外侧碳化硅沉积材料一般厚度较大且表面平整性差,对于碳化硅零部件后续的加工也造成了时间的浪费和成本的提高。2、石墨衬底常用的固定方式为采用石墨顶针在衬底底面进行支撑,该方案因石墨顶针会直接接触到衬底表面,故被石墨顶针接触到的衬底表面区域碳化硅材料生长过程必然会受到影响,相应区域的沉积材料无法加工成产品使用,故在加工过程中一般采取将受影响区域进行切割废弃的措施,增加了加工时间和成本。3、层叠多片式的碳化硅部件材料生长设备,腔体内部的流场无法实现完全的均匀性,主要表现在离进气口近、排气口远的材料生长速率高,反之生长速率低,最终导致同一批次的材料厚度均一性差。发明内容本发明涉及一种衬底加热体组件及化学气相沉积设备,其中提供了一种衬底加热体组件,包括衬底和加热体,衬底包括第一表面、第二表面和中空区,第一表面和第二表面均用于供反应气体沉积,中空区位于第一表面和第二表面之间;加热体位于中空区内,用于产生热量以至少加热第一表面和第二表面。本发明的衬底设计为内部中空的结构,第一表面及第二表面均为衬底靠近中空区部分的外表面,位于中空区的加热体对衬底的第一表面和第二表面沿径向的各个位置的加热效果相对较为平均,不容易产生沉积的产品厚度差异过大的问题,一定程度上提高了衬底上沉积材料的厚度均一性及组织性能均匀性。
  • 年产10万片碳化硅单晶衬底项目在涞源投产
    9月5日上午,河北同光科技发展有限公司年产10万片直径4-6英寸碳化硅单晶衬底项目,在保定市涞源县经济开发区投产,成为保定第三代半导体产业从研发到规模量产的一次成功跨越。碳化硅单晶作为第三代半导体材料的核心代表,处在碳化硅产业链的最前端,是高端芯片产业发展的基础和关键。河北同光晶体有限公司是全省首家能够量产第三代半导体材料碳化硅单晶的战略新兴企业。2020年3月,涞源县人民政府与该公司签署协议,政企共建年产10万片直径4-6英寸碳化硅单晶衬底项目,总投资约9.5亿元、规划占地112.9亩。项目采用国际先进的碳化硅单晶衬底生产技术,布局单晶生长炉600台,购置多线切割机、研磨机等加工设备200余台,建成具有国际先进水平的碳化硅单晶衬底生产线。该公司董事长郑清超介绍,项目从动工到投产用时17个月,满产运行后能够将产能提升3倍,产品将面向5G通讯、智能汽车、智慧电网等领域,满足其芯片需求,预计年销售收入5-10亿元。下一步,同光正谋划建设2000台碳化硅晶体生长炉生长基地和年产60万片碳化硅单晶衬底加工基地,拟总投资40亿元。到2025年末实现满产运营后,预计新增产值40-50亿元,成为全球重要的碳化硅单晶衬底供应商。保定市副市长王建峰表示,保定不仅具有支撑科技成果转化落地的产业优势,还拥有17所驻保高校、354家科技创新平台、23万名专业技术人才等雄厚人才支撑的科技创新优势,是全国创新驱动发展示范市和“科创中国”试点城市。未来将在数字经济、生物经济、绿色经济领域全面发力,重点围绕“医车电数游”、被动式超低能耗建筑和都市型农业等七大重点产业,大力实施“产业强市倍增计划”和“双千工程”,积极推动“北京研发保定转化、雄安创新保定先行”,着力建设创新驱动之城,加快构建京雄保一体化发展新格局,聚力打造京津冀城市群中的现代化品质生活之城。
  • 【综述】碲锌镉衬底表面处理研究
    碲锌镉(CZT)单晶材料作为碲镉汞(MCT)红外焦平面探测器的首选衬底材料,其表面质量的优劣将直接影响碲镉汞薄膜材料的晶体质量以及成品率,故生产出外延级别的碲锌镉衬底表面是极其重要的。目前,碲锌镉单晶片的主要表面加工处理技术包含机械研磨、机械抛光、化学机械抛光、化学抛光以及表面清洗。其中,机械研磨、机械抛光以及化学机械抛光工艺都会存在磨料残留、磨料嵌入、表面划痕较多、粗糙度较高等一系列问题,要解决这些问题需要对相应的表面处理技术进行了解和掌握,包括表面处理技术的基本原理以及影响因素。近期,昆明物理研究所的科研团队在《红外技术》期刊上发表了以“碲锌镉衬底表面处理研究”为主题的文章。该文章第一作者为江先燕,通讯作者为丛树仁高级工程师,主要从事红外材料与器件方面的研究工作。本文主要从碲锌镉表面处理工艺及表面位错缺陷揭示两个方面对碲锌镉衬底的表面处理研究进行了详细介绍。表面处理工艺碲锌镉单晶作为生长外延碲镉汞薄膜材料的首选衬底材料,要求其表面不能存在机械损伤及缺陷密度大于10⁵ cm⁻²的微观缺陷,如线缺陷、体缺陷等。衬底表面的机械损伤可通过后期的表面处理工艺进行去除[18],而微观缺陷只能通过提高原材料的纯度以及合理调控晶体的生长过程方能得到有效改善。经垂直梯度凝固法或布里奇曼法生长出的低缺陷密度的碲锌镉体晶会先被切割成具有固定方向(如(111)方向)和厚度的碲锌镉晶片,然后再经过一系列的表面处理工艺才能用于碲镉汞薄膜的生长。通常情况下,碲锌镉晶片会经历机械研磨、机械抛光、机械化学抛光及化学抛光等表面处理工艺,通过这些工艺处理后的晶片才能达到外延级水平,因此本部分主要详细介绍上述4种表面处理工艺。机械研磨机械研磨工艺的研磨机理为:加工工件与研磨盘上的磨料或研磨剂接触时,工件表面因受到形状不规则磨料的挤压而产生破裂或裂纹,在加工工件与研磨盘的相互运动下,这些破裂的碎块会随着不规则磨料的滚动而被带离晶片表面,如此反复,从而达到减薄晶片厚度及获得低损伤表面的加工目的,机械研磨装置及磨削原理示意图如图1所示。图1 机械研磨装置及研磨机理示意图碲锌镉体晶切割成一定厚度的晶片后首先经历的表面处理工艺是机械研磨工艺。机械研磨的主要目的是去除机械切割对晶片表面造成的损伤层,从而获得一个较低损伤的晶片表面。表面处理工艺中,机械研磨还可细分为机械粗磨和机械细磨,两者的主要区别在于所使用的磨料粒径不一样,粗磨的磨料粒径大于细磨的磨料粒径。机械细磨的主要目的是去除机械粗磨产生的损伤层,同时减少抛光时间,提高工艺效率。研究报道,机械研磨产生的损伤层厚度通常是磨料粒径的3倍左右。影响机械研磨工艺对加工工件研磨效果的因素有磨料种类、磨料粒径及形状、研磨盘类型、磨料与溶剂的配比、磨料滴速、研磨盘转速、工件夹具转速以及施加在加工工件上的压力等。磨料种类一般根据加工工件的物理及化学性质(如强度、硬度、化学成分等)进行合理选择。常用于机械磨抛的磨抛料有MgO、Al₂O₃、SiC及金刚石等,其中,为了避免在碲锌镉衬底上引入其他金属杂质,MgO和Al₂O₃这两种研磨剂很少在碲锌镉表面处理工艺上进行使用,使用最多的是SiC和金刚石两类磨料。磨料的形状可分为规则(如球状、棒状、长方体等)和不规则(如多面体形状)两类,如图2所示。通常情况下,磨料形状越不规则,材料去除速率越快,同时造成的表面损伤也大,反之,磨料越规则,去除速率越慢,但造成的表面损伤也越小。图2 不规则磨料及规则磨料的扫描电镜图毛晓辰等人研究了这3种不同形状磨料对碲锌镉衬底机械研磨的影响。当磨粒形状为板片状时,材料的去除模型将不再遵从李岩等人提出的“不规则磨料研磨去除模型”,即三体磨粒去除模型,如图3(a)所示,而是会发生变化。基于此,毛晓辰等人提出了如下的去除模型,即:当磨粒为板片状时,磨粒以一定的倾斜角度平躺于磨盘表面,如图3(b)所示,当加工工件(晶片)与磨盘发生相互运动时,磨粒被短暂的固定在磨盘表面,形成二体磨粒,板片状磨粒便以其片状边缘对加工工件表面进行磨削,最终实现去除材料的目的。图3 不规则磨料及板片状磨料去除机理示意图常见的研磨盘类型可简单分为开槽和不开槽两类,如图4所示,开槽和不开槽研磨盘对晶片研磨效果的影响如表1所示。图4 磨盘示意图表1 开槽和不开槽研磨盘对晶片研磨效果的影响机械抛光机械抛光工艺的抛光机理为:加工工件与柔性抛光垫上的抛光粉或抛光颗粒接触后,工件表面将受到形状不规则的抛光颗粒的挤压而产生破裂或裂纹,在加工工件与抛光盘的相互运动下,这些破裂的碎块会随着不规则抛光颗粒的滚动而被带离晶片表面,反复如此,从而达到降低加工工件表面粗糙度和获得光亮、平整表面的目的。抛光粉是一种形状不规则且粒径很小的微纳米级颗粒,故而对加工工件造成的表面损伤较小且加工后的工件表面像镜面一样光亮。抛光垫的柔韧性削弱了抛光颗粒与加工工件表面的相互磨削作用,从而进一步降低了抛光颗粒对工件表面的损伤。机械抛光装置及抛光原理示意图如图5所示。图5 机械抛光装置及抛光原理示意图机械抛光的主要目的是去除机械研磨工艺对晶片表面造成的损伤层,同时降低晶片表面粗糙度和减少表面划痕,获得光亮、平整的表面。影响机械抛光工艺对加工工件表面抛光效果的因素有抛光粉种类或者抛光液种类、抛光粉粒径大小及形状、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。图6所示为碲锌镉晶片经不同厂家生产的同种抛光液机械抛光后的表面形貌图,如图所示,在相同的抛光条件下,不同厂家生产的抛光液的抛光效果差别较大。因此,机械抛光工艺中对抛光液的合理选择是极其重要的。图6 不同厂家生产的同种抛光液的机械抛光表面抛光粉的粒径大小和形状主要影响加工工件的表面质量和材料去除速率,通常,粒径越大以及形状越不规则,则材料的去除速率越快,表面质量也越差,如表面粗糙度大、划痕多等;反之,则去除速率慢,表面质量好。抛光垫具有贮存抛光液及去除抛光过程产生的残留杂质等作用,抛光垫的种类(或材质)也是影响工件抛光效果的主要因素之一。图7为目前一些常见抛光垫的表面纹理及根据仿生学理论研究设计的抛光垫表面纹理图,主要包括放射状纹理、栅格状纹理、同心圆状纹理、放射同心圆复合状纹理、螺旋状纹理及葵花籽状纹理。图7 抛光垫表面纹理图化学机械抛光化学机械抛光工艺的抛光机理为:加工工件表面与抛光垫上的抛光液接触后,将同时受到来自抛光液中的不规则抛光颗粒的挤压作用和强氧化剂的腐蚀作用,即工件表面同时受到机械作用和化学作用。化学机械抛光的主要目的包括去除工件表面损伤层、降低表面粗糙度、消除或减少表面划痕以及工件表面平坦化等。影响化学机械抛光工艺对加工工件表面抛光效果的因素有机械作用和化学作用的协同情况、抛光粉种类、抛光粉粒径大小及形状、氧化剂种类及浓度、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。抛光粉的粒径大小及形状、抛光垫的种类(或材质)、抛光垫的使用时长、抛光盘转速、工件夹具转速、施加在工件上的压力大小以及抛光时间等因素对工件抛光效果的影响原理与机械抛光工艺中所述影响原理类似。化学抛光化学抛光工艺的抛光机理为:当加工工件与抛光垫上的化抛液接触后,化抛液中的氧化剂将对工件表面进行腐蚀,在抛光垫与工件表面的相互运动作用下,工件表面上的损伤层以及浅划痕等都会被去除,得到光亮、平整且无任何划痕及损伤的外延级衬底表面。化学抛光工艺中使用的抛光液只包含氧化剂和溶剂,没有磨料颗粒或抛光颗粒。同时,对工件进行化学抛光时,没有对工件施加额外的压力,只有抛光夹具的自身重力。因此,化学抛光工艺中几乎不涉及到机械作用,只有纯化学腐蚀作用。化学抛光工艺的装置及抛光原理如图8所示。图8 化学抛光装置及抛光原理示意图化学抛光的主要目的是去除化学机械抛光或机械抛光工艺对晶片表面造成的损伤层,并同时为生长碲镉汞薄膜提供新鲜、洁净、无损的外延级表面。影响化学抛光工艺对加工工件表面抛光效果的因素有氧化剂种类及浓度、抛光垫种类、抛光盘转速、抛光夹具自重、化抛液滴速以及抛光时间等。表面位错揭示与硅等几乎无缺陷的单晶材料相比,碲锌镉单晶材料具有较高的位错密度(10⁴~10⁵/ cm⁻²)。目前,观察位错的主要手段是化学腐蚀法,虽然透射电子显微镜法(TEM)也能对材料的位错进行检测,但因其具有设备成本太高、制样非常困难、视场太小等原因而无法作为常规的位错检测手段。化学腐蚀法因具有成本低、制样简单、操作简单且所观察的视场较大等优势而成为了目前主要的表面位错检测手段。碲镉汞薄膜主要是通过在碲锌镉衬底的(111)面和(211)面上外延得到,因此,要求碲锌镉衬底表面不能存在损伤及大量的微观缺陷。衬底表面的损伤主要来自于表面处理工艺,而微观缺陷如沉淀物、位错、空位等则是在晶体生长过程中产生的。事实上,表面损伤对应的是晶格的周期性被破坏,即晶体表面形成大量的位错。所以,对于外延衬底而言,不管是损伤还是微观缺陷,只要超过一定的数量都会直接影响碲镉汞外延薄膜的质量,故而需要对碲锌镉衬底表面的缺陷(包括损伤和微观缺陷)进行检测,从而筛选出优质的外延级衬底。如上所述,化学腐蚀法是目前最常用的位错检测手段,因此这部分主要介绍用于揭示碲锌镉表面位错缺陷的腐蚀液。(111)A面位错揭示腐蚀液1979年,K. Nakagawa等人报道了一种可用来揭示碲化镉(111)A面位错缺陷的化学腐蚀液,其组分为20 mL H₂O:20 mL H₂O₂:30 mL HF。(111)和(211)B面位错揭示腐蚀液1995年,W. J. Everson等人报道了一种可用于揭示碲锌镉(111)和(211)B面位错缺陷的化学腐蚀液,其组分为6 mL HF: 24 mL HNO₃:150 mL C₃H₆O₃(乳酸),即体积比为1:4:25。由于这种化学腐蚀液是W.J.Everson首次提出并验证其有效性的,所以作者将这种腐蚀液命名为“Everson腐蚀液”。其他晶面位错揭示腐蚀液1962年,M. Inoue等人报道了一种可揭示碲化镉(CdTe)不同晶面上位错缺陷的EAg腐蚀液,EAg腐蚀液的组成为10 mL HNO₃ : 20 mL H₂O : 4 g K₂Cr₂O₇ 😡 g AgNO₃总结与展望本文主要从碲锌镉表面处理工艺及表面位错揭示两个方面对碲锌镉衬底的表面处理工艺研究进行了详细介绍。表面处理工艺主要包括机械研磨、机械抛光、化学机械抛光以及化学抛光,研磨或抛光工艺中的参数选择直接影响最终的衬底表面质量。碲锌镉衬底的表面位错缺陷主要通过Everson或Nakagawa两种化学腐蚀液进行揭示,Everson腐蚀液主要揭示碲锌镉(111)B面的位错缺陷,Nakagawa腐蚀液主要揭示(111)A面的位错缺陷。另外,随着碲镉汞红外焦平面探测器技术的发展,碲锌镉衬底的尺寸逐渐增大,这意味着获得外延级碲锌镉衬底表面将会更加困难,这对晶片表面平整度、晶片面型控制及表面清洗等都提出了更高的技术要求。因此,如何在现有的基础上探索出适用于大尺寸碲锌镉衬底的表面处理技术是至关重要的,这也是接下来亟待解决的技术问题和努力的方向。
  • 碳化硅SiC衬底抛光新方向
