当前位置: 仪器信息网 > 行业主题 > >

飞纳纤维系统

仪器信息网飞纳纤维系统专题为您提供2024年最新飞纳纤维系统价格报价、厂家品牌的相关信息, 包括飞纳纤维系统参数、型号等,不管是国产,还是进口品牌的飞纳纤维系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合飞纳纤维系统相关的耗材配件、试剂标物,还有飞纳纤维系统相关的最新资讯、资料,以及飞纳纤维系统相关的解决方案。

飞纳纤维系统相关的资讯

  • 基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术
    扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。   中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。   铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位,整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。   嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。   针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标,检测限为0.1 wt%,对于含量1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。   扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。   研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。
  • 飞纳电镜与您相约第六届全国静电纺丝技术与纳米纤维学术会议
    第六届全国静电纺丝技术与纳米纤维学术会议将于2018年11月30日-12月2日在江西师范大学(中国?南昌)召开。会议时间:2018年11月30日 - 12月2日会议地点:江西师范大学会议日程安排2018 年 11 月 30 日:会议报到注册2018 年 12 月 1 日:上午开幕式及大会报告;下午大会报告 (含分会场报告)2018 年 12 月 2 日:上午大会报告 (含分会场报告);下午颁奖,闭幕式,会后交流会议主题静电纺丝新理论、新技术、新装置;静电纺有机高分子材料纳米纤维;静电纺有机/无机复合材料纳米纤维;静电纺无机材料纳米纤维;静电纺技术在军民两用技术方面的应用,如:生物医学、纳米纺织、功能服装、催化、气/液过滤、能源存储与过滤、柔性器件、3D打印、记忆材料、声波吸收与电磁波屏蔽的应用;产学研论坛(国际贸易、新技术、新产品发布、企业推介、技术合作/转让等)。静电纺丝静电纺丝技术是目前为止获取纳米纤维最简单有效的方法之一。它具有比表面积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、 纳米复合材料等领域 。影响静电纺丝纤维的因素有很多。纺丝液自身的性质例如聚合物种类、浓度、导电性、添加剂等都会影响纺丝结果。而纺丝参数设置例如,包括外加电压、喷丝头与接收板之间 的距离、纺丝速度、甚至外界环境温度、湿度等等因素都会对最终结果造成影响。为了摸清这些影响因素的作用规律,获取纺丝样品的形貌照片则显得极为重要。飞纳电镜助力静电纺丝研究飞纳电镜高效的特性特别适合检测静电纺丝此类需要“摸条件”的实验。飞纳电镜抽真空时间只需要 15 秒钟,从装样到得到照片不超过 30 秒。并且,飞纳电镜操作简单,学生经过简单培训就可以自己上手操作。飞纳电镜尺寸迷你,可以放置在任意实验桌甚至办公桌上,且采用高亮度 CeB6 灯丝或肖特基场发射电子源,使得飞纳电镜具有 “小身材,大能量” 的特点。飞纳电镜下的静电纺丝飞纳电镜-纤维统计分析测量系统飞纳电镜的纤维统计分析测量系统(FiberMetric)可以自动测量从纳米到亚微米量级的纤维,数秒之内采集数百纤维的直径信息,同时会对纤维相交产生的孔做出统计。每个数据点均经过 50 次测量取平均值。根据统计信息自动生成纤维直径分布柱状图,并导出数据文件。相对于手动测量,纤维系统软件测量精度高,速度快,效率高,操作简单,它让统计和分析大量不同直径的纤维样品成为可能。纤维系统测量界面 纤维测量图 扫描电镜原图纤维统计图飞纳电镜团队将出席本次会议,期待与参会人员进行扫描电镜在静电纺丝和纳米纤维检测方面的技术沟通。
  • 飞纳台式扫描电镜在纺织材料中的应用
    河南省功能性纺织材料重点实验室以解决纺织品的功能性问题为核心,致力于新型功能纤维的制备,探究纺织品功能化的实现技术。导电纤维被视为功能性纺织材料的基础,以此为依托,实验中心在压力传感器、穿戴设备、医学检测等诸多领域都取得了丰硕的成果。 高分子材料一般具有较好的柔韧性,而功能材料多为陶瓷、金属、以及合金等刚性材料。功能性纺织材料正是将功能性和柔韧性相结合,以满足特殊的使用条件。 导电纤维通常是通过掺杂、沉积、形核生长等方法在高分子纤维表面形成导电层,但是如何评价镀层在纤维表面的分布状况呢,飞纳电镜为客户提供了十分契合的解决办法。 本次实验中心购进了型号为 Pure+ 的飞纳台式扫描电镜,配备的背散射探头能够呈现清晰的原子序数衬度图像,可为客户判断镀层分布均匀性提供可靠依据;此外,样品多为纤维状,直径主要分布在数百纳米至微米级别,飞纳台式扫描电镜标准升级版 Pure+ 具有 14nm 的分辨率,能够轻松获取样品表面细节。表面镀了金属粉的天然纤维 (背散射电子图像,成分衬度明显)另外,飞纳台式扫描电镜标准升级版Pure+可以选配 纤维统计分析测量系统,结合飞纳台式扫描电子显微镜,纤维统计分析测量系统可以使用户获得微米、纳米纤维的精确尺寸信息。从纺粘型纤维到电纺纤维、再到熔喷纤维,纤维统计分析测量系统可以测量和分析各种各样的复杂纤维结构。纤维统计分析测量系统适合 100 nm 到 40 μm 的纤维。 因此,它可以被广泛应用,如过滤材料分析、纸尿裤填料,纤维研究,以及纤维、过滤器的生产控制。相对于手动测量,纤维系统软件测量精度高,速度快,效率高,操作简单,它让统计和分析大量不同直径的纤维样品成为可能。在没有精细的实验室环境或专业培训的操作人员时,纤维统计分析测量系统依旧可以给出操作员需要的所有统计数据。主要特点: 自动测量,节省时间 快速和自动生成统计数据 输出的数据包括统计和原始数据 高精度观察和测量微米和纳米纤维 与飞纳电镜同步,实时测量
  • Nature子刊等高水平文章必备神器——纳米光谱与成像系统
    neaSCOPE是德国neaspec公司推出的全新一代散射式近场光学显微镜(简称s-SNOM)。neaSCOPE基于散射式核心设计技术,不依赖于入射激光的波长,很大程度上提高了光学分辨率,能够在可见、红外和太赫兹光谱范围内,提供优于10 nm空间分辨率的光谱和近场光学图像。neaSCOPE同时支持s-SNOM功能与纳米红外(nano-FTIR)、针尖增强拉曼(TERS)、超快光谱(Ultrafast)和太赫兹光谱(THz)进行联用,实现高分辨光谱和成像。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的优选科研设备,在等离子激元、二维材料声子极化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。本文将概述neaSCOPE在不同领域发表的高水平文献。 neaSCOPE纳米光谱与成像系统一、高效有机光伏材料nature materials 对于有机光伏材料来说,在纳米尺度上的供受体结构域的形貌控制是提高其激子的扩散和解离、以及载流子的传输和复合损耗抑制效率的关键所在。本文展示了一种基于多个不同长度尺度的三元供受体形貌生成的双原纤维网络。这种结构形貌是通过辅助共轭聚合物结晶器和非富勒烯受体丝组装结合使用得到的。本研究的关键点在于使用neaSCOPE纳米光谱与成像系统对双原纤维网络PM6/L8-BO有强烈红外信号对比度的1648/1532 cm-1波段进行纳米级的红外成像。在此之上,通过对横跨图像的线方向进行数据的采集与分析,文章估算出其材料的供体与受体原纤维的直径分别为22.1 nm和 22.6 nm。并就此得出结论:其供受体结构域这种较低的混合体积导致材料拥有了较低的配对重组率和较高的填充因子。 综上所述,通过利用这种双原纤维网络的形貌结构,该研究将损耗最小化,能力输出最大化,使得在单结有机光伏材料中获得20%的能量转换效率成为了一种可能。 Zhu et al., nature materials 21, 656 (2022)二、催化剂的分子特性J. Am. Chem. Soc. 明确地鉴别催化剂中毒的类别需要具有纳米级空间分辨率和提供吸附物的吸附位点和其吸附几何形状的详细的化学结构和表面官能团的准确信息。时至今日,不通过牺牲化学特性就在纳米级尺度上研究金属/金属氧化物界面的催化剂硫中毒还是一项非常困难的工作。本研究利用纳米傅里叶红外光谱和扫描式近场光学显微镜(nano-FTIR & s-SNOM)在纳米尺度上鉴定了基于Pd(纳米盘)/Al2O3(薄膜)平面模型催化剂表面上的硫基催化剂中毒的化学性质、吸附位点和吸附几何形状。在此之上,本研究揭示了对于单个Pd纳米粒子来说,即使只是所用的硫酸盐种类有纳米颗粒之间的不同,也会使硫中毒有所不同甚至产生巨大的变化。 nano-FTIR & s-SNOM提供关键的分子级视角对于开发具有更长寿命的高性能多相催化剂至关重要。 