    碳化硅作为一种新兴的半导体材料,具有导热率高、宽禁带、高击穿电场、高电子迁移率等特性,使得其成为目前研发比较集中的半导体材料之一。因为这些性能,碳化硅可以广泛地应用于衬底、外延、器件设计、晶圆制造等多个领域。据中研普华产业研究院发布的报告显示,2023年中国碳化硅外延设备市场规模约为13.07亿元,预计到2026年将增至26.86亿元,由此可见其巨大的潜力市场。然而在实际应用过程中,碳化硅非常硬,莫氏硬度约为9.5,接近于金刚石,导致其在抛光研磨过程中存在一定的难点,给现有的加工技术带来了巨大的挑战。金属摩擦诱导反应磨削技术金属摩擦诱导反应磨削技术主要是以金属摩擦诱导化学作用为原理,在反应变质层的不断生成及去除的循环过程中,实现碳化硅的高速去除。碳化硅虽然莫氏硬度非常高,但它不适用于加工黑色金属,因为碳化硅会在高温下分解,碳原子和硅原子会扩散到金属中形成金属硅化物和不稳定的金属碳化物,在冷却过程时逐步进行分解,造成磨损极其严重。根据这一特点,人们推断纯金属可以与碳化硅在一定条件下发生化学反应。在实验过程中,碳化硅衬底的碳面往往有着近乎无损伤的表面,而硅面存在大量裂纹、位错、层错和晶格畸变等晶体缺陷。用铁摩擦碳化硅衬底的碳面材料去除率可达330µ m/h。用纯镍摩擦碳化硅衬底的硅面材料去除率为534µ m/h。目前这一方法的相关研究较少,主要聚焦在小尺寸的碳化硅加工上,但它在碳化硅衬底磨抛和碳化硅芯片减薄加工中具有巨大的潜力。溶胶凝胶抛光技术溶胶凝胶抛光技术是一种绿色、高效的抛光方法,通过使用半固结磨料和柔性基材,借助软质基体所拥有的柔性特点,实现了磨粒的“容没”效应,以在极硬半导体衬底上实现超光滑和低缺陷密度的表面。这种方法结合了化学和机械作用,可以在不造成严重表面或亚表面损伤的情况下,有效的抛光极硬半导体衬底。与传统CMP相比,溶胶凝胶抛光技术能够在短时间内显著降低表面粗糙度,并实现较高的材料去除率;软质基体由于具有较好的柔韧性,可以在较低的抛光压力下工作,减少对工件和设备的压力需求,减少磨粒的磨损和脱落,延长磨粒的使用寿命。前驱体物质(通常是金属有机化合物)转化为溶胶,通过水解和缩合反应形成凝胶,在溶胶-凝胶抛光垫中,磨粒被部分固定在凝胶基质中,这样可以在保持磨粒活动性的同时,提供一定的机械强度。国内学者利用这一技术对HTHP单晶金刚石(111)面进行加工,抛光22h后,表面粗糙度从230nm降至1.3nm。磨粒划擦诱导碳化硅水反应的磨抛技术磨粒划擦诱导碳化硅水反应的磨抛技术是一种先进的材料加工技术,主要应用于碳化硅等硬脆材料的精密加工。这项技术利用磨粒在加工过程中对碳化硅表面产生的划擦作用,结合水反应来改善材料的去除效率和表面质量。通过控制磨粒的容没效应,使得磨粒保持在同一高度上,通过磨粒划擦诱导碳化硅表面生成非晶碳化硅,非晶碳化硅与水可以反应生成软质二氧化硅,再通过磨粒划擦去除二氧化硅的变质层。在纳米尺度中,碳化硅衬底表面在金刚石等压头的反复机械作用下会被诱导成非晶化的碳化硅。非晶化的碳化硅和水反应生成二氧化硅的影响因素包括载荷、接触状态、速度和温度,通过对这一过程的合理利用,可以使碳化硅衬底的加工效率、表面质量得到显著的提升,可以合理避免裂纹的产生。当前以CMP为代表的化学反应研磨抛光技术是加工碳化硅衬底的重要手段,但加工效率非常低,材料去除率只能达到0.5µ m/h左右,而金属摩擦诱导反应磨削技术可以达到300-500µ m/h。目前有关于这部分的研究还较少,在后续表面的处理、材料的选用等还有待进一步的优化,相信在未来,以机械诱导为主的反应磨抛技术可以给我们带来更多的惊喜!
  • 天科合达计划扩产6/8英寸碳化硅衬底
    近日,北京市生态环境局对外公布了天科合达第三代半导体碳化硅衬底产业化基地的二期扩建项目(以下简称"二期项目")的环境影响评价审批结果。根据公示文件,随着北京天科合达在创新能力和市场占有率上的持续提升,其在行业内的影响力也在不断增强。为了进一步扩大生产规模,公司计划在现有厂区西侧的空地上建设二期项目。二期项目位于北京市大兴区大兴新城东南片区的0605-022C地块,紧邻现有工程东侧。项目规划总占地面积为52,790.032平方米,总建筑面积达到105,913.29平方米,涵盖生产厂房、化学品库、危废库、一般固废库、综合办公楼以及门卫室等设施。公司计划采购一系列先进的长晶、晶体加工和晶片加工工艺设备,并新建6-8英寸碳化硅衬底生产线及研发中心,同时配套建设相关设施。二期项目的建设旨在扩大公司在碳化硅晶体与晶片领域的产能,并建立研发中心,用于持续优化和完善生产工艺和参数。项目投产后,预计将实现年产约371,000片导电型碳化硅衬底,包括236,000片6英寸和135,000片8英寸导电型碳化硅衬底。
  • 乾晶半导体首批碳化硅衬底正式进行工艺验证
    杭州乾晶半导体有限公司碳化硅衬底晶片通过公司内部品质检验,达到同行业产品质量标准。首批样品于2021年11月3日正式提供客户端进行工艺验证。公司目前已经与中国及日本公司达成战略合作意向,可为国内外客户提供4、6寸碳化硅晶棒及晶片。杭州乾晶半导体有限公司,2020 年 7 月成立于浙江大学杭州国际科创中心,专注于第三代半导体材料领域,是一家集半导体碳化硅(SiC)单晶生长、晶片加工和设备开发为一体的高新技术企业。公司的核心团队来自于浙江大学硅材料国家重点实验室,与浙大科创中心先进半导体研究院成立联合实验室共同承担 SiC材料的产业化任务,力争三到五年成为国际知名的第三代半导体材料品牌和标杆企业,为第三代半导体产业提供有力支撑。
  • HEPS自主研制共振非弹性散射分析晶体完成在线实测
    2023年5月,国家重大科技基础设施高能同步辐射光源(HEPS)自主研制的共振非弹性散射(RIXS)分析晶体完成在线实测,实测能量分辨率37.7meV@8.9keV,标志着HEPS自主研制光学部件又进一步。   HEPS是亚洲首台第四代同步辐射光源,有利于开展高能量分辨谱学实验。为满足高分辨谱学需求,HEPS光源部署自主研制高分辨RIXS谱学分析晶体,100毫米直径的球面衬底上,布满近1万块1.5毫米见方、2毫米厚的小晶块,小晶块之间排列取向精度误差小于400μrad。该类分析晶体制备工艺极为复杂,国际上仅有少数光源具备此类分析晶体研制能力。HEPS高能量分辨谱学线站负责人徐伟研究员带领团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关,完成RIXS分析晶体自主加工。   RIXS分析晶体的在线表征是检验分析晶体品质的关键步骤。2023年5月,高分辨谱学线站团队包括徐伟研究员、郭志英副研究员、张玉骏副研究员、靳硕学副研究员等通过与日本超级环光源-日本量子科学技术研究开发机构线站(SPring-8-QST-BL11XU)的Kenji Ishii(石井贤司)教授合作,顺利完成了RIXS分析晶体的在线表征。曲率半径2米的单晶硅(553) RIXS分析晶体,实测分辨达到37.7meV (FWHM)@8985eV。这一结果表明,HEPS团队已具备RIXS分析晶体自主研制能力。   值得一提的是,2022年10月,依托北京同步辐射装置,HEPS首批自主研制X射线拉曼散射(XRS)谱仪分析晶体完成在线表征,实测1eV(FWHM)@9.7 keV;2023年3月,依托上海光源BL13SSW稀有元素线站,HEPS相关人员与上海光源边风刚研究员、何上明研究员、曾建荣副研究员、洪春霞高级工程师等团队合作,完成了一批(15组)条带型高分辨XRS分析晶体的在线表征,实测0.53 eV@9.7 keV。   高分辨分析晶体再一次取得突破性进展,离不开团队合作、国内外同行协助。下一步,团队成员将齐心协力,进一步开发定制指数面硅基、非硅基高能量分辨分析晶体。在满足HEPS高分辨分析晶体需求基础上,也可为国内外同行提供先进光学部件。   高分辨分析晶体在线表征得到上海光源稀有元素线站BL13SSW、测试线站BL09B,日本SPring-8 BL11XU等线站的大力支持。
  • 成本可降低10%,日本推碳化硅衬底新技术
    据日经中文网报道,日本中央硝子(Central Glass)开发出了用于功率半导体材料“碳化硅(SiC)”衬底的新制造技术。据介绍,中央硝子开发出了利用含有硅和碳的溶液(液相法)来制造SiC衬底的技术。与使用高温下升华的SiC使单晶生长(升华法)的传统技术相比,液相法在增大衬底尺寸以及提高品质方面更具优势。该技术可使衬底的制造成本降低10%以上,良率也会大幅度提升。由于利用液相法制备SiC衬底较为复杂,此前该技术一直未应用在实际生产中。中央硝子运用基于计算机的计算化学,通过推算溶液的动态等,成功量产出了6英寸SiC衬底。在此基础上,公司打算最早于2030年把尺寸扩大到8英寸。据了解,自2022年4月起,中央硝子就已经开始使用液相法研究和开发SiC晶圆。今年4月,中央硝子宣布其“高质量8英寸SiC单晶/晶片制造技术开发”项目通过审查,被日本新能源和工业技术开发组织(NEDO)的视为绿色创新基金项目(项目期限为2022财年至2029财年)。该项目后续将获得来自NEDO的资助,这一进展将有助于中央硝子加速8英寸SiC衬底的开发。报道指出,为了让客户采用以新技术制作的SiC衬底,中央硝子已开始与欧美的大型半导体企业等展开商讨。中央硝子最早将于2024年夏天开始向客户提供样品,2027~2028年实现商业化。该公司将在日本国内的工厂实施数十亿日元规模的投资,争取将市场份额超过10%。
  • 《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》等两项标准提案获通过
    近日,由北京理工大学牵头提案的《电动汽车用碳化硅(SiC)电机控制器评测规范》以及由广州南砂晶圆半导体技术有限公司牵头提案的《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》两项团体标准提案,经CASA标准化委员会(CASAS)管理委员会投票,根据《CASAS管理和标准制修订细则》,两项联盟团体标准投票通过立项,分配编号分别为:CASA 012、CASA 013。据了解,第三代半导体产业技术创新战略联盟(CASA)是2015年9月9日,在国家科技部、工信部、北京市科委的支持下,由第三代半导体相关的科研机构、大专院校、龙头企业自愿发起筹建的“第三代半导体产业技术创新战略联盟”(以下简称“联盟”)在北京国际会议中心举行了成立大会。 科技部曹健林副部长、高新司赵玉海司长、科技部高技术研究发展中心秦勇主任,北京市科学技术委员会闫傲霜主任,中国科学与科技政策研究会李新男副理事长等领导出席了成立大会。南京大学郑有炓院士代表45家发起机构单位正式宣布第三代半导体产业技术创新战略联盟成立。科技部曹健林副部长、南京大学郑有炓院士、北京市科学技术委员会闫傲霜主任、北京半导体照明科技促进中心吴玲主任共同为联盟揭牌。以下为通知原文:联盟两项团体标准提案获管理委员会投票通过各有关单位:由北京理工大学牵头提案的《电动汽车用碳化硅(SiC)电机控制器评测规范》以及由广州南砂晶圆半导体技术有限公司牵头提案的《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》两项团体标准提案,经CASA标准化委员会(CASAS)管理委员会投票,根据《CASAS管理和标准制修订细则》,两项联盟团体标准投票通过立项,分配编号分别为:CASA 012、CASA 013。 标准提案投票具体情况为: 1、电动汽车用碳化硅(SiC)电机控制器评测规范:应投25票,实投21票,赞成19票,反对1票,弃权1票。 2、导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法:应投25票,实投21票,赞成19票,反对0票,弃权2票。立项通知请查看附件:附件1.关于《导电型4H碳化硅衬底及外延晶片基平面位错密度的测定 化学腐蚀法》联盟团体标准立项的通知附件2.关于《电动汽车用碳化硅(SiC)电机控制器评测规范》联盟团体标准立项的通知
  • 替代CMP!牛津仪器推出全新碳化硅外延衬底制备工艺PPDE
    8月19日,牛津仪器等离子体技术部宣布了一种新的制备SiC外延衬底的替代方法。SiC衬底的等离子体抛光已被证明是化学机械平坦化(CMP)的优越且与兼容HVM的替代方案,同时减轻了与CMP相关的重大技术,环境和供应链问题。牛津仪器的等离子体抛光干法蚀刻(PPDE)工艺是化学机械平坦(CMP)工艺的直接即插即用的替代品,可轻松集成到现有的工艺流程中。多年来,SiC衬底一直采用CMP工艺制备,但却遇到了不良操作问题,整个行业都在努力需求解决方案以满足对SiC衬底日益增长的需求。由于半有毒的浆料副产物,在SiC衬底工厂中运行CMP对环境的影响很大,并且该过程所需的大量用水量是浪费的。此外,抛光垫和特种化学品在充满挑战的供应链环境中带来了巨大的消耗成本。此外,CMP工艺本身就不稳定,因为浆料化学品和抛光垫被消耗,从而将漂移引入工艺管路。PPDE是一种稳定的非接触式工艺,可减少处理损失,并允许加工更薄的晶圆,每个晶锭可以产生更多的晶圆,并能够发展到200mm SiC衬底。“有一个令人信服的技术和商业案例,可以选择等离子体表面处理来生产外延就绪的SiC衬底。从技术角度来看,我们有一条更薄的晶圆路线,具有更少的翘曲和出色的外延就绪质量,一个强大的商业案例,可以降低成本和复杂性,此外还提供一种明显更清洁的绿色工艺,该工艺与晶圆厂兼容且可集成“,Plasma Technology的战略业务发展总监Klaas Wisniewski评论道, 他还补充说:“这是一个非常有吸引力的主张,与当前方法相比,作为一种技术,它以更低的成本提供更好的结果,像这样进入生产流程,并实现SiC器件的环境可持续生产。牛津仪器等离子体技术部将于2022年9月11日至16日在瑞士达沃斯举行的国际碳化硅及相关材料会议(ICSCRM / ECSCRM)上正式推出其PPDE工艺。在会议技术会议中,他们将展示他们最新的全晶圆外延和器件结果,利用其拥有专利的PPDE工艺,由其商业代工合作伙伴制造的晶圆制成。还将有机会在活动中亲自发言,讨论在大批量制造工厂中实施PPDE的问题。
  • 无锡吴越半导体展出GaN晶体 全球首次厚度突破1厘米
    据无锡高新区消息,12月15日,吴越半导体GaN晶体出片仪式在无锡高新区举行。仪式上,吴越半导体展出了全球范围内首次厚度突破1厘米的氮化镓晶体,并与君联资本、新投集团签署A轮融资战略框架协议。公开资料显示,第三代半导体GaN是由氮和镓组成的一种半导体材料,相比于硅材料,GaN具备决定性的优势。由于其禁带宽度大于2.2eV, 因此又被称为宽禁带半导体材料。有着禁带宽度大、高击穿电场、高电子饱和漂移速率、良好的耐温特性等特点。据悉,无锡吴越半导体有限公司成立于2019年,是无锡先导集成电路装备材料产业园首个落户的项目,公司专注于氮化镓自支撑衬底的开发、生产和销售。2020年2月,吴越半导体、先导集团与高新区管委会签订合作协议,在无锡高新区实施2-6英寸氮化镓自支撑单晶衬底产业化项目,项目建成投产后,可填补无锡市在第三代化合物半导体氮化镓原材料领域的空白。
  • 苏州纳米所孙钱团队在硅衬底GaN基纵向功率器件方面取得新进展
    氮化镓(GaN)器件具有更高耐压,更快的开关频率,更小导通电阻等诸多优异的特性,在功率电子器件领域有着广泛的应用前景:从低功率段的消费电子领域,到中功率段的汽车电子领域,以及高功率段的工业电子领域。相比于横向器件,GaN纵向功率器件能提供更高的功率密度、更好的动态特性、更佳的热管理及更高的晶圆利用率,近些年已取得了重要的进展。而大尺寸、低成本的硅衬底GaN纵向功率器件更是吸引了国内外众多科研团队的目光。中科院苏州纳米所孙钱研究团队在读博士研究生郭小路及其他团队成员的合作攻关下,经过近三年时间的不懈努力,先后在高质量异质外延材料生长及掺杂精确调控、器件关态电子输运机制及高压击穿机制、高性能离子注入保护环的终端开发等核心技术上取得突破,该系列研究工作先后发表于电子器件领域国际专业学术期刊IEEE Electron Device Letters, vol. 42, no. 4, pp. 473-476, Apr 2021. Applied Physics Letters, vol. 118, no. 24, 2021, Art. no. 243501. IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5682-5686, 2021。团队成功研制出的高性能硅衬底GaN基垂直肖特基二极管,具有优异的正向导通性能(Ron=1.0 mΩcm2),开关比高达1011,理想因子低至1.06,正向输出电流1660A/cm2。器件的关态耐压达603V,器件的Baliga优值(衡量器件正反向电学性能的综合指标)为0.26GW/cm2。器件在175oC的高温及380V反向偏压下,开关性能仍未发生失效,综合实现了耐高温、耐高压等优异特性。硅衬底GaN基纵向功率二极管器件性能目前处于国际前列。上述系列工作的主要作者为中科院苏州纳米所在读博士研究生郭小路,团队特别研究助理钟耀宗博士和已毕业博士生何俊蕾等为相关工作作出了重要贡献,通讯作者为孙钱研究员和周宇副研究员。上述工作得到了国家自然科学重点基金项目、国家重点研发计划课题、中国科学院重点前沿科学研究计划、江苏省重点研发计划项目等资助。图1. GaN 水平器件与垂直器件的特点比较图2. GaN基纵向功率二极管的关态击穿电压与开态导通电阻(Ron,sp)的评价体系。国内外相关研究团队的自支撑衬底和硅衬底GaN基肖特基势垒二极管(SBD),结势垒肖特基二极管(JBS),凹槽MOS型肖特基二极管(TMBS)器件性能的比较。图3.(a)硅基GaN纵向功率二极管的外延结构(b)外延材料的CLmapping(c)器件的结构示意图(d)制备器件的离子注入保护环。图4.(a)线性坐标下与(b)对数坐标下有、无离子注入保护环(GR)终端的硅基GaN纵向SBD的正向IV曲线(c)不同温度下硅基GaN纵向SBD的开态导通电阻(d)离子注入保护环个数对反向击穿耐压的影响。(e)有、无离子注入保护环对硅基GaN纵向SBD温度特性的影响。
  • 年产1600吨碳化硅衬底材料项目签约浙江安吉
    6月28日,浙江省湖州市安吉县在上海举行推介会。“安吉发布”官微消息显示,推介会上,35个项目集体签约,包括年产1600吨碳化硅衬底材料项目、高性能新能源电池覆膜材料产业园项目等。其中,年产1600吨碳化硅衬底材料项目签约方为苏州冠岚新材料有限公司(以下简称:冠岚新材料)。公开资料显示,冠岚新材料成立于2021年9月,主要产品为大尺寸、高纯度、低成本第三代半导体SiC原材料、SiC镀膜,目前国产化原材料产品已验证完成,获国内外多家客户认证。冠岚新材料采用独有的升级的化学气相沉积的原材料技术,生产出的晶棒较厚、成本较低、纯度较高。
  • KLA发布全新SiC、GaN衬底缺陷检测系统Candela® 8520
    p style=" text-indent: 2em " span 2020 /span 年 span 8 /span 月 span 27 /span 日, span style=" text-align: justify text-indent: 28px " KLA /span span style=" text-align: justify text-indent: 28px " 仪器发布针对功率器件的 /span span style=" text-align: justify text-indent: 28px font-family: Arial, sans-serif color: rgb(12, 12, 18) background: white " Candela sup & reg /sup & nbsp 8520& nbsp /span span style=" text-align: justify text-indent: 28px color: rgb(12, 12, 18) background: white " 缺陷检测系统。该设备继承自首款将表面形貌和晶体缺陷的检测和分类集成至一个平台的 /span span style=" text-align: justify text-indent: 28px font-family: Arial, sans-serif color: rgb(12, 12, 18) background: white " Candela sup & reg /sup & nbsp CS920 /span span style=" text-align: justify text-indent: 28px color: rgb(12, 12, 18) background: white " 系统。 /span span style=" text-align: justify text-indent: 28px font-family: Arial, sans-serif color: rgb(12, 12, 18) background: white " Candela 8520 /span span style=" text-align: justify text-indent: 28px color: rgb(12, 12, 18) background: white " 的检测速度是前身的两倍多,对于快速增长的功率器件市场来说,能够更好地提升产量。 /span /p p style=" text-indent: 0em " span style=" text-align: justify text-indent: 28px color: rgb(12, 12, 18) background: white " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/a90c3a0c-9641-41fe-82c5-40f2269b2f5a.jpg" title=" AdvanceBlogCandela-01_300dpi__002_.jpg" alt=" AdvanceBlogCandela-01_300dpi__002_.jpg" / /span /p p style=" text-align: right text-indent: 0em " span style=" font-family:& #39 Arial& #39 ,sans-serif color:#0C0C12 background:white" span style=" text-align: justify text-indent: 28px font-family: Arial, sans-serif color: rgb(12, 12, 18) background: white " Candela sup & reg /sup & nbsp 8520& nbsp /span span style=" text-align: justify text-indent: 28px color: rgb(12, 12, 18) background: white " 缺陷检测系统(KLA官网) /span br/ /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:& #39 Arial& #39 ,sans-serif color:#0C0C12 background:white" Candela 8520 /span span style=" color:#0C0C12 background:white" 晶圆检测系统能够弥补关键缺陷检测漏洞,例如裸晶圆上的堆积层错和外延生长后的基面位错。该系统还配备有一些分析工具,如在线缺陷检测,芯片分选和轮廓线图。该系统能够生成一个综合检测报告来帮助工艺工程师更精准的改进工艺。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:& #39 Arial& #39 ,sans-serif color:#0C0C12 background:white" Candela 8520 /span span style=" color:#0C0C12 background:white" 集成了五种互补的检测技术,通过这些技术的结合可以精确地区分多种缺陷,如微管和微坑、胡萝卜型和基面位错,堆积层错和台阶聚集等。同时还能捕捉到影响 /span span style=" font-family:& #39 Arial& #39 ,sans-serif color:#0C0C12 background:white" SiC /span span style=" color:#0C0C12 background:white" 衬底和外延工艺控制的大型形貌缺陷。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://www.kla-tencor.com/wp-content/uploads/Candela_8520_Launch_Blog_Infographic_FINAL_PNG.png" / /p p style=" text-indent: 0em text-align: right " (图来自KLA Instrument官网)& nbsp /p p style=" text-indent: 28px text-align: justify " 将暗场、明场、坡度、相位和光致发光技术集于单一平台,对功率器件制造商提高产量具有重大价值。 /p p style=" text-indent: 28px text-align: justify " span Candela 8520 /span 检测系统由 span KLA /span 的全球服务网络支持团队提供维护来确保产品的高效运转和生产。 /p
  • 山东大学成功研制高质量4英寸氧化镓晶体
    近日,山东大学陶绪堂教授团队使用导模法(EFG)成功制备了外形完整的4英寸(001)主面氧化镓(β-Ga2O3)单晶,并对其性能进行了分析。劳厄测试衍射斑点清晰、对称,说明晶体具有良好的单晶性,无孪晶;X射线衍射摇摆曲线显示晶体(400)面半峰全宽仅为57.57″,结晶质量较高;湿法化学腐蚀测试结果表明,晶体位错密度为1.06×104 cm-2;C-V测试确认β-Ga2O3晶体中载流子浓度为7.77×1016 cm-3。测试结果表明,该团队通过导模法获得了高质量的4英寸β-Ga2O3单晶。相关内容以“4英寸氧化镓单晶生长与性能研究”为题已在《人工晶体学报》网络首发(DOI:10.16553/j.cnki.issn1000-985x.20220831.001.)。该成果是继2019年团队获得4英寸(100)主面单晶后的又一新突破。 图1 4英寸β-Ga2O3晶体 图2 β-Ga2O3单晶(010)面劳厄衍射图图3 β-Ga2O3单晶摇摆曲线   此外,团队通过优化提拉法晶体生长工艺,在原有1英寸晶体基础上,成功放大到2英寸,晶体外形规整、无裂纹,晶体质量较高。晶体生长尺寸与德国IKZ及美国空军实验室相当,达到国际先进水平。 图4 提拉法生长2英寸氧化镓柱状单晶   山东大学晶体材料国家重点实验室在国内最早开展导模法氧化镓单晶生长,经过长期潜心攻关,从零开始,先后突破了1~4英寸氧化镓单晶生长、缺陷、掺杂、加工等关键核心技术。通过导模法、提拉法等多种晶体生长方法,生长出n型导电及半绝缘氧化镓晶体并开展了系统的晶体加工和缺陷研究,为打破国外技术封锁和产品禁运奠定了基础。   β-Ga2O3作为超宽禁带半导体材料,可用于制备功率器件、紫外探测器、高能射线探测器,同时也可作为GaN、ZnO等半导体的衬底材料使用。由于超高的击穿场强和巴利加优值,β-Ga2O3功率器件具有耐压高、导通损耗低、开关速度快的优点。目前,β-Ga2O3二极管及场效应晶体管器件耐压均可达几千伏,器件击穿场强已超过SiC和GaN的理论极限。   由于β-Ga2O3禁带宽度为4.8 eV,吸收截止边位于260 nm处,紫外透过率可达80%以上,并且具有良好的化学稳定性和热稳定性。因此,β-Ga2O3晶体自身便满足“日盲”光电器件的需求,避免了目前常用氮化物需要合金化等复杂问题。β-Ga2O3晶体因其卓越的材料性能,在深紫外光电探测以及超高压功率器件方面具有重要的应用,也是最近美国等西方国家对我国实施禁运的关键材料。
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 新突破!镓仁半导体成功制备3英寸晶圆级(010)氧化镓单晶衬底
    2024年7月,杭州镓仁半导体有限公司在氧化镓晶体的培育和基底加工方面实现了显著的技术突破。该公司成功制造了3英寸的(010)氧化镓单晶基底,这在国际范围内是已知的最大尺寸,标志着其技术达到了全球领先地位。在氧化镓单晶基底的众多常见晶面中,(010)基底因其卓越的物理特性和外延生长能力而备受青睐。具体来说,(010)基底的热导率是最高的,这有助于提高功率器件的整体性能。此外,这种基底的外延生长速度也较快。更重要的是,基于(010)基底制造的器件展现出了更加卓越的性能表现。目前,镓仁半导体已经推出了其晶圆级的(010)氧化镓单晶基底产品,该产品主要面向科研市场,旨在满足科研界对(010)基底的需求,并推动产业界、学术界和研究机构之间的合作。
  • 深入其“镜”!《晶体结构与缺陷的电子显微分析实验案例》出版