J. Am. Chem. Soc. 2022, 144, 8848&minus 8860三、固态电池Nature Communications 固态电池因其各种各样的优势(比如更高的安全性和能量密度),拥有显著影响能源存储行业的潜力。不过,电极/电解质界面的物理化学性质和过程仍然是其需要面对的挑战。因此,对此类界面的原位表征以及对催化工程方案的科学性理解的揭示变得十分需要。在本研究中,作者利用了各种尺度的原位显微镜(光学、原子力和红外近场)以及纳米傅里叶红外光谱nano-FTIR对电化学操作生成的石墨烯/固体聚合物电解质界面进行了无损表征。作者发现固体聚合物电解质固有的纳米结构和化学异质性在镀锂和脱锂的过程中引发了一系列额外的纳米级界面异质性;这其中包括锂离子电导率、电解质分解和界面形成的异质性。 He et al.. Nature Communications 13. 1398 (2022)四、纳米系统的光电特性Applied Surface Science 碳纳米管(CNTs), 石墨烯纳米带, 以及过渡金属二硫属化物(TMDCs)等纳米尺度系统的光电特性是由它们的介电函数决定的。这个复杂的与频率相关的函数受激子共振、电荷转移效应、掺杂、样品的应力和应变以及其表面粗糙度影响。对于此介电函数的了解使科学家能够探知材料的透射和吸收特性。在本研究中,研究者使用扫描式近场光学显微镜s-SNOM相关的技术提取了局部区域介电变化的数据。并在此之上,将s-SNOM测量的结果与空间分辨光致发光(PL)光谱和开尔文探针力显微镜(KPFM)测量的结果相关联。 将s-SNOM与局域光致发光结果相关联是识别和表征层间激子的有力工具。这种新颖的方法也开始在低维系统(碳纳米管和石墨烯纳米带)上得以应用。 Applied Surface Science 574 (2022) 151672
  • 佛山科学技术学院257.50万元采购数码显微镜
    详细信息 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标公告 广东省-佛山市-禅城区 状态:公告 更新时间: 2022-08-08 招标文件: 附件1 附件2 项目概况 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2022年08月29日 09时30分 (北京时间)前递交投标文件。 一、项目基本情况 项目编号:0809-2241FSG1A716 项目名称:皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜 采购方式:公开招标 预算金额:2,575,000.00元 采购需求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜): 合同包预算金额:2,575,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 物理光学仪器 皮秒飞秒激光半导体微细切割系统 1(台) 详见采购文件 2,280,000.00 - 1-2 物理光学仪器 3D光学数码显微镜 1(台) 详见采购文件 295,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订生效之日起90个日历天内完成整个项目的供货、安装、调试、验收合格并交付使用。 二、申请人的资格要求: 1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料: 1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。 2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月(不含投标当月)内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。 3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供以下证明材料之一:(1)提供经第三方审计的2021年度财务报告(①提供由第三方会计师事务所出具的审计报告,能清晰显示第三方会计师事务所的印章和注册会计师签字盖章,并能反映审计结论;②财务报告包括审计结论、资产负债表、利润表、现金流量表等;③由于部分财务报表的名称在财务表述中有不同,在编制文件及评审过程中应理解为同一内容的表述);或(2)基本开户行出具的资信证明(应反映其开户行,未能反映的应提供相关证明材料),资信证明应在有效期内,如资信证明未明确有效期的,资信证明开具日期应为提交投标文件截止时间前6个月内;或③政府采购专业担保机构出具的投标担保函)。 4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。 5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定) 2.落实政府采购政策需满足的资格要求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜)落实政府采购政策需满足的资格要求如下: 本项目非专门面向中小企业采购的项目。 3.本项目的特定资格要求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜)特定资格要求如下: (1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。 (2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。 三、获取招标文件 时间: 2022年08月08日 至 2022年08月15日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/ 方式:在线获取 售价: 免费获取 四、提交投标文件截止时间、开标时间和地点 2022年08月29日 09时30分00秒 (北京时间) 递交文件地点:佛山市禅城区汾江中路215号创业大厦16楼1603室 开标地点:佛山市禅城区汾江中路215号创业大厦16楼1603室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。 2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。 3.如需缴纳保证金,供应商可通过'广东政府采购智慧云平台金融服务中心'(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。 / 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:佛山科学技术学院 地 址:佛山市禅城区江湾一路18号 联系方式:0757-82773631 2.采购代理机构信息 名 称:广东华伦招标有限公司 地 址:佛山市禅城区汾江中路215号创业大厦16楼1603室 联系方式:0757-83284195 3.项目联系方式 项目联系人:何先生 电 话:0757-83284195 广东华伦招标有限公司 2022年08月08日 相关附件: 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标文件(2022080301).zip 代理协议(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜).pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:数码显微镜 开标时间:2022-08-29 09:30 预算金额:257.50万元 采购单位:佛山科学技术学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广东华伦招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标公告 广东省-佛山市-禅城区 状态:公告 更新时间: 2022-08-08 招标文件: 附件1 附件2 项目概况 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2022年08月29日 09时30分 (北京时间)前递交投标文件。 一、项目基本情况 项目编号:0809-2241FSG1A716 项目名称:皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜 采购方式:公开招标 预算金额:2,575,000.00元 采购需求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜): 合同包预算金额:2,575,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 物理光学仪器 皮秒飞秒激光半导体微细切割系统 1(台) 详见采购文件 2,280,000.00 - 1-2 物理光学仪器 3D光学数码显微镜 1(台) 详见采购文件 295,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订生效之日起90个日历天内完成整个项目的供货、安装、调试、验收合格并交付使用。 二、申请人的资格要求: 1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料: 1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。 2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月(不含投标当月)内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。 3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供以下证明材料之一:(1)提供经第三方审计的2021年度财务报告(①提供由第三方会计师事务所出具的审计报告,能清晰显示第三方会计师事务所的印章和注册会计师签字盖章,并能反映审计结论;②财务报告包括审计结论、资产负债表、利润表、现金流量表等;③由于部分财务报表的名称在财务表述中有不同,在编制文件及评审过程中应理解为同一内容的表述);或(2)基本开户行出具的资信证明(应反映其开户行,未能反映的应提供相关证明材料),资信证明应在有效期内,如资信证明未明确有效期的,资信证明开具日期应为提交投标文件截止时间前6个月内;或③政府采购专业担保机构出具的投标担保函)。 4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。 5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定) 2.落实政府采购政策需满足的资格要求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜)落实政府采购政策需满足的资格要求如下: 本项目非专门面向中小企业采购的项目。 3.本项目的特定资格要求: 合同包1(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜)特定资格要求如下: (1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。 (2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。 三、获取招标文件 时间: 2022年08月08日 至 2022年08月15日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/ 方式:在线获取 售价: 免费获取 四、提交投标文件截止时间、开标时间和地点 2022年08月29日 09时30分00秒 (北京时间) 递交文件地点:佛山市禅城区汾江中路215号创业大厦16楼1603室 开标地点:佛山市禅城区汾江中路215号创业大厦16楼1603室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。 2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。 3.如需缴纳保证金,供应商可通过'广东政府采购智慧云平台金融服务中心'(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。 / 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:佛山科学技术学院 地 址:佛山市禅城区江湾一路18号 联系方式:0757-82773631 2.采购代理机构信息 名 称:广东华伦招标有限公司 地 址:佛山市禅城区汾江中路215号创业大厦16楼1603室 联系方式:0757-83284195 3.项目联系方式 项目联系人:何先生 电 话:0757-83284195 广东华伦招标有限公司 2022年08月08日 相关附件: 皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜招标文件(2022080301).zip 代理协议(皮秒飞秒激光半导体微细切割系统、3D光学数码显微镜).pdf
  • 同济大学纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)中标公告
    一、项目编号:0811-234DSITC0372(招标文件编号:0811-234DSITC0372)二、项目名称:纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)三、中标(成交)信息供应商名称:国药集团国际贸易(香港)有限公司供应商地址:香港湾仔轩尼诗道288号英皇集团中心1601室中标(成交)金额:449.5600000(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1国药集团国际贸易(香港)有限公司纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)HORIBA FRANCE SASLabRAMOdyssey Nano壹套4495600五、评审专家(单一来源采购人员)名单:王宇晓、范冬梅、边玮、陈燕、褚成成(采购人代表)六、代理服务收费标准及金额:本项目代理费收费标准:按照国家发改委1980号文件《招标代理服务费管理暂行办法》规定标准下浮33%收取,服务费金额不足8000元的,按8000元收取。本项目代理费总金额:3.5813000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜1、本项目为机电产品国际招标项目,本公告已于同日在机电产品招标投标电子交易平台、中国招标投标公共服务平台同步发布。2、本项目中标金额为(CIP人民币)4,495,600.00,合同最终结算时以实际发生金额为准。3、本项目的评标结果已在机电产品招标投标电子交易平台、中国招标投标公共服务平台上公示,评标结果公示无异议,根据《机电产品国际招标投标实施办法(试行)》,本项目的评标结果已自动生效并进行公告。”九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市四平路1239号        联系方式:贾老师      2.采购代理机构信息名 称:上海东松医疗科技股份有限公司            地 址:0086-21-63230480转8610、8621            联系方式:林之翔、张智岚            3.项目联系方式项目联系人:林之翔、张智岚电 话:  0086-21-63230480转8610、8621
  • 630万!吉林大学采购超分辨共聚焦显微成像系统
    近日,某采购平台发布吉林大学2022年8至10月政府采购意向,其中预算630万计划采购一套超分辨共聚焦显微成像系统,要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。详细情况如下超分辨共聚焦显微成像系统项目所在采购意向:吉林大学 2022年8至10月政府采购意向采购单位:吉林大学采购项目名称:超分辨共聚焦显微成像系统预算金额:630.000000万元(人民币)采购品目:A02100301显微镜采购需求概况 :超分辨共聚焦显微成像系统,1套。要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。预计采购时间:2022-10备注:本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。
  • SGS集团收购加拿大路德维希集团
    世界最大的检测和认证机构SGS集团于9月10日收购了加拿大路德维希集团(LUDWIG GROUP),一家领先的材料和冶金测试机构,其总部位于卡尔加里和加拿大阿尔伯达省的埃德蒙顿。路德维希集团的优势主要在于石油和天然气行业,特别是石油和天然气基础设施和管道行业,路德维希能够提供全面的专业焊接工程必要的设计、制造、评估和维护技术及服务,也能够提供世界一流的物理测试和材料鉴别服务。 SGS CEO克里斯• 柯克表示,这次收购非常符合SGS的工业战略,将利用路德维希在北美进一步扩大SGS的业务,特别是在石油和天然气工业。
  • 飞纳台式扫描电镜参加2018年华东地区(电子)显微学学术交流会
    复纳科学仪器(上海)有限公司于2018年5月10日 - 13日在福建省福州市参加2018年华东地区(电子)显微学学术交流会。本次会议由华东地区五省一市电镜学会联合举办,分别为上海市、浙江省、福建省、江苏省、安徽省、山东省。会议主题围绕电子显微学应用基础研究,显微学新技术、新方法交流及实验技术、实验室管理等经验分享,共吸引专家学者200余人参会。2018年华东地区(电子)显微学学术交流会飞纳中国作为2018年华东地区(电子)显微学学术交流会的赞助商之一,为会议代表们带来了主题为“台式扫描电镜的新高度”的会议报告。 随着飞纳台式扫描电镜的不断创新,我们成为了“自动化程度最高的扫描电镜”:自动刷新光学导航——自动进样——自动开真空锁——自动开高压随时随地获取高质量结果 人为操作和地理环境都会成为影响设备的重要因素,通过设计改进和技术进步,保障用户可以随时随地获取高质量的结果,是飞纳的核心设计理念。 飞纳第五代台式扫描电镜原本自带限高装置,又额外增加 4mm 安全保护距离,整个腔室重新设计。永远不存在撞探头和物镜的风险内置的减震系统让客户随时随地获得高质量扫描电镜图像除此之外,飞纳台式扫描电镜拥有专门的应用模块,使用户可以从飞纳电镜的图像中提取更多信息,拓展飞纳电镜的应用,将复杂的系统控制自动化。 3D粗糙度重建系统:可以生成样品的三维图像,并进行亚微米量级的粗糙度测量。 颗粒统计分析测量系统:可以收集亚微米颗粒的形貌和尺寸数据。 孔径统计分析测量系统:实现对孔径的完全自动化、可视化的分析。 纤维统计分析测量系统:用于获得微米,纳米纤维的精确尺寸信息。 全景拼图:图像之间无缝连接高倍数与大视野的统一“Free To Achieve”是飞纳电镜的发展理念,飞纳台式扫描电镜唯一不变的追求就是减轻操作人员的工作量,帮助用户实现目标,通过设备的创新升级,和软件系统的不断更新,让越来越多的人感受到创新科技的魅力。2018年华东地区(电子)显微学学术交流会合影