    晶体之秘,一镜解之长期以来,材料科学研究一直围绕着材料的结构-性能关系展开。对于绝大多数材料,晶体结构及各类缺陷决定了其性能和使役行为。因此,分析表征材料的晶体结构及缺陷是材料研究的核心内容。自从德国电气工程师 Ernst Ruska 与 Max Knoll 发明了电子显微镜后,经过近百年的不断发展,电子显微术已成为材料晶体结构及缺陷表征最常用、最有力的工具之一,是材料研究不可或缺的重要手段。电子显微术的发展和应用极大地拓展了人们对材料结构的认知,推动了材料科学的迅猛发展,催生了众多的高性能新材料。“中国相”的发现1、1946年夏,郭可信从浙江大学化工系毕业后通过公费留学考试,于1947年9月到瑞典斯德哥尔摩的皇家理工学院金相学实验室专攻冶金学,其间主要利用X射线衍射方法研究合金中的相结构。后来逐渐接触电子显微镜,用的是当时瑞典唯一的一台RCA电镜,没有衍射功能。2、1955年,郭可信用萃取复型法研究合金钢回火初期生成的碳化物,同年11月去伦敦作“δ-铁素体的金相学”的学术报告,并去剑桥大学参观。郭可信用胶膜(萃取)复型观察到几十埃大小的VC颗粒及针状Mo2C,这是V、Mo在钢中产生晶粒细化及析出硬化(或二次硬化)的原因, 于是在1956年写了一篇文章。这是用电镜进行这类研究工作的早期著作。3、1956年3月, 郭可信看到周总理“向科学进军”的动员令,兴奋不已,4月底乘机经苏联回到阔别九年的祖国,任职于中国科学院金属研究所。之所以来到沈阳工作,与那时金属所有一台苏联人仿制西门子的透射电镜不无关系。4、1962年中国科学院又分配给金属所一台民主德国产的电镜,仍然不能做电子衍射。郭可信等用它观察到铝合金中的位错运动和交滑移,并在1964年第4届欧洲电子显微学会议上做了展示。1965年金属所又争取到一台日本电子株式会社生产的JEM-150电镜, 用它开展镍合金中位错、层错的衍衬像研究。5、6、1967年夏,中国科学院分配给金属所一台之前通过贸易定购的捷克产电镜。郭可信带领其他人居然把这台捷克电镜安装起来,并调试出十几埃的电子显微像。7、60年代中期至70年代中期, 郭可信亲自在JEM-150电镜上做了些相分析工作,发现M23C6与M6C 都属面心立方晶系。为了得到三维的不同取向电子衍射图,他还和北京分析中心的孟宪英利用她的JEM-100电镜开展了倾斜晶体的实验, 确定了一些含钒矿物的点阵类型, 后来这种技术在国内得以广泛传播。8、改革开放之后的1980年,郭可信了解到院里准备引进一两台电子显微镜, 随即便去北京争取,并向郁文秘书长立下军令状,保证在电镜安装后三年内做出出色成绩。这样,院里决定为金属所订购一款当时分辨率最高的透射电镜,型号为JEM200CX。郭可信带领研究团队统筹安排诸多研究方向,相继取得了一批具有国际领先水平的研究成果:在四面体密堆晶体(Frank-Kasper相)的电子衍射图中观察到五次对称的强电子衍射斑点,并给予正确的诠释;独立在Ti-Ni合金中发现具有五次旋转对称的三维准晶(被西方学者称为“中国相”);首先发现八次、十次旋转对称的二维准晶;首先发现一维准晶;首先发现具有立方对称的三维准晶,并阐明准晶的必要条件。9、这些工作将当时中国的准晶研究引领至国际前沿。通过这台电镜完成的研究工作共培养出硕士、博士和博士后共计36名, 其中有2人当选为中国科学院院士。相关研究成果获国家自然科学奖一等奖和四等奖各1项,中国科学院自然科学奖和科技进步奖4项。10、2000年后,这款已经服役近30年的 JEM200CX基本不能处于正常工作状态了。2016年,金属所把该电镜的镜筒做了解剖,整机摆放在研究生教育大厦(郭可信楼)一楼大厅供学习和参观。以上图文选自《晶体结构与缺陷的电子显微分析实验案例》一书,更多有关电子显微镜历史发展和科学家精彩故事请详阅本书。回到科学初心,用实验案例探索晶体的奥秘书名:晶体结构与缺陷的电子显微分析实验案例书号:978-7-04-061096-3作者:马秀良 著定价:149.00元出版日期:2024年1月01 内容简介本书涵盖作者自20世纪80年代末师从郭可信先生起至近年带领研究团队在有关电子衍射方面所积累的主要实验案例,旨在以“案例”的形式梳理电子显微学及晶体学的基础知识,展示如何通过对材料基础科学问题的再认识,从而对经典问题产生新理解,分享发现的乐趣,传授30余载的学术经验。本书主体(第2~6章)按晶体的对称性从低到高依次展开,包括单斜、正交、四方、六方、三方、菱方、立方晶系,涉及周期性晶体14种布拉维点阵中的13种点阵类别以及部分准晶体,共40余种物相。第1章和第7章是科学研究中相关历史事件的精彩片段,不但能引起读者对本领域历代先驱者的无限敬仰,也能激发年轻学者投身于基础科学研究、探索自然奥秘的热情和决心。本书适合作为电子显微学以及材料相关专业研究生的教学参考书,也可供材料科学与过程领域的科研工作者和从业者阅读和参考。02 作者简介马秀良,满族,1964年出生于辽宁省东沟县。1988年毕业于大连理工大学材料工程系。曾师从我国著名科学家郭可信先生,在中国科学院北京电子显微镜实验室和大连理工大学从事 AI 基合金中十次对称准晶及复杂合金相的冶金学和晶体学研究,1994年获博士学位,1995—2005 年先后在德国多特蒙德大学,日本精细陶瓷研究中心、东京大学,中国香港城市大学,以及德国鲁斯卡电镜中心等从事固体材料结构与缺陷的高分辨电子显微学研究,2001—2022年为中国科学院金属研究所研究员,先后任沈阳材料科学国家(联合)实验室固体原子像研究部主任(2006—2018),沈阳材料科学国家研究中心材料结构与缺陷研究部主任(2018—2022),金属研究所第十二届学术委员会主任(2019—2022)。现任中国科学院物理研究所研究员、松山湖材料实验室研究员、大湾区显微科学与技术研究中心负责人。院士推荐
  • “科学人生•百年”院士风采丨陈创天:让中国晶体享誉全球
    中科院学部成立60多年来,先后选聘产生了1499名中国科学院院士。包括诺贝尔物理学奖获得者杨振宁院士,国家最高科学技术奖获得者吴孟超院士、吴良镛院士等。“科学强国”栏目将持续刊登这些院士的故事,展现他们的人生风采。    人物小档案  陈创天  (1937年2月18日—2018年10月31日)  出生于浙江奉化, 是我国著名的材料学家。长期从事晶体材料的研究,引领和带动了我国非线性光学晶体学科发展。曾任中国科学院福建物质结构研究所副所长,中国科学院理化技术研究所晶体中心主任,1990年当选为第三世界科学院院士,2003年当选为中国科学院院士。  无论是KBBF、LSBO,还是BBO、LBO,这些被国际市场誉为“中国晶体”的先进材料面世,都离不开一个人,他就是“中国晶体之父”——陈创天院士。  在他长达半个世纪的科研生涯中,人们看到的是中国非线性光学晶体的发展史。由他带领的研究团队发现、培育出来的多种非线性晶体,在国际上享誉盛名,推动了非线性光学晶体的实用化和商业化,促进了激光技术的发展,奠定了我国非线性光学晶体在国际上的领先地位。  他就是人工晶体学界的学术泰斗陈创天。  对于科学研究,陈创天曾直言:“要投身于科学事业,首先就要下定决心,把此生无私地奉献给科学,奉献给祖国,奉献给人民。”  师从名师,立志科研为国  1937年2月18日,陈创天出生在浙江省奉化市大桥镇斗门头村的一个知识分子家庭。新中国成立后,为了支援东北建设,陈创天告别就读的奉化中学,随着做会计师的父亲迁至辽宁省沈阳市,1954年,初中毕业后考入重点中学沈阳二中读高中。  陈创天从小对数学有着特殊的爱好。进入沈阳二中后,最感兴趣的也是数学、物理两门课。陈创天记得物理老师在课上讲“以太”论时,说引力场是一种物质。通过这种物质,物体之间会产生引力。这种理论当时曾引起争论,说是引力场处于真空,不能认为是通过物质相互作用才得以实现。但这种当时颇为新奇的观点恰在陈创天的脑中挥之不去。陈创天琢磨着,两个物体之间的相互作用怎么能不通过中间介质来实现呢?正是这种好奇心,促使陈创天跟物理打上了交道。  1956年8月,陈创天以优异成绩考入北京大学物理系物理学专业。谈起北大6年的求学经历,陈创天庆幸自己遇到了好老师。上世纪50年代,北京大学物理系集中了一大批名扬海内外的著名学者。这里浓厚的科学研究氛围成为陈创天学习的沃土,也让他更加确定自己的人生追求和科研探索信念,立志成为中国科学事业的栋梁,为中国科学技术赶上国际先进水平而努力奋斗一生。  1962年,陈创天大学毕业。北大物理系把陈创天推荐给我国著名物理化学家、教育家卢嘉锡院士,前往中国科学院设在福建省福州市的华东物质结构研究所(中国科学院福建物质结构研究所)工作。  当时的华东物质结构研究所是研究化学的,主要研究微观结构和宏观性能之间的关系。时任所长的卢嘉锡对陈创天说,到这里工作,就要了解化学方面的情况,掌握化学知识。于是,在卢嘉锡的指导下,陈创天又开始了长达3年化学方面的学习,自学了结构化学、量子化学、群表示理论等等,在理论化学方面打下了坚实的基础。1965年,经过慎重考虑,陈创天选择非线性光学材料结构和性能之间的关系作为研究方向,并得到卢嘉锡的支持。  经历过战乱的颠沛流离,陈创天有着百折不挠的科研精神。这是他在科研工作中最宝贵的精神,为他日后在非线性晶体领域的发明研究奠定了坚实的基础。  国际领先,发现培育“中国牌”晶体  当一束单色光通过各种形状的光学玻璃时,除去光的方向会改变外,此束光的颜色是不会发生改变的,这是经典光学,即线性光学理论。但是当一束亮度很高的单色激光,通过一块空间结构没有对称中心的单晶体时,此单色激光在通过晶体后,将会产生两种不同颜色的激光,此种现象就是非线性光学现象,此种晶体就是非线性光学晶体。因此,非线性光学晶体也就是光波的变频器件。一种非线性光学晶体的变频能力,也就是一种颜色的激光转变为另外一种颜色激光的能力,是由该晶体的空间结构所决定的。我国科学家首次在国际上解决了这个问题,并发现了许多种非线性光学晶体,这些晶体具有很强的使一种颜色的激光变成另外一种颜色激光的能力。由此,我国这一领域的研究在国际上处于领先水平。其中,陈创天的身影频频出现。  1968年,陈创天提出国际上著名的非线性光学效应的阴离子基团理论,被国内外晶体研究领域的科学家接受并成功地用于指导新型非线性光学材料的探索研究。基于他在非线性光学研究的贡献,陈创天被任命为非线性学科材料研究组的组长。  1980年,陈创天团队宣布研制出领先世界的BBO晶体,被国际同行誉为“中国牌”的晶体。这是中国在光学领域的一项重大突破,也让中国一跃而上成为世界光学领域的领先者。  这块小小BBO晶体为陈创天和他的科研团队带来多项国内外的科技大奖。然而荣誉背后,陈创天并没有止步于此,在发现和培育出BBO晶体后,他再次带领团队钻进实验室,研究更有价值的晶体。  功夫不负有心人,1987年,陈创天和他的研究团队发现并生长出第二块“中国牌”非线性光学晶体LBO。与BBO相比,LBO紫外截止波长紫移到150纳米。LBO有适当的硬度和良好的机械加工性能,潮解性能良好,已经能够长出大尺寸、高质量的单晶。消息很快获得国际激光科技界和工业界的认可,新成果在激光工业界得到广泛应用。  2001年,陈创天带领的研究团队在KBBF单晶生长技术上获得突破,并发明了KBBF晶体棱镜耦合技术,获得中、美、日专利授权,保障了中国在深紫外固体激光方面的国际垄断地位。  2006年,中科院物理所与理化所合作,在国际上首次成功地建造了真空紫外激光角分辨光电子能谱仪,可同时测定电子的能量和动量。仪器的核心部件就是能产生177.3纳米相干光的KBBF棱镜耦合器件。由于其不可替代的关键作用,在国际市场供不应求。  2009年2月,国际著名的科学杂志《自然》的记者经过对多国专家走访和行业调研后,发表了一篇题为《中国藏起了这种晶体》的文章,文中感叹:“一个中国实验室成为一种具有重大科学价值的晶体的惟一来源。”而这个实验室就是中科院院士陈创天领导的北京人工晶体研究与发展中心实验室,这个“具有重大科学价值的晶体”就是中国首个对国外实行技术禁运的产品KBBF非线性光学晶体。  直到2016年,美国先进光学晶体公司才研制出KBBF晶体,打破了中国对该晶体技术的长期封锁。  陈创天曾说:“当你为世界的科学事业,为祖国的科学事业做出别人做不出的贡献时,你才会有最大的幸福感。我一生中所遇到的最大幸福,就是看到了BBO晶体所产生的最强烈的紫外光,LBO晶体所产生的最耀眼的绿光和KBBF单晶所产生的震撼人心的深紫外相干光。这种幸福感是任何数量的金钱所买不到的。”  2018年10月31日,82岁的陈创天因病医治无效,在北京逝世。然而他的科学精神,将永远激励着材料领域研究者们不断前行。
  • STEM-EDS分析化合物半导体晶体管元素分布
    自硅基半导体作为一个规模庞大的产业发展起来后,集成电路单位面积上晶体管的数量增加趋势始终遵循摩尔定律[1]。目前,硅基半导体中的关键尺寸(线宽或特征尺寸)已经降低到到10nm以下[2]。相比于硅基半导体,化合物半导体如SiC和GaN基半导体可以满足更苛刻的工作条件(高击穿电场、高热导率、高电子迁移率、高工作温度等),具有更大的输出功率和更好的频率特性,市场需求方兴未艾。化合物半导体的应用场景面向射频、高电压大功率、光电子等领域,不追求硅基半导体级别的先进制程工艺。如GaN制程的基本线宽在0.25~0.50µ m ,生产线以4英寸为主[3]。图1 电子束和样品的相互作用区域及逸出的信号半导体器件结构的微细化演进对电子显微镜视野下的微区元素分析带来了很大的挑战。在电子显微镜中,电子束照射在观察区域上,形成水滴形的相互作用区域,如图1 所示。从该区域中会逸出多种信号,如观察表面形貌的二次电子(SE)、区分成分衬度的背散射电子(BSE)和分析成分的X射线。电子显微镜会配置不同的探测器来接收这些信号进行成像。能谱仪(EDS, Energγ Dispersive Spectrometer)以X射线为信号源分析微区成分分布。图1也显示,这几种信号源的深度不同,SE最浅,BSE次之,X射线最深。不同信号源的逸出深度可以解释同样条件下SE、BSE和EDS成像的空间分辨率差异。
  • HEPS首批X射线拉曼散射谱仪分析晶体完成在线测试