  • 纳克微束中标高通量电子显微断层成像系统项目
    近期,多模态跨尺度生物医学成像设施--高通量电子显微断层成像系统项目顺利完成招标工作,纳克微束(北京)有限公司成为高通量电子显微断层成像系统UT3D的提供商。多模态跨尺度生物医学成像设施是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学和中科院生物物理所承接建设任务,未来将成为国家级的生物医学成像科学中心。此次合作的达成,是行业客户对纳克微束卓越技术水平的认可,也意味着微束将承担项目中心建设的重要使命。   多模态跨尺度生物医学成像设施项目,旨在快速提升我国生命科学基础研究和临床医学等领域的研究水平,为实现我国生物医学研究整体水平,特别是原始创新能力的跨越式发展以及为高端生物医学影像装备的“中国创造”提供战略支撑和保障。在连接生物医学介观到微观尺度的这一关键节点,相关的多模态跨尺度串联技术和产品级的解决方案长期处于研发摸索阶段。因此,生物物理所希望通过合作,找到志同道合的订制成像方案服务方。   由于国内扫描电子显微镜行业起步较晚,国外企业几乎主导国内市场,为响应高端生物医学影像装备的“中国创造”的号召,纳克微束做出部署、展开攻关,以本次订制方案服务为契机,迎难而上,踔厉奋发,在国际上先人一步提出解决方案。高效解决生物样品从介观到微观的成像难点和痛点,改善微观尺度高效率切割和最终电子断层成像效率低的问题,对于扫描电子显微镜技术的发展具有里程碑的意义!   纳克微束秉承钢研的技术创新基因,积极探索新方向,守正创新,在钢研集团70周年之际,敢于“亮剑”,力战国内外厂商,成为生物医学成像科学中心的国产厂家,以达成高通量电子显微断层成像系统项目合作这一成绩为集团庆祝,吹响了解决生物医学介观到微观尺度问题的时代号角,在扫描电子显微镜行业崭露头角。   作为一家新创立公司,纳克微束成为高通量电子显微断层成像系统项目服务商,为高端生物医学影像装备“中国创造”吹响了进征的号角,秉持守正创新的精神,攻坚克难,为扫描电子显微镜领域的发展注入新动力,助力微观世界的探索与发现。此次合作只是一个起点,未来将持续投入综合显微成像的研发,开拓创新,推动技术升级,助力国产电镜行业实现崭新发展,致力成为中国电镜技术引领者。
  • 国家市场监督管理总局对《微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量》等67项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《跨境电子商务独立站经营评价指南》等67项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月2日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001899,查询项目信息和反馈意见建议。2024年7月3日相关标准如下:#项目中文名称制修订截止日期1微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量修订2024-08-022微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第2部分:氢气含量修订2024-08-023敞开式直接电离质谱仪性能测定方法制定2024-08-024塑料扭转刚性试验方法修订2024-08-025激光器和激光相关设备 角分辨散射的试验方法制定2024-08-026光学和光子学 光学元件 复杂曲面光学元件几何参数测试方法制定2024-08-027医用输液、输血、注射器具检验方法 第2部分:生物学试验方法修订2024-08-028元素分析仪性能测定方法制定2024-08-02
  • 《三体》中的“纳米飞刃”真实存在吗?扫描电子显微镜给你答案
    不久之前,中国科幻巨作《三体》被搬上荧幕,为人们展现了一个恢弘的三体世界。作为人类与三体力量展开对决的第一幕,电视剧很好地还原了原著中名场面“古筝行动”。古筝行动,即人类借助密集排列固定在运河两岸的“纳米飞刃”材料,将航行在巴拿马运河中载有地球三体组织核心成员的“审判日”号巨轮切削成薄片,以此消灭三体组织核心成员,并获取三体世界重要情报,完成了人类对地球三体力量“审判日”号的审判。图片来源:腾讯视频-电视剧《三体》那么这种只有头发丝十分之一粗细的“飞刃”究竟是什么材料?在现实生活中真实存在吗?是否真能做到像切豆腐一样削铁如泥呢?从“飞刃”的研发者汪淼教授背后这张PPT我们可以看出,所谓的“飞刃”就是碳纳米管(Carbon Nanotubes,CNTs),而这张图片来源于清华大学魏飞教授团队于2013年发表于《ACS Nano》杂志的一篇合成超长碳纳米管的论文(DOI: 10.1021/nn401995z)。图片来源:腾讯视频-电视剧《三体》碳纳米管是由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持约0.34 nm的固定距离,直径一般为2~20 nm。是一种一维量子材料,具有优异的力学、电学和化学性能。碳纳米管中碳原子形成的化学键同时具有sp2和sp3杂化,主要是sp2杂化,具有高模量和高强度。它的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6。它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。碳纳米管是目前可制备出的具有最高比强度的材料。碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,是理想的高强度纤维材料,因此“纳米飞刃”在理论上是真实存在的。同时,碳纳米管也是制造“太空电梯”缆绳的最佳材料。 上图为使用KYKY-EM8100型场发射枪扫描电子显微镜拍摄的不同放大倍数的多壁碳纳米管,扫描电子显微镜可以很好地观察碳纳米管的管径、长径比、团聚程度以及断裂缺陷等。在实际应用中,虽然碳纳米管拥有超强的力学性能,但离产业化应用还有很长的一段路要走,除了剧中汪淼博士提到的无法量产的问题以外,还存在着切割过程中材料磨损老化与摩擦放热等问题,这些都会造成碳纳米管材料的老化,使其力学性能大打折扣,造成纤维断裂。现阶段用碳纳米管是无法完成坚硬物体切割的,目前工业上有很多硬质材料都是用切割钢线或者更高质量的金刚线来切割。金刚线,顾名思义,跟金刚石有关,大体上是把金刚石的微粉颗粒以一定的分布密度均匀地镶嵌在母线(一般为高碳钢丝)上,做成的金刚石切割线。通过金刚石切割机,金刚线与被切割物体间进行高速磨削运动,从而实现切割目的。主要用于光伏领域的多晶硅切片、单晶硅、晶棒等。从晶体硅料到硅片经历切方、截断及切片三个环节,其中切方及截断环节为保证切割速度及切割效率,通常用较粗线径的金刚线,而切片环节根据原材料利用率等,选择较细的金刚线。图片来源于网络,版权归原创作者所有金刚线的母线,一般为高碳钢丝,由拉丝厂家将盘条拉制为不同直径的黄丝,再将黄丝进一步拉为微米级的母线。金刚石微粉由人造金刚石颗粒破碎而成,颗粒度一般小于50μm,是金刚线起切割作用的关键材料,其质量及稳定性直接影响后续电镀工艺及成品金刚线质量。金刚石的分布密度、固结强度、切割能力、钢线的抗疲劳性等都直接影响金刚线的性能。图片来源于网络,版权归原创作者所有 上图为使用KYKY-EM6900LV型钨灯丝扫描电子显微镜拍摄的金刚线的纵向及横向截面,可以很好地观察金刚线的母线线径、金刚石微粉的大小及分布密度、镀层的厚度、镀层与母线的固结程度等。科技的进步与发展离不开所有科技工作者付出的辛劳汗水,虽然现阶段人类受困于科技水平暂时还无法实现所有设想,但相信总有一天,人类终会登上碳纳米管缆绳搭载的太空电梯,登陆星际宇宙,挟飞仙以遨游,抱明月而长终。在漫长艰辛的科研旅程中,中科科仪扫描电子显微镜与您风沙星辰,永远相伴!是您科研道路上的得力助手!以上所有观测图均为KYKY-EM8100型场发射枪扫描电子显微镜和KYKY-EM6900LV型钨灯丝扫描电子显微镜拍摄。如有产品咨询意向、技术交流意向及样品测试需求,可扫描下方二维码联系中科科仪DEMO中心,我们将为您提供详细、专业的服务。
  • 看散射型近场纳米红外光谱与成像系统如何助力胶原纤维、生物催化、活体细胞等生物领域研究
    一、胶原纤维研究 胶原纤维是人体各种器官(如骨、肌肉)中关键的组成成分之一。胶原纤维拥有复杂的微纳生物结构,这种结构的有序排列使胶原纤维能够表现出优异的生理性能,同时,这种结构的改变会导致其生理特征的急剧变化。劳损、骨折等常见疾病的发病机理就与胶原微纳结构变化密切相关。如何观测并理解胶原纤维微纳尺度的结构变化是治疗相关胶原类疾病的关键所在。 近日,中国科学院物理研究所陈佳宁课题组利用散射式近场扫描显微镜(IR-neaSCOPE)对胶原纤维进行纳米分辨率红外扫描成像。该研究通过在组织切片表面近场测量紧凑排布的胶原纤维簇,对胶原纤维的纳米周期性横纹结构进行量化分析,并观察到胶原纤维发生的横纹倾斜现象。该研究借助胶原晶格模型解释其现象的产生机理,揭示了胶原纤维内部分子间可能存在的滑移位错形变。 该结果有助于人们理解胶原结构失序时胶原纤维可能发生的纳米结构变化,为解读胶原类疾病的发病机理提供了新思路。同时,该工作展示了s-SNOM在生命科学中对于生物微纳尺度结构研究的广阔应用前景。相关结果发表在近期的《Nano Research》上。该工作得到了重点研发计划、自然科学基金,中国科学院战略重点研究计划的资助。 二、生物催化(MOF体系)研究 生物催化转化在生物体中,如多酶催化联,在不同的细胞膜区隔的细胞器中高效率地进行。然而,在自然系统中模拟生物催化联过程仍然具有挑战性。 近日,华东师范大学李丽老师课题组报道了多壳金属有机骨架(MOF)可以作为一种层次化的支架,在纳米尺度上对酶进行空间组织,以提高联催化效率。 研究人员通过外延逐壳过生长的方法将多壳MOF包裹在多酶上,其催化效率是溶液中游离酶的5.8~13.5倍。重要的是,多壳MOF可以作为一个多空间隔室的纳米反应器,允许在一个MOF纳米颗粒中物理分隔多个酶,以便在一个锅中进行不相容的串联生物催化反应。研究人员使用纳米傅立叶变换红外光谱(Nano-FTIR)来解决与多壳MOF中的酶相关的纳米振动活性的不均一性。多壳MOF能够根据特定的串联反应路线方便地控制多酶的位置,其中载酶1和载酶2的壳沿内到外壳的紧密定位可以有效地促进质量传递,从而促进高效的串联生物催化反应。 这项工作有望为设计高效的多酶催化联反应提供新的思路,以鼓励其在许多化工和制药工业过程中的应用。 三、原位液相活体细胞研究 近日,德国attocube systems AG的工程师Korbinian联合德国慕尼黑大学Fritz Keilmann课题组报道了基于散射型纳米红外成像与光谱技术在液相环境关于纳米颗粒和活体细胞的定量研究。纳米红外光谱与成像的液相探测基于一个由10 nm厚度的SiN薄膜和金属液相池组成,通过扫描探针在针形成有效的红外探测近场对吸附(浸润)在SiN另一侧的纳米颗粒或活体细胞进行原位液相扫描。 液相原位纳米红外成像与光谱下的A 549癌细胞 这项工作是基于反射式光路的散射型扫描近场显微镜(s-SNOM)和nano-FTIR建立的原位液相样品池,通过搭配波长可调谐的红外激光器,有希望拓展从近红外(特别是近红外II区)到中红外(全指纹区覆盖)乃至远红外的全红外波段的液相环境下材料和细胞的纳米尺度探测。
  • 组图:电子显微镜带你开启人体微观之旅
    电子显微镜(electron microscope,电镜)是利用电子与物质作用所产生之讯号来监定微区域晶体结构,微细组织,化学成份,化学键结和电子分布情况的电子光学装置,常用的有透射电子显微镜(TEM)和扫描电子显微镜(SEM)。   在实验室中,SEM是一款很常见的仪器。平常,我们经常用它来观察材料、生物物质等的形貌和微观结构,常常会有一些让我们叹为观止的景观。但是你想过我们的人体在电子显微镜下会是什么样子吗?   据悉,在扫描隧道电子显微镜下观察到的人体微观结构,可以分辨1-5纳米(1纳米相当于10亿分之一米)直径的细节,让人一睹难得一见的身体细节。   日前,腾讯科技发布了一组利用扫描电子显微镜拍摄的人体微观图,借助SEM的力量将让你开启人体的发现之旅,在这里你将看到从未见到过的景象。   这里几乎所有的这些照片都来自于扫描电子显微镜(SEM)。借助SEM的力量将让你开启人体的发现之旅,在这里你将看到从未见到过的景象。上图是许多精子试图为卵子授精的近距离照片。   这张照片中的物体看起来就像肉桂糖果,但它们事实上是人体中最常见的血细胞&mdash &mdash 红血球。这些两面凹的细胞承担着将氧气送往身体各处的任务。   定期修剪和良好的护理应当不会让你的头发末端出现照片中的这种难看状态。   在你大脑的千亿神经元中,普肯野神经元是其中最大的。这些细胞是小脑皮层中的运动协调大师。酒精和锂等有毒物、自体免疫系统疾病以及基因突变都能够对人类的普肯神经元产生消极影响。   这是人耳内毛细胞静纤毛的近视图。这些静纤毛能够探测机械运动对声音振动做出反应。   在这张照片中,着色的视网膜血管从黑色的视神经盘背景中凸显出来。   这张色彩强化的照片显示的是舌头上的味蕾。人类舌头上大约有1万个味蕾用于探测酸甜苦辣等味道。   经常刷牙吧,因为不刷牙在牙齿表面就会形成玉米状斑块。   这是当那些相同的红血细胞紧密集合成血凝块时的样子。   这张色彩强化照片展现的是肺内表面的样子。那些空腔就是肺泡,也就是与血液交换气体的地方。   这张照片中反常的肺癌细胞与之前健康的肺部形成了鲜明的对比。   小肠内的绒毛增加了肠道的表面积,这就帮助肠道进行食物吸收。近距离观察,你可以看到一些食物粘附在缝隙当中。   这张是人类卵细胞的色彩强化照片,卵细胞的表面附着着透明带状物&mdash &mdash 糖蛋白,糖蛋白不仅能保护卵细胞,还能够帮助它捕获精子。   这看起来就像是一个战场,但是它事实上是受精5天后的一颗卵子。这张荧光照片是借助一台共焦显微镜拍摄的。   生命循环的再一次开始:这是6天大的胚胎开始进入子宫内膜的情景。
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟 沃特世科技(上海)有限公司实验中心 对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC® System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 让地球更纯净——飞纳电镜助力上市公司厦门三维丝
    厦门三维丝环保股份有限公司成立于2001年,专注于工业高温烟气除尘,集高性能高温除尘滤料的研发、生产、销售和服务于一体,成为国内高温袋式过滤除尘上市企业(股票代码:300056)。袋式除尘袋式除尘器是一种高效干式除尘器。它是依靠纤维滤料做成的滤袋,滤袋是袋式除尘器运行过程中的关键部分,在脉冲和气箱式脉冲除尘器中,含尘气体经过除尘器时,粉尘被捕集在滤袋的外表面,而干净气体通过滤料进入滤袋内部,从而实现除尘功能。 但是,含尘气体的温度、成分、风速等条件都会影响滤袋的过滤效果以及使用寿命: 滤袋通常由高分子材料构成,熔点相对较低,当气体温度超过了滤袋的正常使用温度时,滤袋将被直接融毁; 如果气体中含有超标的酸、碱以及腐蚀性物质,将大大缩短滤袋的使用寿命; 风速过快,过滤层将会遭受物理性破坏,这也是滤袋失效的主要原因之一。那么如何来评价滤袋的品质、粉尘的过滤效果、以及失效分析呢?飞纳台式扫描电镜助力滤袋技术研究2018 年 11 月,飞纳台式扫描电镜高性价比标准版 Phenom Pure 正式入驻厦门三维丝环保股份有限公司。三维丝滤袋技术研究院是以滤袋新材料技术、微细颗粒物控制技术、污染物协同控制技术为主要研究方向的环境保护科研机构,通过使用飞纳电镜,进一步提高产品质量检测技术: 滤袋所用纤维材料直径多为微米级别,Phenom Pure 放大倍数为 30,000x ,分辨率优于 30 nm,可轻松观察微米级纤维样品,获取样品过滤效果图片、纤维断裂证据等信息; 滤袋使用前 滤袋使用后 飞纳电镜操作界面简洁明了,上手快,经过 1-2 日的培训即可独立操作,数分钟内就可完成样品观察,大大提升了检测效率。用户独立操作飞纳电镜在让地球更纯净的路上,飞纳电镜将会高效服务厦门三维丝环保股份有限公司,助力环镜保护。
  • 飞纳台式扫描电镜多次应邀在公安刑侦系统内演示
    近日飞纳台式扫描电镜多次应邀在公安刑侦系统内做枪击残留物及火药成分分析演示,取得了良好的效果。下图为一种枪击残留物颗粒,利用飞纳台式扫描电镜既可以观察形貌图像,又可以检测成分:下图为另一个的枪击残留物颗粒的形貌及 EDS 分析效果:通过比对这两个枪击残留物颗粒形态及成分数据可以发现这两个枪击残留物颗粒成分大致相同,应该是来自于同一种子弹的底火生成。飞纳台式扫描电镜进行枪击残留物(GSR)分析的特点:1、台式扫描电镜中唯一可以做枪击残留物分析的科学仪器2、一次可以放置 36 个样品,测样效率高,数据量大准确性更高3、枪击残留物(GSR)检测软件为通用软件,兼容性强,技术成熟4、配合飞纳台式扫描电镜大样品室卓越版 Phenom XL 可以实现全自动分析5、稳定的 CeB6 灯丝,不会在实验过程中发生烧断6、极强的通用性,飞纳台式电镜 XL 本身可以作为扫描电镜使用7、该产品完全符合国际通用标准:ASTM E1588 - 168高准确性:与 FEI 大电镜(配 GSR)识别率重叠 90% 以上飞纳台式扫描电镜的枪击残留物分析将有助于刑侦行业提高检测效率,促进司法公正,构建和谐社会。知识小贴士枪击残留物分析在甄别一个犯罪中是否使用了枪械的过程中发挥着重要的作用。枪击残留物分析技术是基于扫描电子显微镜的使用,它用来扫描样品来发现可疑的枪击残留物颗粒。如果一个可疑的枪击残留颗粒被发现,就可以利用能谱仪来确定颗粒的成分。最常见的搜索标准是铅,锑,和钡的存在。然而,无铅底火(如含有钛、锌)的检测也常被要求。在子弹的发射过程中会产生枪击残留物,这些枪击残留物是如何产生的?这些就要从子弹的构造来看,一般子弹由弹头、药筒、装药、底火四部分组成。如下图所示:手枪击针击发底火后,底火摩擦产生火星开始快速燃烧进而点燃装药,装药开始燃烧,弹壳内压增大,当压力上升到 250~500kg / 平方厘米时,弹头脱离弹壳,挤入线膛,开始起动。弹头在高温、高压气体作用下,迅速向前运动。弹头发射出去的同时,底火燃烧的颗粒会向各个方向扩散开去,落在持枪人的手上,衣服甚至头发上,也可以落在枪击现场附近的人身上。一般子弹的底火中含有原发性爆炸化合物三硝基间苯二酚铅,氧化剂硝酸钡及还原剂锑硫化物,因此枪击残留物颗粒的化学成分是非常有特征性的,一般含有铅,钡和锑等元素,而且不同的子弹所使用的底火都是不同的,甚至相同厂家生产的不同批次的底火也是有区别的,可以通过鉴别枪击残留物的成分来追溯到犯罪嫌疑人所使用的子弹来源进而有助于案件的侦破。