    近日,中科院高能所自主研制的球面弯曲分析晶体取得突破性进展,助力高能同步辐射光源(HEPS)高能量分辨谱学线站建设。针对国内高压科学、能源材料等多学科的学科优势,为满足广大用户需求,HEPS高能量分辨谱学线站正在设计建造一台具有先进国际水平的X射线拉曼散射(XRS)谱仪—“乾坤”。其中,球面压弯分析晶体基于罗兰圆几何条件,将特定能量的X射线聚焦至探测器上,是XRS谱仪的核心光学部件。聚焦面形精度和高能量分辨是球面弯曲分析晶体的两项极为关键,又互相影响的技术指标,因而极具挑战性。“乾坤”谱仪采用6组模组化分析晶体阵列,由90余块半径1m的分析晶体构成,其晶体能量分辨的设计指标与电子-空穴态寿命展宽数量级相当,达到ΔE/E~10-5,球面弯曲面形精度满足1:1聚焦需求。在HEPS工程指挥部的部署下,HEPS高能量分辨谱学线站团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关。线站核心成员郭志英、多学科中心晶体实验室刁千顺,经过多年技术攻关和反复尝试,不断改进优化分析晶体制备工艺,最终探索出兼顾能量分辨与聚焦特性于一体的球面弯曲分析晶体制备方法。今年10月2日-5日,项目团队在北京同步辐射装置(BSRF)1W2B线站上,采用Si(111)双晶单色器Si(220)切槽单色器两次单色化、毛细管微聚焦的光学配置,利用自研三元谱仪样机,对谱仪单模组内15块分析晶体(图1),采用EPICS-Bluesky控制系统实现单色器联动扫描,开展了批量、高精度指标测试(装置见图2)。优化后入射能量带宽实现高分辨,达到半高全宽0.8eV@9.7keV,分析晶体自身能量分辨(图3)达到半高全宽~1eV@9.7keV,与理论预测值相当,聚焦特性得到充分验证(图3、图4),各项指标全部满足工程设计需求。HEPS高能量分辨谱学线站是我国首条专注于硬X射线非弹性散射谱学实验的线站,聚焦核能级超精细结构、声子态密度、芯能级电子跃迁和价电子激发的探测,主要提供核共振散射(NRS)、XRS、共振非弹性散射(RIXS)等谱学方法,服务于量子科学、能源科学、材料科学、凝聚态物理、化学、生物化学、地学、高压科学、环境科学等多学科前沿研究。其中,XRS是一种基于X射线非弹性散射原理的先进谱学实验技术,欧洲ESRF (72块分析晶体)、美国APS(19块分析晶体)、日本SPring-8(12块分析晶体)、法国SOLEIL(40块分析晶体)、英国Diamond光源等光源已建成或规划建设XRS旗舰线站。由于非弹性散射截面极小,比X射线吸收截面小4~5个量级,XRS实验技术需要高亮度光源以增加入射光子通量,同时也需要大立体角谱仪提高探测效率,而大立体角探测需要多块发现晶体实现。首批分析晶体的指标通过在线测试,将满足大批量分析晶体加工的工程需求,对HEPS“乾坤”谱仪、高能量分辨谱学线站的实施都具有里程碑意义。值得一提的是,该类型分析晶体的工艺也已经用于多种类型谱仪分析晶体的研制。接下来,该团队将高质量完成其余模组分析晶体的批量加工,同时,将致力攻关无应力高能量分辨分析晶体的研制。晶体研发工作还获得先进光源技术研发与测试平台PAPS的支持,BSRF-1W2B、3W1、4W1A、4W1B线站提供机时。图1. HEPS自研分析晶体图2. 分析晶体测试装置,其中,左图给出了散射光和分析晶体分析光路示意图图3 分析晶体测试结果,左上为4#晶体能量分辨率实验结果和拟合曲线,左下为三块晶体在探测器上的聚焦光斑,右侧为分析晶体能量分辨率批量测试结果图4 扫描单色器能量时探测器上的光斑变化情况图5 测试人员合影
  • 化学所在金属配合物低维晶体方面取得新进展
    p & nbsp & nbsp 低维有机晶态材料具有规整度高和结构缺陷少的特点,是揭示材料本征特性和构筑高性能光电器件的最佳选择之一,近年来在有机半导体电子学和纳米光子学等方面取得重要应用。考虑有机分子的组装特点,通常使用具有较强分子间作用力的平面型有机分子来制备高规整度的低维晶体。相比较,钌、铱等过渡金属配合物虽然被广泛用于多种光电领域,但因其溶解性较差和分子结构非平面型的特点,相关低维晶态材料的可控制备鲜有报道。 /p p style=" text-align: justify " & nbsp & nbsp 在国家自然科学基金委和中国科学院先导项目支持下,中科院化学研究所光化学实验室姚建年/钟羽武研究团队近年来在光功能金属配合物的设计合成与光电性能方面开展了系统性工作(J. Am. Chem. Soc.2015, 137, 4058 Angew. Chem. Int. Ed.2015, 54, 9192 & nbsp Coord. Chem. Rev.2016, 312, 22 & nbsp Sci. China Chem.2017, 5, 583)。在此基础上,他们近期选取两种结构和溶解度相似的金属铱、钌光功能配合物作为能量给、受体,制备了双组份均匀掺杂或异质结纳米棒晶体,实现高效三线态能量转移和微纳尺度下多级组装过程的原位观察(J. Am. Chem. Soc.2018, 140, 4269-4278)。 /p p style=" text-align: justify " & nbsp & nbsp 最近,科研人员通过溶液再沉淀法成功制备了甲基化苯基吡啶金属铱配合物的高质量一维管状微纳晶体,并进一步通过晶体掺杂,得到了两种不同铱配合物的二元能量转移晶体,实现聚集发光淬灭(ACQ)受体的光放大和微纳尺度温度响应功能。研究表明,当受体的掺杂量为0.2%时,此类晶体可以实现接近80%的三线态能量转移效率和800倍以上的受体磷光放大。在常温时,晶体表现出受体的红色磷光,固态量子产率达到40%。随着温度的降低,晶体的激子能量转移受到抑制,给体的绿色发光重新被激活,实现微纳尺度下发光颜色变化的原位调控与温敏监测。该工作表明了过渡金属配合物在低维晶体制备与光功能方面的独特应用,并为三线态激子能量转移的机制研究提供重要信息(Angew. Chem. Int. Ed.2018, 57, 7820-7825)。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/e32021df-136a-457d-afb5-bfd3ccfeb16d.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图:基于金属配合物低维晶体的光放大与温度响应 /p p br/ /p
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902
  • 约稿|锂离子电池材料晶体结构分析技术探讨
    p style=" text-indent: 2em " span style=" text-indent: 2em " 据Technavio最新报告数据,锂离子电池全球市场规模在2020-2024年期间有可能增长478.1亿美元,且市场的增长动力将在预测期内加速。 /span br/ /p p style=" text-indent: 2em " 无论是锂电实验室研究,还是商业化锂电失效分析,锂电材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。 /p p style=" text-indent: 2em " 锂电材料晶体结构表征手段主要包括 X 射线衍射技术(XRD)、扩展 X 射线吸收精细谱(EXAFS)、中子衍射(neutron& nbsp diffraction)、核磁共振(NMR)、电镜(EM)、拉曼散射(Raman)等。 /p p style=" text-indent: 2em " XRD是目前应用最为广泛的研究晶体结构的技术。而马尔文帕纳科(Malvern Panalytical& nbsp )便是国内XRD市场主流品牌之一,近日,仪器信息网有幸邀请马尔文帕纳科分享了针对锂电材料晶体结构分析技术的探讨及技术展望。 /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) font-size: 18px " i strong 专题约稿|锂离子电池材料晶体结构分析技术探讨 /strong /i /span /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(127, 127, 127) " ——“锂电检测技术系列——晶体结构分析技术”专题约稿 /span /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(127, 127, 127) " 作者:马尔文帕纳科(Malvern Panalytical& nbsp ) /span /p p style=" text-indent: 2em " strong Instrument: /strong 贵司在锂电材料晶体结构分析方面,可以提供哪些仪器技术?有哪些技术优势? /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 锂电检测领域,马尔文帕纳科不仅可以提供电池检测需要的精密仪器,同时,还可以为相关用户获取高质量数据提供专业技术支持。具体而言,即针对不同的电池类型提供对应的解决方案。比如针对生产软包电池,马尔文帕纳科可以提供硬射线(银靶)的高端解决方案;针对原位充放电过程,使用马尔文帕纳科先进的GaliPIX探测器可以每30秒在线测量一次,对铜到银的辐射达100%的接收效率,捕捉到原位充放电过程中晶体相变的细节,进而了解电池相变引起的膨胀和收缩。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/31848243-1328-476c-8df2-fc26e7dbdc18.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 装载了电池样品的Empyrean衍射仪 /span /p p style=" text-indent: 2em " 上图是马尔文帕纳科荷兰实验室对电池进行分析使用的仪器照片和电池样品照片。该仪器使用银靶辐射作为入射光源,光管发出的发散X射线需经过入射光路专用的银靶聚焦光反射镜反射,转化为焦点在探测器上的高强度聚焦光束,电池样品垂直固定在样品台上,光束穿透样品发生衍射,衍射光路使用CdTe重元素半导体感应芯片的GaliPIX3D矩阵探测器采集衍射信号,整套光路为透射几何。实测电池样品为商用方型手机电池。充放电循环设置为3.2-4.2V,1/3C-rate,共4循环。单次衍射扫描总时间为5分钟,实验总计14小时。 /p p style=" text-indent: 2em " 如果用户没有软包电池的样品台,马尔文帕纳科可以为用户提供一个纽扣电池结构的原位充放电样品池,测试您的正负极材料。同时也可以提供加热和冷却选项。不同类型电池样品的解决方案如下表: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 302px " src=" https://img1.17img.cn/17img/images/202005/uepic/1ef962a3-2486-4f22-bb67-36e136d13e1e.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 302" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 马尔文帕纳科的主要优势是提供高质量数据,以及切实有效的解决方案,有助于用户电池材料研究及加工工艺改善,或帮助科研用户发表高质量文章。 /span /p p style=" text-indent: 2em " strong Instrument: /strong strong 锂电检测领域主要用户分布于哪些领域?有哪些典型用户? /strong /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 马尔文帕纳科用户广泛分布在工业及学术领域。工业领域方面,中国电池行业非常成熟,如比亚迪、CATL等遍布全球的知名公司都是马尔文帕纳科的用户,工业领域通过使用马尔文帕纳科的新技术系统,不断提升电池的质量和性能。学术领域,主要是小规模开发新技术的用户,中国高校处于电池研究的前沿,研究人员正在利用马尔文帕纳科的系统来不断进行新材料的研究开发。 /p p style=" text-indent: 2em " strong Instrument /strong : strong 贵公司针对锂电材料晶体结构分析开发了哪些应用解决方案? /strong /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 马尔文帕纳科的Empyrean XRD平台以其优异性能和灵活性而闻名于世。结合马尔文帕纳科HighScore Plus软件,可以用于专门定制分析电池材料,用户可以从合成阶段到组装电池全流程分析电池材料。利用对应的解决方案,用户可以研究创新正极材料的晶体结构,可以测量合成石墨负极的石墨化程度,可以研究加热或冷却时这些材料的变化;对于组装好的电池,还可以原位测量和分析失效原因,并将这些失效与底层的晶体结构变化联系起来。同时,马尔文帕纳科不仅提供硬件和软件方案,还将提供专业知识和技术支持。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 146px " src=" https://img1.17img.cn/17img/images/202005/uepic/c86492d7-c700-41de-9ef7-79f6185b453e.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 146" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 0em " 解决方案免费获取链接: /span span style=" text-indent: 0em text-decoration: underline " a href=" https://www.instrument.com.cn/application/Solution-926077.html" target=" _blank" style=" color: rgb(0, 176, 240) " span style=" text-decoration: underline text-indent: 0em color: rgb(0, 176, 240) " 链接 /span /a /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 151px " src=" https://img1.17img.cn/17img/images/202005/uepic/5dbe84d2-b164-421b-b6d0-c26224560fdb.jpg" title=" 4.png" alt=" 4.png" width=" 600" height=" 151" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 0em " 解决方案免费获取链接: /span a href=" https://www.instrument.com.cn/application/Solution-926219.html" target=" _blank" style=" text-indent: 0em color: rgb(0, 176, 240) " 链接 /a /p p style=" text-indent: 2em " strong Instrument /strong strong :近两年来,贵公司在锂电领域的业界表现如何? /strong /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 锂离子电池领域,马尔文帕纳科是X射线衍射解决方案的技术领导者。