  • Phenom 飞纳颗粒统计分析测量系统在中国计量院的应用
    最近实验室买了一批 PS 聚苯乙烯小球做实验模板,形状非常规则,直径也非常均匀,标称直径分别为 1.5 μ m 和 10 μ m 。为了验证其准确性,我们使用复纳科学仪器(上海)有限公司北京实验室的 Phenom 飞纳台式扫描电镜观察并统计。在本试验中,利用 Phenom 飞纳电镜的颗粒统计分析测量系统帮助我们获得了漂亮的统计结果,同时极大简化实验流程,加快了实验进度。下图为北京实验室的 Phenom 飞纳台式扫描电镜,小而精致,左边的显示器用于呈现样品在扫描电镜下的微观形貌,右边的电脑及软件可以做能谱分析,超大视野全景拼图,3D 粗糙度重建,纤维统计分析测量,颗粒统计分析测量,孔径统计分析测量等,每个软件在完成统计后,会输出相应的报告,本文截取颗粒统计分析测量系统的部分报告说明。实验室的 Phenom 飞纳台式扫描电镜在使用颗粒统计分析测量系统之前,先借助扫描电镜观察 PS 聚苯乙烯小球的微观形貌。这个过程类似于搜集样本,借助 Phenom 飞纳电镜的光学导航,自动马达样品台,找样的过程非常简单。光学导航相当于有了地图,从而有了找到最佳位置的方向,自动马达样品台可以在瞬间将视野移动到需要观察位置,只需点击该位置一次。借助 Phenom 飞纳电镜颗粒统计分析测量系统可以一次处理大量数据,该软件最多可以一次读取 400 张扫描电镜图片,完成对所有图片的分析统计,给出统计结果的图表报告。如果一次需要几百张扫描图片作为样本的话,不用担心拍照取照时间过长,结合 Phenom 飞纳电镜超大视野全景拼图,可以自动完成拍照取照的功能,原因是飞纳电镜有光学导航,自动聚焦,和自动马达样品台,这些设计通过计算机的指令控制,可以自动连续扫描指定大小区域,每分钟可采集超过 100 张 1024 x 1024 分辨率的图像,这些图像自动存储在电脑的指定文件夹内,同时,这些图像可以自动拼合为一副全景图像。Phenom 飞纳电镜颗粒统计分析测量系统可以快速读取指定文件夹内的图像,即可以读取由 Phenom 飞纳电镜超大视野全景拼图自动采集的图像。因此可以快速处理样本量大的统计工作,节省人力。以下是本次实验中使用的 PS 聚苯乙烯小球在 Phenom 飞纳台式扫描电镜下的部分图片,低倍下可以观察到小球的排列情况,高倍可以观察小球表面的细节。PS 聚苯乙烯小球放大倍数:1万倍PS 聚苯乙烯小球放大倍数:2万倍样本准备好后,开始用 Phenom 飞纳电镜颗粒统计分析测量系统进行试验,我们最先使用标称直径 1.5 μ m 的 PS 聚苯乙烯小球试验。上图为标称直径 1.5 μ m的 PS 聚苯乙烯小球的识别效果,识别得非常完美,5 秒钟快速给出结果,同时给出关于该小球的众多如长轴,短轴,面积,周长等参数,大大方便了我们去识别买来的 PS 聚苯乙烯小球的质量。下图为其众多参数,可以看到该小球的平均直径为 1.4 μ m,总的来说质量还不错。并且该软件还能给出所有小球直径的直方图,直观方便,如下图所示可知大部分的颗粒直径是接近 1.5 μ m 的。我们又对 3 μ m 和 10 μ m 的 PS 聚苯乙烯小球颗粒做了统计,效果一样完美,如下图所示,给出其平均直径分别为 2.73 μ m 和 9.72 μ m。 Phenom 飞纳台式电镜的颗粒系统帮助我们快速准确地完成对 PS 聚苯乙烯小球直径的统计工作,省去了一个小球一个小球测量的麻烦,希望他们以后做出其他好的软件,大大提高我们做科研的效率!直径 3 μ m 的 PS 聚苯乙烯小球统计结果直径 10 μ m 的 PS 聚苯乙烯小球统计结果
  • 上海硅酸盐所纳米热学-声学显微成像系统亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院上海硅酸盐研究所的纳米热学-声学显微成像系统亮相国家“十一五”重大科技成就展。 纳米热学-声学显微成像系统   上为SThM扫描探针声成像控制仪,下为SThM扫描探针热成像控制仪。   在原子力显微镜基础上,中科院上海硅酸盐研究所自主研发了纳米热学-声学显微成像技术,为研究纳米结构、微观弹性和热学特性提供了独特的新方法,实现了其他手段不易获得的结构分析、缺陷检测和热、弹性能评价功能,已在国内外多个高校和科研院所得到应用,推动了显微成像技术的发展。此外,该仪器还获得了2006年中国国际工业博览会银奖。   关于中国科学院上海硅酸盐研究所:   中国科学院上海硅酸盐研究所渊源于1928年成立的国立中央研究院工程研究所,1954年更名为中国科学院冶金陶瓷研究所。1959年独立建所,定名为中国科学院硅酸盐化学与工学研究所,1984年改名为中国科学院上海硅酸盐研究所。经四十多年的发展,上海硅酸盐研究所已成为一个以基础性研究为先导,以高技术创新和应用发展研究为主体的无机非金属材料综合性研究机构。
  • 国家纳米科学中心“微纳技术检测及应用”系列标准宣贯会通知
    标准是经济活动和社会发展的技术支撑,是国家基础性制度的重要方面。新时代推动新质生产力的高质量发展、全面建设社会主义现代化国家,迫切需要进一步加强标准化工作。国家纳米科学中心是全国纳米技术标准化技术委员会(SAC/TC279)、全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)和全国微细气泡技术标准化技术委员会(SAC/TC584)秘书处所在单位,同时,也是国际标准化组织纳米技术委员会(ISO/TC229)和国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)、国际标准化组织微细气泡技术委员会(ISO/TC584)对口单位。为深入贯彻实施《国家标准化发展纲要》以及《2024年全国标准化工作要点》相关要求,国家纳米科学中心拟于5月30日~31日在北京举办“微纳技术检测及应用”标准宣贯会,旨在为纳米技术、颗粒技术和微细气泡技术标准化工作搭建沟通平台,深化标准化交流合作,加强标准化宣传,同时也为从事检测工作的科研和技术人员增进对标准制定、检测标准方法、标准应用等工作的了解提供广阔的平台,促进检测标准化的发展,提升业界标准化技术支撑水平。会议组织单位主办单位:国家纳米科学中心协办单位:上海中晨数字技术设备有限公司会议时间及地点会议时间:2024年5月30日~31日(会议30日09:00开始)注册时间:2024年5月29日15:00-17:00 2024年5月30日08:00-09:00会议地点:北京 国家纳米科学中心(北京市海淀区中关村北二条)会议日程*日程尚在更新中,以现场最终日程为准扫码报名主讲老师▣ 国家市场监督管理总局国家标准技术审评中心▣ 全国纳米技术标准化技术委员会(SAC/TC279)专家▣ 全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)专家▣ 全国微细气泡技术标准化技术委员会(SAC/TC584)专家▣ 纳米技术、颗粒表征、微细气泡等相关技术标准首席起草人参会对象▣ 各省市、各行业和地方从事纳米技术、颗粒表征、微细气泡标准化研究和管理人员▣ 2024年有新标准制修订项目立项的起草团队人员▣ 2024年拟申请新标准制修订项目的起草团队成员▣ 国际标准拟注册及在册专家及项目团队成员注册费及缴费方式▣ 请参加会议人员在线填写以下参会回执▣ 会议费用为1200元/人(主要用于邀请讲课教师及相关标准资料购买)▣ 本次会议食宿费用自理▣ 请于开会前将会议费汇到国家纳米科学中心,备注“标准宣贯会议费+参训人姓名”,并邮件zhoul2024@nanoctr.cn告知汇款结果▣ 会议费为电子发票,邮件到参会代表报名时提供的邮箱账户名称: 国家纳米科学中心开 户 行: 建设银行北京中关村分行账 号:1100 1007 3000 5926 1021展位招商▣ 会议诚招展商,面向本次参会代表和国家纳米科学中心全体师生,提供三天的展示▣ 展商费用为10000元/席(设6席)会议联系人国家纳米科学中心周老师 18311283997 zhoul2024@nanoctr.cn 高老师 010-82545672 13811507217 gaoj@nanoctr.cn
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • 飞纳推出世界首款车载可移动扫描电子显微镜
    飞纳扫描电镜自2006年问世以来,一直不断技术创新,从用户的角度研发出一系列新的产品,2014年隆重推出世界首款车载可移动的扫描电镜,突破了传统电镜安置在固定场所、怕震动等局限性,为科学研究、生产制造带来全新的用户体验。 完全集成扫描电子显微镜(SEM)和EDX分析一体机能够对任意地方的样品进行快速和准确的调查和分析。通过车载可移动的扫描电镜,飞纳能够随时随地的为用户进行现场直观的演示,飞纳12S抽真空、30S快速成像、简单方便的操作界面能够为用户优化操作时间,及时获取样品信息,提高工作效率。 放眼过去,从飞纳电镜在荷兰诞生到2014年,全球销售总量已经突破2600台。在中国,安装并使用飞纳电镜的用户已经超过300位,并且还在高速增加,公司已经在中国取得了辉煌的成绩。未来,飞纳电镜将依托市场平台优势,整合全方位资源,进一步扩展项目、提高品质,开拓更广阔的市场!