中国70%的大型电池厂家使用马尔文帕纳科的激光粒度仪与X射线系统来表征电池材料粒度及粒度分布与晶体结构。在研究中,马尔文帕纳科的原位XRD解决方案与GaliPIX探测器设置了很高的基准,该基准也是目前市场上其他产品无法企及的。 /p p style=" text-indent: 2em " strong Instrument: /strong strong 贵公司如何看待锂电市场为仪器企业带来的机遇? /strong /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 随着锂离子电池市场的快速发展,特别是在中国,仪器制造商的前景十分广阔。整体的仪器市场会有高增长的同时,对仪器质量和服务支持的需求也会很高。因此,只有拥有良好基础并做好充足准备的公司才能更好的把握锂电发展带来的机遇。 /p p style=" text-indent: 2em " strong Instrument: /strong strong 贵公司将采取哪些措施加强对锂电领域的拓展? /strong /p p style=" text-indent: 2em " strong Malvern Panalytical: /strong 马尔文帕纳科将完全以客户为中心,不断扩展马尔文帕纳科的服务支持和专家网络。由于电池技术仍在不断发展,马尔文帕纳科将不断调整已有的解决方案,以应对新技术引入带来的挑战,使马尔文帕纳科的客户能够缩短开发过程,并在工业规模扩大期间获得正确的解决方案。 /p p style=" text-indent: 2em " strong 附1:马尔文帕纳科X射线衍射仪产品系列 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 267px " src=" https://img1.17img.cn/17img/images/202005/uepic/50b4685a-3b98-40a3-a9bb-2f7f932d2190.jpg" title=" 5.png" alt=" 5.png" width=" 500" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " Empyrean 锐影系列多功能X射线衍射仪 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 161px " src=" https://img1.17img.cn/17img/images/202005/uepic/23284c83-b66f-4f81-bb0c-91b0c5e5ce59.jpg" title=" 6.png" alt=" 6.png" width=" 500" height=" 161" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Aeris 系列台式X射线衍射仪 /span /p p style=" text-indent: 2em " strong 附2: /strong span style=" text-indent: 2em " & nbsp /span span style=" color: rgb(0, 0, 0) " strong style=" text-indent: 2em color: rgb(255, 0, 0) font-family: 宋体, " arial=" " margin:=" " padding:=" " 锂电检测系类专题约稿征集中 /strong /span /p div class=" ContL" id=" newContent" style=" margin: 0px padding: 0px color: rgb(68, 68, 68) line-height: 26px " arial=" " white-space:=" " p style=" margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em " span style=" margin: 0px padding: 0px text-indent: 2em " 为促进锂电检测技术发展,近期,器信息网结合锂离子电池检测项目品类,从2019年起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 /span span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) " (锂电检测系列专题内容约稿征集进行中,欢迎投稿: /span span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline " 15311451191,yanglz@instrument.com.cn /span span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) " ) /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px " align=" center" tbody style=" margin: 0px padding: 0px " tr class=" firstRow" style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px font-family: 宋体 " 系列序号 /span /strong /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列专题主题 /span /strong /p /td td width=" 126" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px font-family: 宋体 " 专题链接 /span /strong /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 1 /span /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——电性能检测技术 /span /p /td td width=" 126" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " a href=" https://www.instrument.com.cn/zt/lidian1" style=" margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none " 【链接】 /a /span /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 2 /span /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——形貌分析技术 /span /p /td td width=" 126" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " a href=" https://www.instrument.com.cn/zt/lidian2" style=" margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none " 【链接】 /a /span /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 3 /span /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——成分分析技术 /span /p /td td style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " a href=" https://www.instrument.com.cn/zt/lidian3" style=" margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none " 【链接】 /a /span /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 4 /span /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——晶体结构分析技术 /span /p /td td style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" margin: 0px padding: 0px font-family: Arial, sans-serif " 5 /span span style=" margin: 0px padding: 0px font-family: 宋体 " 月上线 /span /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 5 /span /p /td td width=" 359" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——X射线光电子能谱分析技术 /span /p /td td rowspan=" 2" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 即将上线 /span /p /td /tr tr style=" margin: 0px padding: 0px " td width=" 53" style=" margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 6 /span /p /td td width=" 359" style=" margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-top: auto margin-bottom: auto text-align: center " span style=" margin: 0px padding: 0px font-family: 宋体 " 锂电检测技术系列——安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p style=" margin-top: 0em margin-bottom: 1em padding: 0px text-indent: 2em " br/ /p /div
  • 逆境中长出的“中国牌”晶体
    2009年2月,国际期刊《自然》发表题为《中国晶体——藏匿的珍宝》的采访调研文章,认为中国禁运氟代硼铍酸钾晶体(KBBF),将对美国功能晶体相关领域的研究和发展产生严重影响,并断言“其他国家在晶体生长方面的研究,还无法缩小与中国的差距”。该文的缘起是中国2007年正式宣布停止对外提供KBBF,美国人不惜重金请求购买或邀请相关中国专家去美国工作,都被严词拒绝。中国科学家用国际领先的自主创新成果在高技术领域对美国说“不”。从20世纪60年代开启理论研究,到80年代研制出低温相偏硼酸钡晶体(BBO)、三硼酸锂晶体(LBO),再到90年代研制出KBBF,中国科学院福建物质结构研究所(以下简称福建物构所)等单位的科学家,打破了中国在晶体生长领域仿制、跟跑的局面,让“中国牌”晶体闪耀世界。几十年过去了,“中国牌”晶体这个“老字号”更显创新活力。很难想象,当年研发“中国牌”晶体的科学家们经历了怎样的奋斗历程。不跟在外国人后面走材料是人类社会进步的里程碑。作为一类重要材料,晶体指能自发生长成规则几何多面体形态的物体。随着科技进步和经济发展,人工功能晶体已成为激光设备等不可或缺的基础材料。激光技术是20世纪“四大科技发明”之一。作为激光设备的上游关键部件,非线性光学晶体可以将某一频率的激光转换成另一频率的激光。20世纪60年代初,国外已发现一些非线性光学晶体材料,而中国尚未研发出自己的晶体。整体看,国际上非线性光学晶体研发都相对滞后,导致激光器进一步应用乏力。功能晶体乃至所有功能材料的性能,都取决于其组成和结构,而这需要专业人才深入研究。在那个年代,我国缺乏这方面的人才,谁来研发“中国的晶体”?1945年,我国结构化学领域开拓者卢嘉锡留学归国,组织队伍开启晶体材料研究,并在国内首次招收以结构化学专业为主的研究生。卢嘉锡1955年当选中国科学院化学学部委员,1981年至1987年任中国科学院院长。在美国留学期间,卢嘉锡在美国国家科学院院士鲍林的指导下,利用X射线和电子衍射法技术分析研究晶体结构和分子结构;他所设计的卢氏图表载入《国际X射线晶体学用表(第二卷)》,被国际化学界应用了几十年。国外晶体研究已开展数十年,我国如何赶超?基于对国际国内晶体研究的分析,卢嘉锡认为探索新晶体材料,不应受国外学术思想束缚,跟在外国人的后面走,而应在分析、总结国外已有工作基础上走自主创新之路。“打造科研平台很关键。”福建物构所所长曹荣介绍,1959年,中国科学院福建分院设立并筹建技术物理所、化学所等6个研究所和生物物理研究室。卢嘉锡一直构想建立现代化物质结构研究室,福建分院的设立让他看到了希望。1960年,卢嘉锡经过深思熟虑,向中国科学院和福建省委提出将福建分院筹建的“六所一室”整合,最终形成福建物构所,卢嘉锡为首任所长。自此,卢嘉锡带领福建物构所的研究团队开始研制非线性光学晶体。卢嘉锡(左)指导福建物构所青年科技人员工作。让人匪夷所思的重大发现当时,我国缺乏技术、没有经验和专业人才,只能从仿制起步。由于没有理论指导,工作很快就遇到瓶颈。那时科研条件极为简陋。建所之初,主体建筑是一幢四方形平房,人员主要是复退军人和大中专毕业生,办公和仪器设备是从其他学校搬来的,吃饭就在临时搭建的竹棚里。 创办初期的福建物构所。即便如此,卢嘉锡还是凭借研究积累,部署了结构化学、非线性光学晶体等研究方向,希望从结构化学角度探讨晶体和分子结构、电子结构之间的关系。构想有了,关键是靠大团队联合开展大攻关。为此,卢嘉锡想方设法从高校调来理论物理等专业的毕业生,陈创天(2003年当选中国科学院院士)就是其中之一。那是1962年,陈创天25岁,刚从北京大学物理系毕业。到福建物构所没几天,卢嘉锡就找到他,语重心长地说:“研究所搞的是结构化学,你的研究重点要从理论物理向结构化学转移。”卢嘉锡给陈创天介绍了基本知识并列出参考书单,嘱咐他“可边工作边学习,不懂可来问我,相互切磋”。此后3年,陈创天系统学习了结构化学知识,最终选择非线性光学材料结构和性能之间关系为研究方向。1976年,苦心钻研10年后,陈创天提出阴离子基团理论,找到了非线性光学晶体材料宏观效应与微观结构间的关联。次年,他被任命为非线性光学材料探索组组长。据介绍,当时研究所几乎一穷二白,一群怀揣梦想的年轻人自己动手创造科研条件,如自行组装激光器、测试设备等。1979年,研究组发现BBO是一种非常有希望的新型材料。3年后,他们终于生长出大块BBO。 BBO晶体。中国科学家以翔实的数据和无懈可击的实验证明了BBO是非中心对称的晶体,在200纳米至350纳米波长范围内,其透过率可达80%以上。1986年,陈创天在美国参加一个国际激光与光电子会议,向全世界宣布成功研制出BBO,引起轰动。业界赞誉这是中国人按照自己的科学思想创造出的首块“中国牌”晶体。吴以成(2005年当选中国工程院院士)正是那一年在福建物构所获得博士学位。他回忆:“陈老师告诉我们,他发言结束后,参会的200多位科学家竟有一多半跟他出去向他进一步了解情况,导致会都没法开了。”福建物构所副所长、国家光电子晶体材料工程技术研究中心主任林文雄1988年被保送到福建物构所读研究生。“教材都把BBO写进去了。”林文雄说,BBO的面世让全世界的科学家感到匪夷所思,他们感受到严峻挑战,认为这样的重大发现不该在中国诞生,而应在美国、日本或欧洲国家。曹荣感慨,福建物构所取得这样的成就,离不开国家的一贯支持,也得益于中国科学院面向世界科技前沿、面向国家重大需求进行的前瞻布局和建制化研究。 福建物构所建所初期的结构化学研究队伍。在高技术领域对外国说“不”正当外国学者为横空出世的“中国牌”晶体感到震惊时,陈创天、吴以成等中国科学家又在1987年宣布一项新的重磅成果——他们发现并生长出第二块“中国牌”晶体LBO。 LBO晶体。与BBO相比,LBO紫外截止波长移到150纳米,是迄今为止实现高功率三倍频输出最好的非线性光学晶体。BBO、LBO分别被美国《激光电子学》杂志评为1987年、1989年“十大尖端产品”。“BBO和LBO的背后,光研究组就有多个,包括理论组、化学合成组、结构分析组、相图研究组、晶体生长组等。大家互相协作、劲往一块儿使,才有这样的结果。”吴以成说。山东大学教授王继扬介绍,当时国内晶体研究界有“三驾马车”,分别是福建物构所、山东大学和南京大学,它们在晶体生长、消除晶体畴等方面各有所长,非常团结又能创新,把晶体研究这个国际上本不受重视的领域变成各国争相研究的焦点。“我国科学家有股迎难而上的拼劲,敢走新路、勇于自主探索。”1988年,福建物构所成立成果转化公司——福建福晶科技股份有限公司(以下简称福晶科技),开启了BBO、LBO商业化之路。“商业化后,外国就眼红了。BBO面世时,中国的专利法还没出台,但LBO研发出来时已有专利法,团队有意识地申请专利将它保护起来。”吴以成说,美国最先坐不住,他们以专利无效为借口和中国打官司,希望能取消中国的LBO晶体专利权。“美国最终没有凭借蹩脚的理由得逞。”吴以成回忆,当时国际上关于LBO的研究成果都是中国科学家发表的,团队把整个研究的详细实验记录等收集起来应诉,最终打赢了官司。这个案例再次印证了团队协作的重要性。“那时候,团队里以林朝熙为代表的知识产权方面的专家就懂得申请专利,他们不是为了报奖,而是要把自主创新成果保护起来。”林文雄说,更关键的是,他们申请的不是晶体生长专利,而是器件专利,很好地避免了国外钻空子侵权。LBO面世前,美国等国家都在基于BBO等晶体开展多倍频研究,中国科学家也在寻求新突破。“我国虽已取得领先成果,但当时科研条件仍很落后。”吴以成举例,LBO晶体生长是在坩埚中进行的,耐温1000摄氏度以上的铂金是做坩埚的理想材料。当时铂金比黄金还贵,一小块就上千美元。“我们每次用完坩埚都要称重,如有损耗须说明。然而落后的科研条件没能阻止我们做出领先世界的重大成果。” 科研人员用提拉法培养晶体。外国对中国科学家的态度,也随着“中国牌”晶体的相继面世,从傲慢转向尊重。吴以成回忆,陈创天讲过这样一件事。 BBO面世前,有位中国学者在美国一家实验室工作,有人不小心打碎了一块杜邦公司生产的非线性光学晶体,中国学者想把碎片带回国研究,但被实验室负责人以保密为由拒绝。没想到数年后,中国就制备出领先世界的BBO。20世纪90年代,陈创天在日本访问期间,日方曾为他升起中国国旗表示尊敬和欢迎。研发出BBO、LBO后,陈创天团队意识到,由于微观结构条件限制,二者无法通过简单倍频技术产生深紫外光谱区的谐波光输出。经过反复计算和思考,陈创天等又踏上一条长达10多年的新型非线性光学晶体探索之路,研制出全球独一无二的KBBF。KBBF是目前唯一可直接倍频产生深紫外激光的非线性光学晶体。当时国际激光界普遍认为,用固体激光器产生波长小于200纳米的激光几乎不可能,KBBF则使激光最短波长达到184.7纳米,在深紫外激光领域大展身手。KBBF独特的薄片层状生长习性,使其难以获得实际应用。为此,陈创天联合中国科学院院士蒋民华团队、中国工程院院士许祖彦团队等开展联合攻关,攻克晶体生长难关,实现多种波长的深紫外激光有效输出,保障了中国在深紫外固体激光方面的国际领先地位。2007年,KBBF被禁止对外出口。中国科学家用国际领先的自主创新成果,在高技术领域对外国说“不”。“老字号”焕发新活力2000年,洪茂椿(2003年当选中国科学院院士)任福建物构所常务副所长,主持研究所工作。当时,中国科学院基于对知识创新与技术创新前沿的把握,批准福建物构所关于福晶科技改制的申请,做大做强“中国牌”晶体产业。洪茂椿面临的第一个难题,就是让“好酒”走出“深巷”。“首先要聚人才。”洪茂椿表示,当时福建物构所建所成立已有40多年,老一辈科学家年纪大了,科学家梯队出现了断层。“当时所里引进了一批人才,积极申请系列科研项目,包括多个上亿元的大项目。”洪茂椿强调,当时申请项目并非盲目扩充研究方向,而是更聚焦科技创新价值链,把知识创新、技术创新与产业创新链接起来,以国家重大需求推动福建物构所的科学研究。2008年,福晶科技正式上市。几年里,洪茂椿经常白天忙完,晚上回所里搞科研,企业管理经验是现学现用。好在经过几年努力,人才梯队建起来了,晶体产业发展脉络理顺了。这个团队人才济济。中国科学院光电材料化学与物理重点实验室主任吴少凡带领团队致力于激光与非线性光学晶体、闪烁晶体新型功能材料研究,成果已在国家重大工程中获得应用。“90后”研究员罗敏已成长为课题组长,聚焦非线性光学晶体材料的设计、合成和生长,以学术骨干身份参与国家重大项目和中国科学院战略性先导科技专项等。走进福晶科技的晶体熔盐车间,工作人员正在一排排晶体生长监控器前观察晶体生长炉的温度。“以前晶体生长都需要工作人员在坩埚旁守着,温度很高,夏天更受不了,现在定时观察显示器即可。”福晶科技董事长陈辉说。如今的福晶科技已成为全球知名的LBO、BBO、磁光晶体等龙头厂商,产品广泛应用于激光、半导体等领域,2023年实现营业收入7.82亿元。“需求端推动供应,目前公司生产的我国原创晶体占全球此类晶体生产总量的近五成,出口超过四成。”陈辉说,“国内晶体需求占全球总需求的比例,从20世纪90年代初的不足5%到如今超过五成,说明我们积极应对了产业链转移及国内需求增长等市场变化。” 晶体提拉生长车间。福建物构所供图今天,我国的晶体研究是否依然领先?曹荣表示,我国原创晶体在研制和应用上不断取得新成果,始终领先国际。近年来,福建物构所又取得一系列引领国际的研究成果,使我国成为激光晶体强国。“当前,我们正积极将人工智能技术应用到晶体设计和生长等环节。”曹荣表示,福建物构所将进一步面向世界科技前沿及国家重大需求,抢占科技制高点,助推我国科技创新事业迈上新台阶。“纵观我国晶体研究发展史,我感受最深的就是科研没有捷径,是靠一代又一代科学家一步步走出来的。”洪茂椿表示,跟在别人后面永远不是创新。正是有了国家和中国科学院对晶体研究的持续大力支持,有了几代科学家的团结互助、勠力创新,我国晶体研究才长盛不衰。
  • 预见新一代晶体学分析技术:原位观测与缺陷表征——访北京大学孙俊良教授
    孙俊良教授,北京大学化学与分子工程学院无机固体材料化学课题组负责人、国家杰出青年科学基金获得者,长期从事结构确定方法的发展(包括单晶/粉末衍射、三维电子衍射技术等)和无机固体材料的合成及应用。经过数年的积累与突破,孙俊良教授已然成为我国晶体学研究领域的代表人物之一,在业界享誉盛名。近日,借助第十七届中国科学仪器发展年会(ACCSI2024)契机,仪器信息网有幸采访了孙俊良教授,请他围绕晶体学表征技术的发展与应用等展开分享。点击以下视频,观看采访详情:仪器信息网:请介绍一下您的主要研究方向?孙俊良教授:我现在的研究方向主要有两个。一个是材料的研发,包括电池材料和孔材料;另一个是电子衍射相关表征方法的研发,这个与仪器设备的相关性较强,也是我的一个更加带有标签性的工作。仪器信息网:晶体学主要涉及哪些表征技术?我国的应用水平如何?孙俊良教授:晶体学其实是一个很广的范围,如果从现代晶体学来说,它大约起源于一个世纪前X射线衍射技术的出现,这标志着晶体学真正开始用于结构分析了,后面又有电子衍射、中子衍射等一些比较老的衍射技术,现在把很多的散射、甚至是相关的非弹性散射也放在里面了。当然,早期的衍射技术侧重于一些具有比较高对称性的这种平移对称性,简单来说就是晶体,而现在的衍射技术已经发展到了非晶体材料也能够通过类似的方式去分析,比如“Pair Distribution Function,PDF”,是一种局域结构的分析方法,近几年发展的非常快。仪器信息网:作为中国晶体学会秘书长,请您谈谈材料表征技术对于晶体学的重要意义?中国晶体学会围绕材料表征技术主要开展哪些工作?孙俊良教授:我觉得晶体学能够真正让大家毫无怀疑地去确定物质的结构,可以说是现代科学的一个支柱。通常的材料,也就是固体材料,我们需要知道里面的一个个原子是怎么排布的,因为材料的性能和原子的排布具有很强的关联性。比如大家比较熟知的锂电池材料,要研究锂电池在充放电过程中发生了什么样的结构变化,为什么用着用着电量就下降了,这些都离不开晶体学的原位表征方法。总的来说,晶体学促使了材料的发展,同时材料的发展又给晶体学的表征技术提出了更高的要求,这又促使了晶体学的发展。中国晶体学会每两年举办一次所有专委会一起的年会,平时还会有一些科普或教育性质的研讨会,比如有单晶x射线衍射、粉末x射线衍射、电子衍射、小角散射,后面还会有中子散射以及刚刚提到的局域结构的分析方法——PDF表征技术,希望推动更多国内学者、研究人员能够用到现在全球相对而言快速发展的技术,而不仅仅是二、三十年前就已经发展比较成熟的那些。仪器信息网:请您谈谈对晶体学表征技术的未来展望?孙俊良教授:未来肯定会有一些不定因素,我只能就现在已有的稍微谈一下。现在很多已经发展相对成熟的技术,总体来说还是对静态的观测。如果要观测动态的,当然我们已经可以做到分钟级别的了,但是要观测秒级甚至毫秒级的,就对晶体学提出了很高的要求。这是一个原位的技术,相当于时间分辨,我认为这是未来发展的一个重要趋势。我们以前通常观测的是“完美”的晶体结构,其实材料很多的性能来自于它里面的缺陷,但是晶体学是否能够对这些缺陷进行很好的表征,现在来说还比较困难。当然,通过电子晶体学图像可以看到一些缺陷,但是只能看到局部,有可能这个颗粒里面是这个缺陷,那个颗粒里面是另一个缺陷,那到底缺陷跟它的性能有什么关联,还需要一些比较笼统的、或者统计性更强的技术。现在,PDF分析方法正在往这个方向上走,但是不是会有一些更好的方法?我觉得还是值得大家再去思考、再去发展的。仪器信息网:X射线衍射技术是一门相对古老的技术,上海光源、北京光源陆续投入使用是否会对X射线衍射技术的进一步发展有推动作用?孙俊良教授:从光源上光的质量来说,它显然是比实验室里普通的X射线光源要好很多,那么自然而然是在推动发展。比如做粉末衍射,得到的峰就会更锐一些,信号区分度也更高一些。如果信号很弱,它可以通过产生低背景,然后拿到相对较强的信号。同时强的信号会对分辨率有很好的帮助,像通常说的同步辐射可以观测到微米级的晶体,现在x射线自由电子激光可以观测到百纳米级别。中国的这个技术现在还在发展中,还没有真正把它给建立起来。我相信在未来十年,这个技术在中国能够得到更好的应用。仪器信息网:今年是仪器信息网25周年,请您谈谈对仪器信息网未来有哪些建议或期待?孙俊良教授:我觉得仪器信息网上面的信息还是挺全的,比如粉末x射线衍射仪,基本上把中国市场上主要有销售的企业都包括在里边了,还有丹东通达等国产仪器厂商。近年来,国家对国产仪器特别重视,我相信国产仪器水平会快速提升,仪器信息网以后可以把国产仪器的最新进展多报道一下,这有利于国内整体仪器设备的发展。另外,我也看到仪器信息网上还有一些论坛类的内容,如果能有专家多参与进来,在论坛上多体现设备发展过程中的问题和改进方法、设备使用过程中的问题和解决方法,这将促使国内仪器的研发和使用都再上一个台阶。附:关于ACCSI“中国科学仪器发展年会(Annual Conference of China Scientific Instruments,ACCSI)”始于2006年,已成功举办十七届。每年一届的“中国科学仪器发展年会”旨在促进中国科学仪器行业“政、产、学、研、用、资”等各方的有效交流,力求对中国科学仪器的最新进展进行较为全面的总结,力争把最新的有关政策、最前沿的行业市场信息、最新的技术发展趋势在最短的时间内呈现给各位参会代表。更多第十七届中国科学仪器发展年会精彩内容,请点击链接:ACCSI2024现场直击
  • 蔡司首款晶体学CT系统隆重上市