  • 日立高新:在中国开售纳米尺度3D光学干涉测量系统VS1800
    p    strong 仪器信息网讯 /strong 2019年3月5日,日立高新技术科学公司宣布,在中国开始销售利用光干涉原理进行非接触式无损伤三维表面形态测量的纳米尺度3D光学干涉测量系统——VS1800 span style=" color: rgb(0, 176, 240) text-decoration: underline " 【 /span a href=" https://www.instrument.com.cn/netshow/C316288.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 产品链接 /span /a span style=" color: rgb(0, 176, 240) text-decoration: underline " 】 /span 。据悉,VS1800于2018年年底在日本发布并销售,今日起,中国市场正式开始发售。 /p p   VS1800搭配有支持多目的表面测量国际标准“ISO 25178*1参数对比工具”,通过简单而准确的样品测量支持客户的分析业务,与此同时,凭借不断创新积累的三维测量性能,实现高精度、高分辨率的表面性状的测量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/f8ecf284-1695-4c8e-bf63-a2c0093622f0.jpg" title=" 1.jpg" alt=" 1.jpg" style=" width: 300px height: 423px " width=" 300" vspace=" 0" height=" 423" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " VS1800:通过分析工具和测量技术支持三维表面性状测量 /span /p p   strong   span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 产品开发背景 /span /strong /p p   在半导体、汽车、食品、医药品等产业领域的材料研究和开发方面,为了提高产品的性能与功能,对产品表面的粗糙度、凸凹不平、翘曲等表面形状的评估变得尤其重要。以往,表面形态的测量方法,一般是采用 strong 触针式粗糙度测量仪等进行二维测量(线+高差) /strong 。但近年来,伴随着材料的薄膜化和微细构造化的加速,需要能够获取更多的信息,传统测量手段受到限制。进而,采用 strong 扫描型白光干涉显微镜*2和激光显微镜*3等进行三维测量(面+高差) /strong 便得到了进一步灵活应用。 /p p   此外,2010年,三维表面形态评估的国际标准ISO 25178的制定,确立了评估方法,在此背景下,实施三维测量的企业和研究机构等日益增多。随之,表面形态测量上的测量与分析的简单化以及应对多种样品的测量等问题日益凸显,为解决这些测量问题,VS1800应运而生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 产品解决了哪些测量问题? /strong /span /p p   此次发售的VS1800, 搭配了符合ISO 25178标准的分析工具 “ISO 25178参数对比工具”。在ISO 25178标准中规定了评估表面性状的32个项目的参数,但在对比样品时,选择最适合评估的参数很难,成为分析业务的难题。“ISO 25178参数对比工具”,通过按差异程度大小顺序自动对测量的参数值进行依次排序,可轻松选出最适合对比样品的参数,从而支持客户的分析业务。 /p p   此外,VS1800通过光干涉方法*4,除了可实现大视野测量、0.01nm的垂直方向分辨率*5、高重现性外,亦通过日立高新技术科学自主研发的技术,继承了多层膜的无损伤测量等传统产品的高测量性能。此外,该产品还可搭配“大倾斜角测量选配 ”*6功能,通过捕捉大倾斜角斜面的微弱的干涉条纹变化,实现传统的光干涉方式无法实现的大倾斜角斜面测量,从而应对多种多样的样品表面性状的三维测量。 /p p   至此,在表面分析系统解决方案方面,日立高新技术集团拥有了可实现极微细样品高分辨率测量的原子力显微镜、获得更大视野的扫描电子显微镜、高精度测量可能的VS1800等产品阵容,满足相关用户更广泛需求。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 产品主要特点 /strong /span /p p    strong (1)高测量性能 /strong /p p   ■ 垂直方向分辨率:利用光干涉方法,通过独自的算法,实现0.01 nm*的垂直方向分辨率 /p p   ■ 重现性:利用干涉条纹测量凸凹的高度,通过将来自Z驱动机构的影响最小化,实现0.1 %以下的重现性 /p p   ■ 测量速度:由于不需要样品的前处理,只要将样品放置在样品台上即可完成测量准备。通过光干涉方法最快5秒钟即可完成测量 /p p   ■ 测量视野:以从干涉条纹获取的信息为基础进行凸凹高度的测量,由此可实现广范围(One-shot最大6.4 mm× 6.4 mm)测量与高垂直方向分辨率的两者兼顾。此外,通过连接多个数据的图像,可进一步实现广范围的分析 /p p   ■ 无损伤测量:通过日立高新技术科学自主研发的技术,对玻璃和薄膜等透明多层结构样品进行测量时,无需对样品进行加工切割成截面,即可在无损伤的情况下,完成多层结构样品的各层厚度或异物混入状况的确认以及缺陷分析等 /p p    strong (2) 易于使用的操作界面 /strong /p p   采用直观易懂的操作界面,能够轻而易举地进行图像分析处理前后的图像对比,从而支持分析时的最合适图像处理选择。此外,可简单地列出处理与分析的内容、创建独自的分析参数、重复使用分析参数等,并且还可批量处理数据,由此实现统一管理多个样品和分析结果,减轻繁琐复杂的后处理。 /p p    strong (3) ISO 25178参数对比工具 /strong /p p   在对比多个样品时,通过将ISO 25178标准中规定的32项参数值按差异的大小顺序重新排列,从而在样品对比时能够轻松选取最适参数,支持客户的分析业务。 /p p    strong (4) 硬件升级 /strong /p p   按每一台XY样品台的驱动方式,设计了3个类型的产品,即基础模式的手动型Type 1、电动型Type 2、Type 3。从Type 1到Type 2、Type 3,均可根据不同的用途进行升级。 /p p    strong span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) " 【附注】 /span /strong /p p   *1 ISO 25178:规定表面形态评估方法的国际标准。 /p p   *2扫描型白色干涉显微镜:利用 span style=" background-color: rgb(112, 48, 160) " /span 光干涉原理进行非接触式、无损伤的表面形态测量的测量设备。 /p p   *3激光显微镜:将激光作为光源进行表面形态测量的测量设备。 /p p   *4光干涉方法:是利用两列或两列以上的光波相互叠加而出现光明暗(干涉条纹)现象(干涉)的检查方法。 /p p   *5 0.01 nm的垂直方向分辨率为Phase模式时的性能。 /p p   *6“大倾斜角测量选配”为选择项目。 /p
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(Nano-CT)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon® )。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行 者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个 组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。 Bruker多量程X射线三维纳米显微成像系统(Nano-CT)
  • 布鲁克发布Bruker多量程X射线三维纳米显微成像系统(3D XRM)新品
    SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。■多用途系统,样品尺寸可达300mm,分辨率(像素尺寸)可达 60 纳米■金刚石窗口x射线源,焦斑尺寸500nm■创新的探测器模块化设计,可支持 4 个探测器、可现场升级。■全球速度很快的 3D 重建软件(InstaRecon® )。■支持精确的螺旋扫描重建算法。■近似免维护的系统,缩短停机时间并降低拥有成本。地质、石油和天然气勘探■常规和非常规储层全尺寸岩心或感兴趣区的高分辨率成像■测量孔隙尺寸和渗透率,颗粒尺寸和形状■测量矿物相在3D空间的分布■原位动态过程分析聚合物和复合材料■以500 nm 的真正的 3D 空间分辨率解析精细结构■评估微观结构和孔隙度■量化缺陷、局部纤维取向和厚度电池和储能■电池和燃料电池的无损 3D 成像■缺陷量化■正负极极片微观结构分析■电池结构随时间变化的动态扫描生命科学■以真正的亚微米分辨率解析结构,如软组织、骨细胞和牙本质小管等■对骨整合生物材料和高密植体的无伪影成像■对生物样品的高分辨率表征,如植物和昆虫创新点:SKYSCAN 2214 是布鲁克推出的新纳米断层扫描系统,是显微 CT 技术领域的先行 者,在为用户带来了终级分辨率的同时,提供非常好的用户体验。SKYSCAN 2214 的每个 组件都融入的新的技术,使其成为当今市场上性能很强、适用性很广的系统。 Bruker多量程X射线三维纳米显微成像系统(3D XRM)