    扩展了无损衍射衬度断层扫描成像解决方案德国耶拿,2021年3月24日作为无损3D成像系统性能的引领者,蔡司发布了全新微米CT(microCT)系统Xradia CrystalCT™ ,为工业和科研实验室实现各种金属和合金、增材制造、陶瓷和药物样品等多晶材料的三维晶体学成像提供解决方案。蔡司微米CT(microCT)系统Xradia CrystalCT的研发基于传统CT而设计,旨在提供衍射衬度断层扫描(DCT)成像,也是首次在全球范围内将DCT技术商业化。它使得研究人员能够将三维晶体学信息和吸收衬度断层扫描数据有机的结合。蔡司Xradia CrystalCT是蔡司与实验室衍射成像先驱Xnovo Technology ApS合作开发,并提供DCT成像的最新Xradia平台。 蔡司Xradia CrystalCT是搭建在微米CT上的商业化实验室衍射衬度断层成像(DCT)系统。与传统的破坏性三维晶体学成像方法相比,无缝的大体积晶粒成像让实验数据量更具代表性。高级的采集模式可实现自由拼接扫描以快速准确地获取三维晶粒数据。先进的数据采集模式通过免拼接的扫描方式,可快速准确地得到三维晶粒数据。大尺寸样品的成像能力降低了实验室中的很多限制,可实现更多样品类型的分析和更少的样品准备时间,从而缩短了整体分析时间。更快地采集速度可缩短样品运行时间,从而提高实验室分析效率。对金属等材料的晶体结构进行成像并量化材料内部晶体学取向的能力有助于理解和优化材料性能。微米CT非破坏性成像的特性促进了对原位显微结构演变的理解,可控外场环境中,例如热处理,力学加工以及模拟环境对材料行为的影响。这些研究有助于评估新型、更轻巧和更坚固的先进材料的性能和耐久性,并解决诸如功能性、安全性和改进的经济性等问题。在蔡司3D X射线显微镜Xradia 620 Versa上提供的DCT成像功能的扩展模块之前,DCT成像只能在同步辐射光源上实现。蔡司Xradia CrystalCT除了作为一个DCT平台之外,它还是一个优秀的微米CT成像系统,它是建立在高度成熟稳定的蔡司Xradia Versa基础上,为一系列3D成像需求提供出色的分辨率和图像质量。利用蔡司Xradia CrystalCT对铝铜合金进行了结合衍射衬度和吸收衬度的多模块成像和分析。图片展示了使用CrystalCT对材料进行多模式成像表征。三维渲染图是衍射衬度成像和吸收衬度成像的叠加演示,其中衍射衬度成像是依据铝晶粒的晶体学取向进行着色,吸收衬度成像中铜富集的相显示高对比度颗粒和偏析浸润的晶界。 来源: M. Kobayashi, 丰桥技术科学大学, 日本Al-4wt%Cu拉伸样品的三维晶粒图像,其测试区域截面尺寸(长)为1.25 mm,(宽)为1.0 mm,(厚)为0.5 mm。使用高纵横比的黄金角螺旋扫描模式(helical phyllotaxis HART)。蔡司 X射线显微镜负责人Daniel Sims表示:借助CrystalCT,我们将Xradia Versa平台多年来的创新和优势带给更广泛的受众。迎合市场需求的CrystalCT产品提供了一系列被证实成熟可靠的3D成像性能。此外,我们的客户还可以额外享受投资保护,因为平台具有高度可扩展性和广泛的附加功能,随着业务和实验室需求的扩大,可以升级到蔡司顶级Versa机型。Xnovo公司CEO Erik Lauridsen说:“我们很自豪能够支持下一代基于实验室的衍射成像技术,现在该技术将得到更广泛的应用。借助在数据重建和分析方面成熟的专业知识,我们能够将DCT方法应用到微焦点计算断层扫描平台上。而蔡司的微米CT系统为该应用提供了理想的环境。”
  • 浅析蛋白质晶体成像仪
    蛋白质(protein)是组成人体一切细胞、组织的重要成分,是生命的物质基础,分子结构由α—氨基酸按一定顺序组合和排列形成氨基酸顺序不同的多肽链,这些多肽链进一步通过交联构成。蛋白质的复杂结构是其功能多样性的前提和基础,对其分子结构及发挥生物活性的机制进行研究具有重要意义。蛋白质空间结构(图片来源:网络)与其他有机或无机化合物晶体结构一样,蛋白质晶体结构是由相同的蛋白质分子或蛋白质分子复合物在空间中有序排列,从而构成的规则的3D阵列。根据蛋白质晶体结构排列的对称性,晶体中的所有分子相对于晶格具有有限数量的独特取向。蛋白分子通过在晶格中的有序排列,将单个分子的衍射值叠加,最终获得足以测量的衍射强度,其中晶格起到放大器的作用。结晶研究作为探究生物大分子结构及功能的重要手段,有力的推动了蛋白质分子结构的研究进程。 蛋白质晶体结构(图片来源:网络)时至今日,蛋白结晶还存在许多问题,制约着蛋白结构测定的速度。工欲善其事必先利其器,蛋白晶体成像仪作为高通量筛选蛋白质结晶的重要工具,可进行蛋白晶体研究的自动化成像和分析,为下一步进行蛋白质晶体衍射、确定结构奠定基础,最终应用于制药和生命科学领域的研究。蛋白晶体成像仪通过精确的温度控制提供稳定的蛋白质晶体培育环境,在甄别分析中,通过可见光、偏振光、紫外三种模式辨别晶体是否为蛋白晶体并观察晶体成长过程,可对晶体快速定位、自动化拍摄高质量影像。相比传统显微镜,它在蛋白晶体观察捕获的敏感度、成像质量、样本的自动定位等方面都有了很大提升,重要参数指标包括物镜倍数、附镜倍数、数值孔径、景深(mm)、视场(mm)、像素尺寸(μm)、光学分辨率(μm)等。目前市场的蛋白质晶体成像仪主流厂商有赛默飞、腾泉生物、安捷伦、Formulatrix等,不同品牌产品也各具特色。以Formulatrix的产品为例来介绍蛋白质晶体成像仪,蛋白晶体成像仪同时具备可见光和紫外荧光功能,可创造蛋白晶体的培养、成长环境,精确恒定温度和振动隔离。除此之外,仪器提供最多970个结晶板的存储和培养空间,能实现准确实验样本自动定位、智能影像捕捉拍摄等功能。在观察晶体成长过程的同时,可进行数据库数据对比和搜索,以确定蛋白晶体的存在和成长,对蛋白质晶体进行跟踪研究。蛋白液滴定局部成像(图片来源:Formulatrix)蛋白质晶体可见光及紫外成像(图片来源:Formulatrix)更多信息,点击进入仪器信息网相关仪器专场:https://www.instrument.com.cn/zc/2582.html
  • 十一种化学气相沉积(CVD)技术盘点
    CVD(化学气相沉积)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。不过随着技术的发展,CVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些CVD技术。等离子体增强化学气相沉积(PECVD)等离子体增强化学气相沉积是在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。等离子体增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强;应用范围广,可制备各种金属膜、无机膜和有机膜。【市场分析】上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇高密度等离子体化学气相淀积(HDP CVD)HDP-CVD 是一种利用电感耦合等离子体 (ICP) 源的化学气相沉积设备,是一种越来越受欢迎的等离子体沉积设备。HDP-CVD(也称为ICP-CVD)能够在较低的沉积温度下产生比传统PECVD设备更高的等离子体密度和质量。此外,HDP-CVD 提供几乎独立的离子通量和能量控制,提高了沟槽或孔填充能力。但是,HDP-CVD 配置的另一个显著优势是,它可以转换为用于等离子体刻蚀的 ICP-RIE。 在预算或系统占用空间受限时,优势明显。听起来可能很奇怪。但是这两种类型的工艺确实可以在同一个系统中运行。虽然存在一些内部差异,例如额外的气体入口,但两种设备的核心结构几乎完全相同。在HDP CVD工艺问世之前,大多数芯片厂普遍采用PECVD进行绝缘介质的填充。这种工艺对于大于0.8微米的间隔具有良好的填孔效果,然而对于小于0.8微米的间隙,PECVD工艺一步填充具有高的深宽比的间隔时会在间隔中部产生夹断和空洞。在探索如何同时满足高深宽比间隙的填充和控制成本的过程中诞生了HDP CVD工艺,它的突破创新之处在于,在同一个反应腔中同步地进行沉积和刻蚀工艺。微波等离子化学气相沉积(MPCVD)微波等离子化学气相沉积技术(MPCVD)适合制备面积大、均匀性好、纯度高、结晶形态好的高质量硬质薄膜和晶体。MPCVD是制备大尺寸单晶金刚石有效手段之一。该方法利用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。微波电子回旋共振等离子体化学气相沉积(ECR-MPCVD)在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD)。由于微波CVD在制备金刚石膜中的独有优势,使得研究人员普遍使用该方法制备金刚石膜,通过大量的研究,不仅在MPCVD制备金刚石膜的机理上取得了显著的成果,而且用CVD法制备的金刚石膜也广泛的用于工具、热沉、光学、高温电子等领域的工业研究与应用。超高真空化学气相沉积(UHV/CVD)超高真空化学气相沉积(UHV/CVD)是制备优质亚微米晶体薄膜、纳米结构材料、研制硅基高速高频器件和纳电子器件的关键的先进薄膜技术。超高真空化学气相沉积技术发展于20世纪80年代末,是指在低于10-6 Pa (10-8 Torr) 的超高真空反应器中进行的化学气相沉积过程,特别适合于在化学活性高的衬底表面沉积单晶薄膜。石墨烯就是可以通过UHV/CVD生产的材料之一。与传统的气相外延不同,UHV/CVD技术采用低压和低温生长,能够有效地减少掺杂源的固态扩散,抑制外延薄膜的三维生长。UHV/CVD系统反应器的超高真空避免了Si衬底表面的氧化,并有效地减少了反应气体所产生的杂质掺入到生长的薄膜中。在超高真空条件下,反应气分子能够直接传输到衬底表面,不存在反应气体的扩散及分子间的复杂相互作用,沉积过程主要取决于气-固界面的反应。传统的气相外延中,气相前驱物通过边界层向衬底表面的扩散决定了外延薄膜的生长速率。超高真空使得气相前驱物分子直接冲击衬底表面,薄膜的生长主要由表面的化学反应控制。因此,在支撑座上的所有基片(衬底)表面的气相前驱物硅烷或锗烷分子流量都是相同的,这使得同时在多基片上实现外延生长成为可能。低压化学气相沉积(LPCVD)低压化学气相沉积法(Low-pressure CVD,LPCVD)的设计就是将反应气体在反应器内进行沉积反应时的操作压力,降低到大约133Pa以下的一种CVD反应。LPCVD压强下降到约133Pa以下,与此相应,分子的自由程与气体扩散系数增大,使气态反应物和副产物的质量传输速率加快,形成薄膜的反应速率增加,即使平行垂直放置片子片子的片距减小到5~10mm,质量传输限制同片子表面化学反应速率相比仍可不予考虑,这就为直立密排装片创造了条件,大大提高了每批装片量。以LPCVD法来沉积的薄膜,将具备较佳的阶梯覆盖能力,很好的组成成份和结构控制、很高的沉积速率及输出量。再者LPCVD并不需要载子气体,因此大大降低了颗粒污染源,被广泛地应用在高附加价值的半导体产业中,用以作薄膜的沉积。LPCVD广泛用于二氧化硅(LTO TEOS)、氮化硅(低应力)(Si3N4)、多晶硅(LP-POLY)、磷硅玻璃(BSG)、硼磷硅玻璃(BPSG)、掺杂多晶硅、石墨烯、碳纳米管等多种薄膜。热化学气相沉积(TCVD)热化学气相沉积(TCVD)是指利用高温激活化学反应进行气相生长的方法。广泛应用的TCVD技术如金属有机化学气相沉积、氯化物化学气相沉积、氢化物化学气相沉积等均属于热化学气相沉积的范围。热化学气相沉积按其化学反应形式可分成几大类:(1)化学输运法:构成薄膜物质在源区与另一种固体或液体物质反应生成气体.然后输运到一定温度下的生长区,通过相反的热反应生成所需材料,正反应为输运过程的热反应,逆反应为晶体生长过程的热反应。(2)热解法:将含有构成薄膜元素的某种易挥发物质,输运到生长区,通过热分解反应生成所需物质,它的生长温度为1000-1050摄氏度。(3)合成反应法:几种气体物质在生长区内反应生成所生长物质的过程,上述三种方法中,化学输运法一般用于块状晶体生长,分解反应法通常用于薄膜材料生长,合成反应法则两种情况都用。热化学气相沉积应用于半导体材料,如Si,GaAs,InP等各种氧化物和其它材料。高温化学气相沉积(HTCVD)高温化学气相沉积是碳化硅晶体生长的重要方法。HTCVD生长碳化硅晶体是在密闭的反应器中,外部加热使反应室保持所需要的反应温度(2000℃~2300℃)。高温化学气相沉积是在衬底材料表面上产生的组合反应,是一种化学反应。它涉及热力学、气体输送及膜层生长等方面的问题,根据反应气体、排出气体分析和光谱分析,其过程一般分为以下几步:混合反应气体到达衬底材料表面;反应气体在高温分解并在衬底材料表面上产生化学反应生成固态晶体膜;固体生成物在衬底表面脱离移开,不断地通入反应气体,晶体膜层材料不断生长。中温化学气相沉积(MTCVD)MTCVD硬质涂层工艺技术,在20世纪80年代中期就已问世,但在当时并没有引起人们的重视,直到20世纪90年代中期,世界上主要硬质合金工具生产公司,利用HTCVD和MTCVD技术相结合,研究开发出新型的超级硬质合金涂层材料,有效地解决了在高速、高效切削、合金钢重切削、干切削等机械加工领域中,刀具使用寿命低的难高强度题才引起广泛的重视。目前,已在涂层硬质合金刀具行业投入生产应用,效果十分显著。MTCVD技术沉积工艺如下。沉积温度:700~ 900℃;沉积反应压力:2X103~2X104Pa;主要反应气体配比: CH3CN:TiCl4:H2=0.01:0.02:1;沉积时间:1一4h。金属有机化合物化学气相沉积(MOCVD)MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。MOCVD适用范围广泛,几乎可以生长所有化合物及合金半导体,非常适合于生长各种异质结构材料,还可以生长超薄外延层,并能获得很陡的界面过渡,生长易于控制,可以生长纯度很高的材料,外延层大面积均匀性良好,可以进行大规模生产。激光诱导化学气相沉积(LCVD)LCVD是利用激光束的光子能量激发和促进化学气相反应的沉积薄膜方法。在光子的作用下,气相中的分子发生分解,原子被激活,在衬底上形成薄膜。这种方法与常规的化学气相沉积(CVD)相比,可以大大降低衬底的温度,防止衬底中杂质分布截面受到破坏,可在不能承受高温的衬底上合成薄膜。与等离子体化学气相沉积方法相比,可以避免高能粒子辐照在薄膜中造成损伤。根据激光在化学气相沉积过程中所起的作用不同可以将LCVD分为光LCVD和热LCVD,它们的反应机理也不尽相同。光LCVD是利用反应气体分子或催化分子对特定波长的激光共振吸收,反应分子气体收到激光加热被诱导发生离解的化学反应,在合适的制备工艺参数如激光功率、反应室压力与气氛的比例、气体流量以及反应区温度等条件下形成薄膜。光LCVD原理与常规CVD主要不同在于激光参与了源分子的化学分解反应,反应区附近极陡的温度梯度可精确控制,能够制备组分可控、粒度可控的超微粒子。热LCVD主要利用基体吸收激光的能量后在表面形成一定的温度场,反应气体流经基体表面发生化学反应,从而在基体表面形成薄膜。热LCVD过程是一种急热急冷的成膜过程,基材发生固态相变时,快速加热会造成大量形核,激光辐照后,成膜区快速冷却,过冷度急剧增大,形核密度增大。同时,快速冷却使晶界的迁移率降低,反应时间缩短,可以形成细小的纳米晶粒。除以上提到的薄膜沉积方法外,还有常压化学气相沉积(APCVD)等分类技术。
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制