  • 全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
    全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
  • 碳纤维国家标准有望年内发布
    在近日举行的中国碳纤维发展战略研讨会上,业内人士称,碳纤维国家标准今年将由国家有关部门发布。   据了解,我国的碳纤维牌号沿用日本东丽的碳纤维系列,尚未建立实用而完整的自主品牌号系列,不利于引导国产碳纤维的良性发展和推广应用。
  • 荷兰飞纳发布台式场发射(FEG)电镜能谱一体机 Phenom LE:分辨率提升至2.5nm
    p    strong 仪器信息网讯 /strong 2018 年7月24日,荷兰飞纳Phenom 在仪器信息网 a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/webinar/meetings/iCEM2018/" span style=" color: rgb(0, 176, 240) " 第四届电镜网络会议(iCEM 2018) /span /a 首日重磅推出其颠覆性创新产品——全球首创台式场发射(FEG)扫描电镜能谱一体机Phenom LE:采用肖特基场发射电子枪,集背散射电子成像,二次电子成像和能谱分析于一体,分辨率优于 2.5nm@15kV,放大倍数 500,000x。只需一张承重200kg以上的桌子就可以安装飞纳台式场发射(FEG)电镜,无需装修改造实验室,无需安装防震台、磁屏蔽。可谓是扫描电镜行业的一个里程碑式创新产品,从参会千名电子显微学工作者的现场反应以及100多个产品咨询问题,侧面看到了广大电镜用户对该产品的极大兴趣。 /p p style=" text-align: center" img style=" width: 450px height: 366px " src=" http://img1.17img.cn/17img/images/201807/insimg/781d19d2-6236-4f8b-854f-66d64ccad0d5.jpg" title=" 1.png" height=" 366" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 飞纳台式场发射(FEG)扫描电镜 Phenom LE /span /p p   “飞纳台式场发射——复杂设计给飞纳,极致体验给用户”,有着十多年电镜工作经验的飞纳应用顾问李淑波这样描述新产品,“该产品从立项到最后上市,耗时 6 年时间,发布多项专利,凝聚着上百名(直接、间接)研发人员的心血:为了早日让用户体验产品,研发人员 24 小时不停歇,晚上下班后将监测设备搬回自家调试,如今,这款设备终于通过了荷兰飞纳苛刻的质量保证体系,远渡重洋为忠实,勤劳,高品质要求的中国用户服务”。 /p p   据介绍,飞纳台式场发射(FEG)电镜能谱一体机Phenom LE 将为用户节省 40% 左右的购买成本(相较于购买传统落地式场发射电镜和能谱),同时可为用户节省 20-60 万的实验室改造费用(安装防震台,磁屏蔽,装修实验室等),飞纳台式场发射只需要一张桌子(千元左右),维护也相对简单,省钱更省心。 /p p    strong 从台式电镜到场发射(FEG)电镜能谱一体机,从 CeB6 灯丝到场发射灯丝 /strong ——2006 年,飞纳发布全球首台使用高亮度 CeB6 灯丝的台式扫描电镜(Phenom Desktop SEM),放大倍数为 10000 倍。2012 年 3 月,飞纳研发出首台电镜能谱一体机,开创电镜能谱设计新理念,两年销量达到 790 台。 /p p    strong 台式电镜分辨率从 30nm 提升至 2.5nm /strong ——飞纳台式场发射(FEG)电镜Phenom LE 在 15kV 条件下,分辨率已提升至优于2.5nm,放大倍数为500000x。且低电压成像优异,可以获得更丰富表面细节。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/ecf347ca-8ab9-46ba-82a9-ba0cc0c16575.jpg" title=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 分辨率提升对比图 /span /p p style=" text-align: center " (左,飞纳台式电镜(CeB6 灯丝);右,飞纳台式场发射(FEG)电镜) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/59ed611c-d324-40a2-8630-7462abce450b.jpg" title=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 飞纳台式场发射(FEG)电镜高分辨性能 /span /p p style=" text-align: center " (左,锂电池隔膜;右,纳米氧化铁颗粒) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/f8b5d6f5-b574-49e8-9104-700bb4199852.jpg" title=" 5.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 飞纳台式场发射(FEG)电镜低电压成像 /span /p p style=" text-align: center " (左,太阳能电池板 2kV;中,药物微球 3kV;右,静电纺丝纳米蛛网 5kV) /p p    strong 场发射电镜能谱一体机之能谱 /strong ——能谱探头由原厂集成,延续飞纳电镜能谱一体机的设计理念,腔室内部采用特殊设计结构,以保证能谱探头最佳探测角度和探测距离,提高 X 射线收集效率。同时,此次升级的肖特基场发射电子源束流大,进一步激发样品产生充足的 X 射线。配置超薄“窗口”(Si3N4),元素探测范围:Boron(5)-Americium(95)。 /p p    strong 高效,简易操作、安装 /strong ——高效率体现在15秒抽真空、全程样品导航、全自动马达样 /p p   品台等功能。整体操作简化为三步:装样品,自动聚焦和对比度亮度调节,一键取图成像。人性化的简约操作界面帮助操作者快速学会所有操作。飞纳台式场发射(FEG)电镜不仅具有操作便捷的优势,还可以适应高楼层等大多数环境的安装,且可免去磁屏蔽系统及防震台。 /p p    strong 关于选配软件 /strong ——Phenom LE 配置了多功能选配应用软件,如颗粒系统、孔径系统、纤维系统等,使得一些统计分析的应用可以一键完成。也可以根据客户的需求定制个性化软件,帮助客户自动完成样品图像的拍摄,分析。 /p
  • 540万!中国科学院水生生物研究所高分辨三维纳米显微成像系统采购项目
    项目编号:OITC-G220321073项目名称:中国科学院水生生物研究所高分辨三维纳米显微成像系统采购项目预算金额:540.0000000 万元(人民币)最高限价(如有):540.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1高分辨三维纳米显微成像系统1是540投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 飞纳台式扫描电镜赞助第九次华北五省市电子显微学研讨会
    2016 年 7 月 22 日 - 7 月 27 日,在内蒙古呼伦贝尔市举行了第九次华北五省市电子显微学研讨会,飞纳台式扫描电镜赞助并出席了此次会议。在这场盛会中,参会的学者和厂家可以交流电子显微学在材料、生命科学、化学化工、环境、地质学等科学领域中的应用研究成果,以及仪器相关的理论、技术探讨和实验方法的改进。还有扫描电镜及其他仪器的使用、改进与维修经验的交流等。第九次华北五省市电子显微学研讨会盛况飞纳台式扫描电镜展位荷兰phenom-world 公司专注于飞纳台式扫描电镜的技术创新,持续改进和完善飞纳台式扫描电镜及相关配件,增加台式电镜的可拓展性,帮助客户更高效地获得结果,为用户节省宝贵时间,提高其投资回报率。现已推出以下产品:飞纳台式扫描电镜能谱一体机 phenom prox——分辨率 10 nm,能谱性能优越飞纳台式扫描电镜大样品室卓越版 phenom xl——样品室尺寸 100cm*100cm*65cm飞纳台式扫描电镜高分辨率专业版 phenom pro——放大 13 万倍,分辨率 10 nm飞纳台式扫描电镜高性价比标准版 phenom pure——放大 3 万倍,分辨率 30 nm飞纳台式电镜整合光电关联显微镜 delphi——无缝切换,荧光扫描完美叠加,一机多用飞纳台式电镜枪击残留物分析 phenom gsr——光学导航,全自动检测,astm e1588 标准飞纳台式扫描电镜为参加此次会议的老师准备了精美的手提袋扫描电镜现已成为研究材料必不可少的工具,飞纳电镜设计精巧,操作简单,维护方便,15 秒抽真空,将会帮助使用者显著提高工作效率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制